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ter apresentado ao Nuno numa altura menos clara desta etapa. Carmen, obrigada por

estares sempre ao meu lado.

Agradeço também aos meus pais, Ana e Pedro, assim como aos meus avós, Carlos,
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Resumo

Recorrendo a imagens de satélite e técnicas de aprendizagem profunda, esta Dissertação

visa identificar interseções entre estradas e fronteiras terrestres, com vista à automa-

tização do processo de atualização da base de dados de Pontos de Entrada, originalmente

desenvolvida pelo programa “COVID-19 Impact on Points of Entry” da International

Organization for Migration.

Utilizando Angola como área estudo, a Dissertação propõe uma abordagem baseada

em classificação de imagens. Para isso, inicialmente extráıram-se imagens de satélite do

ArcGIS Pro, em Angola, e criaram-se manualmente as legendas correspondentes. Posteri-

ormente, foram criados conjuntos de dados de treino e teste, com as imagens divididas em

pedaços de (64× 64) pixels. O conjunto de teste contém exclusivamente imagens da zona

fronteiriça de Angola, enquanto o conjunto de treino inclui imagens internas aos limites

do páıs.

Criaram-se seis arquiteturas baseadas em Redes Neuronais Convolucionais (CNN) e

utilizaram-se modelos pré-treinados com os dados da ImageNet (MobileNetV1 e ResNet50),

com o propósito de investigar a melhor abordagem. Várias experiências foram desenvolvi-

das, recorrendo a cada arquitetura.

O modelo que atingiu o melhor desempenho é baseado numa CNN personalizada,

composta por dois blocos com duas camadas convolucionais e uma camada de pooling.

Este identifica corretamente 47 Pontos de Entrada, melhorando a base de dados de 7

para 47 pontos. A integração de métodos de ciência de dados com imagens de satélite,

visa fornecer uma proposta mais automatizada para identificar novos Pontos de Entrada

terrestres, relevante para a capacitação de organizações humanitárias e governamentais

na monitorização, tomada de decisões e resposta a crises.

Palavras-Chave: Aprendizagem Profunda, Redes Neuronais Convolucionais, Ima-

gens de Satélite, Classificação de Imagens.
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Abstract

This Dissertation proposes an end-to-end framework for map creation using a data sci-

ence approach to address the data gap identified in the International Organization for

Migration’s (IOM) COVID-19 Impact on Points of Entry program. Leveraging satellite

imagery and deep learning techniques, the study aims to identify relevant nodes within

complex networks of land roads and borders to augment the Points of Entry database,

focusing on Angola as a proof-of-concept area.

Initial tasks involve data collection, namely satellite imagery extraction from ArcGIS

Pro and the manual creation of corresponding ground truth data. Subsequently, train

and test datasets are prepared, with images divided into (64× 64) pixel pieces. The test

dataset exclusively comprises data from Angola’s border area, while the training dataset

includes images from within the country’s boundaries.

The Dissertation’s training phase encompasses two main sections: Custom-Built and

Pre-Trained models. Six custom-built Convolutional Neural Network (CNN) architec-

tures are designed, alongside experiments using pre-trained models (MobileNetV1 and

ResNet50), pre-trained with the ImageNet dataset, with fine-tuning applied.

The best-performing model is based on a CNN, consisting of two blocks with two

convolutional and one pooling layers, correctly identifies 47 Points of Entry, enhancing

the database from 7 to 47 Points of Entry. By integrating data science methods with

satellite imagery, the study aims to provide automated mechanisms for identifying relevant

nodes in complex networks, empowering humanitarian and governmental stakeholders to

monitor, make informed decisions and respond efficiently to emerging challenges.

Keywords: Deep Learning, Convolutional Neural Networks (CNN), Satellite Images,

Image Classification.
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CHAPTER 1

Introduction

1.1. Background and Motivation

Remotely sensed data plays a key role in enhancing our understanding of the world. It

serves as a powerful tool for capturing detailed information about the Earth’s surface,

including land cover, land use, environmental changes and infrastructure development.

Using the knowledge available within this domain, researchers, non-governmental institu-

tions and policymakers can make informed decisions and create sustainable development

plans aimed at addressing global challenges.

Throughout the years, humanitarian organizations have increasingly turned to digital

tools to assist and protect populations affected by conflict and crises. Recent advance-

ments in computational capabilities, combined with an abundance of data, have greatly

contributed to a broader adoption of digital technologies within the humanitarian field.

This progression has transformed the approach of humanitarian action from reactive to

preventive [3]. On that premise, artificial intelligence technologies offer the potential for

expanding the toolkit available to use in humanitarian missions across three main dimen-

sions: preparedness, response and recovery. Preparedness involves an ongoing effort to

comprehend the potential risks at hand and suggest strategies to address them, ultimately

enhancing the efficiency of humanitarian responses to crises and emergencies. Response

primarily centres on providing aid to those requiring assistance, while recovery entails

initiatives that extend beyond immediate relief efforts [3].

In the scope of this Dissertation, the applications associated with preparedness and

response actions are primarily addressed. Data Preparedness (DP) consists of organiza-

tions’ ability to effectively deploy and manage data collection, analysis tools, techniques

and strategies in a specific operational context prior to a disaster [23]. By addressing

challenges such as data disparity, distortion and damage, DP helps build trust between

partners and affected communities [23].

Remarkably, recent progress in deep learning, natural language processing and im-

age processing contributes to a more prompt and precise response to emergencies. An

illustrative example involves leveraging artificial intelligence (AI) technologies for map-

ping disaster-stricken areas, with great effectiveness, as it is presented by initiatives like

the OpenStreetMap (OSM) project [28]. This project uses AI systems to map disaster-

affected regions by incorporating crowd-sourced social media data and satellite and drone

imagery to provide reliable information, aiding in prioritizing response efforts [3]. Another

example is the Rapid Mapping Service, a joint effort led by the United Nations Institute

for Training and Research, the UN Operational Satellite Applications Program, and UN
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Global Pulse. This initiative leverages AI to analyze satellite imagery, facilitating rapid

mapping of flooded areas and assessing damage caused by conflicts or natural calami-

ties such as earthquakes and landslides. Despite that, in some scenarios, such as armed

conflicts, the applicability of these tools may be limited. On the one hand, this context

presents challenges such as disinformation campaigns which impact data reliability. On

the other hand, difficulties in accessing high-quality data during conflicts may obstruct

the design and development of AI systems, compromising the suitability of their mapping

tools [3].

While such technologies offer opportunities to enhance humanitarian relief responses,

it is crucial to recognize that they do not present solutions for every scenario within the

humanitarian domain. Consequently, it is crucial in informing humanitarian responses

on-site [3]. The COVID-19 pandemic introduced unprecedented containment measures

worldwide, aimed at curbing human mobility to stem the spread of the virus. Within

the context of this global crisis, the International Organization for Migration (IOM) has

developed a comprehensive global mobility database, which serves as a valuable tool for

mapping, tracking and analyzing the pandemic’s impact on Points of Entry (PoE) across

the country’s borders subject to restrictive measures [10].

The primary objective of this database is to provide valuable insights to IOM Mem-

ber States, UN partner agencies, voluntary partner agencies and other stakeholders. By

understanding the evolving situation, stakeholders can tailor their response strategies ac-

cordingly, particularly in addressing the specific needs of migrants and mobile populations

who are disproportionately affected by mobility restrictions. Ultimately, a global mobil-

ity database can serve as an essential resource for civil society, including the media and

the general population. It provides up-to-date information about mobility restrictions

related to airports, land and blue borders, helping to keep communities informed about

the measures in place.

As the COVID-19 pandemic transitioned into an endemic stage, the ongoing need to

maintain an updated database of PoE remains highly relevant in the context of human-

itarian efforts. In this regard, there can be identified room for further improvement. A

significant concern lies in relying on OSM data to automatically identify PoE. It is recog-

nized that the OSM database presents data gaps in less developed or sparsely populated

regions, thus presenting challenges in accurately pinpointing PoE in these areas.

Further development of this area is essential to enhancing the effectiveness of future

initiatives and ensuring a comprehensive representation of all regions, regardless of their

level of development, within the database. By improving data collection methods and ex-

panding data sources, organizations like the IOM and other humanitarian or governmental

bodies can strengthen their ability to monitor, make informed decisions, and respond ef-

ficiently to new challenges. This collaborative approach enhances readiness and resilience

against global crises, promoting a sustainable and secure future for everyone.
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In response to the constraints identified in the creation of the DTM’s Report - IOM’s

COVID-19 Impact on Points of Entry initiative [10], this Dissertation proposes a novel

approach for extracting knowledge from remotely sensed data using deep learning tools.

The objective is to identify intersections of roads and land borders by leveraging satellite

imagery combined with Convolutional Neural Networks (CNNs). By developing an im-

age classification analysis of land roads, this Dissertation aims to identify new Points of

Entry (PoE), ultimately seeking to present an alternative methodology that supplements

traditional sources such as OpenStreetMap (OSM).

1.2. Objectives and Research Questions

In an era marked by rapid technological advancements, leveraging the available tools is

essential for the humanitarian aid sector to effectively address the challenges that are

posed. This Dissertation introduces a Computer Vision methodology for map creation

using remotely sensed data, addressing the gap in mapping less developed or sparsely

populated regions identified by the IOM’s COVID-19 Impact on PoE program.

By leveraging satellite imagery of Angola’s territory as the basis for the proof of

concept, with deep learning techniques, an approach based on image classification algo-

rithms for road detection is used to identify roads intersecting the country’s border lines.

This approach is able to provide a general overview of the identified roads, providing

a computationally efficient alternative to the widely used pixel-wise analysis techniques.

Additionally, it is aimed to obtain comparable accuracy levels while using a relatively

small amount of input data. Furthermore, this Dissertation compares the effectiveness of

using pre-trained neural network models versus training these models from the ground up

- presented in the Literature Review Chapter (Chapter 2).

Ultimately, this Dissertation seeks to demonstrate that the insights gained from a

simplified approach, such as image classification, can significantly contribute to identifying

road networks and enriching information within PoE databases. The Dissertation operates

under the premise that it is preferable to quickly determine that within a given region

exists a road, rather than risk overlooking its existence due to inadequate information.

The idea is to offer an accessible and expedited solution to map creation.

In order to achieve the goals that have been previously described, a set of research

questions has been set out to serve as guiding principles for the Dissertation:

RQ1: Can reliable ground truth data be extracted using fully-automated processes?

RQ2: Can Pre-Trained models present a better performance at extracting roads from

satellite imagery than training a new model from scratch?

RQ3: Can an Image Classification-based approach identify relevant nodes in complex

networks of land roads and borders with accuracy?

RQ4: Is it possible to correctly identify relevant nodes in complex networks of land

roads and borders?

These research questions summarize the core objectives of the Dissertation, guiding

the analysis and interpretation of the findings as the study progresses. In an effort to
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contribute to the state-of-the-art in remote sensing and geospatial analysis, these questions

offer a practical solution to real-world challenges.

1.3. Methodology and Organization of the Dissertation

This Dissertation draws inspiration from the Cross-Industry Standard Process for Data

Mining (CRISP-DM) reference model [6], which provides a structured and systematic

methodology for exploring and interpreting data. Aligned with the principles of the

CRISP-DM methodology, this Dissertation follows an inferential approach, where various

experiments are performed, and parameters are adjusted based on the results - illustrated

in Figure 1.1.

Figure 1.1. Phases of the CRISP-DM reference model. Figure reprinted from
[6].

The Introduction and Literature Review Chapters (Chapters 1 and 2), focus on gaining

a thorough understanding of the subject matter. These chapters aim to delineate the goals

of the Dissertation, introduce key concepts relevant to the topic, clarify the potential

contributions to the field of study and outline the planned approach to achieving these

objectives. This section lays the groundwork for a comprehensive Business Understanding.

Following this, the Data and Tools Chapter (Chapter 3) provides an overview of the

resources to be used throughout the Dissertation. It encompasses the data understanding

stage (Section 3.1), an exposition of the proposed models’ architectures (Section 3.2) and

an introduction to the evaluation metrics to be employed in assessing the Dissertation’s

outcomes (Section 3.3).

Chapter 4 intends to promote informed decision-making in the subsequent phases of

the Dissertation. The data preparation tasks that were performed are outlined, as well as a

description of the additional experiments that enhance the Dissertation’s scope. Through

the developments of early experiments and acquisition of further methodological insights,

the groundwork is laid for the analysis phase.
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In Chapter 5, the processes and results of the training phase are presented. The

training workflow details the data preparation and modeling tasks conducted throughout

this phase. Subsequently, an in-depth analysis of the results is displayed, serving as a

foundational step for the subsequent test phase.

The test phase is detailed in Chapter 6. Following a similar structure to Chapter 5,

the methodological specifications of the test phase are presented, followed by a detailed

analysis and discussion of the test’s results. The analysis of the results serves the pur-

pose of assessing the model’s performance and effectiveness in meeting the Dissertation’s

objectives. In the concluding Chapter, the Dissertation’s strengths and weaknesses are

examined again, offering a comprehensive reflection which aims to provide insights for

forthcoming studies.
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CHAPTER 2

Literature Review

This Chapter presents a review of the fundamental concepts of data science in the

field of satellite imagery analysis. First, an introduction to the key concepts related to

remotely sensed data and deep learning methodologies is presented. Second, a compre-

hensive review of the research work in the Dissertation’s domain is undertaken, providing

a comparison of the diverse approaches and relevant contexts. Lastly, the conclusions

drawn from the theoretical review will be presented.

2.1. Remotely Sensed Data

Observing and understanding Earth’s dynamic systems is essential for addressing en-

vironmental challenges and managing resources through a knowledge-based approach.

Researchers can leverage technologies that remotely collect data and analyze various phe-

nomena worldwide. Such technologies can enable tracking temperature changes in oceans,

weather forecasting, identifying erupting volcanoes and studying urban, agricultural or

forested area changes. The wide range of applications highlights the critical role of remote

sensing in enhancing our understanding of Earth’s dynamics and informing evidence-based

decision-making for the benefit of society and the environment [32].

The Copernicus initiative supports the EU’s role as a global actor and contributes

to solutions to common global challenges. Sentinel satellites, developed specifically for

the Copernicus program, provide detailed observations of Earth’s atmosphere, marine

environments, land surfaces, climate change impacts, emergency response and security.

By harnessing data from Sentinel missions such as radar imaging, optical imagery, ocean

and land measurements, atmospheric composition monitoring and sea surface topography,

Copernicus supports informed decision-making and scientific research across multiple dis-

ciplines [7].

On this premise, remote sensing consists on the acquisition and monitoring of the

physical characteristics of an area by capturing and analyzing the reflected and emit-

ted Electromagnetic Radiation (EMR) from a distance - typically through the use of

satellites or aircraft [32]. The aircraft instruments or satellites can capture data over

large geographic areas in a single observation. By analyzing the electromagnetic prop-

erties of Earth’s surface, oceans and atmosphere, remote sensing contributes greatly to

its identification and classification. EMR is characterized by energy propagation at the

speed of light, following a regular wave pattern. This means that all waves internal to

the electromagnetic spectrum are uniformly spaced and exhibit a repetitive nature over

7



time. The Electromagnetic Spectrum aggregates all EMR categories - visible light, ra-

dio waves, infrared and gamma rays - varying in wavelength and frequency through the

Electromagnetic Spectrum [26].

Remote sensing relies on how EMR interacts with different matters like trees, water

or atmospheric gases. When EMR encounters these materials, they can be absorbed,

reflected, scattered, emitted by them, passed through or transmitted. The essence of

remote sensing lies in the ability to detect and record the EMR that is reflected or emitted

by objects or materials. Each matter has its own spectral signature, which is the unique

properties that emit or reflect EMR. Remote sensors are designed to capture and analyze

spectral data, identifying and differentiating various objects and materials [26].

Spectral information can be gathered through passive or active means. Passive sensors

observe the energy naturally emitted or reflected by an object (Figure 2.1(a)), using

devices such as radiometers and spectrometers. These sensors are commonly employed

in remote sensing across various parts of the electromagnetic spectrum, including visible

light, infrared, thermal infrared and microwave wavelengths [21]. The Landsat Mission is

the longest running mission using passive sensors to collect spectral data, but Maxar and

Planet Labs are also examples of commercial satellites that are used for the same purpose

[11].

Active Sensors, on the other hand, emit a pulse of energy and then analyze the alter-

ations in the returning signal (Figure 2.1(b)), generally functioning within the microwave

range of the electromagnetic spectrum, enabling them to penetrate the atmosphere ef-

fectively under various conditions [20]. Examples of this type of satellite include the

Canadian Space Agency’s RADARSAT-1 and RADARSAT-2, Airbus Defense & Space

TerraSAR-X Radar Satellite and LiDAR, which uses light emitted from aircraft or heli-

copters to measure bounce-back time to the sensor [11].

(a) Passive Sensor (b) Active Sensor

Figure 2.1. Diagram of a passive sensor versus an active sensor. Figure reprinted from NASA’s
Applied Sciences Remote Sensing Training Program, available in [22].

Geospatial characteristics are inherent in remotely sensed data, which means that the

observed areas are tied to their geographic reference, using a given coordinate system.

This allows for the mapping and analysis of the data in conjunction with other spatial

information, such as road networks or population density maps, among other applica-

tions. For this reason, remote sensing data can fruitfully contribute as a data source for
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geographic information systems (GIS), which encompass “organized collections of com-

puter hardware, software, geographic data and personnel designed to efficiently capture,

store, update, manipulate and analyze all forms of geographically referenced information”

(Jensen, 2005; ESRI, 2001, as cited in [26]).

The choice of sensor data in research is influenced by resolution, which varies based on

factors like the satellite’s orbit and sensor design. There are four main types of resolution

to consider when examining any remotely sensed data: radiometric, spatial, spectral and

temporal. Radiometric resolution refers to the level of detail in each pixel, represented by

the number of bits capturing energy. Spatial resolution relates to the size of pixels in a

digital image and the corresponding Earth surface area. Spectral resolution involves the

sensor’s ability to distinguish between different wavelengths, with multi-spectral sensors

typically having 3-10 bands and hyper-spectral sensors possessing hundreds or thousands.

A narrower wavelength range per band indicates finer spectral resolution. Temporal

resolution measures the time it takes for a satellite to orbit and revisit the same observation

area [22].

Advancements in satellite sensors with sub-meter resolution present new opportunities

for detailed urban land cover mapping at the object level. Such advancements, partic-

ularly with finer-scale data, introduce increased complexity as it is crucial to enhance

the efficiency of high-resolution classification methods in order to effectively handle the

challenges associated with classifying high-resolution imagery [35]. As a consequence,

choosing appropriate sensor data constitutes the initial crucial step for achieving a suc-

cessful classification task, tailored to a certain purpose [17]. Ultimately, these processes

allow researchers to gain insight about the Earth, providing a broader view of the Earth’s

surface, compared to ground-level observation. Remotely sensed imagery has emerged as

a real-time and cost-effective method for mapping land cover [35].

When working with remote sensing data, one other crucial aspect is concerning the

acquisition of ground truth data to support the analysis. Various techniques are available,

namely manual, fully-automated or semi-automated. Manual labeling of reference data

involves a time-consuming task of human-driven annotation. Although this approach has

proven to yield better results in terms of model performance, it poses challenges due to

its resource-intensive nature, particularly when dealing with large-scale imagery datasets.

Fully-automated data labeling involves the automatic extraction of reference data. One

commonly used tool for fully-automatic labeling is OSM crowd-sourced data, which, as

it was stated in the introductory Chapter, has been used in the context of the IOM’s

COVID-19 Impact on Points of Entry initiative. OSM stands out for its abundance

of labeled features, global availability and contributions from diverse entities, including

individuals, Non-governmental organizations and corporations. However, several authors

note that OSM still exhibits an under representation of data in less developed regions.

This poses challenges in terms of ensuring the quality and correctness of available data,
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addressing temporal and spatial alignment issues between imagery and OSM data and

managing the high precision but low recall of OSM’s tagged features [5].

2.2. Deep Learning Fundamentals

In recent years, the AI field has experienced great advancements, particularly in the

deep learning (DL) field. Within the machine learning (ML) domain, DL emerges as

a sophisticated statistical approach primarily used for pattern recognition, relying on

neural networks with multiple layers. It represents a powerful tool for automated pattern

recognition and classification, with implications across diverse fields where complex data

analysis is required [19].

In the following Sub-Sections, the main theoretical aspects concerning Deep Learning

will be described, in the form of a review of the underlying concepts and their practical

applications in a variety of domains.

2.2.1. Basic Neural Networks

Known for their ability to learn complex patterns and data representations, neural net-

works (NN) have enabled machines to perform tasks with human-like accuracy and effi-

ciency, due to its biologically-inspired learning mechanisms in the form of computational

models [1]. In NN, data flows from input layer to output neurons, adjusting connection

weights along the way. This adjustment, driven by training data consisting of input-output

pairs, facilitates learning. The goal is to refine the weights in a mathematically justified

manner to minimize prediction error for each example, improving prediction accuracy in

subsequent iterations. Through the iterative refinement of weights across multiple input-

output pairs, NN enhance their learning capacity over time, resulting in more accurate

predictions and eventual model generalization — which is the ability to process unseen

instances after training on a finite set of input-output pairs.

Figure 2.2. The basic architecture of the Single-Layer Perceptron with bias.
Figure adapted from [1].

As a baseline, a NN with a single computational layer is commonly referred to as

the Single-Layer Perceptron, which consists of an architecture where inputs are directly

mapped to outputs through a generalized version of a linear function [1]. As illustrated in

Figure 2.2, the input layer contains d nodes, each corresponding to one of the d features
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in the input vector (X = [x1, . . . , xd]). The nodes transmit the input features to the

output node via edges with weights (W = [w1, . . . , wd]), with which the features are

multiplied and added at the output node. Subsequently, the sign function is applied in

order to convert the aggregated value into a class label, i.e. to predict the dependent

variable associated with X. It is then necessary to incorporate an additional bias variable

b to account for the invariant component of the prediction. The predicted output ŷ is

determined by taking the sign of the computed value, represented as [1]:

ŷ = sign(W ·X + b) = sign

(
d∑

j=1

wjxj + b

)
(2.1)

Furthermore, the addition of one or more hidden layers between the input and out-

put layers can contribute with several critical capabilities, compared to the Single-Layer

Perceptron. The Multi-Layer Perceptron (MLP) can learn more complex, non-linear de-

cision boundaries, namely hierarchical features, through multiple layers - as presented in

Figure 2.3. Each hidden layer can learn increasingly abstract representations of the input

data. This behaviour increases the model’s capacity and tendency to generalize better to

unseen data. Therefore, hidden layers are an essential component of the MLP, consisting

of neurons that perform intermediate computations before passing the results to the next

layer. These layers are termed “hidden” because their values are not directly observed

in the input or output; they are internal to the network. Each neuron within a given

hidden layer receives inputs from the previous layer, processes them through a weighted

sum, adds a bias and applies an activation function to produce an output that serves as

the input for the next layer.

Figure 2.3. The basic architecture of the Multi-Layer Perceptron with bias.
Figure adapted from [1].

Additionally, activation functions act as the mechanism that introduces non-linearity

to a NN, enabling the network to address complex learning tasks [25]. The Sign activation

function suits scenarios where output values need to be either −1 or +1, while the Sigmoid

activation function presents suitability for transforming values into probability estimations

- ranging from 0 to +1, it is adequate for binary classification tasks. Similarly, the Tanh

activation function ranges from −1 to 1 and is preferable to use, rather than the Sigmoid,
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when the outputs of the computations are desired to be both positive and negative. For

regression tasks involving the prediction of real values, the Identity activation function is

often suitable because it preserves the input values without introducing any non-linearity,

aligning well with the continuous nature of the prediction [1].

The Rectified Linear Unit (ReLU) activation function is particularly popular for its

ability to allow large values to pass through, resulting in sparsity and keeping certain

neurons inactive. It maps negative inputs to 0 while leaving positive inputs unchanged.

This intermittent firing accelerates the training process, as its gradient is computationally

efficient, resulting in lower computational costs. These attributes guarantee that the ReLU

activation function is effective in solving a wide range of problems, namely the Vanishing

Gradient problem. The Vanishing Gradient can occur during the training of a NN, when

the gradients become very small, the weight updates during training are tiny, causing the

training process to be very slow or even to stall completely. This means the network is

unable to learn effectively, especially in the earlier layers [1].

The selection of an appropriate loss function also depends on the nature of the output

and the specific requirements of the task. Loss functions are essential in training ML

models as they quantify the disparity between predicted and actual values, thereby guiding

the optimization process to enhance the model’s performance. In regression problems

where the goal is to predict continuous values, Squared Loss is frequently used. This

is because Squared Loss penalizes larger errors more heavily, which is often desirable in

tasks where precise numerical predictions are required [1].

In binary classification with outputs ranging from 0 to 1, Binary Cross-Entropy Loss,

also known as Logistic Loss, is often chosen due to its suitability for handling probabilities

and predicting class likelihoods. In multi-class classification scenarios where the output

denotes a probability distribution across multiple classes, Cross-entropy Loss is typically

utilized [1].

2.2.2. Convolutional Neural Networks

Renowned for their specialized architecture, Convolutional Neural Networks (CNN) were

designed for processing structured grid data such as images. Due to its ability to capture

spatial hierarchies in data, CNN consist on a specialized type of NN. It incorporates

parameters like weights and biases, that are combined with inputs and passed, amongst

intermediate layers, through non-linear activation functions to generate outputs [25].

In CNN architectures, each layer is three-dimensional, with depth corresponding to

the quantity of feature maps. It is essential to differentiate the concept of “depth” within

a single layer of a CNN, from the depth concerning the number of layers. In the input

layer, input features correspond to color channels, typically RGB (red, green and blue).

For instance, if the input is grayscale, the input layer will have a depth of 1, but subse-

quent layers may still have a depth of 3 due to the architecture’s design. While hidden

layers are responsible for transforming the input data into feature maps, which are the

intermediate outputs that capture the presence of specific features detected by the filters
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in the convolutional layers. These feature maps, through successive layers, enable the

network to learn and represent complex patterns in the data, facilitating tasks like image

recognition and classification.

Figure 2.4. The basic architecture of a Convolutional Neural Network. Figure
adapted from [27].

In CNN architectures, there are two main types of hidden layers: Convolutional and

Pooling [1], as illustrated in Figure 2.4. Within the convolutional layers, a convolution

process occurs. This involves applying a filter, also referred to as kernel, to alter acti-

vations from one layer to the next, maintaining spatial relationships but with decreased

spatial dimensions. This process involves computing the dot product between the filter’s

weights and various spatial regions internal to a layer, determining the hidden state value

in the subsequent layer. At each possible position inside a layer, the interaction between

the filter and spatial regions occurs, ensuring that the subsequent layer retains spatial con-

nections from the previous layer. This process defines the activations of the next layer,

with sparse connections between layers, as each activation in a given layer is influenced

by only a small region of the previous layer. Except for the final layers, all other layers

maintain their spatial arrangement, allowing for visual analysis of how different areas of

an image affect specific portions of activations inside a layer. Initial layers capture basic

shapes such as lines, while deeper layers extract more complex features [1].

Subsampling layers, alternatively referred to as Pooling layers, are positioned between

convolution layers to diminish the image size across layers via sampling. This sampling

involves selecting either the maximum or average value within a specified window. Pooling

serves as a regularization technique to prevent overfitting, by reducing spatial dimensions.

It operates on all feature channels and can employ various steps [25].

2.2.3. Transfer Learning

Pre-trained CNN architectures, often sourced from publicly available repositories such as

ImageNet, expedite development by providing a foundation for fine-tuning specific tasks.

These models have been trained on large datasets, utilizing significant computational

resources and time to learn how to extract valuable features or representations from the

data. Leveraging pre-trained networks saves time and computational resources, which
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is especially useful when working with limited data while enabling a diverse range of

applications.

Transfer learning is widely used in NN, where knowledge from one task or dataset is

applied to another related one. It involves using a pre-trained model, originally trained on

a large dataset for a specific task like image classification or natural language processing,

and adapting it for a different task or dataset. Fine-tuning is a specific type of transfer

learning where the pre-trained model is further trained (or fine-tuned), adapting the

model’s parameters to better suit the new task. This method improves efficiency and

performance, especially when the new task is similar to the original task the model was

trained on [1][25].

The ImageNet database is an extensive collection of over 14 million images spanning

1000 different categories. It covers a wide range of visual concepts, making it compre-

hensive enough to represent most types of images encountered in everyday life. The

ImageNet dataset’s size and diversity make it highly representative of key visual con-

cepts, making it a popular choice for training CNN. Pre-trained CNN models trained on

ImageNet can effectively capture and represent various visual features present in images.

These pre-trained models can then be used to extract features from unseen images, en-

abling transfer learning across different applications and datasets. This approach creates

multidimensional representations of image data, suitable for use with traditional Machine

Learning methods, effectively transferring the knowledge and visual concepts learned from

ImageNet to other tasks [1].

2.3. Related Work

Deep learning techniques have demonstrated significant efficacy in addressing various

challenges in computer vision tasks, making substantial contributions to the field of re-

mote sensing [13]. They enhance classification accuracy while optimizing computational

efficiency, aligning with the growing need for precise outcomes and resource efficiency in

remote sensing applications [13]. This Section focuses on the analysis of related research

work, organized into the three main processes central to the Dissertation’s objectives:

Classification, Segmentation and Labeling.

(a) Original Image (b) Image Classification (c) Image Segmentation

Figure 2.5. Deep Learning approaches to image analysis. Figure adapted from [12].
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Figure 2.5 presents an example illustrating the presence or absence of an invasive

flora species. The original image is shown in Figure 2.5(a). Image classification involves

assigning a label to an entire image (or block), indicating the presence of an object along

with a degree of confidence, portrayed as an output block’s collage in Figure 2.5(b). In

contrast, segmentation entails classifying individual pixels to provide a detailed separation

of objects within an image, as shown in Figure 2.5(c) [25].

2.3.1. Studies Based on Image Classification

As previously introduced, image classification consists in assigning a label to an input

image, based on its visual content. The workflow typically begins with an input image,

which is then processed by a classification model. The model initially extracts features

from an image, which can consist of representations that are learned during the model’s

training phase - such as shapes, textures and patterns. Once the features are extracted,

the model then uses them to predict the label of the image. The final output of the image

classification process is a predicted label or class for the input image, which indicates what

the model believes to be the most appropriate category for the image content [1]. The

image classification approach demonstrates its advantage by consuming less time while

providing an overview of the information that the image contains [12].

In an attempt to classify zebra crossings, Berriel et al. (2017) resorted to an image

classification approach by addressing the challenges associated with the scarcity of data

regarding crosswalk locations globally [4]. The study’s key findings state that the model

based on the VGG architecture achieved the best results among different evaluated ar-

chitectures (AlexNet, VGG, GoogLeNet). The research demonstrated consistency across

different levels of locality (city, country or continent) and achieved an average accuracy of

96.9% in intra-based experiments, emphasizing the VGG model’s capability to generalize

across different regions.

Bonafilia et al. (2019) addressed a building detection task by employing binary image

classification on block images to identify the presence or absence of buildings. The authors

used a seed dataset (D) and a combined dataset (D’) that integrated weakly-supervised

and semi-supervised training techniques with OpenStreetMap (OSM) data to locate build-

ings in high-resolution satellite imagery. The models were trained using ResNets with 18,

34 and 50 layers. They observed overfitting in the 34 and 50-layer ResNet models when

using the D dataset. However, the 50-layer ResNet architecture performed best with

the D’ dataset. The study concludes that training with OSM ground truth data alone

yields high-quality results [5]. Furthermore, they suggest that even stronger results can

be achieved by pre-training models with global OSM data and fine-tuning with a small

amount of manually labeled data for specific regions of interest.

The sliding window technique is also frequently used to assist in the creation of datasets

that support the identification of objects within a subset of pixels. Such technique has

been used to identify palm trees in high-resolution satellite imagery [15] through the use

of a LeNet CNN architecture and a dataset created by a 17x17 pixel sliding window with
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a step of 3 pixels, where each class is determined by the existence of a palm tree in the

center of the window. Achieving accuracy values ranging from 94.00% to 98.77% across

different regions, the study proves to outperform traditional computer vision methods.

A similar approach is employed to identify another flora species - Acacia Longifolia - by

sampling the original images (4000 x 3000 pixel, RBG) into 200 x 200 image patches,

for binary and multi-classification approaches [12]. When employing the sliding window

method, it is important to carefully consider the size of the step used. A step that is

too small might decelerate the task, while a step that is too large could result in missing

relevant data.

2.3.2. Studies Based on Image Segmentation

In efforts to attain detailed information, image segmentation contributes with pixel-wise

approaches. In addition to the study that aims to identify the existence of Acacia Longi-

folia [12], the authors also performed a segmentation-based approach. Both approaches

(classification and segmentation) achieve satisfactory results in conformity with the task

goals, However, the segmentation approach provides detailed information but lacks sen-

sitivity to small changes in the image.

As the use of a Fully Convolutional Neural Network (FCN) has been proven to reduce

the number of trainable parameters while maintaining the model’s generalisation ability, a

binary, pixel-wise task as been experimented by Maggiori et al. (2017) [18], in an attempt

to boost the models performance when using low-quality ground truth data. The authors

conclude that the use of an FCN architecture outperforms the reviewed CNN approaches,

showing improvements in accuracy. In an attempt to solve a similar challenge, one other

approach was experimented with by Demir et al. (2018), using a ResNet18 backbone and

Focal Loss to solve a binary road extraction challenge.

Aiming to create a more exhaustive and up-to-date global road network dataset, Kei-

jzer et al. (2022) presented an automated road extraction approach using Sentinel-1

Synthetic Aperture Radar data. Using an architecture designed for image segmentation,

the U-Net architecture demonstrates similar accuracy results, across various study ar-

eas and environmental differences. Additionally, upon comparing the outcomes of the

research’s model results [14] with the GRIP dataset - a multi-class dataset created by

combining existing national and supranational road maps manually, it has been noted

that the U-Net model has detected more roads, especially local roads.

The D-DenseNet architecture was introduced by He et al. (2022), aiming to enhance

the precision of segmentation while simultaneously reducing the computational power

required for the model. This method [13] involves two main stages: 1) altering the dilated

convolutions to capture global context information throughout the entire network; and 2)

the rearrangement of the stem block as the initial block to boost the network’s ability to

acquire broader context information. Another attempt to solve this problem has also been

introduced [16], through the use of a four-stage approach where: 1) baseline U-Net model

with seven pooling layers (without pre-train); 2) LinkNet34 with a pre-trained encoder
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but with no dilated convolution in the center part; 3) an ensemble of the two previous

approaches; 4) D-LinkNet with a pre-trained encoder. The D-LinkNet uses a ResNet34

pre-trained on ImageNet’s dataset as its encoder, designed to receive, as input, 1024 x

1024 images with several pooling and dilated convolutional layers. This approach achieved

the best model’s performance on the validation set. Even though D-LinkNet’s model

shows promise in addressing certain road properties, such as narrowness, connectivity

and complexity, it still faces challenges relating to the recognition and road connectivity

[16].

Contrarily, in another study, He et al. (2022), opted to replace the original backbone of

D-LinkNet with a DenseNet, instead of ResNet, attempting to expand the receptive field

and incorporate more feature information into the model. The effectiveness of D-DenseNet

presents the ability to strike a balance between model size and the segmentation’s preci-

sion, revealing that the adaptations contribute significantly to the improved performance

of the model [13].

The DenseUNet architecture is introduced in an effort to identify roads in high-

resolution remote sensing images [33]. The DenseUNet architecture incorporates dense

connections inside dense units. The dense connections enable feature reuse and help

transfer information across different network layers. A suitable weighted loss function

that assigns different weights to different types of pixels, with a focus on foreground pix-

els, is introduced to address challenges like occlusion by trees and shadows. The term

“fractal extensions” is used in the context of simple connection rules, which involves the

integration of deep supervision, identity mappings and diversified depth attributes. The

DenseUNet achieves higher accuracy, F1-score, and kappa metrics than the classical seg-

mentation methods (U-Net, SegNet, FRRN-B), particularly effective in scenarios with

dense roads and shadows.

Finally, in a recent study, an approach for road detection from high-resolution satellite

images employing the VGG19 architecture is introduced [9]. The proposed method is

composed of a two-step process: 1) image segmentation to remove small objects based

on semantic division, and 2) a combination of image segmentation with edge detection

to enhance road detection. The VGG19 architecture is chosen for its good performance

in the accuracy evaluation metric but also for its simplicity and requirement for a few

parameters. Presenting an IoU value above 80%, outperforming the compared methods,

the VGG19 architecture proves its effectiveness in extracting roads with proper accuracy.

2.3.3. Labeling Processes

The labeling process can be categorized into manual, fully-automated or semi-automated

methods. The manual method revolves around the creation of ground truth data corre-

sponding to the raster data in use, resorting to human-driven annotation. Despite being

a time and resource-intensive task, manual labeling has proven effective in achieving

superior results, compared to other methods. Various techniques for ground truth col-

lection have been observed in the examined research work, where in studies with smaller
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datasets, authors often opt for manually labeled data [4][12][14][15]. However, fully or

semi-automated approaches are more commonly utilized.

Fully-automated label extraction from sources like OSM and the Google Static Maps

API have been employed in the creation of larger and more diverse datasets. Comparing

fully-automated and manual labelling approaches, used separately, authors have concluded

that manual labeling leads to slight improvements in accuracy, compared to automatic

labels [4]. Nonetheless, the fully-automated process has demonstrated the capability to

acquire, annotate and classify satellite imagery on a global scale, showing promise for

various applications.

In efforts to enhance model performance, a two-step approach has also been introduced

[5][18], where models are initially trained using low-quality ground truth data extracted

from OSM, then fine-tuned with manually labeled data. These semi-automated labeling

approaches have been proven to be effective in capturing dataset generalities and improv-

ing precision [18]. It yields high-quality results, suitable for development and relief efforts,

providing a pathway to extend models from well-performing regions to others [5].

2.4. Dissertation’s Framework

The previous sections examined the theoretical foundations of the main topics related to

the Dissertation. The key concepts of remote sensing data were introduced, providing fur-

ther understanding of the characteristics inherent to this type of data. This includes tech-

nical insights, methods for data collection, types of image resolution and reference data.

Subsequently, an introduction to Convolutional Neural Networks and their characteristics

was conducted. This analysis includes an introduction to the parameters, advantages and

limitations of CNN technology, providing a solid foundation for the Dissertation.

Additionally, a review of previous studies related to this topic was presented. It is

possible to observe that image segmentation approaches are more commonly employed

in similar research work than classification tasks. This preference may arise from the

availability of big datasets or the need to establish more refined analyses through pixel-

based approaches to similar problems. It was also observed that, even though fully-

automated labeling tools have been proven advantageous for large-scale tasks, they yield

constraints, particularly in accurately labeling areas with lower development levels or

smaller population densities.

Figure 2.6. Dissertation’s general workflow.
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Building upon the insights gained in the previous sections, and aligned with the re-

search questions presented in section 1.2, this Dissertation focuses on the binary clas-

sification of image blocks extracted from satellite imagery. The rationale behind this

decision is that this Dissertation aims to offer a broad overview of roads, presenting a

computationally efficient alternative to the commonly used pixel-wise analysis techniques.

As presented in Figure 2.6, the details of the architectures and evaluation metrics used

throughout this Dissertation are provided in Chapter 3. After that, early experiments are

carried out to iterate the Dissertation approach (Chapter 4). Following this, the training

and testing processes are implemented, as described in Chapters 5 and 6, contemplating

the Dissertation’s approaches and results.
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CHAPTER 3

Data and Tools

This chapter comprehensively examines the materials used throughout the Dissertation

process. It includes descriptions of the original data, model architectures explored (cate-

gorized into Custom-Built and Pre-Trained) and evaluation metrics supporting the Dis-

sertation’s analysis.

3.1. Data Understanding

This section offers an initial overview of the primary data utilized, setting the foundation

for the Dissertation. Understanding the characteristics of the data is crucial to support

the decisions taken throughout the study. Two distinct types of data are required for this

Dissertation: raster and ground truth data. This Section solely focuses on presenting the

Dissertation’s raster data, while ground truth data is detailed in Section 4.1.

The raster data used in the Dissertation consists of satellite imagery extracted from

Maxar’s Vivid base map, which resulted from a collaboration between Esri and Maxar with

the aim of enhancing Esri’s Living Atlas. This agreement substantially improved data’s

spatial resolution, with half of the global landmass within the Living Atlas experiencing an

upgrade from Esri’s original 1.2-meter specification to a 60-centimetre spatial resolution

[29]. This enhancement has notably expanded global access to high-resolution data.

Maxar’s Vivid data was accessed through ArcGIS Pro’s base map, from which two sets

of data were manually extracted for distinct purposes. The first set of imagery does not

include Angola’s border coordinates and is meant for training purposes. In contrast, the

second set of imagery specifically includes Angola’s border coordinates and is designated

for testing purposes.

In an attempt to contribute to a robust generalization of the models across the training

and test phases, meticulous attention was paid to ensure consistent similarity among both

sets of images. This deliberate approach aims to promote dataset consistency, enhancing

the model’s effectiveness across both scenarios. Both sets of data contain images with the

characteristics described in Table 3.1. Each image was extracted at a scale of 1:5000, with

a spatial resolution of 0.5m and 3 bands (RGB). The extracted files are georeferenced,

with dimensions of 5956x3134 pixels per width and height, respectively and are saved in

the .tiff file format.
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Characteristics Original Raster
Scale 1:5000
Spatial Resolution 0.5m
Accuracy 5m
Source Info Vivid
Source Maxar
File type .tiff
Image Compression None
Image Size (Number of Pixels) 5956 x 3134
Image Size (Meters) 2978 x 1567
Write Geotiff tags Yes
Color Depth 24-bit True Color
Number of bands 3
CRS ESPG:3857

Table 3.1. Original Raster image’s metadata.

The set of images that are intended to support the creation of the training dataset

consists of 150 satellite images, covering an approximate area of 700 square kilometres

within Angola’s territory - which roughly represents 0.06% of Angola’s total territory.

The spatial coverage provided by these images aims to achieve a diverse representation

of Angola’s geographical features and land use patterns. For the test dataset, 29 satellite

images were extracted, covering approximately 73 kilometres of Angola’s land border.

According to the Embassy of Angola in the United States of America [24], Angola’s total

land border measures approximately 4837 kilometres. Therefore, it can be inferred that

the test set covers roughly 1.5% of Angola’s entire land border.

3.2. Model Architectures

This Section provides a description of the model architectures used in the Disserta-

tion. The Dissertation aims to contribute to the field of road identification through an

image classification approach, using small-sized image blocks as input data. Three simple

Convolutional Neural Networks (CNNs) were designed, consisting of convolutional and

pooling blocks — called Custom-Built architectures. To evaluate and compare the per-

formance of these less complex architectures, Pre-Trained architectures using ImageNet

data were also tested. Therefore, this Section is organized into two main Sub-Sections:

Custom-Built and Pre-Trained architectures.

3.2.1. Custom-Built Architectures

Two categories of Custom-Built architectures were created: Baseline and Dense. Starting

with the Baseline architectures, the CPCP Architecture was designed as illustrated in

Figure 3.1(a), consisting of two convolutional and pooling blocks. The first block, con-

sists of a convolutional layer with 32 filters, each having a size of 3x3 pixels and ReLU

activation function, followed by a batch normalization layer to normalize the output and

a MaxPooling layer with a window size of 2x2. The MaxPooling layer is added to reduce
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the feature map’s size by half. Lastly, in order to mitigate overfitting, a Dropout layer

with a dropout ratio of 25% is introduced to the block. The second block replicates the

structure of the first one, except for the number of filters in the convolutional layer, which

is now set to 64. After the second block, a Flatten layer is added to convert the feature

map that it received from the previous max-pooling layer into a one-dimensional array.

This array is then passed through a Dense Layer with 256 units and ReLU activation

function, followed by another Dropout layer with a ratio of 25% to serve as a regular-

ization technique. Lastly, the output layer consists of a Dense layer with the number of

classes and a Sigmoid activation function to generate the class’s probabilities.

Additionally, as shown in Figure 3.1(b), the CPCPCP Architecture consists of an

extension of the CPCP Architecture by adding one extra convolutional and pooling block.

The number of filters in each block increases progressively, from 32 in the first block to 64

in the second block, finishing with 128 filters in the third block. The remaining elements

of the architecture remain unchanged, as detailed in the CPCP Architecture description.

Completing the baseline Custom-Built architectures experiments, the CCPCCP Archi-

tecture was created. As shown in 3.1(c), the CCPCCP Architecture consists of a variation

of the CPCP Architecture, with an additional convolutional layer in each convolutional

and pooling block. In the initial block, the first convolutional layer has 32 filters, and the

second one has 64 filters. In the subsequent block, the first convolutional layer has 128

filters, and the second one has 256 filters. The remaining elements of the architecture

remain consistent with the ones described for the CPCP Architecture.

Furthermore, in addition to the previously described architectures, a corresponding

dense architecture was developed for each of them. In this iteration, a second dense block

is appended to the end of the architecture to augment the architecture’s complexity. By

doing so, the model’s capacity to capture complex patterns in the data is increased, as it

has more parameters and, therefore, a higher capacity to learn features and relationships

within the data. An additional dense block can also provide additional regularization

benefits by introducing more dropout and batch normalization opportunities. This aids

in preventing overfitting and enhancing the model’s ability to generalize to unseen data.

The Dense block involves the repetition of the Dense layer (256 units, ReLU activa-

tion), Batch Normalization and Dropout (25%) combination before the final Dense layer

of the model in each architecture, as it is illustrated in Figure 3.2.
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(a) CPCP Architecture (b) CPCPCP Architecture (c) CCPCCP Architecture

Figure 3.1. Custom-Built baseline Architectures.

Figure 3.2. Custom-Built Dense Layers.

24



3.2.2. Pre-Trained Architectures

In the context of experimental architectures, pre-trained models were also used to explore

the discrepancies between custom-built and pre-trained models. Two pre-trained archi-

tectures were selected for experiments: MobileNetV1 and ResNet50. Both models were

trained using ImageNet’s dataset.

The MobileNetV1 Architecture, illustrated in Figure 3.3, maintains the pre-trained

layers and incorporates a GlobalAveragePooling2D layer. This addition aims to preserve

semantic information by considering the entire feature map, contrasting with MaxPool-

ing2D, which retains only the most prominent features. For this reason, it is better suited

for transferring knowledge from pre-trained models to new tasks or datasets, an essential

characteristic of this task. This is particularly relevant as the input files are considerably

smaller than the recommended 224x224 input size. Another benefit of using GlobalAver-

agePooling2D is its computational efficiency compared to MaxPooling2D. Following the

GlobalAveragePooling2D layer, a final Dense layer is appended, with the number of classes

and a Sigmoid activation function, facilitating the generation of class probabilities.

Figure 3.3. MobileNetV1 Architecture

The ResNet50 Architectures, illustrated in Figure 3.4, suffered similar adjustments to

the ones mentioned above. As a baseline model, the pre-trained layers remained frozen,

being added a GlobalAveragePooling2D layer, followed by one final dense layer with the

number of classes and Sigmoid activation function - observable in Figure 3.4(a).

Following this, two additional designs were created to test more complex architectures.

The ResNet50+1D Architecture, illustrated in Figure 3.4(b), consists of the ResNet50

Architecture, with the addition of a dense block composed of one dense layer with 256

units and ReLU activation function and a Dropout layer with a ratio of 25%, before

the final dense layer. Subsequently, ResNet50+2D Architecture was created. As shown

in Figure 3.4(c), the ResNet50+2D consists of the ResNet50+1D with two dense blocks

before the final dense layer.

3.3. Evaluation Metrics

In deep learning, evaluation metrics play a crucial role in quantifying the performance of

the models and determining their effectiveness in solving a given task. These metrics pro-

vide insights into various aspects of a model’s performance, such as its predictive accuracy,

ability to generalize to unseen data and the capacity to balance between precision and
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(a) ResNet50 Architecture (b) ResNet50+1D Architecture (c) ResNet50+2D Architecture

Figure 3.4. ResNet50 Architectures.

recall. The loss function selected to use in this Dissertation is the Binary Cross-Entropy

Loss Function that, for each data point, calculates the loss as the negative log likelihood

of the true class, given the model’s predicted probability. The overall loss for the dataset

is often computed as the average of the losses for all individual data points (Loss Binary

Cross-Entropy), expressed as:

LBCE = − 1

N

N∑
i=1

(yi · log(ŷi) + (1− yi) · log(1− ŷi)) (3.1)

The accuracy measures the proportion of correctly predicted instances out of the total

instances in the dataset. It serves different purposes across the training phase. In the

training dataset, accuracy reflects the model’s performance, indicating how well it learns

from the training data. On the other hand, in the validation set, it assesses the model’s

ability to generalize to new, unseen data by evaluating its performance on the validation

dataset. Accuracy is calculated by dividing the number of correctly predicted instances

(both true positives and negatives) by the total number of instances in the dataset.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

The Recall evaluation metric, on the other hand, measures the ability of the model to

correctly identify positive instances out of all actual positive instances. It is calculated

as the ratio of true positive predictions to the sum of true positives and false negatives

expressed as:
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Recall =
TP

TP + FN
(3.3)

Precision quantifies the proportion of correctly predicted positive instances out of all

instances predicted as positive. It is calculated as the ratio of true positive predictions to

the sum of true positives and false positives, expressed as:

Precision =
TP

TP + FP
(3.4)

The F1-score is the harmonic mean of recall and precision, providing a balanced mea-

sure of a model’s performance in terms of false positives and false negatives. It considers

both false positives and false negatives, making it useful for imbalanced datasets. F1-score

is expressed as follows:

F1− Score = 2× Precision×Recall

Precision+Recall
(3.5)

Overall, these evaluation metrics provide a comprehensive understanding of a model’s

performance across different aspects, enabling researchers and practitioners to make in-

formed decisions regarding model selection, optimization and deployment.
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CHAPTER 4

Early Experiments and Methodological Insights

This Chapter presents the tasks undertaken at the beginning of the Dissertation in order

to determine the optimal conditions for the Dissertation’s workflow. As it is illustrated in

Figure 4.1, various data preparation techniques were initially tested, particularly the es-

tablishment of the image block size. Subsequently, additional experiments were conducted

to ensure that the decisions made were well-founded.

Figure 4.1. Early Experiments’ workflow.

4.1. Data Preparation

This Section describes the techniques applied to prepare the data for the Dissertation. At

first, the footnotes of the original images were removed from each image, adjusting their

size to 5952x3040 pixels, while retaining all other characteristics such as georeferencing,

number of bands and spatial resolution - illustrated in Figure 4.2(a), detailed in Appendix

A(a).

Furthermore, acquiring ground truth data corresponding to each image is crucial. At

first, experiments were attempted using fully-automated extracted ground truth data from

OSM - OSMnx library. However, it soon became evident that the OSM database lacked

ground truth data of adequate quality for this analysis. This inadequacy is primarily

attributed to the limited amount of data available for this Dissertation, i.e., the proportion

of data available in OSM is significantly smaller than that of the actual roads observable

by the human eye. Therefore, the decision was made to generate ground truth data

manually. As a consequence, this situation leads to the acknowledgement that research

question number 1 is not truthful. In the current scenario, a fully-automated approach

cannot extract reliable ground truth data to support the Dissertation.

The ground truth data was manually created for both sets of images, using an iPad, an

Apple Pencil and Procreate 5.3.7 software by Savage Interactive Pty Ltd. For each Raster
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(a) Example of a Raster file. (b) Example of a Ground Truth file.

Figure 4.2. Example of the Prepared Data.

file, a ground truth file of the same dimensions (5952x3040 pixels) was created, featuring

a transparent background with red lines delineating visible roads. Each ground truth

image was then saved in .png file format with a matching filename to the correspondent

raster file - illustrated in Figure 4.2(b). Afterwards, the ground truth files underwent

binarization using the OpenCV library. With these steps completed, the prerequisites for

the dataset creation were fulfilled.

4.2. Experiments Supporting the Dataset’s Creation

4.2.1. Block’s Size Establishment

As the main goal is to identify the presence of road on small image blocks, it is

imperative to organize the dataset into a collection of small images, belonging to two

classes - “road” or “no road”, which will be subject to binary classification. Bearing that

in mind, it is necessary to assess the size of the image blocks that serve as input data for

the Dissertation. Considering that, three different sizes were experimented with, namely

96x96, 64x64 and 32x32 pixels - Figure 4.3.

(a) 96x96 (b)
64x64

(c)
32x32

Figure 4.3. Examples of the image blocks for each size.

The 96x96 pixel blocks dataset was initially created with balanced distribution between

classes (“road” or “no road”) - i.e. 50% of the sample belongs to each class. The criteria

for labeling the blocks relates to its portion of pixels labeled as “road”. If the block

contains 20% of its total pixels labeled as “road”, or more, then it is labeled “road” block.

If it does not contain any pixel labeled as “road”, then it is shuffled and only the same

number of blocks labeled as “road” are stored - to assure balance in the distribution of

classes. The remaining blocks without “road” pixels or the ones containing less than 20%

of the total amount of pixels labeled as “road” were discarded. Afterwards, each of the

selected blocks was saved in .png file format.
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It is worth mentioning that the 20% threshold that was established, is opted to use as

it has been considered neither a high nor too low proportion of pixels per block. Having

completed the creation of the 96x96 pixel dataset - Big Sample dataset -, it comprises

5432 blocks, each class containing 2716 blocks. Afterwards, Medium Sample and Small

Sample datasets were created by following the conditions detailed for the creation of Big

Sample dataset, except for the number of files attributed to each class.

The three datasets were then used as input data for the mentioned Custom-Built

Baseline Architectures, in order to compare the results achieved by each image size. Each

experiment was trained using the Adam Optimizer as the adaptive learning rate opti-

mization algorithm, with a fixed learning rate of 0.001. The Adam Optimizer’s ability

to adjust the learning rate for each parameter, individually, enables it to handle noisy

or sparse gradients commonly encountered in deep learning tasks, making it a popular

choice for various applications.

Binary Cross-Entropy Loss, or Log Loss, was employed as the loss function in every

combination. This loss function is widely used for binary classification tasks, as it effec-

tively measures the difference between the predicted probability distribution and the true

distribution of the labels. It penalizes large deviations between the predicted and true

labels, which is particularly beneficial in binary classification scenarios where the model’s

confidence in its predictions is crucial.

Data augmentation techniques were methodically applied to every combination, aim-

ing to enable the learning progress of the model’s comprehension of the diverse aspects of

the training data. These techniques serve to enhance the models’ capacity to generalize

and manage variations in input data effectively. While various augmentation methods

were explored, horizontal and vertical flips with a 50% probability emerged as the most

effective, exhibiting the most promising outcomes. Furthermore, hyperparameter opti-

mization was conducted by adjusting the batch size for each experiment. Different batch

sizes (32, 64 and 128) were evaluated for each sample dataset and architecture, allowing

for an exploration of the optimal batch size for each configuration.

Through the analysis of Table 4.1, which presents a summary of the results of the

best performing experiment for each block size dataset, it is possible to conclude that

medium-sized data (64x64) presents the best performing block size, selected by the F1-

Score results. This indicates that the amount of information that each block yields,

promotes a higher capacity for the model to learn, even when using a small portion of

data.

Dataset Model Batch Size Loss Accuracy Recall Precision F1-Score
Big Sample CCPCCP 64 0.2864 0.8757 0.8569 0.8941 0.8751

Medium Sample CCPCCP 32 0.2620 0.8996 0.9167 0.8893 0.9028
Small Sample CPCPCP 64 0.2809 0.8794 0.9094 0.8611 0.8846

Table 4.1. Results of the best performing Baseline models, selected by the F1-
Score, for each block size.
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In Appendix B.1, it is also observable that medium-sized data presents a general

tendency to achieve higher values of Recall with slightly lower precision values. Looking

into the loss and accuracy values, medium-sized data tends to present lower loss values

and higher accuracy values than other block sizes.

Addressing the detailed values of the experiments, presented in Appendix B.1, ad-

ditional conclusions can be drawn. In general, medium-sized and small-sized data tend

to present higher F1-Score values as the complexity of the architecture increases. Big-

sized data, tends to present higher precision values, even in less complex models, whereas

medium-sized and small-sized data present a tendency for lower precision values, espe-

cially in less complex models. Medium and small-sized data also present higher recall

values, even when experimented on less complex models, whereas, big-sized data tends to

present lower recall values in general.

Since the F1-Score is established as the evaluation metric that supports decision-

making during the investigation, the block size that is opted to pursue with the analysis

is 64x64 pixels—medium-sized data.

4.2.2. Additional Dataset Creation Settings

Further analysis was developed to examine the effect of larger amounts of input data on

the models’ evaluation metrics. For that reason, new 64x64 (“Medium 20%” dataset) and

32x32 (“Small 20%” dataset) pixel datasets were created, according to the rules described

for the creation of Big Sample dataset. The Medium 20% dataset contains 14014 files

and Small 20% dataset contains 96034. In the domain of additional experiments, the

pre-trained baseline architectures were also introduced for further analysis.

As presented in appendix B.2, the combination that presents the highest F1-Score is

the ResNet50 architecture with a batch size of 32 using Big Sample dataset (Higher F1-

Score: 93.68%). However, it does not perform well in custom-built architectures, and it

presents lack of detail in the sense that each block covers a larger area of non-road pixels

than the actual road pixels. Since the Medium 20% dataset presents fairly high results

(Higher F1-Score: 90.50%) when used as input data for the ResNet50 architecture, but

also for the custom-built CPCPCP architecture (Higher F1-Score: 89.09%), it is concluded

that 64x64 pixel is the block size to be used to pursue with the analysis. Adding to the

results, it is also possible to examine in Figure 4.3, that medium-sized data presents a fair

representation of the roads.

One final experiment was carried out, in order to conclude the early experiment’s stage.

It is necessary to compare the conditions that are based on the labelling attribution to

the dataset’s blocks. With that goal, three datasets containing medium-sized blocks were

experimented on. The Medium 20% dataset, the Medium 10% and the Medium Center.

Having the Medium 20% dataset already been created, the creation of the remaining two

datasets will be described. The Medium 10% dataset represents a less conservative version

of the initial condition, where “road” block images are selected if they contain at least

10% of the total number of pixels labeled as “road”. The Medium 10% dataset consists of
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44,530 blocks. Additionally, the Medium Center dataset consists on the selection through

the existence of “road” pixels at the center of a block. If all four pixels at the center of

a block are labeled as “road,” then the entire block is classified as so. This experimental

dataset consists of 14,392 blocks. Every dataset is balanced, with 50% of the blocks

belonging to each class.

To enhance comprehension of how each condition affects the extraction of the “road”

class, Figure 4.4 provides an illustrative example of the outputs for each condition. Under

the Medium Center condition (Figure 4.4(a)), it is evident that the process tends to cap-

ture isolated road segments, resulting in an extraction pattern that deviates significantly

from the actual ground truth. Contrarily, the conditions applied to create the Medium

20% and Medium 10% datasets result in the extraction of connected road segments. The

significant difference between the Medium 20% and Medium 10% datasets lies in the issue

identified earlier: narrow roads are often missed under the 20% condition (Figure 4.4(c)),

whereas the 10% condition more consistently identifies all road segments closer to the

actual ground truth (Figure 4.4(b)). Each of the aforementioned datasets was trained on

two randomly selected architectures - CCPCCP and ResNet50, described in Chapter 3,

Sub-Section 3.2.2.

(a) Medium Center dataset (b) Medium 10% dataset (c) Medium 20% dataset

Figure 4.4. Example of an image ground truth by condition applied.

When examining the general results of these experiments, in Appendix B.3, through

the comparison of the F1-Score evaluation metric results, it is immediately possible to

observe that the Medium Center dataset presents the lowest results, and that the Medium

20% dataset presents the highest. For that reason, it can be considered that the ideal

dataset to pursue with the Dissertation is the Medium 20% - Table 4.2. However, later on

the investigation, it was uncovered that having a condition that labels a block as “road”

if it contains at least 20% of its pixels labeled as “road”, presents a great negative impact

on the results of the analysis. This occurs because, in many instances, the roads along

the border are narrow, leading to a false representation of the ground truth.

This means that, in many cases, the condition attributed the label “no road” to blocks

where there were visible roads. As the classifier presented the ability to correctly identify

such roads, but the label criteria did not, the precision evaluation metric of the models

was presenting a deep tendency to decrease in its values. Therefore, it was concluded

that, even though Medium 10% dataset presents lower performance than Medium 20%

dataset, it offers advantage in detail. For that reason, this less conservative approach is
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preferred throughout this Dissertation, as it has the ability to identify more roads than

the Medium 20% dataset - a major goal of this Dissertation.

Model Specifics Train Set Validation Set
Model BS Data Loss Acc. Loss Acc. Recall Precis. F1-Sco.

RESNET50 128 M. 20% 0.2207 0.9077 0.2312 0.9086 0.8938 0.9184 0.9059
RESNET50 32 M. 20% 0.2311 0.9042 0.2401 0.9061 0.9030 0.9042 0.9036
RESNET50 64 M. 20% 0.2213 0.9066 0.2335 0.9026 0.8713 0.9164 0.8933
CCPCCP 32 M. 20% 0.3069 0.8664 0.2972 0.8687 0.8776 0.8655 0.8715
CCPCCP 64 M. 20% 0.3217 0.8569 0.3386 0.8572 0.9290 0.8154 0.8685
CCPCCP 64 M. 10% 0.2591 0.8913 0.2670 0.8865 0.8619 0.8742 0.8680
CCPCCP 128 M. 10% 0.2850 0.8774 0.3138 0.8625 0.8563 0.8720 0.8641
RESNET50 128 M. 10% 0.3070 0.8641 0.3133 0.8649 0.8585 0.8691 0.8638
CCPCCP 128 M. 20% 0.3374 0.8533 0.3581 0.8498 0.8390 0.8614 0.8501
RESNET50 64 M. 10% 0.3729 0.8329 0.3486 0.8474 0.8547 0.8350 0.8447
RESNET50 32 M. 10% 0.3780 0.8326 0.3559 0.8463 0.8710 0.8155 0.8423
CCPCCP 32 M. 10% 0.3541 0.8444 0.3110 0.8620 0.7542 0.9124 0.8258

Table 4.2. Results of the training experiments’ using Medium 10% and Medium
20% datasets.

Additionally, to expedite the following phases of the Dissertation, in the training pro-

cess, a set of architectures were abandoned, for their poor performance in this phase.

Through one final observation of Appendix B.2 and Table 4.3, it is clear that the Mo-

bileNetV1 architecture does not exhibit competitive performance values when compared

to the other architectures.

Model Specifics Train Set Validation Set
Model BS Loss Accuracy Loss Accuracy Recall Precision F1-Score

RESNET50 128 0.2207 0.9077 0.2312 0.9086 0.8938 0.9184 0.9059
RESNET50 32 0.2311 0.9042 0.2401 0.9061 0.9030 0.9042 0.9036
RESNET50 64 0.2213 0.9066 0.2335 0.9026 0.8713 0.9164 0.8933
MOBILENET 64 0.5188 0.7410 0.5172 0.7448 0.8143 0.7161 0.7620
MOBILENET 128 0.5152 0.7389 0.5144 0.7441 0.7623 0.7344 0.7481
MOBILENET 32 0.5206 0.7342 0.5182 0.7441 0.6934 0.7414 0.7166

Table 4.3. Comparison of the training experiments’ results of the MobileNetV1
and ResNet50 architectures using Medium 20% dataset.

This conclusion stems from the consistently low F1-Score values exhibited by all mod-

els based on the MobileNetV1 architecture, across various block sizes, as well as the

remaining evaluation metrics - observable in Table 4.3. Additionally, simpler custom-

built architectures tend to produce inferior results, a trend evident when examining Table

B.2. Consequently, CPCP-based architectures were also excluded from consideration as

candidate architectures to pursue with the investigation.
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CHAPTER 5

Training the Models

This Section provides a comprehensive overview of the training phase of the Dissertation.

It begins with a detailed explanation of the processes conducted during this phase, justi-

fying the decisions adopted and their intended outcomes. Following this, the results are

outlined and analyzed, with the ultimate goal of identifying the top four best-performing

models to proceed to the testing phase.

5.1. Methodology

In this section, an overview of the training phase process will be provided, summarizing

the aspects outlined in the Dissertation that have led to this stage. As it is observable in

Figure 5.1, the training phase is organized into five main stages: Data, Data Preparation,

Dataset, Training the Model and Selection of the Top 4 Best Models.

Figure 5.1. Workflow of the Training Phase.

Accordingly, the first stage consists of the input data of the investigation, whose

characteristics have been detailed in Section 3.1. The input data set for the training

phase is composed of 150 raster images (5956x3134 pixels). As presented in Figure 5.1,

the data used across the training phase of the Dissertation contains solely images that do

not cover Angola’s border coordinates.

During the Data Preparation stage, the input images underwent processing to generate

a training dataset. Initially, the footnotes were removed from each image, resulting in

images with dimensions of 5952x3040 pixels. In Figure 5.1, this processed output is termed

a “Raster”.

Following this, the ground truth for each Raster was manually produced, featuring a

transparent background with red lines outlining visible roads. These ground truth files

then underwent pixel-wise binarization, where the presence of a “road” was assigned a
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value of 1, and the absence of roads (“no road”) was assigned a value of 0. This step is

illustrated in Figure 5.1 as “Creation of Ground Truth”.

Subsequently, the dataset was created. The ground truth files were partitioned into

64x64 pixel segments and each segment was labeled based on the proportion of “road”

pixels it contained. If a segment contained more than 10% of its pixels labeled as “road”,

it was labeled as “road”; if it contained less than 10%, it was discarded. Segments without

any “road” pixels were shuffled, and an equal number of “road” and “no road” segments

were retained. The remaining blocks without roads were also discharged. As a result, the

raster files were partitioned and stored in accordance with the organization of the ground

truth blocks.

After the data preparation stage, the dataset is now ready to be employed as input data

for the model experiments. It comprises 52822 input blocks, evenly distributed between

the two classes. Subsequently, the dataset is randomly partitioned into a training and

validation set, with proportions of 80% and 20%, respectively.

Until this stage every task was performed locally, however, in order to optimize the

performance of Deep Learning tasks, particularly during the resource-intensive training

phase, a GPU was used to expedite the process [2]. To facilitate this, the dataset was

securely stored in an Amazon Web Services (AWS), the Amazon Simple Storage Service

(S3) bucket. This decision was motivated by AWS infrastructure’s scalability, reliability,

and high-performance capabilities. The robust security measures implemented by AWS

ensured data protection throughout the entire process, guaranteeing confidentiality and

integrity. Following this, an ml.g4dn.xlarge notebook instance was created on Amazon

SageMaker to continue with the process. This notebook instance provides access to a

GPU with NVIDIA T4 Tensor Core architecture and 16.0 GiB of memory, ensuring that

all necessary conditions for the analysis are met.

In the training stage, each architecture underwent experimentation using the dataset.

This process involved employing each of the architectures mentioned in Section 3.2 -

except for the CPCP-based and MobileNetV1 architectures - along with hyperparameter

optimization of batch sizes. Following the specifications outlined in Section 4.2.1, the

models were trained using three different batch sizes (32, 64 and 128), utilizing Adam

Optimizer with a fixed learning rate of 0.001, Binary Cross-Entropy Loss and employing

data augmentation techniques.

In the final stage of the training phase, attention is directed towards analysing the

results that the models have experimented with. The primary goal of this stage is to

pinpoint and designate the two most promising models from both the custom-built and

pre-trained categories. This selection aims to compare the performance and behavior of

models across the different categories during the subsequent testing phase, enabling a

comprehensive assessment of their capabilities.
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5.2. Results

Despite the fact that the top-4 best performing models are derived from custom-

built architectures, it has been decided to select the two best custom-built approaches

along with the two best pre-trained approaches - results displayed in Table 5.1. This

decision aims to facilitate a comparison between the performance of both approaches

when handling the test data.

The CPCPCP+1D model, employing batches of size 32 for each iteration, emerges

as the top performer of all models. Precision and Recall percentages of 89.51 and 86.72

exhibit balanced performance between both evaluation performance metrics. This be-

haviour indicates the model’s proficiency in accurately recognizing road instances, while

maintaining a relatively low false positive rate (high Precision), and effectively captur-

ing most road instances in the dataset (high Recall). The precision score indicates that

89.51% of the time, the model accurately identifies “road” blocks, and the Recall score

indicates that the model detects approximately 86.72% of all “road” instances in the

dataset. Following a comparable trend, the second best-performing model is based on

the custom-built CCPCCP architecture, with a batch size of 64. The model achieves an

F1-Score value of 0.8766, a Precision value of 0.88, and a Recall value of 0.8731.

Model Specifics Train Set Validation Set
Model Batch Size Loss Accuracy Loss Accuracy Recall Precision F1-Score
CPCPCP+1D 32 0.2956 0.8743 0.2724 0.8858 0.8672 0.8951 0.8809
CCPCCP 64 0.3009 0.8692 0.2876 0.8794 0.8731 0.8800 0.8766
RESNET50 128 0.3070 0.8641 0.3133 0.8649 0.8585 0.8691 0.8638
RESNET50+2D 32 0.3269 0.8562 0.3149 0.8634 0.8681 0.8570 0.8625

Table 5.1. Results of the 4 best performing models, selected by the F1-Score,
during the training phase.

Regarding the selection of pre-trained models, although they tend to yield slightly

lower overall results, the disparity between their performances is insignificant. The

Resnet50 architecture with a batch size of 128 per iteration emerges as the top pre-trained

model, with an F1-Score of 0.8638 and balanced Recall and Precision values of 0.8585 and

0.8691, respectively. Similarly, the second-best pre-trained model achieved balanced per-

formance, with an F1-Score value of 0.8625, using the ResNet50+2D architecture with a

batch size of 32.

Through the examination of Appendix C, where the results of the training phase

are detailed, it is noticeable that the models that present a tendency for lower F1-Score

values exhibit higher asymmetry between Recall and Precision scores. This behaviour

implies that those models struggle to balance minimizing false positives and maximizing

true positives, which affects their overall performance, particularly reflected in the F1-

Score. The models exhibiting this behavior tend to have the highest precision scores and

the lowest recall scores, which suggests that these models are more conservative in their

positive predictions, prioritizing the reduction of false positive classifications even if it
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means that many positive instances are also being missed. Ultimately, this results in a

low true positive rate.

Contrarily, the models presenting higher F1-Score values typically do not have the

highest Recall nor Precision values individually. Instead, they demonstrate the most

balanced results across both metrics. This balance implies that these models effectively

minimize both false positives and false negatives, achieving a harmonious compromise

between Precision and Recall (Appendix C).

Contributing to a comprehensive overview of the training results, the analysis unveils

distinct trends in the performance of pre-trained and custom-built models. Pre-trained

models consistently demonstrate F1-Scores within a narrow range - F1-Scores ranging

from 84.23% to 86.38% -, indicating minimal influence from experimented hyperparame-

ter optimization and complexity augmentation techniques. In contrast, custom-built ar-

chitectures present broader variations in F1-Scores - with F1-Scores ranging from 79.50%

to 88.09% -, suggesting heightened sensitivity to these factors. These insights emphasize

the critical importance of meticulously selecting model types and optimization strategies

tailored to the specific attributes of the dataset and task at hand.

Based on the considerations outlined above, the models selected for the test phase are

as follows: 1) CPCPCP+1D model with batch size 32 per iteration; 2) CCPCCP model

with batch size 64; 3) Resnet50 model with batch size 128; and 4) Resnet50+2D with

batch size 32.
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CHAPTER 6

Testing the Models

In this Chapter, the details of the investigation of the test phase will be provided.

Initially, an exposition of the processes that were carried out in this phase will be pre-

sented, accompanied by a description of the rationale behind the decisions made and

their underlying intent. Subsequently, the results will be presented and interpreted, aim-

ing ultimately to identify the strengths and weaknesses of the Dissertation. Finally, in

Subsection 6.3 an overview of the results is provided, supporting the conclusions drawn

from the Dissertation’s findings.

6.1. Methodology

Similarly to the training phase, as it is illustrated in Figure 6.1, the test phase is

organized into eight stages: Data, Data Preparation, Testing the Model, Performance

Evaluation, Creation of Color-Coded Images, Post-Processment, Point of Entry Identifi-

cation and creation of the Point of Entry Map.

Figure 6.1. Workflow of the Testing Phase.

During the test phase, new and unseen data containing solely imagery from the border

area is used. As it is presented in Figure 6.1, the data that is being tested in this phase

underwent similar pre-processing techniques to the train data, except for the storage

process and the attribution of blocks that contain less than 10% of their blocks labeled

as “road”, which were stored in the “no road” class. Instead of saving block images in

a local directory, the data was stored in an array. After the completion of the described
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process, the test dataset array comprises a total of 126759 samples, with 9026 samples

labeled as “road”, and 117733 samples labeled as “no road”.

Subsequently, the dataset was tested on the selected models, and their performance

was evaluated based on various metrics, such as accuracy, recall, precision, and F1 score.

These metrics provide valuable insights into the effectiveness of the models in accurately

classifying roads within the dataset.

As output, a color-code system was created to recreate the original images, according

to the confusion matrix schema. Therefore, for each 64x64 pixel block, a classification is

attributed. The color-code dictates the output as the following information:

• True Positive Predictions: Green

• True Negative Predictions: Blue

• False Positive Predictions: Yellow

• False Negative Predictions: Red

Upon analyzing the color-coded outputs, the 8-adjacency post-processing technique

was applied to remove isolated positive predictions i.e. outliers. This approach consists

of applying a condition that states that if the block is predicted to have a road and

none of the 8 neighbouring blocks also presents a positive prediction, then the block is

post-processed to not have a road.

Figure 6.2. Post-Processing Technique Schema: 8-Adjacency.

The post-processed, color-coded images were then combined with the original images,

georeferenced and saved. The output was then uploaded into ArcGIS Pro to provide

visual assistance for identifying new Points of Entry by land in Angola.

(a) Example of a Point of Entry
Situation - Color-Coded image.

(b) Example of a Point of Entry
Situation - WorldView-3.

Figure 6.3. ArcGIS Pro: Point of Entry identification.
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In Figure 6.3, a demonstration of how the Points of Entry were integrated into ArcGIS

is portrayed. Whenever a True Positive situation (denoted by a green square) intersects

the land border-line, a Point of Entry is introduced - marked by a red dot -, as illustrated

in Figure 6.3(a). In Figure 6.3(b), a representation of the ArcGIS Pro’s base map with

the land border-line and Point of Entry marked is presented. Notably, in Figure 6.3(b),

a road intersects the border-line, indicating the necessity of introducing a new Point of

Entry into the database. For each test set image, this process was meticulously executed.

6.2. Results

This Section is organized into three Subsections. First, the test phase results are pre-

sented, along with an examination of the identified issues that support the necessity for

subsequent post-processing techniques. Accordingly, the second Subsection describes the

results obtained after applying the 8-Adjacency post-processing technique.

6.2.1. Original Results

This Subsection introduces an overview of the results obtained from the test phase, aimed

at evaluating the comparative ability of the selected models to classify road blocks accu-

rately.

Model Batch Size Accuracy Recall Precision F1-Score
CCPCCP 64 0.9394 0.7043 0.5592 0.6234
CPCPCP+1D 32 0.9073 0.7887 0.4198 0.5480
RESNET50+2D 32 0.9024 0.7642 0.4023 0.5271
RESNET50 128 0.8912 0.7769 0.3733 0.5042

Table 6.1. Original test results.

Examining Table 6.1, the tendency for the approaches to achieve consistently lower F1-

Score values is immediately observed, compared to the previously achieved results during

the training phase. Across all models, a noticeable decrease of approximately 0.2 in this

performance metric is observed, indicating a significant behavioral shift. This behaviour

is primarily due to a decrease in both Recall and Precision evaluation metrics. While a

decrease of around 0.1 values is observed in the Recall results, indicating that each model

is detecting approximately 10% fewer “road” instances in the test phase compared to the

training phase, the decrease in Precision values is more pronounced, with decreases of

approximately 0.4 values observed. This means that while in the training phase, models

were able to accurately identify “road” image segments around 90% of the time, in the

test phase, the models accurately identified roads in about half the time.

The extreme discrepancy between Recall and Precision evaluation metrics contributes

to a substantial decrease in the F1-Scores. On the contrary, an opposite trend is observed

within the Accuracy results, where an increase in values is noted across every model. This

suggests that the models may not be generalizing well to new, unseen data.

When comparing the F1-Score results of each model, aside from the drop in its val-

ues compared to the training phase, it is noticeable that the best-performing model is
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CCPCCP using a batch size of 64. In the test phase, this model achieved an F1-Score of

0.6234, Accuracy of 0.9394, Recall of 0.7043 and Precision of 0.5592. It is noteworthy that

the remaining models achieved considerably higher results within the Recall evaluation

metric. However, due to higher decreases in Precision values, their F1-Score results are

lower. These results in Precision indicate that the models are too liberal in attributing

positives, presenting a high tendency to predict false positives.

The observed variations in evaluation metrics between the training and test results

raise concerns about the model’s generalisation ability. Specifically, while the Accuracy

values improved, other metrics experienced a decline. This discrepancy initially suggests

a potential issue with overfitting, where the model performs well on the training data

but fails to generalize to unseen data. However, upon further examination, it becomes

apparent that the test dataset may not fully represent the diversity in the training dataset.

Despite the efforts to ensure dataset representativeness, retrospective analysis reveals

shortcomings in this aspect. The failure to adequately capture the variability and com-

plexity of real-world scenarios within the test dataset has led to discrepancies in model

performance between the training and testing phases. As a result, the model may exhibit

a biased performance evaluation, with inflated Accuracy metrics masking deficiencies in

other crucial performance indicators. Addressing this discrepancy necessitates reevaluat-

ing the dataset curation process, focusing on enhancing diversity and inclusivity to better

reflect the conditions presented within the border area.

An overview of Table 6.1 shows an evident trend for Custom-Built approaches to

outperform the Pre-Trained approaches. At the same time, each type of approach, has

presented a change in order. Individually, the best-performing Custom-Built approach in

the training phase, CPCPCP+1D (batch size: 32), was outperformed by the second-best,

CCPCCP (batch size: 64) model, in the test phase. Similarly, the ResNet50 (batch size:

128) model was outperformed by the ResNet50+2D (batch size: 32) model in the test

phase.

Recalling the color-code introduced in Section 6.1, to support the visual analysis of the

model’s outputs, illustrated in Figure 6.4, it becomes evident that a significant number

of false positive predictions (represented as yellow) are predicted. This corroborates the

observed Precision results, adding to the fact that the models are falsely predicting more

positive classifications than what was positively classified in the ground truth.

Moreover, it is observable that false positive predictions tend to present several isolated

cases that lack connection to other “road” elements, which directly impacts the Precision

and consecutively F1-Score results of the test. Furthermore, it is evident that false positive

predictions often manifest as isolated cases with no connection to other “road” elements.

This directly influences the Precision and, consequently, the F1-Score results of the test.

6.2.2. Post-Processing Results

In an attempt to address the prevalence of false positive predictions observed in the

testing of the models, and the consequential impact on Precision and F1-Score results, an
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Figure 6.4. Example of a color-coded image Output of the Original Results
(CCPCCP; BS:64).

8-Adjacency post-processing technique was applied to the test outputs. The 8-Adjacency

process is detailed in section 6.1.

Observing Table 6.2, it is immediately possible to conclude that the overall F1-Score

results improved. By reclassifying isolated positive predictions as negative predictions,

the 8-Adjacency technique aims to improve Precision results by minimizing false positive

predictions. The Accuracy results also presented improvements.

Model Batch Size Accuracy Recall Precision F1-Score
CCPCCP 64 0.9446 0.6726 0.5985 0.6334
CPCPCP+1D 32 0.9179 0.7701 0.4548 0.5719
RESNET50+2D 32 0.9120 0.7424 0.4314 0.5457
RESNET50 128 0.9014 0.7587 0.3988 0.5228

Table 6.2. Post-Processing Results.

However, refining false positive predictions comes at a cost, primarily impacting Recall

results. When positive predictions are reclassified as negative based on their isolation,

some true positive instances may also be affected, resulting in a reduction in Recall.

This happens because true positive instances that are isolated in the data may also be

mistakenly reclassified as negative due to the adjacency criterion.

Analyzing the color-coded post-processing output example, illustrated in Figure 6.5,

it can be inferred that most isolated false positive instances have been eliminated. As

a result, the visualization of the model’s predictions was simplified, allowing the main

extracted features to be more easily observed by eliminating noise from the figure outputs.

Implementing the 8-Adjacency post-processing technique not only enhanced the overall

evaluation results but also elevated the observation of the outputs by reducing the noise

in the image outputs.
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(a) Original Output.

(b) Post-Processing Output.

Figure 6.5. Comparative example of a color-coded image Output (CCPCCP; BS:64).

6.2.2.1. Point of Entry Map

In a final effort, the Post-Processed images of the best-performing model (CCPCCP

(Batch Size: 64)) were introduced into an ArcGIS Pro base map, to manually identify

new Points of Entry throughout Angola’s land boundaries. For visualization purposes,

two Point of Entry Maps were created: the first containing the IOM’s Point of Entry data

(Figure 6.6(a)) and the Dissertation’s Point of Entry data (Figure 6.6(b)).

The IOM’s Displacement Tracking Matrix Point of Entry Map consists in a replica

of the Point of Entry data [10], and was created aiming at enhancing the comparative

experience for the reader. The Dissertation’s Point of Entry Map is composed of the

intersections between the identified roads and Angola’s land border, predicted by the

CCPCCP (Batch Size: 64) model - as shown in Figure 6.6(b).

Upon the examination of the Point of Entry Maps, it becomes evident that even though

the approach employed in the Dissertation contains images within the boundaries of the

rectangles presented in the image, it harvests a significantly higher number of Points of

Entry compared to the IOM’s initiative. Furthermore, considering that the Dissertation’s

approach is limited to analyzing only 1.5% of Angola’s land border, the results achieved

are particularly promising. Despite this constrained dataset, the investigation successfully

identifies 47 Points of Entry, elaborated in Appendix D.
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(a) IOM’s identified Points of Entry, by
land.

(b) Predicted Points of Entry, by land.

Figure 6.6. Comparison between the Points of Entry identified in the DTM’s Report and the
Points of Entry identified in the investigation.

6.3. Discussion

By identifying patterns and challenges that emerged during the Dissertation, this sub-

section presents a discussion and interpretation of the Dissertation’s findings. Starting

with an examination of the ground truth data, it is possible to identify constraints related

to mislabeling. This issue arises when the line is too narrow or passes through a small

portion of the block, leading to failure to adequately represent the true representation of

the road - i.e., resulting in mislabeled blocks. An example of this issue can be observed

in Appendix E.3, examining false positive instances. This case reveals instances where

the ground truth is outperformed by the predictive model, presenting situations where

the ground truth fails to accurately capture the presence of roads, ultimately leading to

falsely incorrect model predictions.

To handle this problem, it is imperative to refine the ground truth creation process to

ensure that road boundaries are strongly delineated. This issue may involve revisiting the

criteria used to define road segments and implementing stricter guidelines for ground truth

annotation. Altering the condition for selecting “road” blocks through the minimization of

the percentage of pixels classified as “road” when attributing class “road” to a block - from

10% to 5%, or even the existence of “road” pixels in the image - should be reconsidered.

There could also be experimented a semi-automatic labelling approach [34][5][18], where

a set of the data is manually labeled and another larger set is automatically labeled and

trained.

The prediction of road networks in small villages consists of another constraint that

has been identified. Areas where the organization of houses and roads lacks a discernible

pattern consists in additional challenges for the predictive model. Examining Appendix

E.2, it is possible to observe inconsistencies in road detection in small villages. While the

main roads are correctly identified by the model, smaller roads exhibit varying degrees of
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detection. Some of these are correctly identified, while others are missed. The difficulty in

accurately detecting road networks in small villages can be attributed to the lack of clear

patterns in the arrangement of houses and roads. Unlike urban or suburban areas where

roads follow distinct layouts, villages often feature irregular road networks that may not

conform to conventional patterns. As a result, the model may struggle to generalize and

learn the features of these road networks effectively.

To mitigate this concern, an increase in the amount of data may contribute to a solu-

tion, but also the addition of precision in the labeling process, tailored to small villages,

may be helpful. This approach would involve meticulous annotation of road segments

within village areas, considering the unique characteristics and configurations of road

networks in such settings. Additionally, incorporating contextual information such as

land use patterns, building densities and geographical features surrounding villages may

enhance the model’s ability to distinguish between roads and other features within these

areas [30][17]. By integrating such contextual cues into the training process, the model can

better differentiate between road segments and accurately identify road networks within

small village settings.

Another issue that relates to what was described above concerns the misclassification

of agricultural areas as “road” by the model. This misclassification occurs when the

model incorrectly identifies certain land features, such as agricultural fields, as “road”

segments. Appendix E.1 provides examples of this misclassification, where the model

erroneously labels blocks of land that exhibit characteristics commonly associated with

agricultural areas as roads. One common pattern observed in these misclassified areas

is the presence of clear boundaries or delineations, often indicative of agricultural fields.

These boundaries may manifest as distinct lines or demarcations separating different

parcels of land, such as crop fields or pastures. The misclassification of agricultural areas

as roads can be attributed to several factors, including the similarity in visual features

between agricultural fields and roads, as well as the complexity of land cover and land

use patterns in satellite imagery.

It may be necessary to refine the model’s training data and augment its learning

capabilities to better differentiate between agricultural areas and roads, to address this

issue. This could involve incorporating additional training samples that represent a di-

verse range of agricultural landscapes and land cover types, allowing the model to learn

the distinguishing features of each class more effectively. Furthermore, leveraging con-

textual information such as geographic metadata, seasonal variations in land cover and

crop rotation patterns may aid in improving the model’s ability to discriminate between

roads and agricultural areas [17][30]. By integrating such contextual cues into the training

process, the model can develop a more nuanced understanding of the spatial character-

istics and visual cues associated with different land features, reducing the incidence of

misclassifications.
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Indeed, while some false positive predictions may indicate misclassifications, it is im-

portant to recognize that not all instances are necessarily erroneous. In fact, the model

has demonstrated an ability to identify “road” situations where there appears to be some

form of passage or connectivity between agricultural areas or fields. This observation

highlights the model’s capability to discern subtle spatial patterns and recognize features

that may not be immediately obvious to the human eye. In many cases, what may ini-

tially appear to be a misclassification, can actually represent legitimate pathways or access

routes that facilitate movement between agricultural plots or fields. Rather than viewing

these predictions as false positives, they should be regarded as valuable insights into the

nuanced interactions between land use patterns and transportation infrastructure.

Another situation where the model exhibits shortcomings is its prediction of blocks

that cover water bodies. In the example provided in Appendix E.3, a river located on the

left side of the image was incorrectly classified as “road” by the model. This misclassifi-

cation can be attributed to several factors, one of which is the limited detail available in

the imagery used for the task. The imagery that has been used consists of RGB bands,

which may not adequately capture the distinctive spectral characteristics of water bod-

ies. As a result, the model may struggle to differentiate between roads and water bodies,

particularly in areas where they exhibit similar visual patterns or features as roads.

One potential solution to address this issue is to leverage multispectral imagery. Unlike

RGB imagery, multispectral imagery captures information across hundreds of narrow and

contiguous spectral bands, allowing for more precise characterization of surface materials

and features, including water bodies. Multispectral imagery is particularly effective in

capturing the unique spectral signatures associated with water, such as its high reflectance

in the near-infrared region and distinctive absorption features in the visible and near-

infrared spectra. By incorporating multispectral data into the training and prediction

process, the model can improve its ability to accurately distinguish between roads and

water bodies, reducing the likelihood of misclassifications [30][8][15][17].

In an effort to tackle the misclassification instances outlined in the previous para-

graphs, adopting a multi-class classification approach [12][8][35][31] could also offer a vi-

able solution. The challenges associated with classifying roads, small villages, agricultural

areas and water bodies share similarities, making it difficult for the model to correctly

distinguish between them - especially using a small dataset. Training the model to rec-

ognize not just roads but also various types of land use and land cover gives it a more

comprehensive understanding of the landscape. Another potential approach to contribute

to the mitigation of misclassification instances is to explore the use of multi-spatial reso-

lution data in the analysis. While the Dissertation focuses on a single spatial resolution

size (0.5m), a multi-spacial resolution approach should be experimented. Leveraging data

with varying spatial resolutions - such as the 0.3m spatial resolution data available in

ArcGIS Pro. The integration of multi-resolution data into the analysis can help capture
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finer details and nuances, improving the model’s ability to accurately detect and classify

features across diverse environments [33][5][8][15][31].

The last constraint that is identified relates to the block’s size. For an instance, the

use of blocks with a dimension of 64x64 pixels is adequate for analyzing situations as

thin road segments, however, it fails to cover large road segments. These issues arise

when distinguishing between large roads and other features, such as agricultural areas.

The model struggles to effectively learn the boundaries of large roads, relying solely on

color information, which erroneously classifies agricultural areas as roads. Appendix E.1

provides examples of this limitation, with instances of false positives occurring in agri-

cultural areas that exhibit patterns similar to large roads. Conversely, the 64x64 pixels

block can also be too large for the information it is labeled as. In situations where roads

are very thin, representing a small portion of the total pixels of the block, the model may

erroneously learn its characteristics as “road”, erroneously classifying an entire area as a

road. This can lead to false predictions of non-road characteristics as road features.

To handle this problem, experimenting with different block sizes and incorporating

techniques such as adaptive sliding window analysis may help improve the model’s ability

to identify and classify roads of varying sizes and characteristics accurately. Refining the

training process and optimizing the model architecture can mitigate the impact of this

limitation and enhance the accuracy and reliability of road detection in satellite imagery.
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CHAPTER 7

Conclusions and recommendations

Concluding this Dissertation, it is possible to state that a binary image classification ap-

proach can effectively and accurately identify new PoE on the territory of Angola. By

predicting roads intersecting the country’s border lines, this Dissertation introduces a new

approach to identifying PoE, by leveraging image classification techniques, contributing

to the advancement of road detection algorithms in satellite imagery analysis. This con-

firms research question number 3, where it is proposed that an image classification-based

approach can identify relevant nodes in complex networks of land roads and borders with

accuracy.

As the Dissertation has revealed a significantly higher number of identified PoE, com-

paring to the IOM’s COVID-19 Impact on Points of Entry program, research question

number 4 is verified. Even though the Dissertation analyzes data corresponding to a small

fraction of Angola’s land border that does not cover the area of the identified PoEs by

the IOM’s program, it has successfully identified 47 PoE, conversely to the 7 PoE identi-

fied by the IOM’s program. This improvement also proves the Dissertation’s capacity to

outperform the OSM database, as it is the data source of the IOM’s COVID-19 Impact

on PoEs program.

Even though the Dissertation confirmed the validity of the above-discussed research

questions (3 and 4), it also uncovered unexpected challenges, ultimately contributing to

the non-verification of research questions 1 and 2. As has been discussed, fully automated

methods for ground truth extraction (OSM) have been proven to be inadequate for the

Dissertation due to their insufficient detail and completeness, contradicting research ques-

tion number 1. Moreover, as the most effective approach for this task is the CCPCCP

model using a batch size of 64, research question number 2 is also contradicted, as it

states that Pre-Trained models can present better performance in the extraction of roads

from satellite imagery, than custom-built models.

Moving forward, it is crucial to highlight the challenges uncovered by the Dissertation,

which should be considered in future studies in the field. The observation of a general

tendency for the test results to decrease in F1-Score, Recall and Precision scores while

improving the Accuracy results when compared to the training phase, presents cause for

concern. This behavioral shift implies potential issues with the model’s generalization to

unseen data as a consequence of disparities between the training and the testing data.

Addressing this issue is crucial for improving the overall reliability and generalization of

the model. The addition of new data that covers a wider range of scenarios can be one

approach to mitigate this behavioural shift.
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Even though post-processing techniques have been employed, concerns persist regard-

ing the model’s performance related to the prevalence of false positive predictions. 8-

Adjacency post-processing technique has shown better F1-Score and Precision results

at the expense of decreasing Recall scores. Additional exploration of post-processing

techniques to reduce false positive instances while minimizing the impact on Recall can

enhance the overall accuracy and reliability of model predictions, which could have a

valuable impact on future work.

This Dissertation has also unveiled several challenges related to overall misclassifi-

cation occurrences. Focusing on the moderation of such situations, several additional

approaches can be explored, including multi-class classification, multi-spatial resolution,

semi-automatic labelling, the use of multi-spectral imagery, integrating contextual data,

and the use of adaptive sliding windows.

By adopting a multi-class classification approach to the problem [12][8][35][31], the

models can learn to differentiate between various land cover classes beyond roads and

non-roads. Additional classes could include vegetation, water bodies, buildings or agri-

cultural areas, allowing the models to capture a more nuanced understanding of the spatial

characteristics and spectral signatures of different land cover types. This approach could

mitigate confusion between similar land cover types, such as roads, agricultural areas, or

water bodies.

In this dissertation, single spatial resolution data is utilized [33][5][8][15][31]. Nonethe-

less, additional exploration should be experimented on by integrating multi-spatial resolu-

tion data. Incorporating data with diverse spatial resolutions can enhance the robustness

of the analysis by capturing additional landscape characteristics. This could improve the

model’s ability to accurately detect and classify road features across diverse environments.

Improving the ground truth creation process to ensure an accurate representation of

road boundaries and features is essential for enhancing the reliability of training datasets

and mitigating misclassifications is another aspect to consider in future research related

to the topic. There should also be tested a semi-automatic approach [34][5][18], where a

set of the data is manually labeled and another larger set is automatically labeled and

trained.

Exploring alternative data sources, such as multi-spectral imagery, could also con-

tribute to enhancing the reliability of this Dissertation [30][8][17][15]. By leveraging the

analysis with multi-spectral imagery, it becomes possible to capture subtle spectral sig-

natures associated with different land cover classes, facilitating more accurate discrimi-

nation between road features and other environmental elements. Unlike RGB imagery,

multi-spectral data captures information across several spectral bands, providing a more

comprehensive view of the electromagnetic spectrum. This rich spectral information en-

ables more precise characterization of surface materials and features - roads, vegetation,

water bodies and urban structures.
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The integration of contextual information [30][17] can further enhance the classifica-

tion’s accuracy. Contextual information, such as geographic metadata, land use patterns

and spatial relationships between different features, can aid in distinguishing between

roads and other land cover classes. For instance, by analyzing changes in land cover pat-

terns over time, the model can adapt its classification criteria to account for temporal

variations and improve its ability to differentiate between roads and other features.

To address misclassification problems that may be associated with the block’s size, the

use of an adaptive sliding window can be proven to be a solution. By training the model

using a combination of different patch sizes, with larger patch sizes specifically targeted

towards areas with larger road segments or agricultural areas it would allow the model to

capture more detailed spatial information and boundary features associated with roads.

Such an approach could reduce the likelihood of misclassifications, particularly in areas

with diverse land cover types.

While the Dissertation provides valuable insights contributing to the development of

road identification in satellite imagery, it also underscores the need for continued research

and innovation in this field. By critically evaluating previous topics and adapting the

methodologies accordingly, advancements can be achieved in the state-of-the-art of satel-

lite image analysis.
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APPENDIX A

Detailed Example of the Prepared Data.

(a) Example of a Raster file.

(b) Example of a Ground Truth file.
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APPENDIX B

Results that support the choice of the dataset

B.1. Results of the sample datasets that support the establishment of the

block’s size of the dataset

Model Specifics Train Set Validation Set
Model BS Data Loss Acc. Loss Acc. Recall Precis. F1 Score

CCPCCP 32 Medium 0.2847 0.8877 0.2620 0.8996 0.9167 0.8893 0.9028
CPCPCP 64 Small 0.3419 0.8520 0.2809 0.8794 0.9094 0.8611 0.8846
CCPCCP 32 Small 0.3676 0.8396 0.3199 0.8665 0.9312 0.8277 0.8764
CCPCCP 64 Big 0.2923 0.8764 0.2864 0.8757 0.8569 0.8941 0.8751
CCPCCP 128 Small 0.3372 0.8507 0.3305 0.8637 0.9221 0.8290 0.8731
CPCPCP 32 Medium 0.3018 0.8734 0.3373 0.8812 0.9312 0.8120 0.8675
CCPCCP 64 Medium 0.2842 0.8845 0.3296 0.8656 0.8514 0.8801 0.8655
CCPCCP 32 Big 0.3458 0.8491 0.3165 0.8665 0.8333 0.8967 0.8638
CCPCCP 128 Big 0.3115 0.8645 0.3676 0.8490 0.8804 0.8322 0.8556
CPCP 128 Big 0.3521 0.8343 0.3559 0.8444 0.9004 0.8134 0.8547
CCPCCP 64 Small 0.3563 0.8417 0.3581 0.8527 0.8496 0.8590 0.8543
CPCPCP 32 Big 0.3146 0.8654 0.3476 0.8481 0.8732 0.8354 0.8539
CPCP 32 Big 0.3245 0.8629 0.3338 0.8637 0.8207 0.8865 0.8523
CCPCCP 128 Medium 0.2630 0.8932 0.3842 0.8536 0.8641 0.8224 0.8427
CPCPCP 128 Medium 0.2306 0.9107 0.5762 0.8462 0.8297 0.8561 0.8427
CPCP 128 Small 0.3723 0.8283 0.4260 0.8352 0.8877 0.8007 0.8420
CPCPCP 64 Medium 0.3013 0.8746 0.3919 0.8333 0.8750 0.8063 0.8392
CPCP 64 Small 0.4009 0.8152 0.3905 0.8287 0.8243 0.8537 0.8387
CPCP 32 Small 0.4636 0.7814 0.4060 0.8260 0.8533 0.8079 0.8300
CPCPCP 128 Small 0.3975 0.8157 0.3862 0.8306 0.8134 0.8472 0.8300
CPCP 128 Medium 0.3377 0.8442 0.3952 0.8232 0.8949 0.7731 0.8296
CPCPCP 32 Small 0.5005 0.7660 0.4238 0.8140 0.8424 0.8017 0.8215
CPCP 64 Big 0.3659 0.8341 0.6043 0.8158 0.8388 0.8024 0.8202
CPCP 32 Medium 0.4031 0.8166 0.4262 0.8122 0.8315 0.8053 0.8182
CPCPCP 128 Big 0.2968 0.8741 0.3734 0.8407 0.7699 0.8638 0.8142
CPCPCP 64 Big 0.2984 0.8748 0.6068 0.8333 0.7880 0.8161 0.8018
CPCP 64 Medium 0.4106 0.8067 0.6187 0.7781 0.8986 0.7147 0.7962
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B.2. Results of the additional experiments to support the choice of the

block’s size of the dataset
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Model Specifics Train Set Validation Set
Model BS Data Loss Acc. Loss Acc. Recall Precis. F1-Sc.

RESNET50 32 Big Sample 0.1458 0.9418 0.1821 0.9411 0.9402 0.9335 0.9368
RESNET50 64 Big Sample 0.1453 0.9406 0.1786 0.9392 0.9312 0.9397 0.9354
RESNET50 128 Big Sample 0.1316 0.9468 0.1826 0.9383 0.9384 0.9283 0.9333
RESNET50 128 Medium 20% 0.2207 0.9077 0.2312 0.9086 0.8938 0.9184 0.9059
RESNET50 32 Medium 20% 0.2311 0.9042 0.2401 0.9061 0.9030 0.9042 0.9036
RESNET50 64 Medium 20% 0.2213 0.9066 0.2335 0.9026 0.8713 0.9164 0.8933
CPCPCP 64 Medium 20% 0.2456 0.8978 0.2547 0.8915 0.8727 0.9098 0.8909
CPCPCP 32 Medium 20% 0.2880 0.8791 0.2823 0.8790 0.8924 0.8722 0.8822
CPCPCP 128 Medium 20% 0.2679 0.8844 0.2831 0.8758 0.8685 0.8847 0.8765
CCPCCP 64 Big Sample 0.2923 0.8764 0.2864 0.8757 0.8569 0.8941 0.8751
CCPCCP 32 Medium 20% 0.3069 0.8664 0.2972 0.8687 0.8776 0.8655 0.8715
CCPCCP 64 Medium 20% 0.3217 0.8569 0.3386 0.8572 0.9290 0.8154 0.8685
CCPCCP 64 Small 20% 0.3212 0.8609 0.8695 0.8695 0.8510 0.8827 0.8666
CCPCCP 32 Small 20% 0.3381 0.8531 0.3093 0.8667 0.8496 0.8786 0.8639
CCPCCP 32 Big Sample 0.3458 0.8491 0.3165 0.8665 0.8333 0.8967 0.8638
CPCPCP 32 Small 20% 0.3575 0.8421 0.3193 0.8632 0.8428 0.8776 0.8598
CPCP 128 Small 20% 0.3411 0.8512 0.3272 0.8585 0.8670 0.8516 0.8592
CPCPCP 128 Small 20% 0.3333 0.8530 0.3128 0.8653 0.8269 0.8931 0.8587
CCPCCP 128 Small 20% 0.3211 0.8606 0.3289 0.8578 0.8613 0.8513 0.8563
CCPCCP 128 Big Sample 0.3115 0.8645 0.3676 0.8490 0.8804 0.8322 0.8556
CPCP 128 Big Sample 0.3521 0.8343 0.3559 0.8444 0.9004 0.8134 0.8547
CPCPCP 64 Small 20% 0.3560 0.8420 0.3340 0.8534 0.8684 0.8407 0.8543
CPCPCP 32 Big Sample 0.3146 0.8654 0.3476 0.8481 0.8732 0.8354 0.8539
CPCP 32 Big Sample 0.3245 0.8629 0.3338 0.8637 0.8207 0.8865 0.8523
CCPCCP 128 Medium 20% 0.3374 0.8533 0.3581 0.8498 0.8390 0.8614 0.8501
CPCP 64 Small 20% 0.3797 0.8303 0.3641 0.8401 0.8352 0.8555 0.8452
CPCP 32 Medium 20% 0.4057 0.8162 0.3836 0.8244 0.9304 0.7710 0.8432
CPCP 64 Medium 20% 0.3971 0.8153 0.4006 0.8233 0.8706 0.7992 0.8334
RESNET50 128 Small 20% 0.4001 0.8169 0.3888 0.8217 0.8594 0.7894 0.8229
CPCP 32 Small 20% 0.4204 0.8062 0.3863 0.8259 0.8057 0.8383 0.8217
CPCP 64 Big Sample 0.3659 0.8341 0.6043 0.8158 0.8388 0.8024 0.8202
RESNET50 64 Small 20% 0.4075 0.8131 0.3946 0.8210 0.8315 0.8085 0.8198
CPCPCP 128 Big Sample 0.2968 0.8741 0.3734 0.8407 0.7699 0.8638 0.8142
RESNET50 32 Small 20% 0.4164 0.8097 0.3974 0.8203 0.7790 0.8336 0.8054
CPCPCP 64 Big Sample 0.2984 0.8748 0.6068 0.8333 0.7880 0.8161 0.8018
MOBILENET 128 Big Sample 0.4553 0.7830 0.4731 0.7772 0.8062 0.7594 0.7821
MOBILENET 32 Big Sample 0.4497 0.7821 0.4714 0.7689 0.8279 0.7335 0.7778
MOBILENET 64 Medium 20% 0.5188 0.7410 0.5172 0.7448 0.8143 0.7161 0.7620
MOBILENET 128 Medium 20% 0.5152 0.7389 0.5144 0.7441 0.7623 0.7344 0.7481
MOBILENET 64 Big Sample 0.4518 0.7855 0.4730 0.7808 0.6938 0.8029 0.7444
MOBILENET 32 Medium 20% 0.5206 0.7342 0.5182 0.7441 0.6934 0.7414 0.7166
MOBILENET 128 Small 20% 0.6558 0.6026 0.6577 0.6031 0.7070 0.5804 0.6375
MOBILENET 64 Small 20% 0.6563 0.6008 0.6595 0.6036 0.6669 0.5826 0.6219
MOBILENET 32 Small 20% 0.6563 0.6021 0.6585 0.6047 0.6591 0.5820 0.6182
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B.3. Results of the additional experiments to support the choice of the

condition to use in the creation of the 64x64 block size dataset

Model Specifics Train Set Validation Set
Model BS Dataset Loss Acc. Loss Acc. Recall Precis. F1-Sco.

RESNET50 128 M. 20% 0.2207 0.9077 0.2312 0.9086 0.8938 0.9184 0.9059
RESNET50 32 M. 20% 0.2311 0.9042 0.2401 0.9061 0.9030 0.9042 0.9036
RESNET50 64 M. 20% 0.2213 0.9066 0.2335 0.9026 0.8713 0.9164 0.8933
CCPCCP 32 M. 20% 0.3069 0.8664 0.2972 0.8687 0.8776 0.8655 0.8715
CCPCCP 64 M. 20% 0.3217 0.8569 0.3386 0.8572 0.9290 0.8154 0.8685
CCPCCP 64 M. 10% 0.2591 0.8913 0.2670 0.8865 0.8619 0.8742 0.8680
CCPCCP 128 M. 10% 0.2850 0.8774 0.3138 0.8625 0.8563 0.8720 0.8641
RESNET50 128 M. 10% 0.3070 0.8641 0.3133 0.8649 0.8585 0.8691 0.8638
CCPCCP 128 M. 20% 0.3374 0.8533 0.3581 0.8498 0.8390 0.8614 0.8501
CCPCCP 32 M. Center 0.3183 0.8591 0.3056 0.8704 0.8003 0.8989 0.8467
RESNET50 64 M. 10% 0.3729 0.8329 0.3486 0.8474 0.8547 0.8350 0.8447
RESNET50 32 M. 10% 0.3780 0.8326 0.3559 0.8463 0.8710 0.8155 0.8423
CCPCCP 64 M. Center 0.2913 0.8722 0.2938 0.8769 0.7968 0.8783 0.8356
CCPCCP 32 M. 10% 0.3541 0.8444 0.3110 0.8620 0.7542 0.9124 0.8258
RESNET50 64 M. Center 0.4956 0.7545 0.4613 0.7960 0.7978 0.7813 0.7895
RESNET50 128 M. Center 0.4933 0.7573 0.4603 0.7960 0.7760 0.8000 0.7878
RESNET50 32 M. Center 0.4980 0.7551 0.4745 0.7905 0.7821 0.7731 0.7776
CCPCCP 128 M. Center 0.2620 0.8889 0.2643 0.8837 0.9191 0.6278 0.7460
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APPENDIX C

Results of the Training phase

Model Specifics Train Set Validation Set
Model BS Loss Acc. Loss Acc. Recall Precis. F1 Score

CPCPCP+1D 32 0.2956 0.8743 0.2724 0.8858 0.8672 0.8951 0.8809
CCPCCP 64 0.3009 0.8692 0.2876 0.8794 0.8731 0.8800 0.8766
CCPCCP+1D 128 0.2690 0.8864 0.2850 0.8797 0.8420 0.8896 0.8651
CCPCCP 128 0.2850 0.8774 0.3138 0.8625 0.8563 0.8720 0.8641
RESNET50 128 0.3070 0.8641 0.3133 0.8649 0.8585 0.8691 0.8638
RESNET50+2D 32 0.3269 0.8562 0.3149 0.8634 0.8681 0.8570 0.8625
RESNET50+1D 128 0.3192 0.8590 0.3130 0.8645 0.8513 0.8733 0.8622
CPCPCP 128 0.3081 0.8666 0.2990 0.8741 0.8814 0.8435 0.8620
RESNET50+1D 32 0.3261 0.8548 0.3182 0.8651 0.8781 0.8435 0.8604
CPCPCP+1D 128 0.2871 0.8773 0.2852 0.8819 0.8308 0.8918 0.8602
RESNET50+2D 64 0.3159 0.8601 0.3179 0.8628 0.8672 0.8518 0.8594
RESNET50+2D 128 0.3112 0.8648 0.3129 0.8644 0.8500 0.8658 0.8578
RESNET50+1D 64 0.3161 0.8609 0.3154 0.8632 0.8493 0.8638 0.8565
CPCPCP 32 0.3129 0.8651 0.2922 0.8759 0.7921 0.9234 0.8527
RESNET50 64 0.3729 0.8329 0.3486 0.8474 0.8547 0.8350 0.8447
RESNET50 32 0.3780 0.8326 0.3559 0.8463 0.8710 0.8155 0.8423
CPCPCP+1D 64 0.3056 0.8693 0.2849 0.8785 0.7655 0.9209 0.8361
CPCPCP 64 0.3063 0.8677 0.3005 0.8719 0.7538 0.9366 0.8353
CCPCCP 32 0.3541 0.8444 0.3110 0.8620 0.7542 0.9124 0.8258
CCPCCP+1D 32 0.3115 0.8672 0.2931 0.8794 0.7190 0.9228 0.8082
CCPCCP+1D 64 0.2750 0.8845 0.2765 0.8849 0.7067 0.9086 0.7950
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APPENDIX D

Points of Entry Identified
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PoE ID Coordinate
01 -14.837489 21.993344
02 -14.417424 21.991025
03 -14.41986 21.991006
04 -14.257085 21.990375
05 -13.000377 22.544621
06 -13.000383 22.548848
07 -13.000373 22.550338
08 -13.000373 22.550682
09 -13.000593 22.727183
10 -17.390539 17.232142
11 -17.390512 17.288274
12 -17.390355 17.294509
13 -17.390355 17.296961
14 -17.390355 17.306013
15 -17.390355 17.309587
16 -17.390381 17.312066
17 -17.390277 17.31564
18 -17.390277 17.31851
19 -17.390277 17.377651
20 -17.390277 17.379685
21 -17.390329 17.384851
22 -17.390277 17.392155
23 -17.390225 17.396538
24 -17.390147 17.399773
25 -17.390147 17.754437
26 -17.390408 18.40992
27 -18.024785 21.433108
28 -13.880708 21.988753
29 -13.882456 21.988779
30 -13.852715 21.988753
31 -13.000009 22.202308
32 -12.999983 22.229752
33 -13.000348 22.515805
34 -11.58957 24.001533
35 -11.150486 24.035917
36 -11.109893 24.023395
37 -11.111458 24.023577
38 -7.282289 21.622344
39 -5.866924 15.047642
40 -5.865857 15.014183
41 -17.390623 17.138309
42 -17.390606 17.14821
43 -17.390623 17.143051
48 -17.390616 17.1528
45 -17.390642 17.154678
46 -17.390642 17.160417
47 -17.390572 17.160883
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APPENDIX E

Examples of output images

E.1. Output Number 1

(a) Original Input Image.

(b) Color-Coded Output Image
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E.2. Output Number 2

(c) Original Input Image.

(d) Color-Coded Output Image
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E.3. Output Number 3

(e) Original Input Image.

(f) Color-Coded Output Image
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