
M
l
R
a

b

A

K
D
M
P
A
S
I

C

h
R

Information and Software Technology 177 (2025) 107583

A
0
n

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

apping DevOps capabilities to the software life cycle: A systematic
iterature review
icardo Amaro a,∗, Rúben Pereira a, Miguel Mira da Silva b

Instituto Universitário de Lisboa (ISCTE-IUL), INOV, Portugal
Instituto Superior Técnico, Universidade de Lisboa, INOV, Portugal

R T I C L E I N F O

eywords:
evOps
etrics

erformance
doption
oftware development life cycle
nformation system

A B S T R A C T

Context: Many IT organizations are looking towards DevOps to make their software development and delivery
processes faster and more reliable, while DevOps revolutionized the industry by emphasizing collaboration
between development and operations teams. Nonetheless, there still exist challenges in harmonizing cultural,
technical, measurement and process capabilities for its successful adoption.
Objective: To research improving DevOps adoption, this study explores DevOps Capabilities relevant to the
Life Cycle Processes (LCPs) of the IEEE 2675-2021 DevOps standard. Aiming to provide valuable information
on increasing efficiency and outcomes by mapping DevOps Capabilities in each phase of the LCPs. Whereas
previous research identified and classified 37 DevOps Capabilities, this study aims to determine which
capabilities can enhance each of the 30 phases of the LCPs.
Methods: Out of 102 documents identified in the Systematic Literature Review (SLR), relations among DevOps
Capabilities and LCPs have been synthesized and organized. An in-depth analysis of data was conducted over
the connections across various categories. The mapping revealed how they relate in terms of their application
and impact.
Results: The SLR shows technical DevOps Capabilities and technical LCPs strongly correlated. DevOps mea-
surement capabilities have a significant impact on agreement processes. Using an impact scale classification,
the study identifies eight capabilities that have exceptional impact on LCPs and eleven capabilities that have
a very high impact on the supply process, requirements definition, integration process, and validation process.
Conclusion: The study demonstrates how DevOps Capabilities together with LCPs can improve software
delivery, quality, and reliability. It presents a structured approach for improving processes, as well as
evidence of DevOps integration in software development and maintenance. The findings help to assess DevOps
Capabilities and LCP relations, which is expected to improve successful adoption. Future research should focus
on researching practical cases of DevOps integration into LCPs, while overcoming adoption challenges.

ontents

1. Introduction .. 2
1.1. Context ... 2
1.2. Problem... 2
1.3. Proposal and objective.. 2

2. Research background ... 3
2.1. DevOps capabilities .. 3
2.2. Software life cycle processes ... 3

3. Systematic literature review.. 5
3.1. Planning .. 5

3.1.1. Review protocol ... 5
3.2. Conducting the SLR .. 6

3.2.1. Identification of primary documents .. 6
3.2.2. Quality assessment and eligibility .. 6

∗ Corresponding author.
E-mail addresses: ricardo_amaro@iscte-iul.pt (R. Amaro), ruben.filipe.pereira@iscte-iul.pt (R. Pereira), mms@tecnico.ulisboa.pt (M.M.d. Silva).
ttps://doi.org/10.1016/j.infsof.2024.107583
eceived 22 May 2023; Received in revised form 12 September 2024; Accepted 14 September 2024
vailable online 19 September 2024
950-5849/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
c/4.0/).

https://www.elsevier.com/locate/infsof
https://www.elsevier.com/locate/infsof
mailto:ricardo_amaro@iscte-iul.pt
mailto:ruben.filipe.pereira@iscte-iul.pt
mailto:mms@tecnico.ulisboa.pt
https://doi.org/10.1016/j.infsof.2024.107583
https://doi.org/10.1016/j.infsof.2024.107583
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

R. Amaro et al. Information and Software Technology 177 (2025) 107583
3.2.3. Extraction of data .. 7
3.3. Data extraction analysis .. 7

3.3.1. Literature number of contributions .. 7
3.3.2. Distribution of publications over the years ... 8

4. Reporting the literature review ... 8
4.1. RQ1 - How do authors in scientific literature relate Software Life Cycle Processes to DevOps Capabilities? ... 8

4.1.1. Agreement processes... 9
4.1.2. Organizational project-enabling processes... 9
4.1.3. Technical management processes ... 11
4.1.4. Technical processes .. 13

4.2. RQ2 - Which categories of DevOps capabilities are most relevant to the software life cycle processes?.. 16
5. Discussion ... 17

5.1. Categories with fewer relations but high average values .. 17
5.2. Improving life cycle processes with DevOps capabilities .. 19

5.2.1. Exceptional impact relations.. 19
5.2.2. Very high impact relations .. 19
5.2.3. Applying the life cycle concepts .. 19

5.3. Impact and practical applications on the field of DevOps... 20
6. Conclusion .. 21

6.1. Contributions ... 21
6.2. Limitations .. 21
6.3. Future work... 22
CRediT authorship contribution statement ... 22
Declaration of competing interest .. 22
Data availability .. 22
References... 22
1. Introduction

1.1. Context

Since the early years of Software Development (SD), developers
are consistently trying to find the best ways to produce and deliver
software. Similarly, companies today also seek to improve methods of
creating and implementing software with high quality and return on
investment in order to meet the demands of customers and the market
[1]. Thus, over the years there has been a dramatic change in SD
models, for example, from conventional Waterfall to the Agile method-
ology. More recently, these organizations are looking to modernize
their development environment rapidly by reducing development cy-
cles and improving continuous delivery using a cutting-edge paradigm
emphasizing the collaboration of Developers(Dev) and Operations(Ops)
(DevOps). DevOps helps improve situations where Software delivery
is a somewhat risky, complex or lengthy process [2]. Last-minute
defects and integration issues frustrate end users, development teams,
and business stakeholders. Moreover, coordination issues across teams
frequently result in the execution of incorrect functionality, integration,
and deployment issues, and finger-pointing. Thus, DevOps is an enabler
of software delivery performance [3].

1.2. Problem

The problem remains that, while many organizations have been suc-
cessful in implementing DevOps internally, others are still failing when
trying to incorporate the cultural, technical, measurement, and process
capabilities of DevOps [4–6]. Therefore, DevOps adoption remains
uncertain [7,8], emphasizing the importance of providing managers
and teams with appropriate information to successfully support the
implementation of DevOps Capabilities and practices [4].

For organizations that do not employ Agile methodologies, it is
unclear how DevOps can improve software Life Cycle Processes (LCPs)
beyond Agile. The suitability of DevOps for waterfall or other method-
ologies is questioned [9]. While practices like continuous integration
and delivery are said incompatible with waterfall due to its lack of con-
tinuity [10], DevOps-specific capabilities can enhance team efficiency

even in other environments [9].

2
From another more formal perspective, the IEEE Standard for De-
vOps [11] states that DevOps is suitable for most LCP models [12],
and ‘‘particularly appropriate for teams adopting Agile methodologies’’.
While it is stated that DevOps is suitable for most LCP models, for
instance in an iterative waterfall approach [11, p. 32], it is not clear
how DevOps will be suitable in other methodologies in a generic way,
where each process benefits from one or more DevOps Capabilities.
How is it suitable? What DevOps Capabilities can improve each LCP?

1.3. Proposal and objective

The DevOps Standard IEEE Std 2675:2021 [11] is aligned with the
Configuration Management IEEE Std 828:2012 [13] and closely adheres
to the ISO/IEC/IEEE 15288:2015 [12] and ISO/IEC/IEEE 12207:2017
LCP standards [14]. However, these standards were developed before
the systematization of DevOps Capabilities [4], leaving room for im-
provement. This research proposes a comprehensive literature review
to determine which DevOps Capabilities can improve each Software
and System LCP presented in the IEEE Standard for DevOps [11]. Previ-
ous research has identified and categorized 37 DevOps Capabilities [4].
It will examine how each DevOps Capability relates to each LCP, aiming
to enhance existing standards by providing a precise understanding of
the impact of DevOps Capabilities on LCPs.

This paper includes an extensive literature review and utilizes a
conceptual map seen in Fig. 1 as the framework for analysis in Sec-
tion 5. Processes consist of interrelated activities that transform inputs
into outputs, with the process outcome reflecting the successful attain-
ment of their purpose, which is the high-level objective and expected
outcomes of effective process implementation [14].

In Fig. 1 it can be seen how they are interrelated. Each process in
the life cycle has a purpose defined in the standard and attains out-
comes [15] also defined there, for which it includes specific activities
and tasks performed by teams. Teams adopting the process need to
learn the skills and knowledge required by DevOps Capabilities in order
to enable the activities and tasks of the process.

On the other hand, as proposed, the acquired DevOps Capabil-
ities must be periodically evaluated, through a DevOps assessment,
in order to generate and ensure the results intended by the process.
The purpose of implementing the process is to provide benefits to the

stakeholders [14].

R. Amaro et al.

p
t
2
u
a
r
w

c
r

2

t
s
a
v
(
r
s
a
S

2

f
r
1
a
t
O
A
m
c
a

s
i

Information and Software Technology 177 (2025) 107583
Fig. 1. Relating DevOps Capabilities [4] to LCPs[11] conceptual map.
Based on the original question of how DevOps Capabilities can im-
rove each LCP, this study aims to find and study DevOps Capabilities
hat are relevant to LCPs from ISO/IEC/IEEE 12207 and IEEE 2675-
021. This is because DevOps is an interdisciplinary field that could
se more management-focused research [16, p. 7]. This study conducts
SLR to identify relevant literature that discusses or examines the

elationship between DevOps and LCPs. The research questions that
ill guide this study are:

• RQ1. How do authors in scientific literature relate Software Life
Cycle Processes to DevOps Capabilities?

• RQ2. Which categories of DevOps Capabilities are most relevant
to the Software Life Cycle Processes?

This research is grounded in the need to understand how DevOps
an improve the software development process by identifying the most
elevant capabilities to LCPs.

. Research background

This section provides a theoretical foundation for the study area of
his research. Furthermore, this SLR also gives an overview of other
imilar studies in Section 4.1. More related work has been previously
nalyzed in published the studies listed in Section 5 where 37 De-
Ops Capabilities were extracted from an Multivocal Literature Review
MLR), also mentioned in this section, were harmonized. Although all
eviewed papers acknowledge the connection between DevOps and the
oftware development process, none of them explicitly does an SLR to
ddress how authors relate DevOps Capabilities [4] to LCPs from IEEE
tandard 2675-2021 [11], which is a key novelty of this paper.

.1. DevOps capabilities

DevOps comprises capabilities and continuous practices aimed at
acilitating rapid software development and delivery through collabo-
ative efforts among development, testing, and operations teams [4,17–
9]. It fosters a cultural mindset change, eliminating information silos
nd promoting higher delivery, quality, and cooperation [5,20]. Au-
omation plays a crucial role in DevOps, leveraging both Free/Libre and
pen Source Software (FLOSS) and other tools such as Chef, Puppet,
nsible, Linux, Kubernetes, Jenkins, and Prometheus [21]. Continuous
onitoring, feedback, integration (CI), and deployment (CD) are key

apabilities that shorten time to market and ensure software correctness
nd reliability [5,22].

Businesses adopt DevOps to achieve a balance between velocity and
ystem reliability, addressing stakeholder needs and functionality early

n the software development cycle [11,15]. This software development

3
process requires identifying, engaging, and collaborating with all stake-
holders. This study will utilize the identified DevOps Capabilities seen
in Fig. 2 to address the research questions.

The investigation done in this paper also takes into account the pro-
cesses and definition proposed for DevOps in the IEEE Standard 2675-
2021 [11], where it is described as a set of principles and practices that
encourage increased communication and collaboration among stake-
holders. Majorly involved in designing, developing, and running sys-
tems and software products or services, as well as achieving continuous
improvement in all aspects of that entity’s LCPs.

Finally, DevOps is a fast-growing cultural shift. It stresses building
an Agile relationship and collaboration between software development
and operations [20], namely with the use of tools to automate the
management of software infrastructures, which, over the years, have
become complex, heterogeneous, and of large-scale [23].

2.2. Software life cycle processes

For over 60 years, researchers have studied software processes and
life cycle models [24]. These models provide an organized and effective
approach to software development and delivery, defining roles, activi-
ties, and expected results. Initially, the term ‘‘software development’’
replaced ‘‘computer system development’’ as software and hardware
were developed together, making code changes time-consuming and
costly. Interest in software processes was limited until Benington’s work
in the 1950s [25], which presented an explicit representation of a
Software Development Life Cycle (SDLC). In 1970, Winston W. Royce’s
paper [26] introduced the concept of a SDLC and described a sequential
and interactive approach, now known as the waterfall model.

The term ‘‘waterfall model’’ was later coined by Bell and Thayer in
1976 [27], referring to Royce’s work. It became a widely recognized life
cycle model, providing a foundation for estimation, project monitoring,
and other tasks [28]. Royce’s article highlighted the state of the water-
fall model at the time and proposed improvements to mitigate the risks
of redesign and rework [29]. Since then, there have been many distinct
approaches, with different Software Engineering (SE) methodologies
and methods. Several other software processes and models like the V-
Model [30], Iterative Enhancement [31], Prototyping [32], Spiral [33]
all with considerable differences from each other, which have been
the object of other studies [24,29], all focused in improving software
development and delivery. Today we witness many ways of addressing
the whole software product life cycle or portions of it.

Software process models and life cycle models are distinct con-
cepts. A life cycle model, as defined in SEVOCAB1 [11], serves as
a framework for the stages and activities involved in the software

1 https://pascal.computer.org/sev_display

https://pascal.computer.org/sev_display

R. Amaro et al.

l
d
d
i
m
R
S
c
t
p
i
i
i
s
e

i
o
g
a
e
s
r
p

b
W
w
a

Information and Software Technology 177 (2025) 107583
Fig. 2. Categorization of DevOps Capabilities.
Source: Adapted [4].
Fig. 3. Processes and Life Cycle Processes in Software Engineering (in Fig. 4).

ife cycle, providing a common reference for communication and un-
erstanding. On the other hand, software process models offer more
etailed information, including sub-steps, outputs, and the roles of
ndividuals involved. As an example, using the Waterfall Life Cycle
odel outlines the high-level sequential stages of development like
equirements Analysis, Implementation or Maintenance, while in a
oftware Process Model, employing the Agile practices within the
oding phase specifies iterative, collaborative methods for executing
he work, like Sprint Planning, Daily Stand-ups or Retrospectives. A
rocess refers to a set of interconnected activities that transform inputs

nto outputs, aiming to achieve a specific result [12]. In contrast, LCPs,
llustrated in Fig. 3 and listed in Fig. 4, encompasses the processes
nvolved in the development or evaluation of software, hardware, or
ystem products [14]. Therefore, a process is a broader concept that
ncompasses the execution of relevant activities [22].

Software processes and life cycle models play a vital role in support-
ng organizational goals and strategies related to software consumption
r development. They are integral to Information Technology (IT)
overnance, aiming to deliver sustainable, standardized services and
chieve desired objectives. Software processes and life cycle mod-
ls reduce risk, enhance the predictability of LCPs, and align with
takeholders’ perspectives, including senior management and external
egulatory agencies concerned about reliability, security, and error-free
roducts [11].

The emergence of Agile methodologies created a cultural conflict
etween plan-driven models like Waterfall and Agile development.
hile Agile has clear advantages, its adoption was initially slow,
ith project managers preferring more control through strict, planned

pproaches [18,23]. However, there is a growing understanding that

4
both approaches share the goal of efficiently building quality software,
leading to the adoption of hybrid development models that combine
elements from both approaches [24].

The ISO/IEC/IEEE 12207:2017 standard provides a reference model
for structuring the software life cycle into different processes, known
as Software LCPs. It aligns to the requirements of Waterfall or Agile
approaches, accommodating the incremental and iterative nature of
Agile development and the detailed specifications and monitoring of
Waterfall projects. The standard establishes common terminology and
serves as a reference for activities like process definition, modeling,
and assessment. It complements other process standards, including
IEEE Standard 2675-2021 for DevOps [11]. ISO/IEC/IEEE 12207 helps
consolidate and structure various software process categories within its
30 LCPs, as seen in Fig. 4.

• Agreement processes are concerned with collaboration and
agreements with other organizations.

• Organizational project-enabling processes offer the environ-
ment required for project execution.

• Technical management processes refer to many facets of project
management and are therefore executed at the project level.

• Technical processes describe the many processes or phases of a
software product’s life cycle, from defining stakeholder needs to
software development.

The life cycle model framework of processes and activities is con-
cerned with the all life cycle, which can be organized into stages,
acting as a common reference for communication and understanding
between stakeholders [14]. Agile development has proved to save time
in market development, while developers and customers can work
together rapidly. However, problems arose when the Agile operations
team did not get cooperation from the developers to execute the
operational processes. The DevOps movement is a mindset shift to solve
the problem in Agile operations. ‘‘DevOps is a full life cycle endeavor
which gives equal consideration to each stage’’[11, p. 23]. Thus, it is a
set of concepts and practices that improve stakeholder communication
and collaboration for specifying, producing, improving, and operating
software and systems products and services.

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Fig. 4. Software Life Cycle Processes (LCPs).
Source: Adapted [14].
Fig. 5. The SLR process.
Source: Adapted from
Kitchenham et al. [35].
3

d
s
e
t

3

p
2
C

r

3. Systematic literature review

This research focuses on DevOps Capabilities and Life Cycle Pro-
cesses (LCPs) relying on the guidelines presented by Kitchenham et al.
[34] to perform systematic literature reviews in SE. These guidelines
are divided into three main phases: planning, conducting, and reporting
the review, as shown in Fig. 5. In this section, each step of the SLR
performed is detailed.

Since Kitchenham et al. (2004) [35] on SLRs, the use of this kind
of review in SE and other scientific communities has become frequent
for gathering evidence mainly from primary studies. The development
of the research usually consists of three phases, as presented in Fig. 5.

1. Planing: Identifying the need for a SLR in order to summarize
existing information about some phenomenon in a thorough
and unbiased manner. Development and Validation of a Review
Protocol presented in Section 3.1.

2. Conducting: Is the process of identifying relevant research, elec-
tion of studies, study quality assessment, data extraction while
monitoring progress and data synthesis shown in Section 3.2 and
represented in Fig. 6.
 t

5
3. Documenting/Reporting: In the last phase, a review report
needs to be written in order to get validation from peer review
as seen in Section 4.

.1. Planning

The initial step of the SLR process involves developing and vali-
ating the review protocol. In the introduction, the importance of the
tudy, including the problem, objectives, and research questions, is
xplained. This section describes how the study is being conducted and
he steps taken to develop and validate the review protocol.

.1.1. Review protocol
In order to find other studies, that may provide answers to the

roposed research questions, a search was conducted in November
022 using various keywords, based on DevOps and the related Life
ycle Processes (LCPs) [11,14].

Following is the resultant search string to be used in the search to
etrieve the maximum number of relevant studies. The query is applied

o the chosen datasets, which are also listed below.

R. Amaro et al.

s
a
D
t
a

Z
p
y
i

Information and Software Technology 177 (2025) 107583
• Datasets: The search engines used were, ACM Digital Library,2
IEEE Xplore,3 Science Direct,4 Springer Link,5 Wiley Online Li-
brary,6 EBSCO.7 Scopus8 and Web of Science.9

• Search String: The following search string finds the word ‘‘De-
vOps’’ together with any of the other 31 words.

DevOps AND (
"ISO/IEC 12207" OR
"Acquisition" OR
"Supply" OR
"Life Cycle Model Management" OR
"Infrastructure Management" OR
"Portfolio Management" OR
"Human Resource Management" OR
"Quality Management" OR
"Knowledge Management" OR
"Project Planning" OR
"Project Assessment and Control" OR
"Decision Management" OR
"Risk Management" OR
"Configuration Management" OR
"Information Management" OR
"Measurement" OR
"Quality Assurance" OR
"Business or Mission Analysis" OR
"Stakeholder Needs and Requirements Definition" OR
"System/Software Requirements Definition" OR
"Architecture Definition" OR
"Design Definition" OR
"System Analysis" OR
"Implementation" OR
"Integration" OR
"Verification" OR
"Transition" OR
"Validation" OR
"Operation" OR
"Maintenance" OR
"Disposal"

)

In the first phase, a preliminary set of papers is obtained. After the
earch is complete, inclusion and exclusion criteria shown in Table 1
re applied to refine the search results, during abstract screening.
uring this step, the abstracts are screened to evaluate the relevance

hey have to the research. Thereafter, snowballing is done to include
ny important and relevant material that might be referenced.

Following the process, relevant papers are read and organized in
otero10 reference manager to obtain the final selection of studies to
erform the review as outlined in Section 3.2. Finally, systematic anal-
sis and qualitative coding are performed in Qualcoder11 Section 3.3
n order to extract data to spreadsheets12 and return the answers to the

2 https://dl.acm.org
3 https://ieeexplore.ieee.org
4 https://www.sciencedirect.com
5 https://link.springer.com
6 https://onlinelibrary.wiley.com
7 https://search.ebscohost.com
8 https://www.scopus.com
9 https://apps.webofknowledge.com

10 https://zotero.org
11 https://github.com/ccbogel/QualCoder
12
 https://www.libreoffice.org/discover/calc/

6
Table 1
Inclusion and exclusion criteria applied in this research.

Inclusion Criteria Exclusion Criteria

Written in English Unidentified author
Published between 2017 and 2022 No publication date

Mention an LCP and DevOps Capability Full-text not accessible
Peer-reviewed Lack of rigor or validity (unreliable)

Engineering/Software Engineering Non-engineering related

research questions in Section 4.1 and Section 4.2. The document itself
is then written in LaTex.13

3.2. Conducting the SLR

This section presents an overview of the SLR process. Fig. 6 il-
lustrates the selection procedure, which consists of four stages: Iden-
tification, Screening, Eligibility, and Inclusion, based on the PRISMA
statement [36]. These stages also follow the guidelines for conducting
an SLR [34,35] and are designed to ensure replicability and adherence
to peer-review standards.

3.2.1. Identification of primary documents
In the initial phase, the search process involved querying the se-

lected databases using the search string defined in the planning phase.
A total of 25,979 studies were initially identified when searching
by full text. To better filter this number, the search query was also
applied to the title and abstract, resulting in 3,125 documents for easier
identification, as shown in Fig. 6. Applying the inclusion and exclusion
criteria seen in Table 1 of Section 3.1.1, the retrieved documents
were filtered based on their relevance, publication date (January 2017
to November 2022), only related to software engineering, and have
been peer-reviewed. This filtering process excluded 2,524 non-relevant
documents. This was done by using the search engine of each database
to exclude documents before 2017 (1,186), non-software engineering
related (909) and no peer-reviewed documents (429). We remain with
601 documents in Step 3, Relevant after inclusion/exclusion criteria to
be imported into the bibliographic reference manager Zotero, for the
Quality Assessment and Eligibility process.

In Step 4, Zotero automated deduplication feature removes 131
duplicates using resulting in a final set of 470 unique documents.

3.2.2. Quality assessment and eligibility
This phase of the SLR targets high-quality, relevant studies to be

included. After screening, titles and abstracts are reviewed for relevant
studies. The Quality Assessment criteria were grounded on recency (af-
ter 2017), full-text available, methodological rigor/impartiality/validity
(sound), sufficient relevance and data (enough to support results on
LCPs and DevOps Capabilities).

In Step 5, a full-text review, when that was available, evaluated
studies’ methodological rigor, relevance, and quality. Documents with-
out a full text, unsound or without sufficient relevance and data about
LCP and DevOps Capabilities were excluded (377). The authors dis-
cussed and resolved any quality discrepancies on eligibility decisions
through discussion to reach a consensus, captured in a spreadsheet. This
step reduced the number to 93 documents after screening abstracts. In
order to capture any relevant missing publications, the forward and
backward iterative process of snowballing [37] was then applied to the
references, of the screened literature, in Step 5. This process yielded
9 additional documents to be included, resulting in a final set of 102
full-text documents for assessment. The overall process is illustrated in
Fig. 6.

13 https://www.latex-project.org/

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.sciencedirect.com
https://link.springer.com
https://onlinelibrary.wiley.com
https://search.ebscohost.com
https://www.scopus.com
https://apps.webofknowledge.com
https://zotero.org
https://github.com/ccbogel/QualCoder
https://www.libreoffice.org/discover/calc/
https://www.latex-project.org/

R. Amaro et al.

3

s
m
s
r
q
t
t
c

3

f
t
c

3

i
T
e

m
t

a

Information and Software Technology 177 (2025) 107583
Fig. 6. Systematic review flow of information diagram for this study.
Source: Adapted [36].
.2.3. Extraction of data
In Step 6, the flow ends with the extraction of data, performing

ystematic coding and synthesizing results over the 102 final docu-
ents. For the extraction process, the methodology involved systematic

tudy within Zotero, as mentioned before, highlighting and extracting
elevant parts of text and sections to export them and performing
ualitative coding of papers within Qualcoder. This leads to identifying
he relations in the study and common themes which are used in
he discussion of this article. Data synthesis and results provide a
omprehensive answer to the research question.

.3. Data extraction analysis

The extraction phase involves locating and identifying relevant data
or analysis. It allows for the combination of different categories of data
o be synthesized. The systematic analysis phase follows qualitative
oding.

.3.1. Literature number of contributions
The number of contributions gathered from literature towards qual-

ty assessment derives from several databases, as seen in Table 2.
his process is important to achieve the necessary quality for the data
xtraction phase.

This approach tries to reach the most databases possible and still
aintain a feasible and large scope of academic publications in order

o answer the research questions using qualitative coding analysis.
Fig. 7 shows the publications gathered for the SLR, categorized
ccording to several ranking factors sourced from reputable academic

7
Fig. 7. Break down of publication quality based on ranking.

sites, including Conference Ranks.14 and Scimago Journal & Country
Rank15 The data reveals a focus on strong publications in high-quality
outlets, including Q1 and Q2 journals, A/B conferences, and books.

This is a reliable indicator of the research quality and impact
achieved in this domain, given the substantial number of publications
produced by these prominent institutions. Overall, the publications
selected for review meet the required high standards of academic rigor
and excellence, contributing to the advancement of the field.

14 https://www.conferenceranks.com
15 https://www.scimagojr.com

https://www.conferenceranks.com
https://www.scimagojr.com

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 2
Databases and steps used in the Systematic Literature Review (SLR) protocol.

Database Step 1 Step 2 Step 3 Step 4 Step 5 Snowballing Step 6

ACM Digital Library 1,386 140 85 85 13 0 13
IEEE Xplore 449 350 117 117 21 3 24
Science Direct 2383 110 38 38 14 0 14
Springer Link 4129 225 34 13 2 2 4
Wiley Online Library 545 17 14 14 5 0 5
EBSCO 12,060 736 87 65 11 1 12
Scopus 4433 1138 198 123 20 0 20
Web of Science 594 409 28 15 7 3 10

Total 25,979 3125 601 470 93 9 102

Step 1 = Query All fields, All documents
Step 2 = Query Title and Abstract, Peer reviewed publications
Step 3 = Relevant (inclusion/exclusion criteria) Table 1
Step 4 = After Removing duplicates
Step 5 = After Abstracts Screened
Snowballing = Applied over screened literature [37]
Step 6 = Full-text Document Assess.
Fig. 8. Distribution of publications per type over the years.
3.3.2. Distribution of publications over the years
As can be seen in Fig. 8, it is also noted that there is an upward

trend concerning publication numbers, with articles being the predom-
inant types of them. On the other hand, conferences are other forms,
while books occur less frequently. The growth in publication numbers
indicates more interest in DevOps which could be a catalyst to improve
both the software lifecycle as well as processes associated with it.

In summary, the analysis of the figures indicates a consistent growth
in DevOps-related publications, with a significant increase in 2022.
These publications mainly focus on the application of DevOps prin-
ciples and practices to different stages of the SDLC. These findings
suggest that DevOps is a crucial and expanding area of knowledge in
software development, and ongoing research is valuable to explore its
applications and benefits further.

4. Reporting the literature review

After extracting data and performing systematic qualitative coding,
this reporting section answers this study’s research question.

4.1. RQ1 - How do authors in scientific literature relate Software Life Cycle
Processes to DevOps Capabilities?

This section addresses the first research question and discusses how
authors relate Life Cycle Processes (LCPs) to DevOps Capabilities in
literature.

Several papers propose ways to link DevOps with LCPs. For instance,
Ali (2020) mentions that a hybrid DevOps process incorporating sys-
tematic reuse-based software development and management can reduce

rework effort and costs while increasing productivity [38]. Similarly,

8
Sánchez-Gordón (2018) suggests that new organizational structures and
highly automated processes can connect LCPs with DevOps [39]. Al-
though all the papers acknowledge the connection between DevOps and
the software development process, none of them explicitly address how
authors relate LCPs to DevOps Capabilities. Leite et al. (2019) highlight
that DevOps involves collaborative and multidisciplinary efforts to
automate software development [5], while Senapathi et al. (2018)
found that the adoption of DevOps practices improves deployment
frequency and communication between IT development and operations
personnel [17]. To address this gap, Tables 3, 4, 5, and 6 present
the identified relations between DevOps Capabilities and Life Cycle
Processes [4,11].

This SLR utilizes the Life Cycle Processes (LCPs) from the Standard
for DevOps [11] and categories of DevOps Capabilities proposed by
Amaro et al. (2022) [4] as follows:

Cultural capabilities are those that focus on the people and teams in-
volved in software development and delivery. They include things like
cross-team collaboration and communication, a culture of learning and
experimentation, and Free/Libre and Open Source Software (FLOSS)
adoption.

Measurement capabilities are those that focus on collecting and
analyzing data about software development and delivery. They in-
clude things like proactive monitoring, observability, auto-scaling,
emergency response, proactive failure notification, monitoring systems
to inform business decisions, working in progress limits, and visual
management capabilities.

Process capabilities are those that focus on the way that software de-
velopment and delivery are done. They include things like continuous
improvement of processes and workflows, focus on people, process, and
technology, working in small batches, lightweight change approval,

R. Amaro et al.

a
p
a
g
l

p
s
a
f
a

e
a
e
D
i
l
o
p

t
t

m
f
t
e

v
5
t
a
C
i
e

D
a
a
4
a

Information and Software Technology 177 (2025) 107583
visibility of work in the value stream, customer focus and feedback,
and a data-driven approach for improvements.

Technical capabilities are the ones that focus on the tools and tech-
nologies used in software development and delivery. They include
things like continuous integration, continuous delivery/deployment au-
tomation, test automation, and environments, Version Control System
(VCS), empowering teams to make decisions and changes, Configura-
tion Management (CM), cloud infrastructure and cloud-native, artifacts
versioning and registry, loosely coupled architecture, database change
management, infrastructure as code, containerization, shift left on se-
curity, trunk based development, centralized log management, test data
management, chaos engineering, and code maintainability.

For the remainder of this section, the relationship between each LCP
(listed in Fig. 4) and the categories of DevOps Capabilities (as in Fig. 2)
is detailed according to the analysis of the retrieved literature.

4.1.1. Agreement processes
LCP01. Acquisition Process: Obtaining a product or service that

meets the acquirer’s requirements [11].
Cultural capabilities: DevOps requires teams to work together [11],

use FLOSS [40–42], and have a strong organizational culture that
invests in tools and technologies to facilitate knowledge sharing and
collaboration. [43,44].

Measurement capabilities: The acquisition of tools for proactive moni-
toring, observability, and autoscaling [11,45], emergency response, and
failure notification [11], as well as visual management capabilities such
as dashboards to support DevOps and the acquisition process [46] itself.
Likewise, Risk Management should be considered to analyze, treat, and
monitor risks [46] in these acquisitions.

Process capabilities: Focus on people, process, and technology [11,14,
40], with a customer-centric approach [47] and data-driven approach
for continuous improvement [24]. The acquisition process should align
with DevOps principles, improving acquisition, in the life cycle [11,47].

Technical capabilities: Such as Continuous Integration & Continuous
Delivery or Deployment (CI/CD) [48,49], Quality Assurance (QA) [14],
VCSs [50], should empower teams [45], by acquiring flexible and de-
coupled software, supporting microservices [45], containers [51], and
security best practices [11,14,43,49]. The process should be supported
by operational data to assess benchmarks [49].

LCP02. Supply Process: Providing a product or service that meets
the requirements agreement [11].

Cultural capabilities: While DevOps improves the technical and qual-
ity aspect of supply, it does so also by leveraging cross-team collab-
oration [52], communication, and experimentation [53,54] important
for job satisfaction [5,21], with key enablers like FLOSS tools like
Kubernetes [41,55,56], while reducing conflicts, failures [57], and
deployment times.

Measurement capabilities: Supply products and services with evidence
of DevOps measurement capabilities. Namely, observability, autoscal-
ing, emergency response [5], to monitor systems and inform business
decisions [58], integrated with visual management capabilities [59].
Moreover, cloud computing services offer productive, efficient, and
reliable infrastructure with vulnerability scans [41,45,53,60], moni-
toring mechanisms and links to interconnect data centers with high
performance, using FLOSS software on the cloud [40,57,61].

Process capabilities: Working in small batches [56] is essential for
supplying change and updating systems. Visibility of the value stream
helps control the life cycle [11,14], divided into four value streams:
creating value in the ‘‘Dev’’ space, downstream delivery, and value
creation in ‘‘Ops’’ monitoring and upstream feedback [58,62]. The
lightweight change approval process is used by development teams to
manage changes and supply customers with faster updates [46,63,64].

Technical capabilities: For the supply process, it is mentioned that
DevOps Capabilities and tools such as continuous integration [48,

65] using trunk-based development [42], continuous delivery [45,66], d

9
test automation [23,67], VCSs [41,64], and configuration manage-
ment [14,21] are discussed. Security [17,68,69], cloud practices [40,
70], microservices [57,71,72], database change management [66], con-
tainers [45,57,65,73], monitoring and logging services, empowering
teams [23,63,74] and machine learning are also discussed. Finally, in-
frastructure is suggested as code [16], artifacts [65], and management
of test data and centralized logs [45,61].

4.1.2. Organizational project-enabling processes
LCP03. Life Cycle Model Management process: Ensure the def-

inition, maintenance, and availability of policies, processes, models,
and procedures aligned with organizational objectives. Emphasizes the
integration, collaboration, automation, and feedback systems crucial
for DevOps [11].

Cultural capabilities: The adoption of FLOSS in DevOps facilitates
continuous integration, delivery, and testing [85]. Chen et al. propose
a platform that integrates FLOSS components to support research and
development life cycle management [84]. The combination of DevOps
and FLOSS promotes a culture of learning and experimentation in
software development [79].

Measurement capabilities: Establishing Life Cycle Model Management
ligned with DevOps Capabilities, project needs, and organizational
olicies are crucial [11]. Real-time analytics play a vital role in tracking
pplication health and usage metrics, diagnosing problems, and inte-
rating monitoring into application life cycle management using tools
ike Chef, Ansible, and Puppet [11,66].
Process capabilities: DevOps emphasizes continuous improvement of

rocesses and workflows, particularly in alignment with security con-
iderations and infrastructure management [11]. Lightweight change
pproval is a critical practice for managing software and system con-
igurations in DevOps, involving configuration identification, status
ccounting, change control, and configuration audit [11].
Technical capabilities: DevOps relies on continuous integration, deliv-

ry, testing, and monitoring to ensure software reliability, availability,
nd security. Configuration Management is employed to control system
lements and configurations throughout the product life cycle [11,46].
atabase change management and containerization are also signif-

cant in DevOps [84,85]. Security considerations should align with
ife cycle model management, encompassing accountability, continu-
us tracking and evaluation, monitoring, and improvement of security
erformance [14,66,84].
LCP04. Infrastructure Management process: Provides and main-

ains the necessary infrastructure and services to support objectives
hroughout the lifecycle [11].
Cultural capabilities: Cultural capabilities in infrastructure manage-

ent include cross-team collaboration, communication [75], and trans-
ormational leadership [88]. These capabilities support a learning cul-
ure, experimentation [5,17,56], and the adoption of FLOSS [41],
nabling effective infrastructure management [80–82].
Measurement capabilities: Effective infrastructure management in De-

Ops requires proactive monitoring, observability, autoscaling [21,52,
4,56], emergency response [5], visual management [45], and con-
inuous delivery. Key aspects include artifacts and configuration man-
gement, infrastructure as code, containerization, and cloud services.
ontinuous monitoring of runtime performance, availability, scalabil-

ty, resilience, reliability, metrics, alerting, and log management is
ssential [5,51,61].
Process capabilities: Legacy infrastructure systems pose challenges in

evOps due to factors like lack of automation, source code quality,
nd monitoring. Continuous delivery can help overcome these barriers,
nd successful DevOps implementation relies on frequent releases [5,
0,63]. Effective configuration management of code and infrastructure
nd customer feedback play important roles [52].
Technical capabilities: Automation of infrastructure and software
evelopment is a critical aspect of DevOps [49,66,95]. Infrastructure

R. Amaro et al.

C
C
o
C
a
m
L
H

a
n
p
a
l
m

f
m

c
F
T
m

v
r
p
p
n
9

c
[
a
a
s

Information and Software Technology 177 (2025) 107583
Table 3
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 01–08.

Agreement processes Organizational project-enabling processes

LCP01 LCP02 LCP03 LCP04 LCP05 LCP06 LCP07 LCP08

C01 [11] [52] [75] [52,75–77] [5,46] [78] [11]
C02 [11,14,46,53,54] [79] [5,17,56,80–82] [83] [79] [58,79]
C03 [40–42] [41,55,56,59,69,73] [84,85] [41] [80,86] [40,42] [87]
C04 [88] [11] [89]
C05 [43,44] [80] [90]
C06 [5,57]
C07

Cu
ltu

ra
l

Ca
pa

bi
lit

ie
s

[5,21]

C08 [11,45] [5,14,21,40,41,45,51,53,57,60–62,69–71,91] [11,66] [5,21,51,52,54,56,61] [46,86,92] [44,93] [14,23,77] [17,21,87]
C09 [11] [5] [5]
C10 [46] [58] [11] [86] [14,77,94]
C11
C12 M

ea
su

re
m

en
t

[45] [59] [45] [14,86] [23]

C13 [11] [58] [11,68] [22,78] [11]
C14 [11,14,40] [40]
C15 [56] [95]
C16 [11,14,46,63,64] [11] [5,40,63] [11,14,86] [63,77,96] [22]
C17 [58,62]
C18 [47] [52] [11]
C19

Pr
oc

es
s

Ca
pa

bi
lit

ie
s

[24] [97] [24]

C20 [48] [5,21,23,48,65] [84,85] [5,49,66,71,95] [5,66,77,95] [68] [11,22,42,77,78,96,98] [49,75,80]
C21 [49] [21,45,62,66] [66,84,85] [5,17,49,52,63,71] [5,49,52,77,96] [89,99] [5,11,22,42,63,77,78,96] [22,75,80]
C22 [14] [23,67] [5,49,67,75,95] [75,95] [67] [22,100] [14]
C23 [50] [41,64] [81,82,101] [64] [22,98]
C24 [45] [23,63,74] [45,95,102] [11,76,89,102] [89,95]
C25 [14,21,41,66] [11,14,46] [14,21,23,56,65,82] [11,14,46,75,89] [11] [14] [21]
C26 [21,40,53,56,61,70] [17,51,56,88,95] [41]
C27 [65]
C28 [45] [5,21,40,45,50,51,57,70–73,103,104] [84] [45,63,105] [105] [63,106]
C29 [66] [66]
C30 [16,52] [11,17,23,56,63,65,66,80,82,88,101] [64,66] [63,79]
C31 [51] [5,40,45,50,56,57,65,71,73,103] [85] [5,41,65,80,82,86,101] [41] [79] [75]
C32 [11,14,43,49] [11,14,17,40,41,45,46,55,60,66,68–70,104,107] [11,14,66,84] [5,16,40,60,67,88,108] [11,40,49,106] [99,109] [11,14,22] [11,14,22]
C33 [42]
C34 [40,45,61] [110]
C35 [66] [111]
C36
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[5] [14]

Legend: DevOps Capabilities C01 - Cross-team collaboration; C02 - Support learning and experimentation; C03 - Open source software adoption; C04 - Transformational leadership; C05 - Westrum organizational culture;
06 - Blameless Postmortems ; C07 - Job satisfaction; C08 - Monitoring, Observability, and autoscaling; C09 - Emergency response; C10 - Monitor systems to inform business decisions; C11 - Working in progress limits;
12 - Visual management Capabilities; C13 - Continuous Improvement of processes; C14 - Focus on people, process, and technology; C15 - Working in small batches; C16 - Lightweight change approval; C17 - Visibility
f work in the value stream; C18 - Customer focus/feedback; C19 - Data-driven approach for improvements; C20 - Continuous Integration; C21 - Continuous Delivery automation; C22 - Test Automation and environments;
23 - Version Control System; C24 - Empower teams to make decisions; C25 - Configuration Management; C26 - Cloud infrastructure and cloud-native; C27 - Artifacts versioning and registry; C28 - Loosely coupled
rchitecture; C29 - Database change management; C30 - Infrastructure as Code; C31 - Containerization; C32 - Shift left on security; C33 - Trunk-based development; C34 - Centralized log management; C35 - Test data
anagement; C36 - Chaos Engineering; C37 - Code maintainability.
ife Cycle Processes LCP01 - Acquisition process; LCP02 - Supply process; LCP03 - Life Cycle Model Management process; LCP04 - Infrastructure Management process; LCP05 - Portfolio Management process; LCP06 -
uman Resource Management process; LCP07 - Quality Management process; LCP08 - Knowledge Management process.
t
m
s
a
a
i

s Code (IaC) is a key practice that manages infrastructure compo-
ents as programmable artifacts [11,23,63,101]. It automates system
rovisioning, deployment, and orchestration. DevOps utilizes various
utomation and management technologies for frequent and reliable re-
eases [49,95], including containerization [41,80,82,86], configuration
anagement [14,21,56], and microservices technologies [51,88].
LCP05. Portfolio Management process: Uses a central portfolio

or continuous assessment, managing, and redirected investment to
aintain strategic projects and ensure the organization’s success [11].
Cultural capabilities: Organizations that use reusable assets should

ollaborate [76] and explore potential reuse opportunities [52,75,77].
LOSS adoption improves portfolios and brings new tools [80,86].
ransformational leadership and portfolio risk management are key for
anaging changes during the transition to DevOps [11,80].
Measurement capabilities: Proactive monitoring, observability, and

isual management improve Portfolio Management decision-making,
esource efficiency, and strategic alignment [14,86]. These capabilities
rovide real-time insights, anticipate issues, optimize resources, and
rovide clear data visualization to ensure the portfolio meets orga-
izational goals and adapts to future changes and challenges [46,
2].
Process capabilities: Manage product lines to meet organizational or

ustomer needs and objectives while supporting technology changes
11]. Implement lightweight changes supported by configuration man-
gement to maintain a product’s life cycle [14,86]. Improve processes
nd workflows to achieve non-functional requirements and improve
oftware [58].
Technical capabilities: In portfolio management, continuous inte-

gration [66,95], continuous delivery [49,77], test automation [75,
95], VCSs [64], configuration management [14,46], cloud infrastruc-
ture [41], loosely coupled architecture [105], infrastructure as code
[64,66], containerization [41], and shift left on security [11,40,49,106]
10
are highlighted. These capabilities require automation, collaboration,
and closer feedback between teams, product, and customers [75,86].
Challenges related to continuous deployment adoption include team co-
ordination, customer adoption, feature discovery, plugin management,
and scaling CI tools [5,77].

LCP06. Human Resource Management process: Ensures the provi-
sion and maintenance of human resources and competencies [11].

Cultural capabilities: Implementing cross-functional teams in DevOps
is important, but challenges exist due to the shortage of operators with
development skills [5,46]. Transformational leadership and a culture
that supports learning and experimentation are needed for DevOps
adaptation [83,89,90]. Reallocation of resources and adjusting organi-
zational cultures and processes are challenges and benefits of changing
work structures [90].

Measurement capabilities: Alignment between HR management and
DevOps measurement capabilities is crucial, including identifying nec-
essary skills and providing performance data [44]. Monitoring provides
insights for resource management, but expertise in metrics monitoring
is important for successful DevOps adoption [93].

Process capabilities: Continuous improvement in software devel-
opment and related organizational functions is emphasized in De-
vOps [11,68]. Continuous integration and reducing organizational silos
are key aspects [40]. HR management should support teams and ensure
personnel has the flexibility and capacity to adopt new technologies
and methods [97].

Technical capabilities: Continuous integration, continuous delivery,
est automation, and configuration management provide insights for
anaging HR and development time in DevOps [11,67,68,97]. Hiring

killed professionals with DevOps knowledge is essential. Adapting HR
nd automating infrastructure is necessary for operational contexts and
ligning with DevOps processes [40,89,95]. Security shift left is also
mportant [99,109].

R. Amaro et al.

r
t

a
s
p
m

t
m
t
c
t

p
b
s
d

u
m
a
h
e
1

e

l

Information and Software Technology 177 (2025) 107583
LCP07. Quality Management process: Assures that products, ser-
vices, and implementations meet quality objectives and achieve cus-
tomer satisfaction [11].

Cultural capabilities: DevOps improves software development prac-
tices and faces challenges with FLOSS adoption, including license,
quality, and security concerns. Cross-team collaboration, learning cul-
ture, and open-source tool adoption like SonarQube address these
challenges and support quality management [40,42,78,79].

Measurement capabilities: Monitoring, measuring customer satisfac-
tion, continuous monitoring, and visualization of product and process
quality inform business decisions in quality management [14,23,77,
94].

Process capabilities: Continuous improvement, small batches,
lightweight change approval, data-driven decisions, and managing
corrections, lessons learned, and customer feedback drive software
development and release management [11,22,24,63,77,78,95,96].

Technical capabilities: Standardizing quality management with Con-
tinuous Integration (CI), using FLOSS tools like Jenkins, Cucumber,
JUnit, GIT, and Selenium, practicing QA and testing, and addressing
log management, code quality analysis, and security contribute to
successful technology-driven transformation in DevOps [11,22,42,98,
100].

LCP08. Knowledge Management process: Enables the organization
to leverage existing knowledge for opportunities [11].

Cultural capabilities: Knowledge management can support cross-
functional communication, practical lessons learned, experimentation,
learning culture, and FLOSS software adoption support DevOps [11,58,
79,87].

Measurement capabilities: Upskilling the team, training, and hiring
for observability, alert handling, autoscaling, and monitoring tools are
crucial for DevOps adoption [17,21,87].

Process capabilities: Sharing lessons and artifacts, updating poli-
cies and processes, securing knowledge management environments,
and implementing CI/CD with lightweight change approval improve
workflows and artifact delivery [11,22].

Technical capabilities: Implementing CI/CD, test automation, CM,
containerization, shift left on security, and test data management im-
proves software development, infrastructure, quality, security, and op-
erations while promoting team knowledge sharing [14,22,49,75,80,
111]. Safeguarding and securing knowledge and skills is also impor-
tant [14].

4.1.3. Technical management processes
LCP09. Project Planning: Produces workable plans identifying out-

puts, tasks, schedules, acceptance criteria, and resources [11].
Cultural capabilities: DevOps roles emphasize improved cross-team

collaboration, project planning [77] with FLOSS and a business-focused
plan, transformational leadership, blameless postmortems, and a cul-
ture of feedback and improvement [14,40,47,79,112].

Measurement capabilities: Defining common objectives, management
priorities, roles, and responsibilities for cross-functional DevOps teams,
and using proactive monitoring, observability, and autoscaling to in-
form business decisions and system adjustments [14,40].

Process capabilities: Continuous improvement, integrating lessons
learned from QA processes, project planning, lightweight change ap-
proval, and customer feedback support system adoption and project
success [11,47,112,113].

Technical capabilities: Collaboration, continuous integration [21],
adherence to the project plan for testing and quality processes, au-
tomated testing, CM, security planning and coordination, transition
planning, coordination of CM plans, and loosely coupled architecture
are important technical aspects of DevOps [11,14,40,47].

LCP10. Project Assessment and Control: Monitors project align-
ment, performance, and provides corrective actions [11].

Cultural capabilities: Supporting learning and experimentation in
project assessment and control, particularly with VCS, enables tracking

project changes and learning from past mistakes [81]. C

11
Measurement capabilities: Proactive monitoring, observability, au-
toscaling, and visual management aid project control by providing in-
frastructure provisioning, validation, monitoring, and presenting
project tracking information through dashboards [14,64].

Process capabilities: Improvement of project tracking, assessment,
and control processes based on data and project needs [11], data-
driven approach, lightweight change approval processes, and continu-
ous project monitoring and assessment are essential for effective project
management and control [14].

Technical capabilities: Automation in continuous integration and de-
livery [21], continuous testing, VCSs like Git, loosely coupled architec-
ture, and shift left on security contribute to improved project assess-
ment and control processes and the overall quality of the project [11,
14,41,64,81,120].

LCP11. Decision Management: Structured framework for making
informed decisions throughout the lifecycle [11].

Cultural capabilities: Cross-team collaboration [11,77], learning cul-
ture, experimentation, and a performance-oriented organizational cul-
ture are crucial for decision management in DevOps, facilitating knowl-
edge sharing and the development of microservices at scale [14,23,
40].

Measurement capabilities: Proactive monitoring, observability, au-
toscaling, and visual management support informed business decisions
and communication of results to stakeholders in decision management
processes [14,23,40,41].

Process capabilities: Data-driven decision-making, lightweight change
approval processes, and standardization of tasks and processes drive
continuous improvement and enhance the quality of decisions in De-
vOps [11,14,23,119].

Technical capabilities: Effective decision management is crucial for
successful automation in Continuous Integration and Delivery, Test Au-
tomation, CM, cloud infrastructure utilization, and adopting a loosely
coupled architecture. Shifting left on security ensures secure software
delivery [11,14,49,53,66,102].

LCP12. Risk Management: Continuously identifies and manages
isks associated with acquisition, development, maintenance, or opera-
ion [11].
Cultural capabilities: Transformational leadership is crucial for man-

ging culture, tools, processes, and practices during the DevOps tran-
ition [11]. DevOps Risk Management, an automated and continuous
rocess, empowers leaders to identify, analyze, and mitigate risks that
ay affect project success [71].
Measurement capabilities: Risk management in DevOps involves con-

inuous monitoring, vulnerability scanning, and testing within a risk
anagement framework [53]. Proactive monitoring, observability, au-

oscaling, and visual management capabilities inform business de-
isions, while working in progress limits manage workflows effec-
ively [11,46,108].
Process capabilities: DevOps risk management focuses on continuous

rocess improvement, lightweight change approval, and customer feed-
ack [108]. Change management is crucial for DevOps adoption, and
takeholder feedback loops ensure continuous improvement and timely
elivery [11,14].
Technical capabilities: Automation is essential in DevOps for contin-

ous integration, delivery, deployment, and operations [47,48]. Risk
anagement, QA, testing, and CM play vital roles in building secure

nd verifiable systems. Empowering teams to make decisions and ad-
ering to risk management frameworks and processes minimize adverse
ffects on the organization and stakeholders [11,14,43,53,79,90,108,
09].
LCP13. Configuration Management: Control and manage system

lements and configurations across the lifecycle [11].
Cultural capabilities: Cross-team collaboration, communication, a

earning culture, and FLOSS adoption are crucial for improving DevOps.

M reduces errors, improves security, and standardizes environments.

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 4
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 09–16.

Technical management processes (1 of 2)

LCP09 LCP10 LCP11 LCP12 LCP13 LCP14 LCP015 LCP16

C01 [40,77] [11,40,77] [75,89,114] [11] [11] [17,48,76,87,106]
C02 [81] [14,23] [5,17,80,82,115] [42,58] [53,83] [106]
C03 [14,112,113] [14,66] [42,110,116] [38] [14]
C04 [79] [11,71] [50,71]
C05 [40] [11,22]
C06 [47]
C07

Cu
ltu

ra
l

Ca
pa

bi
lit

ie
s

C08 [40] [14,64] [14,40] [11,53,108] [5,14,21,41,61,77,84,114] [11,21,41,91] [11,14,57,61,75] [11,21,22,39,44,50,79,117]
C09 [11] [5] [17]
C10 [14] [14,41] [46] [14,21,41] [14,41] [11,14,47,99] [14]
C11 [11] [11,118] [11,118]
C12 M

ea
su

re
m

en
t

[11] [23] [108] [66] [11]

C13 [11] [11] [11,23,119] [11,108] [42,68] [16] [11,69]
C14 [14]
C15 [11]
C16 [11,112,113] [14] [11,14] [11,14] [5,11,14] [11,14,41,42] [11] [24,63,79,98]
C17 [23] [11] [47]
C18 [47] [11] [63,114]
C19

Pr
oc

es
s

Ca
pa

bi
lit

ie
s

[11] [11,23,119] [115] [11,24]

C20 [21] [11,21] [49,102] [11,48] [5,21–23,69,72,98] [42] [11,16,22,23,48,50,71,120]
C21 [21] [11,21] [5,66,102,119] [11] [5,11,17,21,66,72,87] [11,42,44,116] [11,16,22,39,66,69,82,106,114,120]
C22 [11] [120] [11] [47] [5,14,22,75,87,100] [14] [11,17,22,23,71,92,100,106,121]
C23 [64,81] [21] [116] [22,106]
C24 [11,77] [11,79,108] [11] [99] [11,17]
C25 [11,14] [14] [14] [14,46] [5,11,14,21,46,65,82,89,93] [11,14,21] [14,61] [11,14,21,48,69]
C26 [53,66] [53] [41,56,93] [66]
C27 [66]
C28 [21] [21] [40] [5,21] [42] [50,57] [21,50,106,117]
C29 [66] [41]
C30 [5,21,23,41,56,65,66,69,80] [91] [50,79,91]
C31 [5,41,65,69,77,80,82] [116] [78] [50,79,120]
C32 [11,40,47] [11,41] [11,14] [11,14,43,47,90,109] [5,11,14,21,41,66,114] [14] [11,99] [11,21,22,50,69,107]
C33 [91]
C34 [110] [42,110]
C35 [11]
C36 [11] [11]
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[23]

Legend: DevOps Capabilities C01–C37 mentioned in Table 3.
Life Cycle Processes LCP09 - Project Planning; LCP10 - Project Assessment and Control; LCP11 - Decision Management; LCP12 - Risk Management; LCP13 - Configuration Management; LCP14 - Information Management;
LCP15 - Measurement; LCP16 - Quality Assurance.
p
i
a
c
p

t
i
m
M
p
5

Continuous experimentation and automation are essential for successful
DevOps [5,14,17,66,75,80,82,89,114,115].

Measurement capabilities: CM ensures project integrity using tools
like Puppet and Chef for configuration automation and monitoring [61,
84]. DevOps requires technical skills in log analysis, containerization,
and management skills in planning and time monitoring. Continuous
planning, feedback, and monitoring are essential [14,21,41,77,114].

Process capabilities: Source code management, build, release, de-
ployment engineering, and application lifecycle management are cru-
cial. Configuration audits verify authorized changes, and lightweight,
data-driven change approvals are implemented [115]. CM also in-
cludes managing changes to organizational procedures and business
workflow [5,11,14].

Technical capabilities: CM tools like Chef, Ansible, and Puppet Labs
support platform configuration in cloud computing environments.
Teams improve accessibility to resources for automatic testing, server
configuration, and DevOps practices such as CI/CD [41,80]. CM is in-
trinsic to managing and controlling system elements and configurations
throughout the lifecycle [5,11,14,21,23,46,56,65,66,69,82,89,93,114].

LCP14. Information Management: Generate, obtain, confirm, trans-
form, retain, retrieve, disseminate and dispose of information, to des-
ignated stakeholders [11].

Cultural capabilities: Effective information management requires ap-
propriate tool selection, communication channels [11], and compre-
hensive log analysis platforms. FLOSS like ELK facilitates runtime in-
formation collection and analysis [110,116]. Cross-team collaboration,
a learning culture that supports experimentation, and communication
are essential for successful implementation [42,58].

Measurement capabilities: Proactive monitoring, observability, and
autoscaling ensure peak system performance [11,21,91]. Real-time
system monitoring and data collection enable issue identification and
informed decision-making. These practices improve organizational per-
formance [14,41].

Process capabilities: Continuous improvement, lightweight change
approval, and work visibility are critical for information manage-
ment [23]. Continuous integration between software development and
12
operational deployment and continuous assessment and improvement
of the link between business strategy and software development are
vital [42,68]. Effective log management and continuous integration
processes adapt to changing requirements [11,14].

Technical capabilities: Information management establishes proce-
dures for handling information products, manages configuration
changes, and implements central logging for runtime behavior anal-
ysis [11,41,110]. It utilizes tools like VCSs, continuous deployment
capabilities, and unified environments [14,21,42,44,91,116].

LCP15. Measurement: Collects and analyzes data to support man-
agement decisions and demonstrate quality [11].

Cultural capabilities: Effective communication, collaboration, and
feedback loops are essential for embedding Quality Management into
DevOps [11]. FLOSS solutions and deterministic metric measurement
enhance performance. Challenges include experiment pre-processing
and ensuring external validity [38,53,83].

Measurement capabilities: Automated checks, tests, and monitoring
measure Service Level Indicators (SLIs) and assess deliverable readi-
ness [57,61,75]. Real-time feedback and measurement-driven design
enable continuous improvement, progress tracking, and meeting Ser-
vice Level Agreements (SLAs). Proper measurement procedures, instru-
mentation, and data integrity support evidence-based decision-making
and quality improvement [14,99,118].

Process capabilities: Measurement is essential for continuous im-
rovement in DevOps [16]. Organizations must ensure data quality and
ntegrity, design and configure instrumentation for metrics collection,
nd use measurements to manage changes in the application life cy-
le. Measurements should be implemented across all roles to support
roblem analysis and process improvement [11,14].
Technical capabilities: Measurement processes using test automa-

ion and calibrated verification environments enable system suitabil-
ty [11,14]. Bidirectional traceability is important for requirements
anagement, architecture, design, CM, and information management.
easurement and observability systems enable data collection and

rocessing for decision-making and change management processes [50,
7,61,78,99].

R. Amaro et al.

i
p

c
t
t
t
2

i
e
t
m
m
1

l

c
r
n
8

f
m
b
t

m
s
i
c

z
i
c
m
i
i

r

d
l
n
a

m
s
r
f
h

c
i
d
a

m
c
o
o
r
7

s
r

t
m
s

e
d
a
d
u
m
d

t
t
b
r

a
w
s
6
u
u
n
7

t

a
6
v

q
t
D
i

d
C
f

t
i
t
5

d

p

Information and Software Technology 177 (2025) 107583
LCP16. Quality Assurance: Ensure the application of the Qual-
ty Management process, as well as the organization’s policies and
rocedures [11].
Cultural capabilities: Collaboration, communication, and a learning

ulture enhance QA in DevOps [17,48,76,87,106]. Adopting FLOSS,
ransformational leadership, and constant experimentation contribute
o higher quality and increased transparency [14,50,71]. Test automa-
ion is crucial to meet QA requirements in dynamic DevOps cycles [11,
2].
Measurement capabilities: Real-time monitoring and automated test-

ng play crucial roles in DevOps QA. Usage and measurement data
nable continuous assessment, test case generation, metric computa-
ion, and result visualization [11,21,22,39,44,50,79,117]. Automated
onitoring and testing identify irregularities, variances, and infor-
ation gaps to ensure SLOs are met and quality is assured [14,17,
18].
Process capabilities: Continuous improvement, customer feedback,

and a data-driven approach are crucial in QA [11,69]. DevOps prac-
tices reduce rework and errors, leading to faster time-to-market and
improved product quality [24,79,98]. Incorporating new tools and
methods addresses risk areas and process gaps [47,63,114].

Technical capabilities: CI and DevOps automation tools enable QA
in software development [16,23,39,48,50,66,69,82,114]. Test automa-
tion, risk management, and testing are emphasized in DevOps to
achieve accelerated velocity and continuous delivery. QA oversees
CI, adapts test automation to DevOps cycles, and ensures code qual-
ity. Continuous QA and testing are essential to reduce rework and
waste [22,79,91,106,107,117,120].

4.1.4. Technical processes
LCP17. Business or Mission Analysis: Focuses on defining prob-

ems, characterizing solutions, and identifying potential solutions [11].
Cultural capabilities: A learning culture and experimentation are

ritical in business analysis. Feature analytics evaluate cost, usage, and
eturn on investment [68]. FLOSS adoption solves performance bottle-
ecks, and integrating processes is essential for implementation [40,
4].
Measurement capabilities: Monitoring and mapping software non-

unctional requirements to business objectives to inform decision-
aking [11,46,58]. Visual management and proactive monitoring guide

usiness decisions and adapt to system changes. Feedback from opera-
ional monitoring aids customer support [14].
Process capabilities: Capability models drive continuous improve-

ent in Business/Mission Analysis processes. Effective monitoring of
ystem performance and customer support is crucial. Operational gaps
nform process changes [47,75]. Lightweight change approval supports
ontinuous improvement [46].
Technical capabilities: Business or mission analysis benefits organi-

ations by identifying key goals and strategies [11,14]. It explores
nternal and external factors impacting performance, improves effi-
iency, effectiveness, and success [47,49,75,108]. Analysis considers
arket trends, customer needs, and competitive pressures. The goal

s to develop a clear understanding of the organization’s mission and
dentify growth opportunities [40,45,68,84,89].
LCP18. Stakeholder Needs and Requirements Definition: Identifies

equirements for a system to meet users and stakeholders’ needs [11].
Cultural capabilities: Agile methods prioritize teamwork and iterative

elivery. Continuous experimentation through small field experiments
earns about customer needs. FLOSS and adapting to changing customer
eeds to ensure stakeholder satisfaction [14,86]. Organizational culture
ffects job satisfaction and quality [44,90].
Measurement capabilities: Identifying stakeholder needs and require-

ents is critical [77,86]. Effective communication ensures an under-
tanding of stakeholder expectations, leading to solutions that meet
equirements [14]. Gathering and analyzing stakeholder feedback in-
orms decision-making and resource prioritization, increasing stake-

older satisfaction [14,23]. v

13
Process capabilities: Prioritizing people and interactions, customer
ollaboration, and responsiveness to change are essential in meet-
ng stakeholder needs and improving processes [23,62]. Data-driven
ecision-making and rapid experimentation guide product development
nd foster innovation [14,46,62].
Technical capabilities: Understanding stakeholder needs and require-

ents is crucial for project success. Identifying expectations and con-
erns of stakeholders and incorporating them into planning and devel-
pment processes [23,49]. Effective stakeholder engagement improves
utcomes, builds trust, and fosters relationships [11,14]. Regularly
eviewing stakeholder needs ensures ongoing satisfaction [22,41,67,
7].
LCP19. System/Software Requirements Definition: Transforms

takeholder views into technical solutions, creating measurable system
equirements [11].
Cultural capabilities: Clear communication, collaboration, and at-

ention to detail are crucial in defining system and software require-
ents [11,40,44,90]. Effective requirements definition ensures project

uccess and avoids costly errors and delays [23,56,83].
Measurement capabilities: Incorporating measurement capabilities

arly in requirements design helps identify and mitigate risks and
iscrepancies [14,41,77,86,98,123]. Keeping the project on schedule
nd within scope prevents costly changes and rework later in the
evelopment cycle [11,21,51,57]. AI and ML with runtime data are
sed in recent projects [119] to translate stakeholder opinions into
easurable system requirements. Levy (2022) suggests that using this
ata ensures that needs are based on real operational facts [86].
Process capabilities: Properly defining requirements involves a con-

inuously improving process of analyzing stakeholders’ needs, set-
ing realistic goals, and facilitating communication among team mem-
ers [23,86,98]. It ensures successful project outcomes and reduces the
isk of errors and misunderstandings [11,14,46].
Technical capabilities: Like the need for CI/CD, proper testing, or CM

re important for successfully transforming views to requirements soft-
are development, Technical identifying, analyzing, and prioritizing

takeholders’ needs and constraints, and documenting them clearly [48,
6,68,69,79,124]. Effective requirements definition ensures meeting
ser needs, on-time and within-budget delivery of high-quality prod-
cts. It requires collaboration, communication, and appropriate tech-
iques and tools throughout the development lifecycle [22,23,67,70,
2,84,97,98,104,114]
LCP20. Architecture Definition: Generates system architecture al-

ernatives to satisfy requirements [11].
Cultural capabilities: A learning culture, cross-team collaboration,

nd FLOSS adoption enhance the Architecture Definition process [14,
7,77]. Proof-of-Concept experiments and mathematical modeling pro-
ide confidence in system requirements and design [11,41,46,51].
Measurement capabilities: Cloud application architecture design re-

uires integration of coding, testing, packaging, and monitoring ac-
ivities [11,38,41,71,77]. Refactoring monolithic applications based on
evOps principles improves collaboration, scalability, and observabil-

ty [51,77,86].
Process capabilities: Modularity, scalability, and upgradability ad-

ress stakeholder needs in the Architecture Definition process [14,77].
ustomer feedback, data-driven approaches, and integrated processes

acilitate efficient change management [1,47].
Technical capabilities: DevOps practices like CI/CD, Test Automa-

ion [67], CM, Cloud infrastructure, and loosely coupled architecture
mprove Architecture Definition [5,11,63,64]. They enhance collabora-
ion, scalability, flexibility, and alignment with business planning [14,
1,56,77,112,113].
LCP21. Design Definition: Provides detailed system and element

ata for implementation [11].
Cultural capabilities: Experimentation, FLOSS adoption, blameless

ostmortems, and job satisfaction support a learning culture, inno-

ation, agility, and high-quality design and development [23,43,51,

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 5
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 17–23.

Technical processes

LCP17 LCP18 LCP19 LCP20 LCP21 LCP22 LCP23

C01 [75] [14,40,75,77] [77] [11,47]
C02 [68] [23,83] [11,14,23,46,51,53,56,83] [11,14,41,46,51] [11,14,23,46,66,88,115] [11,14,23,42,46,51,73,88] [38]
C03 [40,84] [14,86] [55,86] [14,67] [43,51,107,111,116,122] [11]
C04 [11] [122]
C05 [44,90] [40,44,90] [47,69,89]
C06 [71]
C07 Cu

ltu
ra

l
Ca

pa
bi

lit
ie

s

[23] [23] [23]

C08 [11,46,58] [11,14,23,77,86] [11,14,21,38,40,41,51,57,58,77,86,98,119,123] [11,38,41,51,71,77,86] [11,14,21,46,51,57,61,71,119,123] [14,50,53,73,110,115,119] [11,38,47]
C09 [11]
C10 [14] [14] [14,40] [77] [21]
C11 [23]
C12 M

ea
su

re
m

en
t

[14] [14,23] [14] [23]

C13 [47,75] [62] [5,62,86,98] [62,69] [46] [69]
C14 [23] [23]
C15 [41] [22] [38,47,90]
C16 [46] [14,23,46,86] [11,14,46,86] [14,77] [111] [11,89]
C17 [11,23] [44,62]
C18 [11] [47] [47,52]
C19 Pr

oc
es

s
Ca

pa
bi

lit
ie

s

[23] [23] [1] [23] [1]

C20 [49,108] [23,49,72] [11,49,65,66,70,72,84,120,123] [64] [21,44,70] [42,71,120,124,125] [11,48,49,95]
C21 [47,75,105,108] [49,72,97,124] [5,23,49,58,65,70,72,79,97,98,120,123,124] [5,11,63] [21,40,44,49,70,71] [42,58,71,115,120,124,125] [11,48,105]
C22 [23] [48,67] [11,48,65,69,122] [67] [23,115,123] [120] [14,50,67]
C23 [66] [59]
C24 [48,75] [40,48,68,75] [49]
C25 [23,41] [14,41] [14,56,69] [14] [11,14,46]
C26 [40,53,57] [95,110] [21,88,119] [53]
C27 [11] [11]
C28 [45,105] [21,40,45,59,104,117] [5,21,51,59,84,86,104] [21,45,49–51,59,73,86,105] [22,42,57,73,117] [105]
C29 [50,95,120]
C30 [11,41,65] [56] [71,82] [17,56]
C31 [105] [65,104] [21,41,51] [21,41,49,51,54,73,119] [51,73,124] [54,95]
C32 [11,14,40,47,68,75,84,89] [11,14,22,41,67,77] [11,14,21,22,40,41,60,65,67,70,77,84,114,123] [11,14,21,77,112,113] [11,14,21,40,109,112,113] [14,74,109,124] [11,14,24,40,47,54,99,107,114,120,125]
C33 [95]
C34 [11,110] [51,110] [42,110] [110]
C35 [11] [11] [11]
C36
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[42] [121]

Legend: DevOps Capabilities C01-C37 mentioned in Table 3.
Life Cycle Processes LCP17 - Business or Mission Analysis; LCP18 - Stakeholder Needs and Requirements Definition; LCP19 - System/Software Requirements Definition; LCP20 - Architecture Definition; LCP21 - Design Definition; LCP22 - System Analysis;
LCP23 - Implementation.
71,111]. Specifically, postmortems are well documented Root Cause
Analysiss (RCAs) that help identify design failures without assigning
blame, promoting innovation, agility, and quality improvement. They
encourage collaboration between designers, developers, and operations
teams.

Measurement capabilities:Monitoring, data collection, and automated
telemetry points are crucial in Design Definition. They support con-
tinuous software and system engineering [21,51,57,61,71,123], and
enable control systems to maintain system goals based on measure-
ments obtained. Smart health monitoring systems enable ubiquitous
monitoring [21,23].

Process capabilities: Continuous improvement, DevOps principles,
lightweight change approval, data-driven approaches, and rapid ex-
perimentation are essential in Design Definition [69,111,119]. Orga-
nizational and technical metrics track continuous improvement, while
work visibility in the value stream defines system design. Rapid and
continuous experimentation accelerates innovation [23,44,62].

Technical capabilities: Continuous integration, deployment practices,
architecture agility, CM, security shifting left, system design, and test-
ing are crucial in Design Definition. They enable rapid continuous
delivery, functionality improvement, and transformation of system de-
sign [14,21,88,119]. CM maintains project integrity, and system design
predicts cloud infrastructure properties [11,41,45,54,73,86,105,109,
113].

LCP22. System Analysis: Supports decision-making with rigorous
data and information [11].

Cultural capabilities: System analysis encompasses mathematical an
analysis, modeling, simulation, and experimentation [11,14,42,73].
It provides confidence in system requirements, architecture, and de-
sign, and aims to understand the trade space and critical quality
characteristics of a system [23,51,88,122].

Measurement capabilities: Monitoring enables dynamic observation
and analysis of system data for runtime and design time [50,73,115].
It provides metrics for system status, and future cloud solution im-
pact, and facilitates debugging and problem-solving for distributed

systems [14,53,110,119].

14
Process capabilities: Microservices architecture in DevOps and Con-
tinuous Delivery or Deployment (CD) enables frequent software feature
delivery and improves quality attributes. ISO/IEC 29110 reinforces
DevOps processes [46]. Attention is given to quality attributes like ease
of deployment, security, modifiability, and ability to be monitored in
CD architectures [22].

Technical capabilities: System analysis involves various tools and
methodologies, including CI/CD, Test Automation, and Containeriza-
tion [51,58,115,120,125]. Centralizing log management, maintaining
code quality, and implementing early security measures are crucial.
Challenges and specialized analysis techniques for microservices archi-
tecture are discussed [22,42,57,73,74,82,109,124].

LCP23. Implementation: Realizes specified system elements from
requirements and design [11].

Cultural capabilities: Implementing DevOps software and systems
requires a collaborative approach across different teams, adoption of
FLOSS, conducting experiments and fostering a learning culture. How-
ever, success can be hindered by communication problems, team frus-
trations and uncoordinated activities can undermine success [11,38,
47]. Including such challenges like organizational culture, infrastruc-
ture, legacy systems and lack of automation. [47,69,89].

Measurement capabilities: Implementing involves several
Quality Management (QM) procedures like consistent policies, the prac-
tice of evidencing quality in everything and automated code monitoring
to detect non-compliant code [47]. Planning for monitoring, allocation
of resources are relevant activities for developing good quality and
evading issues. Traceability, feedback mechanisms and measurement
are important elements [11,47].

Process capabilities: The tools and teams are integrated by the in-
corporation of all the necessary components for continuous integration
and deployment [69], making them work hand in hand from the
start to the end of an application process. The repetitive tasks are
processed automatically [38,90] and customer feedback contributes to
improvements [47,52]. Data-driven approaches, testing practices, and
change control protocols assure quality and efficiency [1,11,89].

Technical capabilities: A rigorous process is required for DevOps

implementation, which includes continuous integration, testing, and

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 6
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 24–30.

Technical processes

LCP24 LCP25 LCP26 LCP27 LCP28 LCP29 LCP30

C01 [14,92,100,114] [11,47] [48,52,58,75,77,82,94,114] [11,52,66,99] [52,63,66] [11,89]
C02 [23,38,46,51,58,68,81,87,115,128,129] [88,115] [14,38,81,88,115] [101]
C03 [11,40,41,68,116] [14,40,81] [40,41] [24,84,126] [101]
C04 [40,87]
C05 [75,89] [43,89]
C06 [11,47] [11,14] [14]
C07 Cu

ltu
ra

l
Ca

pa
bi

lit
ie

s

[49] [50]

C08 [11,17,23,41,45,57,61,71,114,123,126] [11] [57,71] [11,51,57,61,64,69,95,114,115,119,122,123,128] [5,14,40,41,57,60,72,91,106,108,119,123,128] [11,45,46,57,61,119] [54]
C09 [5,40]
C10 [14,94] [94,119] [47,75,106]
C11 [89,127] [118]
C12 M

ea
su

re
m

en
t

[108]

C13 [11,69] [11] [23,62,94] [43] [11,23] [11]
C14 [40,103] [71] [14,23]
C15 [38,82]
C16 [11,14,42,96] [14,89] [14] [14,41,66,79,98] [40,86,120] [11,14] [11]
C17 [11] [62]
C18 [23,47,83] [47] [58] [11] [38,83,90]
C19 Pr

oc
es

s
Ca

pa
bi

lit
ie

s

[11]

C20 [11,23,40,48,49,68,69,72,91,96,106,118,126,127] [11] [11,23,40,54,65,68,71,81,87,89,94,97,123,125,127,129] [72,118] [11,16,45,72,90,95,97,104,108,126] [66,101]
C21 [11,17,23,48,67,83,91,96,97,103,115,118] [11,23,52,58,62,65,79,87,88,94,97,105,120,123,124,127] [40,66,71,72,86,99,118,119,129] [11,16,17,22,45,63,66,72,90,104,108] [66]
C22 [11,14,67,71,118,125] [11,90] [14] [11,14,78,82,89,95,120,123] [22,23,95,103,115] [11] [78]
C23 [121] [11,125] [64,81,95] [40] [54,58] [54]
C24 [126] [58] [108,129] [63,97,102,109]
C25 [11,14,94] [11,14,48] [11,14] [11,14,94] [14,63] [14] [11,14]
C26 [90] [57,81,107] [40] [41]
C27 [48] [95] [50] [5,38]
C28 [11,49,70,71] [90] [45,50,57] [57] [45,57,72,104] [72]
C29 [66] [93]
C30 [41,69,91] [79] [11,69,82,95] [41,56,99] [11,17,126] [5,54,91]
C31 [42,69,71] [90] [79] [57,65,81] [62,84,111] [57,60,84,104,110,128] [5,54,72,104]
C32 [11,14,40,47,67,70,72,93,103,114,115] [11,14] [47] [11,14,40,46,60,69,70,82,88–90,99,104,109,114,124] [11,14,40,72,87,91,108] [11,14,16,40,72,90,104] [11,14,46,104,109]
C33 [123] [95] [95] [101]
C34 [110] [40] [110]
C35 [11] [11] [11,101,105,111] [93]
C36 [81]
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[90] [61,95] [88,90]

Legend: DevOps Capabilities C01-C37 mentioned in Table 3.
Life Cycle Processes LCP24 - Integration; LCP25 - Verification; LCP26 - Transition; LCP27 - Validation; LCP28 - Operation; LCP29 - Maintenance; LCP30 - Disposal.
f
n
s

w
i
a
c

a
t
T
t
g

n
r
f
s

developer feedback. This is consistent with incremental development
processes making effective use of different tools. Automated processes
that are implemented early ensure a well-defined, trackable and com-
pletely automated deployment into production [17,56,99,121,125].
Common processes include version control, CM, containerization and
infrastructure as code, together with testing and design guidelines [24,
40,47,54,59,107,110,114,120].

LCP24. Integration: Synthesizes system elements into a realized
product or service, assembling them and activating interfaces to facili-
tate interoperation and meet system/software requirements [11].

Cultural capabilities: Integration in DevOps enables collaborative
teamwork, process automation, and reduced software delivery cy-
cles [100,114]. Continuous integration, CM, and security capabilities
improve application security [14,92]. Open-source tools like Jenkins
CI facilitate automation and accessibility [11,40,41,49,68,116]

Measurement capabilities: Automated testing, monitoring, and quality
control are vital within the integration process. DevOps tools like
Jenkins and OpenTelemetry aid automation and observability [17,
23,57,61,126]. Integration methods enable rapid modifications and
knowledgeable choices via bidirectional traceability and automated
systems [14,94].

Process capabilities: DevOps integrates Development and Operations
functions for continuous improvement [11,69]. Integration processes
contain continuous integration, deployment, evaluation, and auto-
mated testing to standardize the data system [14,42,96]. Security is
integrated to make sure information protection and privacy [23,47,83].

Technical capabilities: CI automates building and testing of software
components [71,93,114]. CD includes CM, deployment, and verifica-
tion practices [48,49,68,69,96,127]. Test Automation frameworks and
tools speed up the testing process for faster integration and deliv-
ery [17,23,47,70,91,121,126].

LCP25. Verification: Confirms that the system fulfills specified
requirements [11].

Cultural capabilities: Effective collaboration and communication are
crucial for successful verification in DevOps [11]. Knowledge sharing,
automation, and proactive monitoring play essential roles in verifica-
tion [47].
15
Measurement capabilities: QA involves monitoring project outcomes
using automated tools to measure goal achievement. Testing is per-
formed throughout the system delivery life cycle, while QA ensures
processes are followed competently [11].

Process capabilities: DevOps verification activities comprise peer re-
views, bugs diagnosis and fixing, logging of tests and automated test-
ing [11]. Thus, process improvement and proper application of changes
is driven by collaboration and communication among stakeholders [14,
89].

Technical capabilities: Verification requires establishing performance
baselines, maintaining a repository for artifacts, and developing test
plans and automation from the design process [11,90]. Test scripts pro-
vide a repeatable procedure for verifying requirements [125]. Trans-
ferable test scripts and a library of verification procedures expedite
automatic execution. CM facilitates the verification process [14,48].

LCP26. Transition: Moves the system into operational status, ensur-
ing functionality and compatibility.

Cultural capabilities: Blameless postmortems and minimizing fear of
ailing are essential for adequate transition [47]. At this stage, it is
ecessary to prioritize and document process improvements based on
ystem thinking, feedback loops and continuous improvement [11].
Measurement capabilities: Proactive monitoring, observability, as

ell as autoscaling are essential for a successful transition [71]. Mon-
toring gives metrics that help to improve runtime controllers and
lso help diagnose operational problems. It also helps in predicting
ontainer group performance [57].
Process capabilities: In DevOps, the transitioning process integrates

ctivities for managing and designing changes in business processes
o be moved, and validating the system that is transitioning [14].
herefore, it is important to incorporate customer feedback throughout
he entire process and establish corrective actions plus operational
uidance, while improving testing procedures [47].
Technical capabilities: The issue of transition mainly involves running

ew software to different places possible [14]. It is driven by Configu-
ation Management, Verification and QA processes [11]. Essential tools
or project planning include human and technical resources as well as
ecurity tools [47]. The incorporation of automation, containerization

R. Amaro et al.

i

t
a
u
q
a

t
P
c

C
c
t

t
I
r
7
p

4
s

D
r
i
b
p
r
P
r
r

t
w
h
r
e

𝐴

Information and Software Technology 177 (2025) 107583
and Infrastructure as Code eases this transition while ensuring security
throughout the application life cycle [79].

LCP27. Validation: Provides evidence that the system achieves its
ntended use in operational environments [11].
Cultural Capabilities are all about ensuring that data, communica-

ion, processes and systems are as they should be. Testing, verification
nd review discover errors or mistakes [40,46,77,81,87]. In partic-
lar, in the more sensitive industry sectors, it is critical because of
uality standards, assurance of reliability and compliance requirements
dherence [11,14,23,129].
Measurement capabilities: Assessment aims at confirming and check-

ing systems, goods or operations so that the desired criteria and spec-
ifications are fulfilled [114,119,122,123,128]. It encompasses tech-
niques such as testing, examination and accreditation for compliance
attainment and risk mitigation [89,94,119,127].

Process capabilities: Validation verifies accuracy and reliability
through testing, simulation, or comparison with standards [41,66,
79]. It identifies errors, increases confidence, and supports decision-
making [14,58,62,98].

Technical capabilities: Validation ensures systems, processes, or prod-
ucts meet standards and requirements. It verifies functionality, per-
formance, security, and user experience [11,40,61,81,82,90]. Effective
strategies prevent errors and ensure reliable outcomes [23,57,64,70,89,
104,109,129].

LCP28. Operation: Utilizes the system to deliver services while
monitoring performance [11].

Cultural capabilities: Embedding quality management in operations
requires continuous monitoring, communication, and collaboration
[11,52,66,88,99,115]. DevOps enables CI/CD and automation using
FLOSS [40,41,87]. Maturity assessment and procedure implementation
restore normal operations [14,75,89].

Measurement capabilities: Operations involve coordinated efforts,
ranging from systems to business operations [47,75,106]. Planning,
communication, and execution are crucial for success [14,40,108,118,
119,128].

Process capabilities: DevOps prioritizes continuous improvement
through lightweight change approval, customer feedback, and automa-
tion [40,86,120]. Collaboration between operations and development
is important for QA and problem resolution [11,43].

Technical capabilities: DevOps emphasizes fully automated processes
such as CI, delivery, deployment automation, and CM. Security controls
are maintained throughout the application lifecycle [14,40,63,108,
129]. AIOps, streamlined pipelines, real-world testing, and infrastruc-
ture as code enhance operational efficiency [11,14,41,50,56,57,62,84,
99].

LCP29. Maintenance: Maintains the system’s service delivery capa-
bility [11].

Cultural capabilities: Collaboration between operations and develop-
ment teams support a culture of experimentation and learning. FLOSS
adoption and performance-oriented culture improve maintenance [24,
43,50,52,63,81,84,89,115,126].

Measurement capabilities: Monitoring and observability are crucial
for maintenance. Automation and continuous improvement enhance
efficiency [46,57,61]. A continuous maintenance strategy should con-
sider business value and change control procedures [11,45,119].

Process capabilities: DevOps improves maintenance through software
reuse, user feedback, and working in small batches [38,82]. Support-
ing developers with fast change-requests from user feedback reduces
rework [11,14,38,83,90].

Technical capabilities: Maintenance ensures optimal performance
and longevity. Regular audits, repairs, and cleaning prevent prob-
lems. Proper planning, documentation, and coordinated ownership are
essential [14,63,97,102,109]. Technical capabilities include artifacts
management, database change management, Infrastructure as Code,
containerization, and trunk-based development [5,17,38,40,57,60,72,

84,90,93,104,110,128].

16
LCP30. Disposal: Manages the end of a system’s intended use,
including disposal of elements [11].

Cultural capabilities: Effective disposal in DevOps requires cross-team
communication, collaboration, and supportive learning culture [11,89,
101]. FLOSS adoption and establishing trust among stakeholders are
important [101].

Measurement capabilities: DevOps uses features like container rota-
ion, rolling updates, and autoscaling to make applications resilient.
roactive monitoring and system observation support the disposal pro-
ess [54].
Process capabilities: Traceability, revising operating procedures, and

M improve the disposal process. Lightweight change approval and
ontinuous improvement ensure consistency between products and
heir configurations [11].
Technical capabilities: Disposal in DevOps involves CI/CD, Test Au-

omation, VCSs, and Cloud Computing. Loosely coupled architecture,
nfrastructure as Code, Containerization, and Trunk-based development
equires systematic and secure disposal of obsolete resources [5,54,
8,104]. Test Data Management and Chaos Engineering also demand
roper disposal for security and reliability [41,72,81,93].

.2. RQ2 - Which categories of DevOps capabilities are most relevant to the
oftware life cycle processes?

To facilitate answering the second research question,
Table 7 shows the total number of relations between categories of

evOps Capabilities and the Life Cycle Processes. It is considered a
elation where at least one of the publications in this literature review
s found to be relating a LCP with a DevOps Capability. Cultural capa-
ilities have 100 relations in total, with an average of 14.29 relations
er Life Cycle Process. Measurement capabilities contain a total of 79
elations, with an average of 15.80 relations per Life Cycle Process.
rocess capabilities have 101 total relations, with an average of 14.43
elations per Life Cycle Process. Technical capabilities have 309 total
elations, with an average of 16.30 relations per Life Cycle Process.

The Total # of Relations column in Tables 7, 8, 10 and 11 represents
he cumulative number of interactions or connections each category has
ith LCPs or capabilities from a quantitative standpoint. On the other
and, the Average # of Relations column reflects the mean value of these
elations per each capability or process that composes that category, as
xpressed in Eq. (1).

𝑣𝑒𝑟𝑎𝑔𝑒 # 𝑜𝑓 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 =
𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠
(1)

For example, there are five ‘‘Measurement Capabilities’’, therefore
the average will be:

30 + 8 + 20 + 6 + 15
5

= 79
5

= 15.80

Per the observed data in Table 7, it is seen that the DevOps capa-
bility category with more relations in the technical one, followed by
process, measurement, and cultural capabilities. The reason could be
attributed to the fact that Technical capabilities are more directly
related to software development and delivery [16,83]. For instance,
CI/CD comprehends Technical capabilities that are essential for the
software development process [21,72]. While Cultural capabilities are
very important to foster a culture of collaboration and communication
within the organization [89]. For example, cross-team collaboration is
a cultural capability that can help to improve the flow of information
between different teams within an organization [103].

On the other hand, the Process capabilities are seen as funda-
mental for software development, while less directly related to coding
itself [4]. Continuous improvement is a process capability essential
to improve the process of developing software over time [23]. Fi-

nally, Measurement capabilities are relevant to understanding the

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 7
Relation sums and averages for each DevOps Capability category.

DevOps capability category Total # of Relations Average # of Relations

Technical Capabilities 309 16.30
Cultural Capabilities 100 14.29
Process Capabilities 101 14.43
Measurement Capabilities 79 15.80
Table 8
Relation sums and averages for each Life Cycle Process category.

Life Cycle Process category Total # of Relations Average # of Relations

Technical processes 290 20.71
Technical Management processes 150 18.75
Organizational Project-Enabling Processes 102 17.00
Agreement Processes 47 23.50
software development processes performance factors [22,90] as well
as measuring the full life cycle. For example, proactive monitoring
is a measurement capability that can be used to identify and resolve
problems early on.

Overall, the analysis indicates that all four DevOps categories of ca-
pabilities are important for software development. However, technical
capabilities are likely to have the most direct impact on the quality,
speed, and reliability of software delivery.

On the other hand, Table 8 shows the total number of relations and
the average number of relations for each Life Cycle Process category.
The categories analyzed are Technical processes, Technical Manage-
ment processes, Organizational Project-Enabling Processes, and Agree-
ment Processes.

Prevalence of DevOps Technical Processes having the most prac-
tices and principles (290) because it is closest to DevOps Technical
capabilities. The 20.71 relations per technical process indicate a con-
sistent DevOps adherence pattern. A Significant Role of Technical
Management processes, with 150 relations and an average of 18.75,
show that DevOps is important in project technical management. This
implies DevOps aids in technical resources, risk, and quality manage-
ment. The influence on Organizational Project-Enabling Processes
with DevOps integration having 102 relations and an average of 17.00
for Organizational Project-Enabling. By managing resources, making
decisions, and engaging stakeholders, DevOps helps projects succeed.
Agreement Processes have the fewest relations (47), but their high
average number of relations per process (23.50) shows a good DevOps
Capabilities on supply and acquisition processes. DevOps is likely to
play a critical role in ensuring clear internal and external agreements
and good collaboration. This might reflect the critical role of DevOps
in ensuring clear, effective agreements and collaborations both within
the organization and with external parties.

Overall, this table also suggests that there is a significant rela-
tionship between DevOps Capabilities and the Life Cycle Process cat-
egories [11], particularly Technical processes and Technical Manage-
ment processes [22], but less organizational project-enabling and agree-
ment processes. DevOps accelerates software development, delivery,
collaboration, and flexibility throughout the life cycle.

5. Discussion

This research is built upon the knowledge gathered from our pre-
vious studies, with the same aim of enhancing successful DevOps
adoption in organizations. Several authors still point out in recent
studies that there are challenges and unknowns when it comes to an ef-
ficient transformation and implementation of DevOps [86,91,114,130].
As seen in Table 9, this study differs from the previous capabilities
study which did not include the new IEEE DevOps standard [11], thus
enabling us to relate DevOps Capabilities related to LCPs. This brings

refreshed discussion to map and find the impact of the previously

17
found DevOps Capabilities [4]. In the current SLR, it is seen the actual
opportunity to cross investigate capabilities and DevOps processes,
which, to the best of our knowledge, no one has pursued yet, thus
contributing new knowledge beyond what was previously published.
Furthermore, this study has uncovered important relationships that
were not previously discussed but are standard across some software
development models, including DevOps.

In this section, a discussion is performed, considering two interest-
ing findings as a starting point. First, in Section 4.2, categories with
the lowest total value always seem to have a large average value.
Second, the data gathered from a number of publications contributes to
different concepts under DevOps Capabilities and Life Cycle Processes.

5.1. Categories with fewer relations but high average values

Interesting finding to note in Tables 7 and 8, the last two categories
stand out with the lowest total of relations, but still a large average
value. This implies that even though the concept has a low frequency of
occurrence, it tends to have high importance for the overall score. The
observation happens in the two categories with the smallest number
of capabilities and processes: agreement processes and measurement
capabilities.

To try to explain why they have higher average values in LCPs
despite their lower number of relations, it is first necessary to dive into
what these values mean from a statistical perspective before highlight-
ing their intrinsic qualities and strategic importance in achieving broad
impact across LCPs. Here, a significant individual influence across the
LCPs is denoted when sorting by average and examining each capability
or process within that category. Although the agreement processes and
measurement capabilities have fewer relations, their influence with
LCPs seems particularly effective and meaningful based on the results.
This suggests that while they associate with fewer processes (lower
total relations), their interactions are high-quality (higher average),
indicating a greater impact, raising new suspicions: Could this be a
lead indicator of how to improve LCPs with DevOps Capabilities? Could
there be high impact or even exceptional relationships? A topic for
more debate over the course of this discussion in Section 5.2.

Furthermore, agreement processes, with the highest average of
23.50, hold supply and acquisition. This high number, when compared
to Table 11 denotes the strategic importance of the supply process
(LCP02) to align stakeholder expectations, project scopes, and quality
standards [114]. The reason is that in DevOps, cross-functional collab-
oration is a bit more focused on supplying the customer [4,49] with
29 relations. Which is only 1.6 times more than acquisition process
(LCP01), with 18 relations. Thus, this average is high when comparing
both, but somewhat balanced.

However, when cross-checking the measurement capabilities, which
have a lower average of 15.80, with Table 11, it is seen that the

case is much different here: Proactive Monitoring, Observability, and

R. Amaro et al. Information and Software Technology 177 (2025) 107583
Table 9
Comparison of Objectives, Methodology, and Findings between our current and previous studies.

Study Objectives Methodology Findings

The current Study Identify how DevOps Capabilities
map to the software life cycle per
the new IEEE DevOps Standard
[11].

Systematic Literature Review
(SLR) of peer-reviewed
articles.

Identified key DevOps Capabilities across
the software life cycle, highlighting areas
needing further research.

Capabilities and Metrics
in DevOps: A Design
Science Study [3]

Define and classify key DevOps
metrics and capabilities for
promoting effective adoption.

Design Science Research (DSR)
with qualitative methods,
including interviews.

Developed an outcome-based capability
evaluation matrix, emphasizing team
empowerment and organizational culture.

DevOps Metrics and
KPIs: A Multivocal
Literature Review [131]

Provide relevant DevOps metrics
for assessing and enhancing
DevOps implementation
efficiency.

Multivocal Literature Review
(MLR) of a wide range of
sources.

Defined and categorized 22 main DevOps
metrics, offering insights into their
improvement and practical application.

DevOps benefits: A
systematic literature
review [130]

Consolidate the benefits of
DevOps as reported in literature
and empirically validate them
through case studies.

Two systematic literature
reviews to gather benefits and
then map them to case studies.

Identified and validated benefits such as
improved collaboration and faster
delivery, and increased automation.

Capabilities and
Practices in DevOps: A
Multivocal Literature
Review [4]

Explore the relationship between
DevOps Capabilities and practices
to aid in better implementation.

Multivocal Literature Review
(MLR) including books,
articles, white papers, and
conferences.

Presented an organized list of 37
capabilities and their relation to practices,
emphasizing the dynamic nature of
DevOps Capabilities.
Table 10
Categories with fewer relations but high average.

Category Type Total Relations Average

Agreement Processes 2 47 23.50
Measurement Capabilities 5 79 15.80
Organizational Project-Enabling Processes Processes 6 102 17.00
Cultural Capabilities 7 100 14.29
Process Capabilities 7 101 14.43
Technical Management processes Processes 8 150 18.75
Technical processes Processes 14 290 20.71
Technical Capabilities 18 309 16.30
Table 11
Agreement process and Measurement capabilities relation overview.

ID Name Category Relations

LCP02 Supply process Agreement 29
LCP01 Acquisition process Agreement 18

C08 Proactive Monitoring, Observability and autoscaling Measurement 30
C10 Monitor systems to inform business decisions Measurement 20
C12 Visual management Capabilities Measurement 15
C09 Emergency response/proactive failure notification Measurement 8
C11 Working in progress limits Measurement 6
autoscaling capabilities (C08) have 30 mentioned relations, which is
five times more than the lowest working in progress limits (C11) which
have only 6 relations. Further, monitoring systems to inform business
decisions (C08), comes next with 20 relations, which is still 3.3 times
of C11. The notable variation in the spread of relationships among
Measurement Capabilities highlights the strategic focus on those that
directly impact software delivery quality and reliability, thereby also
keeping customer satisfaction in mind.

LCP02, focuses on supply agreements with clients [11]. These
agreements define the scope of work, deliverables, schedule and qual-
ity standards of the software development or system implementation
project [14]. In the context of DevOps, both supply and acquisition
agreements are crucial to ensuring that the teams involved in the
software delivery process are aligned and have clear expectations
about their responsibilities, the scope of the project and the quality
requirements. Teams that adopt DevOps collaborate with different
stakeholders, such as business owners, production teams and external
18
suppliers, to ensure that everyone is working towards the same goals
and objectives [6,89,102].

Measuring software delivery performance, identifying bottlenecks,
and improving performance are key points in C08 and C10 for orga-
nizations [22,68]. DevOps measurement enables businesses to track
key performance indicators (KPIs) such as deployment frequency, MLT,
MTTR, and CFR [131]. DevOps Measurement Capabilities help organi-
zations collect and analyze software development and delivery data to
identify patterns, trends, and improvement opportunities. A data-driven
approach helps organizations make informed decisions, reduce risks,
and optimize software delivery processes [22,23,120].

In summary, the reason behind the high average values of both
Agreement Processes and Measurement Capabilities, despite their fewer
relations, can indeed be considered their shared ultimate goal of servic-
ing the customer effectively. Through their functions, both categories

reflect the customer-centric nature of DevOps. They express the DevOps

R. Amaro et al.

m

o
C
D
a

s
i
s

e
c
a
D

5

c

Information and Software Technology 177 (2025) 107583
aim of providing efficient customer service by ensuring project com-
pletion and meeting customer expectations (Agreement Processes) and
continuously measuring and monitoring for improving product quality
and delivery (Measurement capabilities). DevOps promotes strategies
and processes that improve the software delivery lifecycle to meet
client expectations. This particularly interesting finding leads to the
next discussion, which explores other capabilities that improve LCPs.

5.2. Improving life cycle processes with DevOps capabilities

For asserting the most influential DevOps Capabilities on LCPs
Activities and Tasks, it is proposed to discuss the results, regarding
the top 3% and 1% most referenced relations, while diving into what
authors are mentioning in Sections 4.1 and 4.2 and demonstrating the
proposed reasoning. To facilitate a structured discussion, a percentile-
based impact scale, seen in, Eq. (2) is used to quantify and compare
the relations found. Previous authors [132,133] also apply a percentile-
based approach to help discussion in qualitative research, while Verner
et al. (2014) [134] use percentiles to understand the distribution of
responses regarding project outcomes and other factors. This statistical
measure represents the value below which a particular percentage of
observations in a dataset falls. Percentiles help in comparing datasets by
indicating the percentage of observations that a given value surpasses,
thus aiding in drawing precise conclusions from the research data [19,
134]. Let 𝑃 be the percentile rank of mentions and 𝑁 the number of

entions. The classification function, 𝐶(𝑃), can be defined as:

𝐶(𝑃) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Exceptional (Top 1%) if 𝑃 ≥ 99 (𝑁 ≥ 14)
Very High (Top 3% but below 1%) if 97 ≤ 𝑃 < 99 (𝑁 ≥ 11)
High if 90 ≤ 𝑃 < 97 (𝑁 ≥ 6)
Increased if 75 ≤ 𝑃 < 90 (𝑁 ≥ 3)
Medium if 50 ≤ 𝑃 < 75 (𝑁 ≥ 2)
Low if 𝑃 < 50 (𝑁 < 2)

(2)

From Table 12 it can be seen that eight capabilities are classified
as ‘‘Exceptional’’ (Top 1%), and 11 capabilities are classified as ‘‘Very
High’’ (Top 3% to 1%), which is a strong indication from literature of
their relation influencing activities and tasks of the respective LCPs.

5.2.1. Exceptional impact relations
We start by looking at the exceptional relations. There are four

LCPs in this classification.
LCP02 Supply Process is improved by Shifting Left on Security

(C32) and Monitoring, Observability, and Autoscaling (C08), by assur-
ing continuous, secure, and efficient product/service delivery. Alonso
et al. (2022) [60] stress the need for strong monitoring in cloud ser-
vices to help identify and resolve performance issues quickly. Gokarna
et al. (2021) [69] integrate security early in development using open-
source software over the cloud, preventing supply chain disruptions and
maintaining service delivery, while network monitoring and diagnostic
tools [61] improve operational efficiency and dependability through
constant observability and security. On the other hand, vulnerability
scans and monitoring catch flaws and destructive activities early [40].
As an example, Netflix supplies resilient cloud services for its front-end,
monitoring, and payment operations [53].

The addition of C08 and C32 has a direct impact on the LCP19 Sys-
tem/Software Requirement Definition. The AIDOaRt project [119]
utilizes AI and ML to enhance DevOps toolchains and convert stake-
holder views into measurable system needs using runtime data. Levy
et al. (2022) mention that using this information ensures that needs are
based on operational realities rather than theoretical assumptions [86].
According to Gokarna et al. (2021), their continuous security model
incorporates security practices early in development, changing criteria
to include security from the outset [69]. Monitoring can identify issues
and spur modifications in requirements, making them dynamic and
sensitive to real-world conditions [11,60].
19
Continuous Integration (C20) accelerates the LCP24 Integration
Process by with rapid feedback, failure detection [11] and automated
merges and tests in an early phase. Some authors examine the impact of
CI in DevOps and project management, pointing out software compo-
nents’ improved consistency and quality with less effort [48,93,127].
Fitzgerald et al. (2017) [68] highlight its heterogeneity in definition
but key importance in XP methodologies. Other authors discuss CI in
terms of automating build and testing tasks and improving software
process health through frequent application component merging [40,
126], in pair with Xuan et al. (2021) emphasizing CI responsibility for
guaranteeing security throughout the integration process.

C20, C21, and C32 collectively facilitate the LCP27 Validation pro-
cess. According to Ayerdi et al. (2020) [123], CD plays an important
role in automating the deployment of new software releases, leading
to faster validation. CI involves compiling code, running tests, and
validating code coverage, which is critical for early anomaly identi-
fication [11,68] . As an example, Kumar et al. (2020) [40] discuss
technologies like Maven, Gradle, and Jenkins to automate code in CI,
address bugs quickly, and minimize time to adopt new features, while
the importance of incorporating security tests early in the development
cycle, guarantees a fast security verification process [11,114].

5.2.2. Very high impact relations
Regarding very high impact relations, there are eight LCPs in this

classification, which are not in the top 1% but fall into the top 3%.
Authors mention C28 to improve the modularity, scalability, and

resilience of LCP02 Supply process which expedites development and
deployment [5,51], improve the supply chain by containerizing and
deploying across environments [45] and isolate service failures [51].

C30 simplifies LCP04 Infrastructure Management Process con-
sistency, performance, and security [11] with tools like Puppet, Chef,
and Ansible [23,82] enabling organizations to quickly react to changing
markets and consumer expectations [63,66].

C21 enables LCP19 System/Software Requirements Definition to
fulfill stakeholder needs and customer input by adding new features
and distributing new software quickly [49,123], revealing expectations
conflicts and enabling rapid design and software modifications [23,97].

C32 adds early security in the LCP23 Implementation process,
providing safety and quality [99,114] including traceability and audit
controls [11] mitigating risks, ensuring high security standards [47,54].

C08, C21, and C32 provide a safer, faster, and improved LCP24 In-
tegration. C08 detects production, deployment, and integration prob-
lems during CI/CD to optimize software reliability [11,71]. C21 en-
hances software deployment, feature integration, and customer satis-
faction [48,118] via on-demand deployments [23,70,72]. C32 enforces
continuous security in each phase, resulting in safer integrations [70,
72].

C02 and C08 enhance LCP27 Validation by encouraging continu-
us learning and adaptive monitoring to assess operational scenarios.
02 focuses on controlled trials and empirical validation to promote
evOps innovation [38,58]. With C08, data tracking and observation
llow for real-time validation [11,123].

C08 improves the LCP28 Operation process in real time, allowing
mart infrastructure changes [60,123]. Logging, monitoring, and alert-
ng help operational management notice, respond, and adapt issues and
peed incident response [40,57].

C21 streamlines the LCP29 Maintenance process with consistent,
fficient, and reliable deployments across all environments [11], in-
reased team cooperation [90,108], and rapid response to changes
nd customer needs improve the maintenance process with Continuous
elivery automation [63].

.2.3. Applying the life cycle concepts
Table 13 shows publications contributing to the concepts seen in the

onceptual map in Fig. 1.

R. Amaro et al.

T
P

f
C
o
h
a
a
c
c
d
t
d
o
i
O
e
P
a
C
a
A
C
e
o
D
i
i
R
m
t
F
a
D
c
t
D
e

Information and Software Technology 177 (2025) 107583
Table 12
Capabilities with exceptional and very high impact on Life Cycle Processes.

LCP02 LCP04 LCP19 LCP23 LCP24 LCP27 LCP28 LCP29

LCP: Supply
Processes

Infrastructure
Management
process

System/Software
Requirements
Definition

Implementation Integration Validation Operation Maintenance

Devops Capability Category Agreement Project Technical

C02 Learning and experiment Cultural 11

C08 Monitoring, Observability
and autoscaling Measurement 16 14 11 13 13

C20 Continuous Integration Technical 14 16
C21 Continuous Delivery Technical 13 12 16 11
C28 Loosely coupled architecture Technical 13
C30 Infrastructure as Code Technical 11
C32 Shift left on security Technical 15 14 11 11 16

Legend: indicates Exceptional impact DevOps Capabilities impact related to Life Cycle Processes (top 1%), and indicates Very high impact DevOps Capabilities impact related to Life Cycle Processes
(top 3%).
able 13
ublications contributing to this study concepts from Fig. 1.

Concepts Publications Total

Capabilities and Process [1,5,11,14,16,17,21–24,38–129] 102
Teams [1,5,11,16,17,21–24,38,40,43–45,47–52,57,58,60,63–69,72,74–80,82,85–87,89,90,92,95,96,98–100,102–

104,106,108,109,112–115,119–122,124,127,129]
69

Activities and Tasks [11,14,23,24,40,44–48,54,60,62,63,68,69,76–78,82,90,95,99,102,106,109,110,121,122,127] 31
Outcomes [1,11,14,21,22,24,38,45,49,56,61,63,67,73,76,78,81,88,97,99,101,103,104,106,109,110,114,117,120,122] 30
Assessment [14,22,24,38,44,46,49,52,63,67,69,82,83,88,90,94,97,99,101,103,109,111,114,122,124] 25
Skills and Knowledge [5,11,14,17,24,46,47,58,63,75–77,80,87,89,95,102,106,123] 19
Purpose [11,14,23,24,46,53,59,66,88,91,102,110,112,113] 14
d
c
E
d

c
c
i
o
t
c
D
g
h
a
p
c

5

h
f
e
a
T
i
H
f
r

a
a
i
i
(

The Capabilities and Process concepts, referenced in 102 articles,
ocuses on DevOps Capabilities (Fig. 2) connected to software Life
ycle Processes (Fig. 4). This shows the importance given by authors
f integrating them together when adopting DevOps. 69 publications
ave discussed the Teams concept, which incorporates collaboration
nd communication among DevOps teams, such as development, oper-
tions, and QA [17,77,89]. The number of publications on the cultural
apacity concept indicates how important teamwork and communi-
ation are for DevOps implementations. Teams do process activities,
evelop skills, and drive execution [102,106]. 31 articles identify Ac-
ivities and Tasks as a vital concept for DevOps activities such as testing,
eveloping, deploying, and monitoring [11] and a growing number
f publications highlight the importance of understanding the activ-
ties and tasks involved in successful DevOps implementations [90].
utcomes is a concept found in 30 publications examining the ben-
fits of DevOps adoption in the software/systems life cycle [11,89].
ublications highlight DevOps positive effects on efficiency, quality,
nd customer satisfaction [23,52]. Amaro et al. [4] define DevOps
apabilities as providing process outcomes, facilitating task execution,
nd requiring specific skills and knowledge. 25 publications on DevOps
ssessment explore various methods for integrating DevOps into Life
ycle Processes, while providing clarity on how to quantify DevOps
ffectiveness. DevOps assessment is critical for connecting expected
bjectives with actual achievements [22,97]. Furthermore, it examines
evOps skills to improve process outcomes [14,24]. The successful

mplementation of DevOps principles in the software/systems life cycle
s dependent on Skills and Knowledge, as highlighted in 19 articles.
esearch underlines the necessity of continuous learning and experi-
entation in DevOps, highlighting the need for individuals and teams

o increase skills and knowledge to traverse complexities [5,63,77].
inally, Purpose emphasizes each LCP intention to employ DevOps to
chieve their objectives. 14 papers discuss the rationale and goals of
evOps adoption. Integrating DevOps into Life Cycle Processes ne-
essitates understanding its goal of connecting actions and strategies
o intended outcomes [11,88,102]. The reviewed articles explain how
evOps Capabilities improve software/systems life cycle collaboration,

fficiency, and outcomes. C

20
In order to show this relevance, Fig. 9 highlights and graphically
emonstrates these approaches to improve DevOps adoption through
apabilities, integrating the Conceptual Map overview (Fig. 1) and
xceptional Impact Relations (Table 12), and focusing on LCP outcomes
erived from capabilities.

The conceptual map in Section 1 highlights capabilities in DevOps
onnected to desired improvements, while Table 13 quantifies key con-
epts for successful implementations. Fig. 9 shows how the exceptional
mpact of relations in conceptual map flows might achieve desired
utcomes. We do this for exceptional ones in order to be concise and
o focus on the top 1% which will return best results, but the same
ould be done for very high impact relations or even high. Apply
evOps Capabilities to Life Cycle Processes they affect, describe output
eneration pathways, and highlight benefits. This diagram illustrates
ow implementing the best DevOps skills can improve the SDLC and
chieve desired results. It shows how DevOps adoption directly im-
roves software development and delivery processes, helping people
omprehend its potential benefits.

.3. Impact and practical applications on the field of DevOps

This work advances the understanding of DevOps Capabilities and
ow they work with LCPs, which makes it possible to design methods
or DevOps adoption that are more successful. This increase in knowl-
dge helps businesses identify capabilities that are vital and require
ttention, especially when they significantly affect their processes.
he methodology targets the most pressing areas for organizations by

dentifying capabilities with Exceptional, Very High, and High impacts.
owever, the literature review indicates that the expected benefits of

ocusing on smaller impact capabilities are still unclear, thus further
esearch like a case study is needed to validate the findings.

The integration of Monitoring, Observability, and Autoscaling (C08),
longside Shifting Left on Security (C32), Continuous Integration (C20)
nd Continuous Delivery (C21), significantly enhances various LCPs,
ncluding Supply Process (LCP02), System/Software Requirements Def-
nition (LCP19), Integration Process (LCP24), and Validation Process
LCP27). According to these findings, integrating C08, C32, C20 and
21 improves operational security and efficiency while ensuring that

R. Amaro et al.

p
o

6

6

f
i
c
c
e
c
D
m

t
t
d

Information and Software Technology 177 (2025) 107583
Fig. 9. Improving LCP outcomes with exceptional DevOps Capabilities.
roducts and services are appropriately engineered to perform in
perational settings.

. Conclusion

.1. Contributions

This study is part of a broader set that aims to improve the success-
ul adoption of DevOps by examining the problems and uncertainties
n adopting DevOps. It distinguishes itself from our previous work by
onducting an extensive systematic literature review, focusing on the
ross-research of DevOps Capabilities and processes. The study also
xplored the connections between Life Cycle Processes (LCPs) and the
apabilities that drive process improvements. The inclusion of the IEEE
evOps standard provides a refreshed discussion on the impact of the
ost important DevOps Capabilities.

The 102 publications analyzed discuss capabilities and processes,
eams, activities and tasks, results, tools and techniques, according to
he analysis. The main contributions are made, emphasizing software
evelopment capabilities and processes:

∙ This paper maps 37 DevOps Capabilities to 30 Life Cycle Pro-
cess (LCP), demonstrating their application throughout various
stages of software development and maintenance. By mapping
the pre-existing categorization of capabilities and LCPs, the paper
provides valuable insights on improving efficiency and achieving
better results through DevOps in each Life Cycle Process.

∙ Technical DevOps Capabilities and Technical processes show the
most relations and impact, highlighting a significant connection
between DevOps Capabilities and LCPs in these Technical groups.

∙ The paper identifies and discusses DevOps Measurement Capabil-
ities and Agreement Processes as having fewer direct relations but
influencing multiple SDLC aspects or capabilities. This insight em-
phasizes the importance of these categories in achieving DevOps

success.

21
∙ For improving LCP with DevOps Capabilities, an impact scale
classification is found that identifies and explains exceptional and
very high impact relations. Based on the publications and the
conceptual map, it is shown how exceptional DevOps Capabilities
can improve LCP outcomes in a diagram of concepts (Fig. 9).

∙ The paper explores applying the life cycle concept map, demon-
strating the flow of improving LCP outcomes with exceptional
DevOps Capabilities, while also pointing out agreement, organiza-
tional project-enabling, and technical LCPs. The analysis reveals
that both Life Cycle Processes and DevOps Capabilities achieve
desired outcomes through the activities and tasks mentioned in
the literature.

This paper improves understanding of DevOps and LCPs. It dis-
cusses life cycle concepts, DevOps implementations, and a framework
for integrating DevOps Capabilities into software development and
maintenance.

6.2. Limitations

This SLR acknowledges potential threats to its validity. External
validity concerns related to the limited scope of the selected scientific
databases may have led to the exclusion of pertinent articles. However,
efforts were done to address this by reviewing the references and to
make sure that important research was added through snowballing.
Internal validity, meaning how well the study design and execution
prevents systematic error, was safeguarded through a predefined pro-
cedure and established quality evaluation guidelines by Kitchenham
& Charters (2007) [34]. A possible selection bias was minimized by
a broad inclusion and exclusion criteria and more than two reviewers
participated, ensuring a rigorous study selection process. Limiting the
search to studies in English may exclude relevant studies in other
languages. Also, setting time limits for inclusion may exclude relevant
research published before or after the time-frame. Finally, address
construct validity and content validity by reviewing a large number

of documents. Construct validity is ensuring accurate capture and

R. Amaro et al. Information and Software Technology 177 (2025) 107583
synthesizing of key concepts. Content validity is improving coverage
of relevant research. A comprehensive approach provides nuanced
understanding and a comprehensive overview of the domain, making
these findings robust and reliable. The study is using secondary sources
to understand relationships, thus conclusions could be strengthened by
exploratory case studies in the industry. Finally, monitoring and secu-
rity technologies change quickly, so the findings may need a periodic
refresh.

6.3. Future work

The results and findings revealed in this study will assist to feed
new research so that future studies can be put into practice. Focusing
on an assessment model composed of the interconnected dimensions of
DevOps Capabilities, DevOps metrics [3], and LCPs.

Future work can also provide applicable guidelines and practices
for DevOps integrating into LCPs. Such as empirical and exploratory
research on how DevOps Capabilities affect LCPs would be useful.
These guidelines can improve software development and maintenance
by providing step-by-step instructions, frameworks, and recommenda-
tions. These studies could assess how specific capabilities influence
software quality, development speed, reliability, and cost-effectiveness.
Cultural, measurement, process, and technical capabilities can be ex-
plored further. Investigating specific practices, techniques, and tools
within each category can improve LCPs and DevOps implementations.
DevOps adoption and implementation depend on organizational and
cultural factors. Researching the obstacles organizations face in adopt-
ing DevOps Capabilities and ways to promote collaboration, continuous
learning, and innovation. Long-term DevOps evaluations can reveal
their sustainability and scalability by tracking DevOps Capabilities
and their extended effects on software development. Case studies of
DevOps Capabilities adoption in various industries are needed. Lastly,
future research could integrate DevOps with AI, machine learning,
and blockchain. Researching how these technologies improve LCPs and
DevOps implementations would be interesting.

CRediT authorship contribution statement

Ricardo Amaro: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis,Data curation, Conceptualization. Rúben Pereira:
Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Miguel Mira da Silva: Writing – re-
view & editing, Writing – original draft, Visualization, Validation,
Supervision, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] P. Tell, J. Klunder, S. Kupper, D. Raffo, S.G. Macdonell, J. Munch, D. Pfahl,
O. Linssen, M. Kuhrmann, What are hybrid development methods made of? An
evidence-based characterization, in: Proceedings - 2019 IEEE/ACM International
Conference on Software and System Processes, ICSSP 2019, IEEE, 2019, pp.

105–114, http://dx.doi.org/10.1109/ICSSP.2019.00022.

22
[2] D. Solajić, A. Petrović, Devops and modern software delivery, in: Proceedings of
the International Scientific Conference - Sinteza 2019, Singidunum University,
Novi Sad, Serbia, 2019, pp. 360–368, http://dx.doi.org/10.15308/Sinteza-
2019-360-368.

[3] R. Amaro, R. Pereira, M.M. da Silva, Capabilities and metrics in DevOps: a
design science study, Inf. Manag. (2023) 32, http://dx.doi.org/10.1016/j.im.
2023.103809.

[4] R. Amaro, R. Pereira, M. Mira da Silva, Capabilities and practices in DevOps:
A multivocal literature review, IEEE Trans. Softw. Eng. 1 (2022) 20, http:
//dx.doi.org/10.1109/TSE.2022.3166626.

[5] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of DevOps
concepts and challenges, ACM Comput. Surv. 52 (6) (2019) 35, http://dx.doi.
org/10.1145/3359981.

[6] N. Azad, S. Hyrynsalmi, DevOps critical success factors — A systematic
literature review, Inf. Softw. Technol. 157 (2023) 107150, http://dx.doi.org/
10.1016/j.infsof.2023.107150.

[7] K. Maroukian, S. R. Gulliver, Synthesis of a leadership model for DevOps
adoption, in: 2021 2nd European Symposium on Software Engineering, in: ESSE
2021, Association for Computing Machinery, New York, NY, USA, 2021, pp.
58–66, http://dx.doi.org/10.1145/3501774.3501783.

[8] R.N. Rajapakse, M. Zahedi, M.A. Babar, H. Shen, Challenges and solutions when
adopting DevSecOps: A systematic review, Inf. Softw. Technol. 141 (2022)
106700, http://dx.doi.org/10.1016/j.infsof.2021.106700.

[9] S. Sharma, The DevOps Adoption Playbook: A Guide to Adopting DevOps in
a Multi-Speed IT Enterprise, IBM Press, John Wiley & Sons, Inc., Indianapolis,
Indiana, 2017, http://dx.doi.org/10.1002/9781119310778.

[10] G. Kim, J. Humble, P. Debois, J. Willis, The DevOps Handbook : How to Create
World-Class Agility, Reliability, and Security in Technology Organizations,
IT Revolution Press, USA, 2016, https://www.amazon.com/DevOps-Handbook-
World-Class-Reliability-Organizations/dp/1942788002.

[11] IEEE, IEEE Standard for DevOps: Building reliable and secure systems including
application build, package, and deployment: IEEE Standard 2675-2021, IEEE Std
2675-2021, 1 (16 Apr 2021) (2021) 91, http://dx.doi.org/10.1109/IEEESTD.
2021.9415476.

[12] IEEE, ISO/IEC/IEEE International Standard - Systems and software engineering
– System life cycle processes, ISO/IEC/IEEE 15288 First edition 2015-05-15,
2015, p. 118, http://dx.doi.org/10.1109/IEEESTD.2015.7106435.

[13] IEEE Standards Association, IEEE Standard for configuration management in
systems and software engineering: IEEE Std 828™-2012 (Revision of IEEE Std
828-2005), IEEE Std 828-2012 (Revision of IEEE Std 828-2005), 2012, (March)
2012, http://dx.doi.org/10.1109/IEEESTD.2012.6170935.

[14] IEEE Standard, ISO/IEC/IEEE international standard - systems and software
engineering – Software life cycle processes, ISO/IEC/IEEE 12207:2017(E)
First edition 2017-11, 2017, p. 157, http://dx.doi.org/10.1109/IEEESTD.2017.
8100771.

[15] J. Díaz, D. López-Fernández, J. Pérez, Á. González-Prieto, Why are many
businesses installing a DevOps culture into their organization? Empir. Softw.
Eng. 26 (2) (2021) 50, http://dx.doi.org/10.1007/s10664-020-09919-3.

[16] C. Jones, A proposal for integrating DevOps into software engineering curricula,
in: B. Meyer, M. Mazzara, J.-M. Bruel (Eds.), Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and
Deployment, DEVOPS 2018, vol. 11350 LNCS, Springer Verlag, 2019, pp.
33–47, http://dx.doi.org/10.1007/978-3-030-06019-0_3.

[17] M. Senapathi, J. Buchan, H. Osman, DevOps capabilities, practices, and chal-
lenges: insights from a case study, in: Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018 -
EASE’18, in: EASE’18, (June) ACM, Association for Computing Machinery, New
York, USA, 2018, pp. 57–67, http://dx.doi.org/10.1145/3210459.3210465.

[18] N. Forsgren, J. Humble, G. Kim, Accelerate: The Science of Lean Software and
Devops: Building and Scaling High Performing Technology Organizations, IT
Revolution, USA, 2018, URL https://itrevolution.com/accelerate-book/.

[19] L. Bass, I. Weber, L. Zhu, DevOps: A software architect’s perspective, in:
SEI Series in Software Engineering, Addison-Wesley, New York, 2015, URL
http://my.safaribooksonline.com/9780134049847.

[20] P. Debois, Agile infrastructure and operations: How infra-gile are you? in:
Proceedings - Agile 2008 Conference, 2008, pp. 202–207, http://dx.doi.org/
10.1109/Agile.2008.42.

[21] M. Waseem, P. Liang, M. Shahin, A systematic mapping study on microservices
architecture in DevOps, J. Syst. Softw. 170 (2020) http://dx.doi.org/10.1016/
j.jss.2020.110798.

[22] A. Mishra, Z. Otaiwi, Devops and software quality: a systematic mapping, Comp.
Sci. Rev. 38 (1) (2020) 14, http://dx.doi.org/10.1016/j.cosrev.2020.100308.

[23] P. Rodríguez, M. Mäntylä, M. Oivo, L.E. Lwakatare, P. Seppänen, P. Kuvaja,
Advances in using agile and lean processes for software development, in: A.
Memon (Ed.), Advances in Computers, vol. 113, Academic Press Inc., Faculty of
Information Technology and Electrical Engineering, University of Oulu, Finland,
2019, pp. 135–224, http://dx.doi.org/10.1016/bs.adcom.2018.03.014.

[24] R. Kneuper, Software Processes and Life Cycle Models: An Introduction to
Modelling, Using and Managing Agile, Plan-Driven and Hybrid Processes,
Springer International Publishing, Cham, 2018, http://dx.doi.org/10.1007/978-
3-319-98845-0.

http://dx.doi.org/10.1109/ICSSP.2019.00022
http://dx.doi.org/10.15308/Sinteza-2019-360-368
http://dx.doi.org/10.15308/Sinteza-2019-360-368
http://dx.doi.org/10.15308/Sinteza-2019-360-368
http://dx.doi.org/10.1016/j.im.2023.103809
http://dx.doi.org/10.1016/j.im.2023.103809
http://dx.doi.org/10.1016/j.im.2023.103809
http://dx.doi.org/10.1109/TSE.2022.3166626
http://dx.doi.org/10.1109/TSE.2022.3166626
http://dx.doi.org/10.1109/TSE.2022.3166626
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1145/3359981
http://dx.doi.org/10.1016/j.infsof.2023.107150
http://dx.doi.org/10.1016/j.infsof.2023.107150
http://dx.doi.org/10.1016/j.infsof.2023.107150
http://dx.doi.org/10.1145/3501774.3501783
http://dx.doi.org/10.1016/j.infsof.2021.106700
http://dx.doi.org/10.1002/9781119310778
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
http://dx.doi.org/10.1109/IEEESTD.2021.9415476
http://dx.doi.org/10.1109/IEEESTD.2021.9415476
http://dx.doi.org/10.1109/IEEESTD.2021.9415476
http://dx.doi.org/10.1109/IEEESTD.2015.7106435
http://dx.doi.org/10.1109/IEEESTD.2012.6170935
http://dx.doi.org/10.1109/IEEESTD.2017.8100771
http://dx.doi.org/10.1109/IEEESTD.2017.8100771
http://dx.doi.org/10.1109/IEEESTD.2017.8100771
http://dx.doi.org/10.1007/s10664-020-09919-3
http://dx.doi.org/10.1007/978-3-030-06019-0_3
http://dx.doi.org/10.1145/3210459.3210465
https://itrevolution.com/accelerate-book/
http://my.safaribooksonline.com/9780134049847
http://dx.doi.org/10.1109/Agile.2008.42
http://dx.doi.org/10.1109/Agile.2008.42
http://dx.doi.org/10.1109/Agile.2008.42
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.jss.2020.110798
http://dx.doi.org/10.1016/j.cosrev.2020.100308
http://dx.doi.org/10.1016/bs.adcom.2018.03.014
http://dx.doi.org/10.1007/978-3-319-98845-0
http://dx.doi.org/10.1007/978-3-319-98845-0
http://dx.doi.org/10.1007/978-3-319-98845-0

R. Amaro et al. Information and Software Technology 177 (2025) 107583
[25] H.D. Benington, Production of large computer programs, Ann. Hist. Comput. 5
(4) (1983) 350–361, http://dx.doi.org/10.1109/MAHC.1983.10102.

[26] W.W. Royce, Managing the development of large software systems: Concepts
and techniques, in: Proceedings of the 9th International Conference on Software
Engineering, in: ICSE ’87, IEEE Computer Society Press, Washington, DC, USA,
1987, pp. 328–338.

[27] T.E. Bell, T.A. Thayer, Software requirements: Are they really a problem? in:
Proceedings of the 2nd International Conference on Software Engineering, in:
ICSE ’76, IEEE Computer Society Press, Washington, DC, USA, 1976, pp. 61–68.

[28] B.W. Boehm, Software Engineering Economics, first ed., Prentice Hall,
Englewood Cliffs, N.J, 1981.

[29] J. Münch, O. Armbrust, M. Kowalczyk, M. Soto, Software process definition and
management, The Fraunhofer IESE Series on Software and Systems Engineering,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, http://dx.doi.org/10.
1007/978-3-642-24291-5.

[30] B.W. Boehm, Guidelines for verifying and validating software requirements and
design specifications, in: P.A. Samet (Ed.), Euro IFIP 79, North Holland, 1979,
pp. 711–719.

[31] C. Larman, V. Basili, Iterative and incremental developments. a brief history,
Computer 36 (6) (2003) 47–56, http://dx.doi.org/10.1109/MC.2003.1204375.

[32] C. Floyd, A systematic look at prototyping, in: R. Budde, K. Kuhlenkamp, L.
Mathiassen, H. Züllighoven (Eds.), Approaches To Prototyping, Springer, Berlin,
Heidelberg, 1984, p. 18, http://dx.doi.org/10.1007/978-3-642-69796-8_1.

[33] B.W. Boehm, A spiral model of software development and enhancement,
Computer 21 (5) (1988) 61–72, http://dx.doi.org/10.1109/2.59.

[34] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Tech. rep., Technical report, ver. 2.3 ebse
technical report. ebse, 2007.

[35] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele
University 33 (2004) 26.

[36] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, T.P. Group, Preferred report-
ing items for systematic reviews and meta-analyses: The PRISMA statement,
PLOS Med. 6 (7) (2009) e1000097, http://dx.doi.org/10.1371/journal.pmed.
1000097.

[37] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, in: EASE
’14, Association for Computing Machinery, New York, NY, USA, 2014, p. 10,
http://dx.doi.org/10.1145/2601248.2601268.

[38] N. Ali, H. Daneth, J.-E. Hong, A hybrid DevOps process supporting software
reuse: A pilot project, J. Softw.: Evol. Process 32 (7) (2020) e2248, http:
//dx.doi.org/10.1002/smr.2248.

[39] M. Sánchez-Gordón, R. Colomo-Palacios, Characterizing DevOps culture: A
systematic literature review, in: I. Stamelos, T. Rout, R. O’Connor, A. Dorling
(Eds.), 18th International Conference on Software Process Improvement and
Capability Determination, SPICE 2018, vol. 918, Springer Verlag, Østfold
University College, Halden, 1757, Norway, 2018, pp. 3–15, http://dx.doi.org/
10.1007/978-3-030-00623-5_1.

[40] R. Kumar, R. Goyal, Modeling continuous security: A conceptual model for
automated DevSecOps using open-source software over cloud (ADOC), Comput.
Secur. 97 (2020) 101967, http://dx.doi.org/10.1016/j.cose.2020.101967.

[41] I. Al-Surmi, B. Raddwan, I. Al-Baltah, Next generation mobile core resource
orchestration: comprehensive survey, challenges and perspectives, Wirel. Pers.
Commun. 120 (2) (2021) 1341–1415, http://dx.doi.org/10.1007/s11277-021-
08517-w.

[42] D. Yang, D. Wang, D. Yang, Q. Dong, Y. Wang, H. Zhou, H. Daocheng,
DevOps in practice for education management information system at ECNU,
in: M. Cristani, C. Toro, C. Zanni-Merk, R.J. Howlett, L.C. Jain (Eds.), Procedia
Computer Science, Vol. 176, 2020, pp. 1382–1391, http://dx.doi.org/10.1016/
j.procs.2020.09.148.

[43] A.W. Miller, R.E. Giachetti, D.L. Van Bossuyt, Challenges of adopting devops
for the combat systems development environment, Def. Acquis. Res. J.: Publ.
Def. Acquisit. Univ. 29 (1) (2022) 22–49, http://dx.doi.org/10.22594/dau.21-
870.29.01.

[44] N.M. Noorani, A.T. Zamani, M. Alenezi, M. Shameem, P. Singh, Factor
prioritization for effectively implementing DevOps in software development
organizations: A SWOT-AHP approach, Axioms (2075-1680) 11 (10) (2022)
N.PAG–N.PAG.

[45] C.E. da Silva, Y.d. Justino, E. Adachi, SPReaD: Service-oriented process for
reengineering and DevOps, Serv. Orient. Comput. Appl. 16 (1) (2022) 16,
http://dx.doi.org/10.1007/s11761-021-00329-x.

[46] ISO/IEC/IEEE15288, 21840–2019 - ISO/IEC/IEEE International Standard - Sys-
tems and software engineering – Guidelines for the utilization of ISO/IEC/IEEE
15288 in the context of system of systems (S0S), ISO/IEC/IEEE 15288, 2019,
http://dx.doi.org/10.1109/IEEESTD.2019.8929110.

[47] M. Muñoz, M.N. Rodríguez, A guidance to implement or reinforce a DevOps
approach in organizations: A case study, J. Softw.: Evol. Process 1 (2021) 21,
http://dx.doi.org/10.1002/smr.2342.

[48] C. Baron, V. Louis, Towards a continuous certification of safety-critical avionics
software, Comput. Ind. 125 (2021) http://dx.doi.org/10.1016/j.compind.2020.
103382.
23
[49] F. Helwani, J. Jahić, ACIA: A methodology for identification of architectural
design patterns that support continuous integration based on continuous
assessment, in: 2022 IEEE 19th International Conference on Software Architec-
ture Companion (ICSA-C), 2022, pp. 198–205, http://dx.doi.org/10.1109/ICSA-
C54293.2022.00046.

[50] D. Pianini, A. Neri, Breaking down monoliths with Microservices and DevOps:
An industrial experience report, in: 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2021, pp. 505–514, http://dx.
doi.org/10.1109/ICSME52107.2021.00051.

[51] L.J. Pérez, J. Salvachúa, L.J. Perez, J. Salvachua, An approach to build E-health
IoT Reactive Multi-Services based on technologies around cloud computing
for elderly care in smart city homes, Appl. Sci.-Basel 11 (11) (2021) http:
//dx.doi.org/10.3390/app11115172.

[52] S. Rafi, M.A. Akbar, A.A. AlSanad, L. AlSuwaidan, H. Abdulaziz AL-ALShaikh,
H.S. AlSagri, Decision-making taxonomy of DevOps success factors using prefer-
ence ranking organization method of enrichment evaluation, Math. Probl. Eng.
(2022) 15, http://dx.doi.org/10.1155/2022/2600160.

[53] N. Herbst, A. Bauer, S. Kounev, G. Oikonomou, E. Van Eyk, G. Kousiouris,
A. Evangelinou, R. Krebs, T. Brecht, C.L. Abad, A. Iosup, Quantifying cloud
performance and dependability: Taxonomy, metric design, and emerging chal-
lenges, ACM Trans. Model. Perform. Eval. Comput. Syst. 3 (4) (2018) 36,
http://dx.doi.org/10.1145/3236332.

[54] A. Poniszewska-Marańda, E. Czechowska, Y.-S. Chen, Kubernetes cluster for au-
tomating software production environment, Sensors (14248220) 21 (5) (2021)
1910, http://dx.doi.org/10.3390/s21051910.

[55] S. Leech, J. Dunne, D. Malone, A framework to model bursty electronic data
interchange messages for queueing systems†, Fut. Int. 14 (5) (2022) 149,
http://dx.doi.org/10.3390/fi14050149.

[56] H. Zhou, Y. Hu, X. Ouyang, J. Su, S. Koulouzis, C. de Laat, Z. Zhao,
CloudsStorm: A framework for seamlessly programming and controlling virtual
infrastructure functions during the DevOps lifecycle of cloud applications,
Softw. - Pract. Exp. 49 (10) (2019) 1421–1447, http://dx.doi.org/10.1002/spe.
2741.

[57] M. Usman, S. Ferlin, A. Brunstrom, J. Taheri, A survey on observability
of distributed edge & container-based microservices, IEEE Access 10 (2022)
86904–86919, http://dx.doi.org/10.1109/ACCESS.2022.3193102.

[58] P. Haindl, R. Plosch, Focus areas, themes, and objectives of non-functional
requirements in DevOps: A systematic mapping study, in: A. Martini, M.
Wimmer, A. Skavhaug (Eds.), Proceedings - 46th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2020, Institute of
Electrical and Electronics Engineers Inc., Johannes Kepler University Linz,
Institute of Business Informatics - Software Engineering, Linz, Austria, 2020,
pp. 394–403, http://dx.doi.org/10.1109/SEAA51224.2020.00071.

[59] E. Grunewald, P. Wille, F. Pallas, M. Borges, M.-R. Ulbricht, TIRA: An Ope-
nAPI extension and toolbox for GDPR transparency in RESTful architectures,
in: Proceedings - 2021 IEEE European Symposium on Security and Privacy
Workshops, Euro S and PW 2021, 2021, pp. 312–319, http://dx.doi.org/10.
1109/EuroSPW54576.2021.00039.

[60] J. Alonso, L. Orue-Echevarria, M. Huarte, CloudOps: Towards the opera-
tionalization of the cloud continuum: Concepts, challenges and a reference
framework, Appl. Sci. (Switzerland) 12 (9) (2022) http://dx.doi.org/10.3390/
app12094347.

[61] W. John, G. Marchetto, F. Nemeth, P. Skoldstrom, R. Steinert, C. Meirosu, I.
Papafili, K. Pentikousis, Service provider DevOps, IEEE Commun. Mag. 55 (1)
(2017) 204–211, http://dx.doi.org/10.1109/MCOM.2017.1500803CM.

[62] J. Dobaj, A. Riel, T. Krug, M. Seidl, G. Macher, M. Egretzberger, Towards digital
twin-enabled DevOps for CPS providing architecture-based service adaptation
& verification at runtime, in: Proceedings of the 17th Symposium on Software
Engineering for Adaptive and Self-Managing Systems, in: SEAMS ’22, Asso-
ciation for Computing Machinery, New York, NY, USA, 2022, pp. 132–143,
http://dx.doi.org/10.1145/3524844.3528057.

[63] A.A. Khan, M. Shameem, Multicriteria decision-making taxonomy for DevOps
challenging factors using analytical hierarchy process, J. Softw.: Evol. Process
32 (10) (2020) http://dx.doi.org/10.1002/smr.2263.

[64] V. Singh, A. Singh, A. Aggarwal, S. Aggarwal, DevOps based migration
aspects from legacy version control system to advanced distributed VCS for
deploying micro-services, in: CSITSS 2021 - 2021 5th International Conference
on Computational Systems and Information Technology for Sustainable Solu-
tions, Proceedings, 2021, p. 5, http://dx.doi.org/10.1109/CSITSS54238.2021.
9683718.

[65] Z. Sampedro, A. Holt, T. Hauser, Continuous integration and delivery for HPC:
Using singularity and Jenkins, in: ACM International Conference Proceeding
Series, Association for Computing Machinery, New York, NY, USA, 2018, p. 6,
http://dx.doi.org/10.1145/3219104.3219147.

[66] M. Airaj, Enable cloud DevOps approach for industry and higher education,
Concurr. Comput.-Pract. Exp. 29 (5) (2017) http://dx.doi.org/10.1002/cpe.
3937.

[67] Y. Wang, M. Pyhäjärvi, M.V. Mäntylä, Test automation process improvement
in a DevOps team: Experience report, in: 2020 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), 2020, pp.
314–321, http://dx.doi.org/10.1109/ICSTW50294.2020.00057.

http://dx.doi.org/10.1109/MAHC.1983.10102
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb26
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb27
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb27
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb27
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb27
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb27
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb28
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb28
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb28
http://dx.doi.org/10.1007/978-3-642-24291-5
http://dx.doi.org/10.1007/978-3-642-24291-5
http://dx.doi.org/10.1007/978-3-642-24291-5
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb30
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb30
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb30
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb30
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb30
http://dx.doi.org/10.1109/MC.2003.1204375
http://dx.doi.org/10.1007/978-3-642-69796-8_1
http://dx.doi.org/10.1109/2.59
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb34
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb34
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb34
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb34
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb34
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb35
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb35
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb35
http://dx.doi.org/10.1371/journal.pmed.1000097
http://dx.doi.org/10.1371/journal.pmed.1000097
http://dx.doi.org/10.1371/journal.pmed.1000097
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1002/smr.2248
http://dx.doi.org/10.1002/smr.2248
http://dx.doi.org/10.1002/smr.2248
http://dx.doi.org/10.1007/978-3-030-00623-5_1
http://dx.doi.org/10.1007/978-3-030-00623-5_1
http://dx.doi.org/10.1007/978-3-030-00623-5_1
http://dx.doi.org/10.1016/j.cose.2020.101967
http://dx.doi.org/10.1007/s11277-021-08517-w
http://dx.doi.org/10.1007/s11277-021-08517-w
http://dx.doi.org/10.1007/s11277-021-08517-w
http://dx.doi.org/10.1016/j.procs.2020.09.148
http://dx.doi.org/10.1016/j.procs.2020.09.148
http://dx.doi.org/10.1016/j.procs.2020.09.148
http://dx.doi.org/10.22594/dau.21-870.29.01
http://dx.doi.org/10.22594/dau.21-870.29.01
http://dx.doi.org/10.22594/dau.21-870.29.01
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb44
http://dx.doi.org/10.1007/s11761-021-00329-x
http://dx.doi.org/10.1109/IEEESTD.2019.8929110
http://dx.doi.org/10.1002/smr.2342
http://dx.doi.org/10.1016/j.compind.2020.103382
http://dx.doi.org/10.1016/j.compind.2020.103382
http://dx.doi.org/10.1016/j.compind.2020.103382
http://dx.doi.org/10.1109/ICSA-C54293.2022.00046
http://dx.doi.org/10.1109/ICSA-C54293.2022.00046
http://dx.doi.org/10.1109/ICSA-C54293.2022.00046
http://dx.doi.org/10.1109/ICSME52107.2021.00051
http://dx.doi.org/10.1109/ICSME52107.2021.00051
http://dx.doi.org/10.1109/ICSME52107.2021.00051
http://dx.doi.org/10.3390/app11115172
http://dx.doi.org/10.3390/app11115172
http://dx.doi.org/10.3390/app11115172
http://dx.doi.org/10.1155/2022/2600160
http://dx.doi.org/10.1145/3236332
http://dx.doi.org/10.3390/s21051910
http://dx.doi.org/10.3390/fi14050149
http://dx.doi.org/10.1002/spe.2741
http://dx.doi.org/10.1002/spe.2741
http://dx.doi.org/10.1002/spe.2741
http://dx.doi.org/10.1109/ACCESS.2022.3193102
http://dx.doi.org/10.1109/SEAA51224.2020.00071
http://dx.doi.org/10.1109/EuroSPW54576.2021.00039
http://dx.doi.org/10.1109/EuroSPW54576.2021.00039
http://dx.doi.org/10.1109/EuroSPW54576.2021.00039
http://dx.doi.org/10.3390/app12094347
http://dx.doi.org/10.3390/app12094347
http://dx.doi.org/10.3390/app12094347
http://dx.doi.org/10.1109/MCOM.2017.1500803CM
http://dx.doi.org/10.1145/3524844.3528057
http://dx.doi.org/10.1002/smr.2263
http://dx.doi.org/10.1109/CSITSS54238.2021.9683718
http://dx.doi.org/10.1109/CSITSS54238.2021.9683718
http://dx.doi.org/10.1109/CSITSS54238.2021.9683718
http://dx.doi.org/10.1145/3219104.3219147
http://dx.doi.org/10.1002/cpe.3937
http://dx.doi.org/10.1002/cpe.3937
http://dx.doi.org/10.1002/cpe.3937
http://dx.doi.org/10.1109/ICSTW50294.2020.00057

R. Amaro et al. Information and Software Technology 177 (2025) 107583
[68] B. Fitzgerald, K.-J. Stol, Continuous software engineering: A roadmap and
agenda, J. Syst. Softw. 123 (2017) 176–189, http://dx.doi.org/10.1016/j.jss.
2015.06.063.

[69] M. Gokarna, R. Singh, DevOps: A historical review and future works, in: P.
Astya, M. Singh, N. Roy, G. Raj (Eds.), 2021 IEEE International Conference
on Computing, Communication, and Intelligent Systems, ICCCIS 2021, Institute
of Electrical and Electronics Engineers Inc., IEEE, IBM India Pvt Ltd, Manyata
Tech Park, Bangalore, India, 2021, pp. 366–371, http://dx.doi.org/10.1109/
ICCCIS51004.2021.9397235.

[70] A. Saboor, M. Hassan, R. Akbar, E. Susanto, S. Shah, M. Siddiqui, S. Magsi,
Root-of-trust for continuous integration and continuous deployment pipeline
in cloud computing, Comput. Mater. Contin. 73 (2) (2022) 2223–2239, http:
//dx.doi.org/10.32604/cmc.2022.028382.

[71] A. Alnafessah, A.U. Gias, R. Wang, L. Zhu, G. Casale, A. Filieri, Quality-aware
DevOps research: Where do we stand? IEEE Access: Pract. Innov. Open Solutions
9 (2021) 44476–44489, http://dx.doi.org/10.1109/ACCESS.2021.3064867.

[72] J. Xuan, T. Duan, Q. Guo, F. Gao, J. Li, X. Qiu, S. Wu, Microservice publishing
technology based on DevOps architecture, in: 2021 IEEE 5th Information
Technology,Networking,Electronic and Automation Control Conference (ITNEC),
Vol. 5, 2021, pp. 1310–1314, http://dx.doi.org/10.1109/ITNEC52019.2021.
9586904.

[73] I. Kohyarnejadfard, D. Aloise, S.V. Azhari, M.R. Dagenais, Anomaly detection in
microservice environments using distributed tracing data analysis and NLP, J.
Cloud Comput. 11 (1) (2022) http://dx.doi.org/10.1186/s13677-022-00296-4.

[74] B. Snyder, B. Curtis, Using analytics to guide improvement during an Agile-
DevOps transformation, IEEE Softw. 35 (1) (2017) 78–83, http://dx.doi.org/
10.1109/MS.2017.4541032.

[75] M. Munoz, M. Negrete, M. Arcilla-Cobian, Using a platform based on the Basic
profile of ISO/IEC 29110 to reinforce DevOps environments, J. Univ. Comput.
Sci. 27 (2) (2020) 91–110, http://dx.doi.org/10.3897/jucs.65080.

[76] X. Chen, D. Badampudi, M. Usman, Reuse in contemporary software engineering
practices-an exploratory case study in A medium-sized company, E-Inf. Softw.
Eng. J. 16 (1) (2022) 220110, http://dx.doi.org/10.37190/e-Inf220110.

[77] A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, From Agile to DevOps: Smart
skills and collaborations, Inf. Syst. Front. 22 (4) (2020) 927–945, http://dx.doi.
org/10.1007/s10796-019-09905-1.

[78] S. Rafi, M.A. Akbar, W. Yu, A. Alsanad, A. Gumaei, M.U. Sarwar, Exploration
of DevOps testing process capabilities: An ISM and fuzzy TOPSIS analysis,
Appl. Soft Comput. 116 (2022) 108377, http://dx.doi.org/10.1016/j.asoc.2021.
108377.

[79] L. Banica, M. Radulescu, D. Rosca, A. Hagiu, Is DevOps another project
management methodology? Inf. Econ. 21 (3) (2017) 39–51, http://dx.doi.org/
10.12948/issn14531305/21.3.2017.04.

[80] A. Hemon, B. Fitzgerald, B. Lyonnet, F. Rowe, Innovative practices for knowl-
edge sharing in large-scale DevOps, IEEE Softw. 37 (3) (2020) 30–37, http:
//dx.doi.org/10.1109/MS.2019.2958900.

[81] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror,
A. Arpaci-Dusseau, R. Arpaci-Dusseau, The Popper convention: Making re-
producible systems evaluation practical, in: Proceedings - 2017 IEEE 31st
International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2017, 2017, pp. 1561–1570, http://dx.doi.org/10.1109/IPDPSW.2017.
157.

[82] I. Kumara, M. Garriga, A.U. Romeu, D. Di Nucci, F. Palomba, D.A. Tamburri,
W.-J. van den Heuvel, The do’s and don’ts of infrastructure code: A systematic
gray literature review, Inf. Softw. Technol. 137 (2021) 106593, http://dx.doi.
org/10.1016/j.infsof.2021.106593.

[83] Y. Zhou, Y. Su, T. Chen, Z. Huang, H.C. Gall, S. Panichella, User review-based
change file localization for mobile applications, IEEE Trans. Softw. Eng. (2020)
1, http://dx.doi.org/10.1109/TSE.2020.2967383.

[84] M. Chen, W. Yao, J. Chen, H. Liang, Y. Chen, H. Qiao, C. Yang, M. Li,
J. Tong, Critical challenges and solutions for an ultra-large-scale enterprise
DevOps platform, in: 2022 7th International Conference on Cloud Computing
and Big Data Analytics (ICCCBDA), 2022, pp. 167–171, http://dx.doi.org/10.
1109/ICCCBDA55098.2022.9778937.

[85] L. Firdaouss, B. Ayoub, B. Manal, Y. Ikrame, Automated VPN configuration
using DevOps, in: Procedia Computer Science, in: 12th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks / 11th International
Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare, 198, 2022, pp. 632–637, http://dx.doi.org/10.
1016/j.procs.2021.12.298.

[86] L.-N. Lévy, J. Bosom, G. Guerard, S. Amor, M. Bui, H. Tran, DevOps model
appproach for monitoring smart energy systems, Energies 15 (15) (2022) 27,
http://dx.doi.org/10.3390/en15155516.

[87] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, Towards a benefits dependency
network for DevOps based on a systematic literature review, J. Softw.: Evol.
Process 30 (11) (2018) 26, http://dx.doi.org/10.1002/smr.1957.

[88] J. Sandobalin, E. Insfran, S. Abrahao, J. Sandobalín, E. Insfran, S. Abrahão, On
the effectiveness of tools to support infrastructure as code: model-driven versus
code-centric, IEEE Access 8 (2020) 17734–17761, http://dx.doi.org/10.1109/
ACCESS.2020.2966597.
24
[89] A. Trigo, J. Varajão, L. Sousa, DevOps adoption: Insights from a large European
Telco, Cogent Eng. 9 (1) (2022) http://dx.doi.org/10.1080/23311916.2022.
2083474.

[90] M.F. Lie, M. Sanchez-Gordon, R. Colomo-Palacios, DevOps in an ISO 13485
regulated environment: A multivocal literature review, in: International Sym-
posium on Empirical Software Engineering and Measurement, ACM, New York,
NY, USA, 2020, p. 11, http://dx.doi.org/10.1145/3382494.3410679.

[91] E.E. Romero, C.D. Camacho, C.E. Montenegro, Ó.E. Acosta, R.G. Crespo, E.E.
Gaona, M.H. Martínez, Integration of DevOps practices on a noise monitor
system with CircleCI and Terraform, ACM Trans. Manag. Inf. Syst. 13 (4) (2022)
36:1–36:24, http://dx.doi.org/10.1145/3505228.

[92] F. Almeida, J. Simões, S. Lopes, Exploring the benefits of combining DevOps
and Agile, Fut. Int. 14 (2) (2022) 63, http://dx.doi.org/10.3390/fi14020063.

[93] M.A.A. Alamin, G. Uddin, S. Malakar, S. Afroz, T. Haider, A. Iqbal, Developer
discussion topics on the adoption and barriers of low code software develop-
ment platforms, Empir. Softw. Eng. 28 (1) (2022) http://dx.doi.org/10.1007/
s10664-022-10244-0.

[94] S. Badshah, A.A. Khan, B. Khan, Towards process improvement in DevOps: A
systematic literature review, in: 24th Evaluation and Assessment in Software
Engineering Conference, EASE 2020, ACM, Association for Computing Machin-
ery, Comsats University Islamabad, Islamabad, Pakistan, 2020, pp. 427–433,
http://dx.doi.org/10.1145/3383219.3383280.

[95] L.E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P.
Kuvaja, T. Mikkonen, M. Oivo, C. Lassenius, DevOps in practice: A multiple
case study of five companies, Inf. Softw. Technol. 114 (March 2017) (2019)
217–230, http://dx.doi.org/10.1016/j.infsof.2019.06.010.

[96] I.-C. Donca, O.P. Stan, M. Misaros, D. Gota, L. Miclea, Method for continuous
integration and deployment using a pipeline generator for agile software
projects, Sensors (Basel, Switzerland) 22 (12) (2022) http://dx.doi.org/10.
3390/s22124637.

[97] S. Rafi, W. Yu, M.A. Akbar, A. Alsanad, A. Gumaei, Multicriteria based decision
making of DevOps data quality assessment challenges using fuzzy TOPSIS, IEEE
Access 8 (1) (2020) 46958–46980, http://dx.doi.org/10.1109/ACCESS.2020.
2976803.

[98] P. Perera, R. Silva, I. Perera, Improve software quality through practicing
DevOps, in: 17th International Conference on Advances in ICT for Emerging
Regions, ICTer 2017 - Proceedings, 2018-Janua, IEEE, Institute of Electrical
and Electronics Engineers Inc., Department of Computer Science aSoftware
Development model nd Engineering, University of Moratuwa, Moratuwa, Sri
Lanka, 2017, pp. 13–18, http://dx.doi.org/10.1109/ICTER.2017.8257807.

[99] S. Rafi, W. Yu, M. Akbar, A. Alsanad, A. Gumaei, Prioritization based taxonomy
of DevOps Security Challenges Using PROMETHEE, IEEE Access 8 (2020)
105426–105446, http://dx.doi.org/10.1109/ACCESS.2020.2998819.

[100] M.A. Akbar, S. Rafi, A.A. Alsanad, S.F. Qadri, A. Alsanad, A. Alothaim, Toward
successful DevOps: A decision-making framework, IEEE Access: Pract. Innov.
Open Solutions 10 (2022) 51343–51362, http://dx.doi.org/10.1109/ACCESS.
2022.3174094.

[101] S. Dallapalma, D. Di Nucci, F. Palomba, D.A. Tamburri, Within-project defect
prediction of infrastructure-as-code using product and process metrics, IEEE
Trans. Softw. Eng. (2021) 1, http://dx.doi.org/10.1109/TSE.2021.3051492.

[102] A. Wiedemann, M. Wiesche, H. Gewald, H. Krcmar, Understanding how DevOps
aligns development and operations: A tripartite model of intra-IT alignment,
Eur. J. Inf. Syst. 29 (5) (2020) 458–473, http://dx.doi.org/10.1080/0960085X.
2020.1782277.

[103] S. Rafi, M.A. Akbar, S. Mahmood, A. Alsanad, A. Alothaim, Selection of DevOps
best test practices: A hybrid approach using ISM and fuzzy TOPSIS analysis, J.
Softw.: Evol. Process 34 (5) (2022) e2448, http://dx.doi.org/10.1002/smr.2448.

[104] S. Throner, H. Hutter, N. Sanger, M. Schneider, S. Hanselmann, P. Petrovic, S.
Abeck, An advanced DevOps environment for microservice-based applications,
in: 2021 IEEE International Conference on Service-Oriented System Engineer-
ing (SOSE), 2021, pp. 134–143, http://dx.doi.org/10.1109/SOSE52839.2021.
00020.

[105] O. Zimmermann, Microservices tenets, Comput. Sci. - Res. Dev. 32 (3–4) (2017)
301–310, http://dx.doi.org/10.1007/s00450-016-0337-0.

[106] W.P. Luz, G. Pinto, B. Bonifacio, Building a collaborative culture: a grounded
theory of well succeeded DevOps adoption in practice, in: Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2018), Oulu, Finland, 2018, p. 11, http://dx.doi.org/
10.1145/3239235.3240299.

[107] A. Al-marsy, P. Chaudhary, J. Rodger, A model for examining challenges and
opportunities in use of cloud computing for health information systems, Appl.
Syst. Innov. 4 (1) (2021) 20, http://dx.doi.org/10.3390/asi4010015.

[108] A. Premchand, M. Sandhya, S. Sankar, Simplification of application operations
using cloud and DevOps, Indonesian J. Electr. Eng. Comput. Sci. 13 (1) (2019)
85–93, http://dx.doi.org/10.11591/ijeecs.v13.i1.pp85-93.

[109] K. Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, R. Scandariato,
Finding security threats that matter: Two industrial case studies, J. Syst. Softw.
179 (2021) 111003, http://dx.doi.org/10.1016/j.jss.2021.111003.

[110] B.Y. Chen, Z.M. Jiang, A survey of software log instrumentation, ACM Comput.
Surv. 54 (4) (2021) http://dx.doi.org/10.1145/3448976.

http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1109/ICCCIS51004.2021.9397235
http://dx.doi.org/10.1109/ICCCIS51004.2021.9397235
http://dx.doi.org/10.1109/ICCCIS51004.2021.9397235
http://dx.doi.org/10.32604/cmc.2022.028382
http://dx.doi.org/10.32604/cmc.2022.028382
http://dx.doi.org/10.32604/cmc.2022.028382
http://dx.doi.org/10.1109/ACCESS.2021.3064867
http://dx.doi.org/10.1109/ITNEC52019.2021.9586904
http://dx.doi.org/10.1109/ITNEC52019.2021.9586904
http://dx.doi.org/10.1109/ITNEC52019.2021.9586904
http://dx.doi.org/10.1186/s13677-022-00296-4
http://dx.doi.org/10.1109/MS.2017.4541032
http://dx.doi.org/10.1109/MS.2017.4541032
http://dx.doi.org/10.1109/MS.2017.4541032
http://dx.doi.org/10.3897/jucs.65080
http://dx.doi.org/10.37190/e-Inf220110
http://dx.doi.org/10.1007/s10796-019-09905-1
http://dx.doi.org/10.1007/s10796-019-09905-1
http://dx.doi.org/10.1007/s10796-019-09905-1
http://dx.doi.org/10.1016/j.asoc.2021.108377
http://dx.doi.org/10.1016/j.asoc.2021.108377
http://dx.doi.org/10.1016/j.asoc.2021.108377
http://dx.doi.org/10.12948/issn14531305/21.3.2017.04
http://dx.doi.org/10.12948/issn14531305/21.3.2017.04
http://dx.doi.org/10.12948/issn14531305/21.3.2017.04
http://dx.doi.org/10.1109/MS.2019.2958900
http://dx.doi.org/10.1109/MS.2019.2958900
http://dx.doi.org/10.1109/MS.2019.2958900
http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.1109/IPDPSW.2017.157
http://dx.doi.org/10.1016/j.infsof.2021.106593
http://dx.doi.org/10.1016/j.infsof.2021.106593
http://dx.doi.org/10.1016/j.infsof.2021.106593
http://dx.doi.org/10.1109/TSE.2020.2967383
http://dx.doi.org/10.1109/ICCCBDA55098.2022.9778937
http://dx.doi.org/10.1109/ICCCBDA55098.2022.9778937
http://dx.doi.org/10.1109/ICCCBDA55098.2022.9778937
http://dx.doi.org/10.1016/j.procs.2021.12.298
http://dx.doi.org/10.1016/j.procs.2021.12.298
http://dx.doi.org/10.1016/j.procs.2021.12.298
http://dx.doi.org/10.3390/en15155516
http://dx.doi.org/10.1002/smr.1957
http://dx.doi.org/10.1109/ACCESS.2020.2966597
http://dx.doi.org/10.1109/ACCESS.2020.2966597
http://dx.doi.org/10.1109/ACCESS.2020.2966597
http://dx.doi.org/10.1080/23311916.2022.2083474
http://dx.doi.org/10.1080/23311916.2022.2083474
http://dx.doi.org/10.1080/23311916.2022.2083474
http://dx.doi.org/10.1145/3382494.3410679
http://dx.doi.org/10.1145/3505228
http://dx.doi.org/10.3390/fi14020063
http://dx.doi.org/10.1007/s10664-022-10244-0
http://dx.doi.org/10.1007/s10664-022-10244-0
http://dx.doi.org/10.1007/s10664-022-10244-0
http://dx.doi.org/10.1145/3383219.3383280
http://dx.doi.org/10.1016/j.infsof.2019.06.010
http://dx.doi.org/10.3390/s22124637
http://dx.doi.org/10.3390/s22124637
http://dx.doi.org/10.3390/s22124637
http://dx.doi.org/10.1109/ACCESS.2020.2976803
http://dx.doi.org/10.1109/ACCESS.2020.2976803
http://dx.doi.org/10.1109/ACCESS.2020.2976803
http://dx.doi.org/10.1109/ICTER.2017.8257807
http://dx.doi.org/10.1109/ACCESS.2020.2998819
http://dx.doi.org/10.1109/ACCESS.2022.3174094
http://dx.doi.org/10.1109/ACCESS.2022.3174094
http://dx.doi.org/10.1109/ACCESS.2022.3174094
http://dx.doi.org/10.1109/TSE.2021.3051492
http://dx.doi.org/10.1080/0960085X.2020.1782277
http://dx.doi.org/10.1080/0960085X.2020.1782277
http://dx.doi.org/10.1080/0960085X.2020.1782277
http://dx.doi.org/10.1002/smr.2448
http://dx.doi.org/10.1109/SOSE52839.2021.00020
http://dx.doi.org/10.1109/SOSE52839.2021.00020
http://dx.doi.org/10.1109/SOSE52839.2021.00020
http://dx.doi.org/10.1007/s00450-016-0337-0
http://dx.doi.org/10.1145/3239235.3240299
http://dx.doi.org/10.1145/3239235.3240299
http://dx.doi.org/10.1145/3239235.3240299
http://dx.doi.org/10.3390/asi4010015
http://dx.doi.org/10.11591/ijeecs.v13.i1.pp85-93
http://dx.doi.org/10.1016/j.jss.2021.111003
http://dx.doi.org/10.1145/3448976

R. Amaro et al. Information and Software Technology 177 (2025) 107583
[111] Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, E. Mouine, Building A platform
for machine learning operations from open source frameworks, in: IFAC-
PapersOnLine, in: 3rd IFAC Workshop on Cyber-Physical & Human Systems
CPHS 2020, Vol. 53, 2020, pp. 704–709, http://dx.doi.org/10.1016/j.ifacol.
2021.04.161.

[112] H. Topi, G. Spurrier, Invited paper: a generalized, enterprise-level systems
development process framework for systems analysis and design education, J.
Inf. Syst. Educ. 30 (4) (2019) 253–265.

[113] H. Topi, G. Spurrier, A generalized, enterprise-level systems development
process framework for systems analysis and design education, J. Inf. Syst. Educ.
30 (4) (2019) 253–265.

[114] M.A. Akbar, K. Smolander, S. Mahmood, A. Alsanad, Toward successful DevSec-
Ops in software development organizations: A decision-making framework, Inf.
Softw. Technol. 147 (2022) 106894, http://dx.doi.org/10.1016/j.infsof.2022.
106894.

[115] R. Ranawana, A.S. Karunananda, An agile software development life cycle
model for machine learning application development, in: 2021 5th SLAAI
International Conference on Artificial Intelligence (SLAAI-ICAI), 2021, p. 6,
http://dx.doi.org/10.1109/SLAAI-ICAI54477.2021.9664736.

[116] H. Liu, Q. Han, Y. Wang, F. He, Z. Mao, C. Li, An analysis of DevOps
architecture for EMIS based on jBPM, in: 2020 International Conference on
Service Science (ICSS), 2020-Augus, IEEE, 2020, pp. 96–101, http://dx.doi.org/
10.1109/ICSS50103.2020.00023.

[117] M. Camilli, A. Guerriero, A. Janes, B. Russo, S. Russo, Microservices integrated
performance and reliability testing, in: Proceedings of the 3rd ACM/IEEE
International Conference on Automation of Software Test, in: AST ’22, As-
sociation for Computing Machinery, New York, NY, USA, 2022, pp. 29–39,
http://dx.doi.org/10.1145/3524481.3527233.

[118] S.T. Lai, F.Y. Leu, A micro services quality measurement model for improving
the efficiency and quality of DevOps, in: L. Barolli, F. Xhafa, N. Javaid,
T. Enokido (Eds.), Advances in Intelligent Systems and Computing, Vol.
773, Springer International Publishing AG, Gewerbestrasse 11, CHAM, CH-
6330, SWITZERLAND, 2019, pp. 565–575, http://dx.doi.org/10.1007/978-3-
319-93554-6_55.

[119] R. Eramo, V. Muttillo, L. Berardinelli, H. Bruneliere, A. Gomez, A. Bagnato,
A. Sadovykh, A. Cicchetti, AIDOaRt: AI-augmented automation for DevOps, a
model-based framework for continuous development in cyber-physical systems,
in: 2021 24th Euromicro Conference on Digital System Design (DSD), 2021, pp.
303–310, http://dx.doi.org/10.1109/DSD53832.2021.00053.

[120] M. Pardo, H. Erazo, C. Lozada, Documenting and implementing DevOps
good practices with test automation and continuous deployment tools through
software refinement, Period. Eng. Nat. Sci. 9 (4) (2021) 854–863, http://dx.
doi.org/10.21533/pen.v9i4.2239.

[121] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. Di Penta,
A. Zaidman, Continuous delivery practices in a large financial organization, in:
Proceedings - 2016 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2016, 2017, pp. 519–528, http://dx.doi.org/10.1109/ICSME.
2016.72.
25
[122] J. Chen, Performance regression detection in DevOps, in: Proceedings - 2020
ACM/IEEE 42nd International Conference on Software Engineering: Compan-
ion, ICSE-Companion 2020, 2020, pp. 206–209, http://dx.doi.org/10.1145/
3377812.3381386.

[123] J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. Enoiu, A. Agirre, G. Sagardui,
M. Arratibel, O. Sellin, Towards a taxonomy for eliciting design-operation
continuum requirements of cyber-physical systems, in: Proceedings of the IEEE
International Conference on Requirements Engineering, 2020-August, 2020, pp.
280–290, http://dx.doi.org/10.1109/RE48521.2020.00038.

[124] C. Paule, T.F. Dullmann, A. Van Hoorn, Vulnerabilities in continuous delivery
pipelines? a case study, in: Proceedings - 2019 IEEE International Conference
on Software Architecture - Companion, ICSA-C 2019, 2019, pp. 102–108,
http://dx.doi.org/10.1109/ICSA-C.2019.00026.

[125] M. Wöhrer, U. Zdun, DevOps for ethereum blockchain smart contracts, in: 2021
IEEE International Conference on Blockchain (Blockchain), 2021, pp. 244–251,
http://dx.doi.org/10.1109/Blockchain53845.2021.00040.

[126] I.D. Rubasinghe, D.A. Meedeniya, I. Perera, Towards traceability management
in continuous integration with sat-analyzer, in: ACM International Conference
Proceeding Series, Association for Computing Machinery, New York, NY, USA,
2017, pp. 77–81, http://dx.doi.org/10.1145/3162957.3162985.

[127] J. Bergelin, A. Cicchetti, Towards continuous modelling to enable DevOps: A
preliminary study with practitioners, in: Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, in: MODELS ’22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 774–783, http://dx.doi.org/10.1145/3550356.3561582.

[128] C. Castellanos, C.A. Varela, D. Correal, ACCORDANT: A domain specific-model
and DevOps approach for big data analytics architectures, J. Syst. Softw. 172
(2021) http://dx.doi.org/10.1016/j.jss.2020.110869.

[129] R. Subramanya, S. Sierla, V. Vyatkin, From DevOps to MLOps: Overview and
application to electricity market forecasting, Appl. Sci. (Switzerland) 12 (19)
(2022) http://dx.doi.org/10.3390/app12199851.

[130] J. Faustino, R. Amaro, D. Adriano, R. Pereira, M.M. da Silva, DevOps benefits:
A systematic literature review, Softw. - Pract. Exp. 52 (9) (2022) 1905–1926,
http://dx.doi.org/10.1002/spe.3096.

[131] R. Amaro, R. Pereira, M.M. da Silva, DevOps Metrics and KPIs: A multivo-
cal literature review, ACM Comput. Surv. (2024) http://dx.doi.org/10.1145/
3652508.

[132] G. Guest, E. Namey, M. Chen, A simple method to assess and report thematic
saturation in qualitative research, PLOS ONE 15 (5) (2020) e0232076, http:
//dx.doi.org/10.1371/journal.pone.0232076.

[133] V. Garousi Yusifoğlu, Y. Amannejad, A. Betin Can, Software test-code en-
gineering: A systematic mapping, Inf. Softw. Technol. 58 (2015) 123–147,
http://dx.doi.org/10.1016/j.infsof.2014.06.009.

[134] J.M. Verner, M.A. Babar, N. Cerpa, T. Hall, S. Beecham, Factors that motivate
software engineering teams: A four country empirical study, J. Syst. Softw. 92
(1) (2014) 115–127, http://dx.doi.org/10.1016/j.jss.2014.01.008.

http://dx.doi.org/10.1016/j.ifacol.2021.04.161
http://dx.doi.org/10.1016/j.ifacol.2021.04.161
http://dx.doi.org/10.1016/j.ifacol.2021.04.161
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb112
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb112
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb112
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb112
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb112
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb113
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb113
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb113
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb113
http://refhub.elsevier.com/S0950-5849(24)00188-5/sb113
http://dx.doi.org/10.1016/j.infsof.2022.106894
http://dx.doi.org/10.1016/j.infsof.2022.106894
http://dx.doi.org/10.1016/j.infsof.2022.106894
http://dx.doi.org/10.1109/SLAAI-ICAI54477.2021.9664736
http://dx.doi.org/10.1109/ICSS50103.2020.00023
http://dx.doi.org/10.1109/ICSS50103.2020.00023
http://dx.doi.org/10.1109/ICSS50103.2020.00023
http://dx.doi.org/10.1145/3524481.3527233
http://dx.doi.org/10.1007/978-3-319-93554-6_55
http://dx.doi.org/10.1007/978-3-319-93554-6_55
http://dx.doi.org/10.1007/978-3-319-93554-6_55
http://dx.doi.org/10.1109/DSD53832.2021.00053
http://dx.doi.org/10.21533/pen.v9i4.2239
http://dx.doi.org/10.21533/pen.v9i4.2239
http://dx.doi.org/10.21533/pen.v9i4.2239
http://dx.doi.org/10.1109/ICSME.2016.72
http://dx.doi.org/10.1109/ICSME.2016.72
http://dx.doi.org/10.1109/ICSME.2016.72
http://dx.doi.org/10.1145/3377812.3381386
http://dx.doi.org/10.1145/3377812.3381386
http://dx.doi.org/10.1145/3377812.3381386
http://dx.doi.org/10.1109/RE48521.2020.00038
http://dx.doi.org/10.1109/ICSA-C.2019.00026
http://dx.doi.org/10.1109/Blockchain53845.2021.00040
http://dx.doi.org/10.1145/3162957.3162985
http://dx.doi.org/10.1145/3550356.3561582
http://dx.doi.org/10.1016/j.jss.2020.110869
http://dx.doi.org/10.3390/app12199851
http://dx.doi.org/10.1002/spe.3096
http://dx.doi.org/10.1145/3652508
http://dx.doi.org/10.1145/3652508
http://dx.doi.org/10.1145/3652508
http://dx.doi.org/10.1371/journal.pone.0232076
http://dx.doi.org/10.1371/journal.pone.0232076
http://dx.doi.org/10.1371/journal.pone.0232076
http://dx.doi.org/10.1016/j.infsof.2014.06.009
http://dx.doi.org/10.1016/j.jss.2014.01.008

	Mapping DevOps capabilities to the software life cycle: A systematic literature review
	Introduction
	Context
	Problem
	Proposal and Objective

	Research Background
	DevOps Capabilities
	Software Life Cycle Processes

	Systematic Literature Review
	Planning
	Review Protocol

	Conducting the SLR
	Identification of Primary Documents
	Quality Assessment and Eligibility
	Extraction of Data

	Data Extraction Analysis
	Literature number of contributions
	Distribution of publications over the years

	Reporting the Literature Review
	RQ1 - How do authors in scientific literature relate Software Life Cycle Processes to DevOps Capabilities?
	Agreement processes
	Organizational Project-Enabling Processes
	Technical Management processes
	Technical processes

	RQ2 - Which categories of DevOps Capabilities are most relevant to the Software Life Cycle Processes?

	Discussion
	Categories with fewer relations but high average values
	Improving Life Cycle Processes with DevOps Capabilities
	Exceptional impact relations
	Very high impact relations
	Applying the life cycle concepts

	Impact and Practical Applications on the Field of DevOps

	Conclusion
	Contributions
	Limitations
	Future work

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

