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witter /"wIt.@r/ v.
Informal, British. To talk for a long time about things that are not important.





Resumo

A testagem de software é maioritariamente realizada em modo de black-box, isto é, sem
incorporar nos testes qualquer conhecimento relativo ao funcionamento interno de um
programa. Esta prática é usualmente suficiente em contexto empresarial ou para desen-
volvedores no geral, onde o foco é a produção de resultados fiáveis em que a maioria das
tarefas algorítmicas são realizadas por bibliotecas externas. Contudo, para estudantes de
programação a um nível introdutório ou similares, pode não ser direto discernir as causas
subjacentes de um resultado incorreto num teste ou compreender o incumprimento de
certos objetivos no que toca ao funcionamento algorítmico.

Esta dissertação apresenta o Witter, uma biblioteca de testagem de software que
permite a educadores de programação definir testes white-box para código fonte Java.
Os testes analisam a execução e um método contra uma solução de referência, para
verificar que não só produz resultados corretos mas também que cumpre o comportamento
algorítmico desejado. É detalhada a motivação para o desenvolvimento da biblioteca e
descrito esse processo de acordo com os nossos objetivos de investigação.

Avaliamos a eficácia do Witter em avaliar submissões de estudantes para determinar se
uma ferramenta de avaliação baseada em eventos na execução do código poderia oferecer
informação adicional relativamente a requisitos de comportamento algorítmico incompletos,
mesmo quando o código do estudante produz os resultados esperados. Concluímos que
uma quantidade considerável de estudantes cometem erros relativos ao comportamento
algorítmico das suas implementações, podendo então beneficiar de uma ferramenta de
avaliação que fornecesse informação relativa à execução dos seus programas.

Palavras-Chave: educação de programação, testes de white-box, avaliação de progra-
mação, feedback
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Abstract

Software testing is mostly performed in a black-box manner, that is, without incorporating
any knowledge of the internal workings of programs into the tests. This practice usually
suffices for enterprises and general practitioners, where the focus lies on producing reliable
results while most algorithmic tasks are provided by third-party libraries. However, for
computer science students and the like, it might not be straightforward to discern the
underlying causes of an incorrect test result or to understand why certain algorithmic
goals are not met.

This dissertation presents Witter, a software testing library that allows programming
instructors to define white-box tests for Java source code. Our tests analyse the execution
of a method against a reference solution, to verify that the code not only produces correct
results but is also in accordance with a desired algorithm behaviour. We detail the
motivation for the development of the library and describe its development process in
accordance with our research goals.

We evaluate Witter’s efficacy in evaluating student submissions for an introductory
university programming course to determine if an assessment tool based on code execution
events could offer additional insight regarding incomplete algorithmic behaviour require-
ments, even when the student’s code produces correct outputs. The results support our
hypothesis, and we conclude that a considerable amount of students make mistakes related
to the algorithmic behaviour of their implemented solutions, and could thus benefit from
an assessment tool providing them with information regarding their program’s execution.

Keywords: programming education, white-box testing, programming assessment, feed-
back
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CHAPTER 1

Introduction

We begin by contextualising and motivating the research and development work conducted
for this dissertation, present the methodology which was employed, and overview the
contributions of the work.

1.1. Context and Motivation

Software testing is an integral part of software development, allowing for the assessment of
whether or not a given application verifies its intended requirements or produces acceptable
results pertaining to the problem domain at hand. By far, the most common method
of performing software tests relies on black-box testing, where only the outputs of the
executed code are considered in the assessment. Extensive work has been conducted on
black-box testing libraries and toolkits, of which the most widely known in the realm
of Java is the JUnit framework1. While such tests suffice for validating the overall
functionality of an application and thus are generally sufficient in enterprise environments
or for general programming practitioners, they do not provide any means to analyse or
evaluate non-trivial aspects of program execution, such as efficiency, memory usage, or
algorithm behaviour (that is, if an algorithm executes internally as expected).

It is usually relevant to consider a white-box testing method when consideration needs
to be given to the internal structure, execution details such as algorithmic behaviour, or
otherwise non-trivial program characteristics when testing a piece of software. White-box
testing is defined as a software testing methodology that requires knowledge of the internal
logic and code structure of a given program, and thus requires the instructor or practitioner
executing the testing process to have full knowledge or access to the program’s source
code [16].

Black-box software testing solutions have been extensively studied and some frame-
works, such as JUnit, are well-established in the universe of automated software testing.
However, while extensive research and development work has also been conducted on
white-box automated software analysis and assessment [26,34,38], and most of the existing
solutions do effectively allow for the augmentation of the software testing process through
a more in-depth code analysis, their thoroughness is usually guaranteed through static
code analysis (e.g. Semmle2), meta-programming, or similar specialised solutions [38].
These techniques, while allowing for an in-depth assessment process, require specialised
programming knowledge that may be non-standard or generally misunderstood by regular

1https://junit.org
2https://semmle.com/
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practitioners; for example, some practitioners might not be familiar with the concept or
usage of meta-programming [15], which is usually required when augmenting automated
assessment systems. This lack of accessibility for general instructors or practitioners often
overshadows the usefulness of such solutions in educational applications. As such, this at
least warrants research work into the usefulness of an easy-to-use white-box testing solution
from the perspective of the instructor or practitioner defining the testing process. An
ideal solution would enable in-depth assessment without requiring knowledge of excessively
specialised or non-standard programming techniques.

Artificial Intelligence models have become commonplace in the field of programming
education, with students relying on ChatGPT or similar Large Language Models (LLMs)
to aid their learning process [37]. The widespread usage of LLMs by students raises the
possibility of augmenting an automated assesment system using LLMs for automated
programming assessment. In Lehtinen et al. [30], the authors conducted a study on the
performance of LLMs in answering questions related to code comprehension, and found that
state-of-the-art LLMs such as GPT-4, while able to accurately answer part of the proposed
questions, produced errors similar to those of introductory-level students, and had the
possibility of "hallucinating" nonsensical explanations in an attempt to support incorrect
answers. Moreover, a study by Xue et al. [47] finds that the learning performance of
introductory programming students is not significantly impacted by the usage of ChatGPT
as a learning aid. In fact, students were more likely to ignore other programming aids when
they had access to ChatGPT [47], which could negatively impact their self-efficacy. Even
when it comes to code generation, most LLMs struggle to comply with the best practices
and inherent complexity of more advanced topics such as Object-Oriented Programming
(OOP), as noted by Cipriano et al. [11]. These facts motivate the need for an educational
environment which aids students in autonomously improving self-efficacy and program
comprehension skills. While our goal is not to discredit the usage of such models as
learning aids or assessment tools, we take this as a motivating factor for the development
of a deterministic solution to prevent misleading students in their learning process.

When learning a programming language, it is generally regarded that students benefit
from informative and constructive feedback that allows them to explore the mistakes in
their implementations and thus deepen their understanding [35,46]. In fact, the absence
of constructive feedback can induce the reinforcement of harmful habits; for example, a
student might resort to a trial-and-error approach that eventually converges to correct
results without contributing to the student’s understanding [2]. Moreover, it is widely
agreed upon that several aspects need to be taken into consideration when grading students’
programming assignments. Namely, it is relevant to consider not only the Correctness of
a solution, but also its Efficiency and Maintainability [9]. While the correctness of an
implemented solution is easy to assess through black-box testing, the in-depth assessment
of the efficiency and maintainability of a program is not supported by the majority of
existing automated assessment systems [38]. Another problem is posed by the need to find
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the middle ground between feedback that is too vague or unhelpful, and feedback that
excessively directs students’ learning process. Since students respond more positively when
they manage to stay on track and autonomously arrive at the solution to a problem [28],
it is imperative that the provided feedback offers sufficient guidance without compromising
the students’ feelings of autonomy. Thus, there is a need for an automated assessment tool
designed for educational environments that takes into consideration both the students’
learning process and the needs of their instructors.

1.2. Research Questions

The main goal of this dissertation is to explore the practical feasibility of implementing
an educational software testing solution that enables a more in-depth analysis regarding
the execution of proposed code solutions. We wish to gauge whether or not a library can
be easily implemented that allows instructors to define assessment scenarios for student
code in an easier, more readily accessible way, and whether students benefit from the more
detailed feedback made possible by the library’s analysis of the execution of their code,
as detailed in Section 1.1. We explore not only the feasibility of implementing such a
library, but the effect on its proposed target user base, that is, students and instructors of
programming at an introductory university course level. To this effect, this dissertation
aims to explore the following research questions:

RQ1 Is it feasible to implement a solution to dynamic white-box software testing?
RQ2 To what extent do introductory programming students’ submissions conform to

internal behaviour requirements?

1.3. Methodology and Contributions

The content of this dissertation is based on the groundwork laid in the following papers [6,7]:

Witter: A Library for White-Box Testing of Introductory Programming Algorithms
Afonso B. Caniço, André L. Santos
SPLASH-E, SPLASH’23, October 25-27, 2023, Cascais, Portugal

A Domain-Specific Language for Dynamic White-Box Evaluation of Java Assignments
Afonso B. Caniço, André L. Santos
ICPEC’24, June 27-28, 2024, Lisbon, Portugal

While these papers describe the motivation and the development of our library, described
in Section 4.1, this dissertation describes in further detail the library’s development, further
including features implemented after the paper’s publication, as well as a more refined
literature review on related work.

This dissertation presents a practical approach at exploring a possible answer to the
proposed research questions. We envision an easy-to-use solution to white-box test case
definition by instructors, requiring no further knowledge than what is already possessed by
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most programmers. As for the automated assessment, our approach relies on the dynamic
collection of code execution information to construct what we refer to as runtime metrics.
The system for capturing runtime information is based on Strudel3, a library providing an
infrastructure for fine-grained observation of code runtime events.

We present Witter4, a novel software testing library developed with special consideration
for educational environments that provides a simple infrastructure for defining and running
white-box test cases for Java programs supporting a subset of Java’s syntax. Test cases
are defined by annotating source code solutions of assignments with simple directives
that describe what should be tested. Test case definition using Witter does not require
any sort of program instrumentation skills, as the collection of in-depth metrics about
the programs’ behaviour is expressed with high-level directives. In addition to a flag
indicating whether the program passed or failed each defined test case, the output of the
tests includes messages concerning mismatches regarding what was expected to happen
during execution. Witter was developed from the ground up as the main software artefact
of the work presented in this dissertation.

Our aims with the proposed library are twofold. On the one hand, automated assessment
systems can be enriched with white-box tests, which will verify with more precision if
assignment goals are met. When such tests fail, users will be provided with constructive,
formative feedback to improve future submissions. On the other hand, white-box tests
could be integrated into assignment development environments (in addition to the usual
black-box tests). The test results and feedback messages raise awareness of assignment
goals that are not fulfilled, which could otherwise go unnoticed if exclusively black-box
testing is applied and the return values are correct. Both of these use cases could assist
students in achieving autonomous learning paths toward the desired practice goals.

The development of this dissertation and the aforementioned library follows the Design
Science Research [4] process outlined in Figure 1.1.

We start by identifying the problem and motivating the need for a novel solution,
whose objectives are then defined so that an initial prototype can be developed to show
the practical feasibility of the proposed solution. The design and development process,
which aims to provide an answer to Research Question RQ1, continues and is guided by
an evaluation process which uses a dataset of real student submissions for an introductory
programming course, which provides an opportunity to answer Research Question RQ2.

1.4. Document Structure

We first conduct a literature review and compile a collection of relevant related work in
Chapter 2, which includes a motivating review of academic publications on automated
assessment in educational environments in Section 2.3, a review of automated white-box-
assessment in Section 2.2, and a review on the effect of feedback on introductory-level
programming students in Section 2.4, motivating not only the need for a tool which allows
3https://github.com/andre-santos-pt/strudel
4https://github.com/ambco-iscte/witter
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Figure 1.1. Design Science Research process diagram.

students and instructors to easily integrate formative feedback in existing assessment and
development solutions, but also the potential of a feedback generation tool to positively
impact students’ learning process. The methodology of our literature review is described
in Section 2.1.

Chapter 4 describes our approach regarding the shortcomings identified during the
described literature review. Namely, we present our implementation of a white-box
assessment library in Section 4.1, describing its usage and giving examples in Section 4.2
and providing a more detailed, technical analysis of the implementation in Section 4.3.

In Chapter 5, we apply our proposed library to a set of introductory programming
students’ assignment submissions in order to gauge the efficacy of the tool when applied
to a context representative of its desired use case as an educational tool. This assessment
is contextualised in Section 5.1, with the evaluation method being described in Section 5.2
and the results being presented in Section 5.3.

Finally, in Chapter 6 we discuss the results and limitations of our evaluation and the
contributions we have made in regards to the proposed research questions, further drawing
conclusions and presenting open problems we consider warrant future work.
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CHAPTER 2

Related Work

We now present the results of the literature review we have conducted, which forms the
basis of knowledge upon which the remainder of our research and development work are
conducted. We outline the employed methodology and describe relevant results in the
literature.

2.1. Literature Review Methodology

We conducted a literature review in order to collect academically-relevant information
related to our specific field of study, that is, the application of automated programming
assessment to educational environments with a focus on feedback generation capabilities.

We chose to conduct an ad hoc / snowball approach to our literature review. Our
approach was nevertheless structured and guided by several criteria used to restrict the
amount of collected information to a tractable amount, with the collected publications
having undergone the following general analysis:

(1) Does the publication effectively explore automated programming assessment?
(2) Does the publication explore the effect of automated feedback in programming

education?
(3) Is the publication relevant in the current context of automated programming

assessment systems?
(4) Does the publication explore the application of assessment systems for program-

ming education? If so, does it contain relevant keywords, for example white-box
assessment or feedback generation?

Publications subjected to the described criteria were then further analysed to determine
their effective relevancy to our proposed research goals.

We additionally conducted a three-fold review step, with an initial section dedicated
to motivating our work, a section dedicated to the analysis of related work into white-box
assessment systems, and another focused on previous research work on how formative
feedback affects programming students.

While a systematic review was not conducted, we motivate using Figure 2.1 the growing
desire for a dynamic, white-box, programming assessment and feedback generation library
by showing the increasing number of publications containing these keywords published
per year in the ACM Digital Library.1 We note the noticeable increase in the number
of relevant publications starting around 2021, which we attribute to the research and
development work conducted on automated assessment to tackle the needs introduced by
1The four keywords must be simultaneously contained anywhere in the publication.
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Figure 2.1. Number of relevant publications in the ACM Digital Library
from 2000 to 2022.

Table 2.1. Academic publications and automated assessment tools anal-
ysed for the motivation and literature review steps. Some publications were
cited in more than one Section.

Section Conference Papers Journal Articles Tools
1.1 7 7
2.2 7 11 6
2.3 2 4
2.4 6 2

19 unique papers 17 unique articles 6
36 unique publications

the spread of hybrid or remote teaching practices largely brought on by the COVID-19
pandemic starting in 2020.

In total, the motivation and literature review steps consisted in analysing 36 academic
publications, 19 of which were conference papers and 17 were journal articles. We
additionally analysed a total of 6 automated assessment and related tools for which we
could not find related publications. A summary of the number of analysed tools and
publications is provided in Table 2.1. The remaining Sections of this dissertation cite
publications where it was deemed relevant, even if they were not included in the initial
literature review.

2.2. Automated Programming Assessment

Being the most widely-known software testing platform for Java, JUnit offers extensive
functionality when it comes to unit testing. While JUnit-based assessment tools can
be augmented with meta-programming functionalities to offer more detailed information
on program behavior, such functionality is not available out-of-the-box and requires
specialized knowledge to integrate third-party libraries and/or languages. Examples include
8



AspectJ [27]2, which requires knowledge on code instrumentation, and Javassist [10]3,
ASM [5]4, and ByteBuddy5, which require knowledge of Java bytecode engineering. These
fields, as described in Section 1.1, may not be well-understood by programming instructors.
Similarly, Valgrind6 is a code instrumentation toolkit that enables detection of memory
management and threading bugs, along with program profiling. While these tools lay the
groundwork upon which an automated assessment system may feature white-box analysis,
we consider the requirement of specialised knowledge to be a negative factor when it
comes to their general ease of use. Additionally, significant analysis or instrumentation
is required to accurately collect a relevant amount of information during a program’s
execution, negatively impacting the scope for which these tools can be applied.

Lizard7 is a multi-language static analysis tool supporting the Java language, focusing
on determining the cyclomatic complexity of implemented functions, among other forms
of static code analysis. While cyclomatic complexity is a useful tool for measuring and
therefore managing the complexity of a program [33], it does not offer insight into the
algorithmic behaviour of an implemented solution. Similar tools, like Cppcheck8 for C and
C++, focus on bug detection through static code analysis, providing no dynamic analysis
functionalities for a program’s execution.

FindBugs [23]9 is a static analysis tool for Java bytecode to find software defects, such
as null pointer accesses, based on a catalog of bug patterns. In our approach, we are not
primarily focused on finding defects, but instead on checking if the desired algorithmic
behavior is met. Furthermore, our approach focuses on dynamic analysis of the code’s
execution as opposed to the static analysis of the compiled code.

Extensive reviews on automated assessment have been conducted, and the general
findings are that most systems tend to focus on aspects other than dynamic white-box
analysis [26,34,38]. Efforts have been made to develop software testing solutions that not
only simplify the process on the instructor’s side but also collect more detailed metrics
regarding the evaluated code to allow the elaboration of more detailed feedback. Most of
these, however, introduce dependencies on either static code analysis, instrumentation, or a
combination of both techniques [12,26]. While these tools lay the groundwork upon which
an automated assessment system can be implemented in such a way that detailed white-box
information can be collected, we consider the requirement of specialised knowledge to
be a negative factor when it comes to the tools’ ease of use to general instructors or
practitioners.

2https://www.eclipse.org/aspectj
3https://www.javassist.org
4https://asm.ow2.io
5https://bytebuddy.net/
6https://valgrind.org/
7https://github.com/terryyin/lizard
8https://cppcheck.sourceforge.io/
9https://findbugs.sourceforge.net
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JavAssess [24] is a Java library used to integrate deeper code analysis capabilities
into existing automated assessment tools. Their approach relies on combining traditional
black-box unit testing with code instrumentation and meta-programming functionalities,
yet does not offer a way to dynamically collect white-box execution metrics. Nonetheless,
the goals of JavAssess are considerably similar to Witter’s, aiming to be a library that can
be integrated into existing automated assessment systems to facilitate a deeper analysis
of student code, and the two libraries could work in tandem to provide a comprehensive
assessment toolkit. AutoGrader [21] is a similar assessment library, leveraging on the
meta-programming functionalities of the Java language along with typical unit testing for
code assessment. Their approach, again, does not contemplate the dynamic collection of
white-box metrics describing code execution.

Pedal [19] is an infrastructure, supporting the Python language, for automatic code
evaluation and feedback generation that tackles problems similar to those we address,
namely the importance of an in-depth analysis of student code for the generation of
detailed feedback. Their approach relies on static code analysis along with traditional
unit test execution. While the usage of static code analysis allows for feedback much more
detailed than simple unit testing systems, it does not support measuring dynamic, internal
details of a program’s execution, which is Witter’s main focus.

GitHub Classroom10 is an educational system built on GitHub which allows educators to
automate the assignment submission and evaluation process for students. Their assignment
testing capabilities rely on comparing outputs against reference solutions and checking
whether the execution of test commands results in failure11.

ConGu [13] is a runtime verification tool that enables the assessment of object-oriented
solutions against formal algebraic specifications. Its main goal is to test abstract data
types against function domain restrictions and algebraic conditions or axioms that function
applications must verify.

Jeed12 is a toolkit for Java and Kotlin in-memory execution with a focus on safety
and performance. While Jeed’s goals align with those of our proposed library by enabling
code execution in a sandboxed environment providing access to code evaluation metrics,
the assessment is focused on source code analysis rather than dynamic runtime events.
Namely, Jeed supports linting, cyclomatic complexity analysis, and a listing of which
language features are present in a given program.

Mooshak [29] is an online programming assessment tool that checks whether a submitted
program functions correctly. To this effect, Mooshak analyses the programs for their
returned or printed outputs, and if any compilation or runtime errors were produced [43].
Mooshak’s goal is broad, aiming to be a full online programming context judge for several
programming languages [29,43], and as such provides functionalities to execute custom

10https://classroom.github.com/
11https://docs.github.com/en/education/manage-coursework-with-github-classroom/
teach-with-github-classroom/use-autograding
12https://github.com/cs125-illinois/jeed
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static and dynamic analysers for white-box assessment. This aligns with our goal of
providing Witter as a library which is easily integrable into existing assessment systems.

Several Intelligent Tutoring System (ITS) have been proposed or developed for Java,
supporting feedback generation systems whose goals align with those of our work. An ITS
is a system aiming to emulate a human instructor to provide students with personalised
instruction [48].

Java Sensei [48] is an ITS for the Java language aiming to fully simulate the function
of a human instructor in a programming class by implementing, among other components,
an agent that displays facial expressions as a form of affective feedback for the student.

Similarly, JITS [42], an ITS developed for the Java language, aims to provide students
with an interactive and intuitive learning environment for Java. Interestingly, the focus of
the authors seems to be on aiding students with the process of correcting syntax errors,
and an error correction algorithm was developed to this effect.

Further examples of ITS for the Java language include FIT [18] and J-LATTE [22].
FIT provides students with a development environment where automated feedback on the
current implementation can be requested, and where progress towards a correct solution can
be tracked through the displayed correctness indicators [18]. J-LATTE provides students
with a structured editor, helping to familiarise students with the syntactic structure of the
Java language. Assignments are evaluated by J-LATTE by checking that the student’s
code verifies a given set of constraints [22]. The goals of these systems align with those of
our approach in the sense that they also prioritise student autonomy and creativity, as
opposed to restricting students’ implementations.

While the overall goal of an ITS is much broader than what we consider in our
approach, aiming to provide a full development environment simulating the tasks of a
personalised instructor for each student, the automated assessment and feedback step
could be augmented with the testing capabilities of our proposed library.

While the described approaches and tools provide ample research and development
opportunities, we now explore some shortcomings which can be identified in existing auto-
mated assessment systems when it comes to the technical aspects of their implementation
and the quality and effects of the feedback they provide to programming students.

2.3. Shortcomings of Automated Assessment

Shortcomings can be identified in the two perspectives related to automated programming
assessment - that of the instructor, who has to define the test cases, and that of the
student, whose implementation is subjected to the assessment.

As described in Section 1.1, most automated assessment systems can be augmented
beyond black-box testing by means of specialised languages features such as code instru-
mentation or meta-programming, requiring instructors to be proficient in these domains,
as noted in Paiva et al. [38] and Messer et al. [34]. Moreover, in Vytautas et al. [15], the
authors note that the specific knowledge required to utilise these features leads to them
being unfamiliar to most practitioners that do not specialise in their use.
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Programming instructors additionally describe several challenges pertaining to intro-
ductory programming courses. Namely, instructors state a desire for assessment systems
that allow for further in-class activities to be conducted that guarantee students actively
pursue solutions to their proposed assignments, but that available systems do not allow for
such practices, as found in Mirhosseini et al. [35]. In their study, it is further highlighted
that programming instructors recognise the relevancy and difficulty of utilising assessment
tools that aid in student grading and additionally provide high-quality feedback that
positively contributes to a student’s learning process [35]. It may be of interest to note
that some instructors are strongly opposed to automated assessment, as they consider
the usefulness of feedback given to students to stem from the personal aspect of manual
grading [35]. In our opinion, this is not an argument against automated assessment but
a motivating argument towards automated assessment systems that effectively provide
high-quality feedback for students.

As for students’ perspectives, in Simon et al. [8] the authors find that students of
introductory-level programming courses highlight concerns regarding the clarity of an
assignment’s requirements and submission process, and with the quality of the feedback
they receive for their implementations, whether or not they’re marked as correct. We take
this as further motivation for the implementation of an assessment tool that guides students
during their implementation and provides them with high-quality feedback regarding their
code.

Moreover, the implementation of automated assessment tools with perceived sub-par
functionalities can cause dissatisfaction and negatively impact students. In Sánchez et
al. [43], the authors studied the effect of implementing Mooshak [29]13, an automated
programming assessment and feedback generation tool, in an introductory programming
course. Their research concluded that students expressed significant dissatisfaction with
the quality of the generated feedback, which seemed to be correlated to an increased
workload by the students [43]. We take this as further motivation towards the refinement
of the feedback generated by our proposed library.

2.4. Impact of Feedback in Programming Education

It is well-accepted that timely, high-quality and effective feedback is instrumental in
improving the learning progress of students [35,46]. In general, the learning process of
students in any field can be improved by the introduction of formative feedback, so long
as it is implemented in a manner effective for each particular field [20].

In Fabienne et al. [45], a study was conducted regarding the implementation of
computer-based assessment in higher education, though not specifically for programming
education. Their analysis finds that students tend to pay more attention to instantaneous
or real-time feedback as opposed to delayed feedback, and that students perceived a
positive impact of the availability of instant, detailed feedback on their responses.

13https://mooshak.dcc.fc.up.pt/
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In Lubarda et al. [32], the authors explore the effects on students of automated
instantaneous feedback, among other aspects, in an introductory-level programming course
for engineers. Their study concludes that real-time feedback on assignments was perceived
positively by students in regards to its effect on their learning process, having aided then
in self-assessing their learning process and providing further motivation to improve their
performance during the course. Similar findings were reported in Jansen et al. [25] and
van den Aker et al. [44].

Similarly, in Venables et al. [46], it was found that students were more willing to
self-assess and autonomously improve their own work if they had access to a tool that
could provide instant feedback for their submissions.

Despite their possible benefits, concerns can be raised that students tend to over-rely
on the feedback generated by the automated assessment tools, negatively impacting their
autonomy in the development process. In Mitra et al. [36], the authors voiced this
particular concern and studied the impact of an automated feedback generation tool
from this perspective. In particular, the authors studied whether a tool for automated
assessment and feedback generation discouraged students from autonomously testing their
implementations, and if the tool increased the correctness of the students’ implementations.
Regarding the first concern, their study finds that the introduction of a feedback generation
tools did not seem to hinder students in their acquisition of autonomous software testing
skills. Additionally, their obtained results indicate that the usage of the tool significantly
improved the correctness of students’ implementations.

Another possible benefit pertains to student engagement. In Benotti et al. [3], the
authors found that the usage of a web-based automated assessment tool14 in a programming
class significantly reduced student dropout rates when compared to a semester in which
the same course was conducted without the usage of any automated assessment tools.

One of our main goals with our proposed library is to provide a way to collect information
regarding students’ implementations which can be used to not only guide and improve
their learning and self-assessment process, but also to aid instructors in providing students
with higher-quality, formative feedback and in structuring programming assignments in
such a way that benefits students’ learning process.

14https://mumuki.io/
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CHAPTER 3

Background

In this chapter, we present the underlying concepts and libraries upon which Witter is
built. We offer an overview of the libraries’ concepts and functionality, which form the
basis for the more comprehensive description of our work presented in Chapter 4.

3.1. JavaParser Library

Abstract Syntax Trees (ASTs) are data structures which represent the structure of a
given program or piece of source code written in a programming language. We say
that the syntactic structure represented by these structures is abstract in the sense that
non-structural syntax details are omitted. For example, in Java, the body of a method
must be enclosed in curly brackets and each statement must end in a semicolon. In an
abstract syntactic representation, we only consider that a method has a signature and a
body consisting of a list of statements, and it is thus unnecessary to represent details like
brackets or semicolons. The term tree stems from the fact that each program construct is
represented with a node, and links are added between each node to represent the structure
of the program.

A possible application of ASTs lies in executing programs through abstract syntax
tree interpretation, an approach where an Abstract Syntax Tree is constructed from the
program’s source code, and an interpreter then executes this program by traversing the
structure of the tree and executing the logic associated with each node.

Abstract Syntax Trees can also be used for translating source code between two
programming languages, with the abstraction offered by the AST serving as an intermediate
representation which facilitates the translation of each language construct by enabling a
mapping between individual constructs as they are encountered when traversing the tree.
It is this principle that the Strudel library employs in producing its model of structured
programming languages, which is analysed in further detail in Section 3.2.

JavaParser1 is an open-source Java library implementing a parser for Java source
code. The parser produces an AST of Java code which can be manipulated to analyse or
instrument existing code or programmatically generate new code. As a simple illustrative
example, Figure 3.1b shows the AST produced by the JavaParser library for the source
code present in Figure 3.1a. Note that, as described, syntactic details like delimiters or
grouping parentheses are not explicitly represented in the AST, which only describes the
source code’s structural constructs. Further note that the structure of each node contains
additional information regarding the program, such as specifying the method’s return type

1https://javaparser.org/
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(a) Source Code.
int bar () {

return 42;
}

(b) Abstract Syntax Tree.

Figure 3.1. Example of an AST for the Java language.

as a primitive type identified with the code INT (integer), or that the return value is given
by an integer literal expression with value 42.

We utilise the JavaParser library to parse and generate Abstract Syntax Trees from
Java source code to implement core features of both the Strudel and Witter libraries.
Implementation details of Witter’s usage of JavaParser are described in Section 4.3.

3.2. Strudel Library

Strudel lies at the core of Witter, providing the environment which makes its functionalities
possible. While the original work on Strudel was independent from Witter’s development
and this dissertation, the importance of the library as a base for Witter and the contribu-
tions brought on by the development of our current work make it relevant to describe the
library in further detail.

The general workflow of using Strudel is illustrated in Figure 3.2. We begin by describing
the core concepts and motivating Strudel’s usefulness as an execution environment for
Witter in Section 3.2.1. The process of instantiating program models which can be executed
in Strudel is described in further detail in Section 3.2.2, with a special focus being given
to the parsing and translation of Java source code, where the contributions from the work
described in this dissertation were most extensive. Finally, in Section 3.2.3, we provide
examples of utilising the Strudel library to capture execution information about a program
to illustrate how this information is used within the Witter library.
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Figure 3.2. Workflow of the Strudel library.

3.2.1. Introduction

Strudel is a programming library providing a set of constructs which model concepts of
structured programming, which can be instantiated to produce models of programs. These
models can be used for static analysis, or interpreted to simulate the program’s execution.

Strudel’s internal model provides the necessary constructs for modelling programs
following a structured programming paradigm. The core concepts are described in Figure
3.3, which illustrates the implemented abstractions for modelling control structures along
with procedure definition and invocation.

The hierarchy defined by these abstractions is similar to the usual hierarchy in object-
oriented programming. A module holds a set of procedures which hold a set of variables,
have a return type, and whose bodies constitute blocks. These, in turn, hold a set of
statements, other blocks, or control structures. The latter can constitute selections (if-
else) or loops (while), both of which which hold a guard (condition determining whether
the block should execute) and, in the case of selections, an optional alternative block
(else) which executes if the guard fails.

The return, break, and continue statements function in the same manner as their
Java counterparts, respectively terminating a procedure’s execution, terminating a loop’s
execution, and skipping a loop to its next iteration.

Strudel provides a virtual machine that executes these abstractions as programs in a
call stack-based environment. The state of a program is thus held in heap memory and a
call stack. The heap holds chunks of memory which correspond either to arrays or records
(object instances). The call stack holds the stack frames associated with each procedure
call, each of which contains the values associated with each variable within the procedure.

The goal of the Strudel library is to provide an environment for fine-grained observation
of code execution events. As such, the virtual machine exposes every aspect of a program’s
execution, allowing listeners to be injected into the execution process to capture information.
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Figure 3.3. Strudel model for control-flow. Names in italics denote ab-
stract concepts.

Namely, Strudel implements a Listener system which currently supports the notification
of the following events:

• Procedure calls and terminations, along with return calls;
• Variable, array element, and field assignments;
• Array and object allocations;
• Array element and object field changes;
• Loop iterations and terminations;
• Expression evaluations;
• Execution errors;
• System output.

This makes Strudel uniquely suited to Witter’s goal of providing a program assessment
tool based on code execution, with Witter thus taking full advantage of Strudel’s virtual
machine for running and capturing information regarding student code. The presence
of a fine-tuned execution environment tailored to Witter’s goals offers a seamless way
to implement our desired features, along with providing fine-tuning and improvement
opportunities that would otherwise be intractable to implement using techniques such as
bytecode instrumentation.

3.2.2. Java Translation

Strudel provides an internal Domain-Specific Language (DSL) that enables the manual
instantiation of the classes which make up its internal model of structured programming.
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However, in order to provide an accessible and practical way of creating program models,
the library implements a translator supporting a subset of Java language features, and
which creates models from Java source code. The translator was implemented using the
JavaParser library, which builds an AST from the provided Java source code that can
then be translated to Strudel’s internal model.

The translation process is straightforward and is achieved incrementally as the AST
generated from the Java source code is traversed. This is achieved by implementing
procedures which provide mappings between the different types of Java statements and
expressions to their corresponding representations in Strudel’s internal model. For example,
the return, break, and continue Java statements are translated to the Return, Break,
and Continue Strudel abstractions, respectively, as illustrated in Figure 3.3.

Firstly, the translator is provided with either raw Java source code or a reference to a
file containing the source code. A Strudel Record type is created to represent each class
contained in the source code. Each field of the class declared in the source code is then
translated to Strudel’s internal model and stored within the corresponding record type.
The type of each field must be translated accordingly, and field initialisers are supported
by injecting each initialisation expression into their declaring record’s constructors.

The translation of a class’s declared procedures is achieved by translating its return type
and parameters, along with sequentially translating each statement in a procedure’s body,
and aggregating the translated statements within a procedure represented in Strudel’s
internal model. Currently, translation is implemented for the following statement types:

• The return and throw statements;
• Conditional statements (if-else);
• Loop statements (while, for, for-each), along with the break and continue

statements;
• Expression statements (e.g. procedure calls, object creation).

As there can be several expressions contained within statements or within other expressions,
their translation is achieved recursively. For example, the translation of a variable
assignment expression x = y + 3 breaks down into:

(1) The translation of the left-hand-side as a variable target expression;
(2) The translation of the right-hand-side as a binary expression which applies the

summation operator to a variable reference expression and an integer literal
expression.

Again, this process is achieved in a simplified manner by implementing a recursive procedure
mapping each Java expression type to its corresponding Strudel abstraction. Currently,
the following expression types are supported:

• Variable, array, and object field assignments;
• Unary expressions (e.g. i++);
• Binary expressions (e.g. i + j)
• Method call expressions;
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• Literal expressions for primitive types (integer, double, boolean, and character),
along with strings and null;

• Array creation, initialisation, and access expressions;
• Object creation and field access expressions;
• Conditional expressions (e.g. Java’s ternary operator, condition ? if : else).

Initially, the scope of Strudel’s supported Java translation features was limited to those
necessary to conform to the test cases then defined. Witter’s development revealed oppor-
tunities to augment Strudel’s translation to broaden the scope of supported assignments,
and contributions were thus made for the translation of field initialisers, foreign Java
procedure calls (e.g. System.out.println), instantiation of foreign objects (e.g. new
java.util.Scanner()), polymorphic Java types (i.e. interfaces), and nested types. Minor
contributions were made for the translation of variable declaration statements containing
multiple variables, the usage of unary increment and decrement operators (i.e. ++ and –)
within array accesses (e.g. a[i++]), and the usage of generic type parameters.

It is relevant to note that the translation process is independent from the interpretation
of Strudel’s internal model, which does not depend on an external language. Strudel itself
is a language-agnostic interpreter, and the current translation module simply enables the
construction of Strudel program models from Java source code, demonstrating Strudel’s
applicability to any adequate programming language and providing a way of running
experiments with Java assignments, enabling us to explore Research Question RQ2. The
extension of Strudel to other structured programming languages should only require the
implementation of a module which translates source code in the target language to an
equivalent representation in Strudel’s internal language model.

3.2.3. Examples

We now provide examples of how Strudel can be used to execute Java source code and to
obtain information regarding the code’s execution.

Consider an example where, after executing a given procedure, we want to know how
many total array positions were allocated. To this effect, we pass the code present in
Figure 3.4a to a Strudel virtual machine unto which we attach a listener that tracks array
allocation events to accumulate the number of allocated positions, as illustrated in figure
3.4b. For simplicity, after the procedure executes, we simply print this number to the
console. The listener attached to the virtual machine being used increments an accumulator
variable with an array’s length every time one is allocated. As such, the allocation of the
two arrays within the considered procedure, of lengths 10 and 20, respectively, lead to the
value 30 being printed in the console when the procedure finishes executing.

Consider now that we want to count the number of loop iterations for a given procedure.
The process for achieving this is similar to the previous example, as we just need to specify
a different listener event to gather the relevant information. For an invocation with the
value 10 passed as the procedure’s argument, we expect the total number of iterations
to be 10, and this is the value printed to the console. We note the possibility of using
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similar methods to construct, for example, a model for the number of loop iterations as
a function of the input size, providing analysis opportunities relevant to fields such as
algorithm analysis.

(a) Java source code (SourceCode.java).
static void foo () {

int [] a = new int [10];
int [] b = new int [20];
a[0] = 5;
b[0] = a[0];

}

(b) Executing Java source code and listening for array allocations.
val vm = IVirtualMachine . create ()
val model = Java2Strudel ().load(File (" path/to/ SourceCode .java "))
var allocatedLength = 0
vm. addListener ( object : IVirtualMachine . IListener {

override fun arrayAllocated (ref: IReference <IArray >) {
allocatedLength += ref. target . length

}
})
vm. execute ( model . getProcedure (" foo "))
println (" Total allocated array positions : $allocatedLength ")

(c) Console output.
Total allocated array positions : 30

Figure 3.4. Example: Tracking array allocations in Strudel.

(a) Java source code (SourceCode.java).
static int bar(int n) {

int i = 0;
for (int j = 1; j <= n; j++) i += j;
return i;

}

(b) Executing Java source code and listening for loop iterations.
val vm = IVirtualMachine . create ()
val model = Java2Strudel ().load(File (" path/to/ SourceCode .java "))
var iterations = 0
vm. addListener ( object : IVirtualMachine . IListener {

override fun loopIteration (loop: ILoop ) { iterations ++ }
})
vm. execute ( model . getProcedure (" bar "), 10)
println (" Total loop iterations : $iterations ")

(c) Console output.
Total loop iterations : 10

Figure 3.5. Example: Tracking loop iterations in Strudel.
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CHAPTER 4

Witter Library

We explore research question RQ1 by implementing Witter, a software library which
aims at providing a testing tool for introductory programming exercises in Java. In this
Chapter, we describe the library’s structure and how it can be used to assess programming
exercises. We finish by discussing the technical aspects of the library’s implementation.

4.1. Overview

In Witter, instructors provide reference code solutions to assignments, which constitute
the reference solutions used to evaluate students’ code. Instructors can define test cases
based on these reference solutions through two alternative methods:

(1) By annotating the reference solution directly using Witter’s test specification
language, as described in Section 4.2.1.

(2) By using Witter’s domain-specific language (DSL) to define test cases program-
matically, as described in Section 4.2.2.

Students, in turn, simply need to submit solutions that are compared against the reference
solutions using runtime metrics, such as the measuring of executed operations or allocated
memory. The general workflow for using Witter is illustrated in Figure 4.1.

Figure 4.1. Workflow of the Witter library. Components in grey are
dependencies from external libraries (Strudel).
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Table 4.1 presents the set of metrics we currently support. Note that outputs of functions
are also measured, to allow for regular black-box testing, while all the other items are
mostly useful for white-box testing. As Witter runs on Strudel, an execution environment
that supports the dynamic collection of the described metrics or their constituent parts, no
static analysis is needed for these measurements. The optional parameter threshold that
some annotations have is useful to tolerate slight deviations from the reference solution
(most often ±1). If not specified, the threshold value is zero.

As Witter is designed for third-party integration, we provide a form of executing the
tests programmatically. Tests are executed either by providing an annotated reference
solution or a test suite defined using the DSL, and a solution that one wishes to assess.
The specific method of running tests defined either using annotated code solutions or
through Witter’s DSL are described in Sections 4.2.1 and 4.2.2, respectively.

Table 4.1. Runtime metrics and corresponding test specification annota-
tions.

Metric Annotation Verification
Return values @Test([...args]) Return value is equal to ref-

erence solution. Multiple an-
notations can be used.

Side effects @CheckSideEffects Side effects on arguments
(presence and absence) are
the same to those of the ref-
erence solution.

Loop iterations @CountLoopIterations([threshold]) Total number of loop itera-
tions matches the one of the
reference solution.

Array allocations @CheckArrayAllocations The array allocations match
those of the reference solu-
tion (component types and
lengths).

Array reads @CountArrayReads([threshold]) The number of array read
accesses is the same as in
the reference solution.

Array writes @CountArrayWrites([threshold]) The number of array write
accesses is the same as in the
reference solution.

Object allocations @CheckObjectAllocations The number of object alloca-
tions and their types match
those of the reference solu-
tion.

Recursive calls @CountRecursiveCalls([threshold]) The number of recursive
calls matches the one of the
reference solution.

24



The test results produced by Witter consist of a list of feedback items for each aspect
defined in the test specification, holding the following information:

• A flag indicating success or failure;
• Which kind of metric has failed (recall Table 4.1);
• The location of code elements involved in the failed tests (e.g., procedure, param-

eters, loop structures);
• A human-readable descriptive feedback message.

The implementation of two alternative test specification methods is due to the fact that
many typical introductory programming assignments require the implementation of object-
oriented solutions such as data structures. Appropriate testing for this kind of exercise
would require tests that perform a sequence of several assertions over the same object or
interaction between different objects. Witter’s DSL is more appropriate for this kind of
problem, which would be considerably difficult to reliably tackle purely using annotated
code solutions. For simple static procedure testing, the process of defining tests using the
DSL can be avoided by simply annotating a reference solution.

4.2. Test Specification

4.2.1. Annotated Code Solutions

One can define the test cases for a given exercise by writing a reference solution in a Java
method, annotated with a header comment that defines the different test inputs and the
metrics that should be measured during test execution. The content of the comments has
to obey Witter’s code annotation syntax, which is similar to Java’s annotation syntax.
The test specification relying on purely textual comments, as opposed to adopting regular
annotations, is intended to simplify the process by not requiring external annotation types,
while also giving more freedom with respect to the type of content in the annotations.

Figure 4.2a illustrates an example of specifying a Witter test for a simple function that
calculates the sum of an array of integers. The @Test annotation serves the purpose of
a black-box test case, containing the arguments that should be passed when executing
the method for a single test case. The arguments are enclosed in parentheses and follow
Java’s usual syntax. When comparing solutions, all the defined runtime metrics will be
checked independently for each of these test cases.

We now present examples of how Witter’s white-box testing functionalities using
annotated code solutions could be used to assess typical introductory programming
assignments. For each example, we present a reference solution, a hypothetical solution to
test, and Witter’s test result output when doing a console-based usage. Note that if using
Witter programmatically, one may inspect the feedback details in isolation and obtain
more information than what is presented here.

Factorial (Recursive). Consider the classical example of a recursive implementation of
the factorial function as an exercise (see Figure 4.3a). In this case, the test specification
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(a) Test specification example.
/*
@Test ({1, 2, 3, 4, 5})
@Test ({2, 4, 6})
@CountLoopIterations
@CountArrayReads
@CheckSideEffects
*/
public static int sum(int [] a) {

int result = 0;
for (int i = 0; i < a. length ; i++) {

result = result + a[i];
}
return result ;

}

(b) Testing an arbitrary solution against a reference solution.
Test test = new Test(" ReferenceSolution .java");
List <TestResult > results = test. execute (" Solution .java");

Figure 4.2. Witter API for test specification and execution using anno-
tated code solutions.

only has a single test case (@Test), and we impose the restriction that the solution must
be implemented recursively @CountRecursiveCalls, tolerating a deviation of one call.

We present a hypothetical incorrect solution (see Figure 4.3b), where not only was the
algorithm implemented iteratively, but the iteration was defined to start at an incorrect
value, leading to an incorrect result.

In this example, we simultaneously demonstrate Witter’s both black and white-box
functionalities. Figure 4.3c presents the test output, where one can see that both aspects
of the same test case fail. As in tools like JUnit, we present the expected values and the
ones that were found.

Binary Search (Iterative). Consider an exercise for implementing a binary search over
an array of integers that returns the array index where the number is stored, or -1 otherwise
(see Figure 4.4a). The test specification defines two test cases, one positive and one negative.
In contrast to the previous example, here we aim at an iterative implementation, and
hence, we check if the number of loop iterations matches (@CountLoopIterations). We
also check if the implementation has no side effects (@CheckSideEffects).

We present a hypothetical incorrect solution (see Figure 4.4b), which despite producing
the same result (black-box test), is performing a linear search. Therefore, in this sort of
situation, as the incorrectness is not as easily noticeable as when a functional test fails, a
student could easily proceed to the next exercise given that the expected result matches.

Even though the test results indicate that both cases have the expected result (see
Figure 4.4c), they both fail with respect to the number of expected loop iterations. When
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no side effects are expected, and the solution under testing also has no side effects, Witter
does not report a successful test. A failing test would be given only in case of a mismatch.

Insertion Sort (Procedure). Consider an exercise to implement the insertion sorting
algorithm as a procedure that modifies an array of integers (see Figure 4.5a). Here we
want to check that the side effects (array becomes sorted) match those of the reference
solution (@CheckSideEffects). As there are several sorting algorithms the student could
implement, in this case, we aim at checking that the behavior of the solution under testing
actually performs insertion sorting. We achieve this by counting the number of array
accesses (@CountArrayReads and @CountArrayWrites).

We present a hypothetical incorrect solution (see Figure 4.5b), which performs a correct
sorting, but through the selection sorting algorithm. As with the previous example, a
student providing such a working solution may miss the point of the exercise if only
black-box tests are performed.

The test output will indicate that the sorting result is correct (expected side effects),
but it will also report the mismatches in both array reads and writes, an indication that
the intended algorithm implementation is not correct.

(a) Reference solution with recursion.
/*
@Test (5)
@CountRecursiveCalls (1)
*/
static int factorial (int n) {

if (n == 0) return 1;
else return n * factorial (n - 1);

}

(b) Solution under testing (iterative, with a defect).
static int factorial (int n) {

int f = 1;
for (int i = 0; i <= n; i++)

f *= i; // i starts at 0, f always 0
return f;

}

(c) Witter test results (black-box and white-box fail).
[fail] factorial (5)

Expected result : 120
Found: 0

[fail] factorial (5)
Expected : 4 recursive calls (± 1)
Found: 0

Figure 4.3. Example: factorial testing using an annotated solution in
Witter.
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(a) Reference solution using binary search.
/*
@Test ({1, 2, 3, 4, 5, 6, 7}, 1)
@Test ({1, 3, 7, 9, 11, 13, 17, 19}, 18)
@CountLoopIterations
@CheckSideEffects
*/
static int binarySearch (int [] a, int e) {

int l = 0;
int r = a. length - 1;
while (l <= r) {

int m = l + (r - l) / 2;
if (a[m] == e) return m;
if (a[m] < e) l = m + 1;
else r = m - 1;

}
return -1;

}

(b) Solution under testing (performing linear search).
static int binarySearch (int [] a, int e) {

for (int i = 0; i < a. length ; i++)
if (a[i] == e) return i;

return -1;
}

(c) Witter test results (black-box pass, white-box fail).
[pass] search ([1, 2, 3, 4, 5, 6, 7], 1)

Expected result : 0

[fail] search ([1, 2, 3, 4, 5, 6, 7], 1)
Expected : 3 loop iterations (± 0)
Found: 1

[pass] search ([1, 3, 7, 9, 11, 13, 17, 19], 18)
Expected result : -1

[fail] search ([1, 3, 7, 9, 11, 13, 17, 19], 18)
Expected : 4 loop iterations (± 0)
Found: 8

Figure 4.4. Example: binary search testing using an annotated solution
in Witter.

4.2.2. Domain-Specific Language

In order to tackle the inherent difficulty of supporting the assessment of object-oriented
implementations through annotated code solutions, we implemented an internal DSL
in Kotlin providing a programmatic way for defining stateful test cases. We consider
that a simple DSL requires less effort from instructors for defining test cases for student
assignments, as the only required knowledge is that of the DSL’s syntax, as opposed to
knowledge on specialised topics like code instrumentation or meta-programming.
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(a) Reference solution performing insertion sort.
/*
@Test ({5, 4, 3, 2, 1})
@CountArrayReads
@CountArrayWrites
@CheckSideEffects
*/
static void sort(int [] a) {

for (int i = 1; i < a. length ; i++) {
for (int j = i; j > 0; j--) {

if (a[j] >= a[j - 1]) break ;
int tmp = a[i];
a[i] = a[j];
a[j] = tmp;

}
}

}

(b) Solution under testing (performing selection sort).
static void sort(int [] a) {

for (int i = 0; i < a. length - 1; i++) {
int min = i;
for (int j = i + 1; j < a. length ; j++)

if (a[j] < a[min ]) min = j;
int tmp = a[i];
a[i] = a[min ];
a[min] = tmp;

}
}

(c) Witter test results (black-box pass, white-box fail)
[pass] sort ({5, 4, 3, 2, 1})

Expected side effects : {1, 2, 3, 4, 5}

[fail] sort ({5, 4, 3, 2, 1})
Expected array reads: 40
Found: 28

[fail] sort ({5, 4, 3, 2, 1})
Expected array writes : 20
Found: 8

Figure 4.5. Example: insertion sort testing using an annotated solution
in Witter.

Figure 4.6 illustrates Witter’s DSL with a test suite for list data structures, containing
two test cases. These test cases can be configured to use any number of white-box metrics
either throughout the test or within a bounded scope (using directive). As in the initial
version of Witter, the supported evaluation metrics, whose usage within the DSL is
summarised in Table 4.2, can be optionally instantiated with a margin parameter that
specifies an acceptable deviation interval from the reference value, in order not to constrain
students’ code to a single, rigid solution.
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Table 4.2. DSL runtime metrics.

Metric Usage
Loop Iterations CountLoopIterations([margin] )
Array Reads CountArrayReadAccesses([margin] )
Array Writes CountArrayWriteAccesses([margin] )
Recursive Calls CountRecursiveCalls([margin] )
Object Allocations CheckObjectAllocations()
Array Allocations CheckArrayAllocations()
Side Effects CheckSideEffects()

val tests = TestSuite ( referencePath = "path/ reference /List.java ") {
Case (" testContains ") {

// Create new object and store a reference to it
val list = ref { new (" List ") }

// Executed without white -box metrics (black -box only)
list.call (" size ") // 0
list.call (" add", " hello ")
list.call (" size ") // 1
list.call (" add", " world ")
list.call (" size ") // 2

using ( CountLoopIterations () + CountArrayReadAccesses ()) {
// These calls compare loop iterations
list.call (" contains ", "hello ") // true
list.call (" contains ", " algorithm ") // false

}
}

// All the calls within this case compare loop iterations
Case( CountLoopIterations (), " testIsEmpty ") {

val list = ref { new (" List ") }
list.call (" isEmpty ", expected = true)
list.call (" add", " hello ")
list.call (" isEmpty ", expected = false )

}
}

Figure 4.6. Witter’s DSL syntax. Example Test Suite for a list data
structure comprising the operations add, contains and isEmpty.

An object can be created using the new directive by passing the name of the class to
instantiate followed by a list of arguments to one of the class constructors. References to
the created objects can be stored using ref. Class methods can be invoked by using the
call directive on a previously declared reference. A sequence of these directives defines a
stateful test case.

The call directive is used by specifying the name of the method to be invoked and a
list of arguments. We may use the “dot notation” to perform calls on instance methods
given its reference (ref.call(...)), as opposed to calling an instance method by passing
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its reference as the first argument (call("methodName", ref, ...)). For every call, the
return values of the evaluated method are compared to the reference solution, allowing for
regular black-box testing. Additionally, if the optional expected argument is passed, Witter
will assert that both the reference solution and the solution under evaluation produce
the expected result. This verification allows educators to assert that their solution works
as expected, preventing the accidental usage of a faulty reference solution as the ground
truth for evaluating students’ implementations.

An automated assessment system may import Witter as a third-party library. In this
example we are merely displaying the objects of the test results to the console, but these
can be inspected for custom reporting, depending on the assessment system.

We now present examples of how Witter’s DSL can be used to test typical introductory
programming assignments. We present a reference solution for each example, along with
hypothetical solutions under testing, the tests defined using the DSL, and Witter’s output
in a console-based environment.

Array Average (Procedure). Consider an assignment where a student must implement
a function for calculating the average of an array of double values (see Figure 4.7a). We
wish to assess not only the correctness of the produced result, but also that of the algorithm
behaviour by checking that the number of loop iterations matches that of the reference
solution (CountLoopIterations). We thus apply the tests defined using Witter’s DSL, as
illustrated in Figure 4.7b, to a hypothetical incorrect solution which does not consider
the first element of the array (see Figure 4.7c). We can see from the results in Figure
4.7e that white-box testing is especially useful in cases where the results produced by an
implementation are correct despite incorrect algorithm behaviour.

Stack (Data Structure). We now illustrate Witter’s data structure procedure testing
functionalities using the presented DSL. Consider an assignment given to students which
specifies they must implement a Stack data structure. We impose the restriction of
the size method, which counts the number of items in the array, executing in constant
time and requiring no array access operations. For simplicity, we consider an array of
integers. The ideal solution is to add an integer attribute to the Stack type which tracks
the number of elements as they are added to and removed from the data structure, as
illustrated in Figure 4.8a. We present in Figure 4.8c a hypothetical incorrect solution,
wherein the student did not implement such an attribute, and instead iterates through
the Stack’s internal array to count the number of non-zero elements. Note that the
class implementation is ommitted for presentation in this dissertation, and only the size
method is presented. We thus evaluate their solution by applying the tests defined in
Figure 4.8b, which compare not only the result of invoking the student’s size function but
also considers the number of loop iterations (CountLoopIterations) and of array read
operations (CountArrayReadAccesses). The test outputs, shown in Figure 4.8d, show
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that the student’s solution followed incorrect algorithm behaviour even though a correct
result was produced.

(a) Reference solution (Average.java).
static double average ( double [] a) {

double sum = 0.0;
for (int i = 0; i < a. length ; i++)

sum += a[i];
return sum / a. length ;

}

(b) DSL test suite.
val tests = TestSuite (" path/to/ reference / Average .java ") {

Case( CountLoopIterations ()) {
call (" average ", listOf (1 ,2 ,3 ,4 ,5) , expected = 3.0)
call (" average ", listOf (0 ,2 ,3 ,5 ,7) , expected = 3.4)

}
}

(c) Solution under testing (Solution.java) — with a defect, starting at index 1.
static double average ( double [] a) {

double sum = 0.0;
for (int i = 1; i < a. length ; i++)

sum += a[i];
return sum / a. length ;

}

(d) Invoking the execution of a test suite to a solution under evaluation.
val results : List < ITestResult > = tests .apply (

subjectPath = "path/to/ Solution .java"
)
results . forEach { println (" $it\n") }

(e) Output of the test results.
[fail] average ([1, 2, 3, 4, 5])

Expected : 3.0
Found : 2.8

[fail] average ([1, 2, 3, 4, 5])
Expected loop iterations : 5
Found : 4

[pass] average ([0, 2, 3, 5, 7])
Expected : 3.4

[fail] average ([0, 2, 3, 5, 7])
Expected loop iterations : 5
Found : 4

Figure 4.7. Assignment evaluation scenario using Witter’s API.
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(a) Reference solution’s size method (StackReference.java).
public int size () {

return this.size; // Auxiliary integer attribute
}

(b) DSL Test Suite.
val tests = TestSuite (" path/to/ reference / StackReference .java ") {

Case {
val stack = ref { new (" Stack ", 5) }
call (" push", stack , 1)
call (" push", stack , 2)
call (" push", stack , 3)
using ( CountLoopIterations () + CountArrayReadAccesses ()) {

call (" size", stack , expected = 3)
}

}
}

(c) Solution under testing with a defect — counts non-zero items individually (StackSolution.java).
public int size () {

int s = 0;
for (int i = 0; i < stack. length ; i++)

if (stack[i] != 0)
s += 1;

return s;
}

(d) Test results.
[pass] size(Stack (stack =[1, 2, 3, 0, 0], size =3))

Expected : 3

[fail] size(Stack (stack =[1, 2, 3, 0, 0], size =3))
Expected loop iterations : 0
Found : 5

[fail] size(Stack (stack =[1, 2, 3, 0, 0], size =3))
Expected array reads : 0
Found : 5

Figure 4.8. Stack (data structure) testing using Witter’s DSL.

4.3. Implementation

As mentioned in Chapter 3, Witter utilises Strudel as an execution environment for both
the reference solutions and the solutions under testing. The evaluation is achieved by
implementing a listener for the Strudel virtual machine that collects and aggregates the
necessary information from the relevant virtual machine events. As both the reference
solution and the students’ code are executed, this listener captures code execution events
and stores the data for each metric for each executed test case. This allows Witter to
maintain a data structure which maps each executed procedure within a test case to its
corresponding runtime metric data (e.g. the number of loop iterations, etc.), enabling
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grammar TSL; // Test Specification Language

specification : ( annotation ( annotation )*)? EOF;

annotation :
’@Test ’ ’(’ args =( TEST_ARGUMENTS | INTEGER ) ’)’
| ’@CountLoopIterations ’ (’(’ margin = INTEGER ’)’)?
| ’@CheckObjectAllocations ’
| ’@CheckArrayAllocations ’
| ’@CountArrayReads ’ (’(’ margin = INTEGER ’)’)?
| ’@CountArrayWrites ’ (’(’ margin = INTEGER ’)’)?
| ’@CheckSideEffects ’
| ’@CountRecursiveCalls ’ (’(’ margin = INTEGER ’)’)?
;

INTEGER : [0 -9]+;

IDENTIFIER : [a-zA -Z_$ ][a-zA -Z0 -9 _$ ]*;

TEST_ARGUMENTS : TEST_ARGUMENT ( TEST_ARGUMENT )*;
TEST_ARGUMENT : ~( ’(’ | ’)’ | ’\n’ | ’\r’);

IGNORE : ( WHITESPACE | COMMENT | NEWLINE ) -> skip;
fragment NEWLINE : ’\n’ | ’\r’ | ’\r\n’;
fragment WHITESPACE : (’ ’ | ’\t’)+;
fragment COMMENT : ’#* ’ .+? ’*# ’;

Figure 4.9. ANTLR grammar for code annotation syntax.

the comparison between procedures for both solutions. Once the execution has finished,
Witter utilises this data structure to construct the test result messages for each executed
test case by comparing the measured values relating to the reference solution and the
student’s solution.

The language for annotating code solutions is implemented by a two-step parsing and
translation process. A simple grammar was defined using ANTLR1, a parser generator
library, so that the annotations could be parsed and subsequently translated to Witter’s
own internal model for representing test specifications. This grammar is presented in Figure
4.9. The translation process parses and translates each annotation and its respective
arguments, with the exception of the arguments of the @Test annotation, which are
temporarily stored as simple strings. These are parsed by the JavaParser library, and in
turn, translated to Strudel’s model for passing the arguments to the execution process.

The DSL is implemented in Kotlin using features such as function literals with re-
ceivers2 and type-safe builders3. These features enable the implementation of DSLs in a
semi-declarative way, allowing the syntax of Witter’s DSL to resemble that of a usual
programming language, aligning with our goal of providing instructors with a low-effort
way to specify test cases.

1https://www.antlr.org/
2https://kotlinlang.org/docs/lambdas.html
3https://kotlinlang.org/docs/type-safe-builders.html
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Internally, Witter represents the information regarding test case specifications using a
set of constructs which define the abstract syntax of what could be considered a simple
programming language, which we refer to as Witter’s Test Specification Language. Both
the comments used to annotate code solutions and the DSL serve as front-end syntaxes
for instantiating this language. Witter, in turn, acts as an interpreter which executes the
testing directives specified and applies them to the solution under testing.

Currently, Witter’s testing functionality supports instantiating objects and their ma-
nipulation through instance methods, as well as the invocation of static methods present
in the code under evaluation. The results of invoking procedures and creating objects can
be stored in variable references, which can be used to chain these calls in order to specify
stateful testing scenarios.

The implementation of the test specification language is tailored towards a balance
between the robustness and simplicity of test specification. The possibility of chaining
procedure calls and nesting test cases unlocks the possibility of minimising the code
necessary to define sets of test cases offering good coverage of what is standard to assess in
static or object-oriented contexts of introductory programming. Furthermore, a structured
internal model for representing test specifications enables the potential to create additional
front-end syntaxes for instantiating these specifications, should such prove relevant in any
future work regarding the library.
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CHAPTER 5

Evaluation

In order to explore an answer to Research Question RQ2, we conducted an experiment
using the proposed DSL to evaluate student assignments. Moreover, the application of
a set of real student submissions allows us to evaluate Witter’s coverage of supported
Java language features in the context of introductory programming. We now describe the
context and methodology of this evaluation, and present its results.

5.1. Context

We collected a set of 2,389 student assignment submissions spanning two offerings of the
Algorithms and Data Structures course taken by first year undergraduate students of
Computer Science and Engineering and related bachelor’s degrees. The submission process
was independent from our approach, hence no constraints were posed regarding Witter’s
limitations. For this reason, some submissions could not be handled. We analyzed five
distinct assignments with the following guidelines:

(1) Implement three different classes, each solving the dynamic connectivity (union-
find) problem using different approaches: Quick-Find, Quick-Union, and Weighted
Quick-Union with Path Compression.

(2) Implement a Queue data structure supporting the String data type. Use a circular
resizing array implementation to store the data internally without needing to
limit the queue’s memory capacity a priori.

(3) Implement an optimised version of the Insertion Sort algorithm which executes
fewer array access operations by avoiding swap operations and instead shifting
elements directly one position to the right as needed.

(4) Implement a generic List data structure utilising a dynamic sequence of simply-
linked nodes internally to store elements.

(5) The implementation of the Heap Sort algorithm seen in the lectures assumes
the array indices begin at 1. Modify the algorithm’s implementation to support
sorting arrays starting at index 0.

Each assignment was given to students in this order throughout the semester. The
guidelines were translated from Portuguese, which included more API details that have
been truncated for presentation in this paper.

Table 5.1 presents the number of valid submissions used for evaluating the DSL for
each assignment. We consider a submission to be valid if the submitted file matches the
name and extension indicated in an assignment’s guidelines, and if Java can successfully
compile the source code. The inconsistent number of submissions is explained by two
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Table 5.1. Number of student submissions used for evaluating Witter’s
DSL.

Assignment Description Total Valid
A1 Dynamic Connectivity 584 424 (72.6%)
A2 Resizing Array Queue of Strings 573 490 (85.5%)
A3 Improved Insertion Sort 212 120 (56.6%)
A4 Generic Linked List 550 476 (86.5%)
A5 Heap Sort 470 266 (56.6%)

2389 1776 (74.3%)

factors: our observations of a growing rate of absenteeism as the semester progresses; and,
every assignment being present in the two course offerings considered except assignment
A3, which was only present in a single offering.

5.2. Method

Figure 5.1 presents the test specifications for each assignment using Witter’s DSL. Each
student submission was evaluated using Witter through the corresponding test specifica-
tion, and the results of the evaluation were processed to find cases where the student’s
implementation passed black-box tests but failed white-box tests. Given the nature of the
chosen assignments, the evaluation focused on the metrics for counting loop iterations,
array read and write access operations, allocated memory (for resizing array operations),
and argument side effects (for checking whether sorting algorithms effectively sorted the
input array).

In order to assess Witter’s suitability for large-scale assessment processes, we measure
the average execution time for the evaluation of each submission. The execution took
place in a laptop system with a 12-core 2.6GHz Intel i7-9750H CPU and 16GB of RAM.
While a completely isolated simulation is impossible in a standard system, care was taken
to minimise the impact of other operating system processes on the performance of Witter’s
execution.

It is usually the case that computer engineering students have a general propensity
to cheat in programming assignments [1]. We took this factor into consideration during
Witter’s evaluation by running plagiarism analysis on all student submissions using JPlag1,
a plagiarism checking tool resistant to a broad range of obfuscation techniques and which
provides easily-interpretable results of its analysis [40,41]. While a connection between
plagiarism checking and white-box assessment has not been observed, we include this
analysis as a means to safeguard our evaluation against possible accidental biases stemming
from students having plagiarised the same incorrect sources (e.g. copying from a fellow
classmate who made mistakes). The results of this analysis are given in Section 5.3, with
Table 5.3 providing an overview of the code similarity between the students’ submissions
for each assignment.

1https://github.com/jplag/JPlag
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(a) Test specification for assignment A1.
Case( CountLoopIterations (1) + CountArrayWriteAccesses (1) +
CountArrayReadAccesses (1)) {

val uf = ref { new (" QuickFindUF ", 100) }
val connected = mutableListOf <Pair <Int , Int >>()
(1 .. 100). forEach { _ ->

val p = (100 * random ()). toInt ()
val q = (100 * random ()). toInt ()
uf.call (" union ", p, q)
connected .add(Pair(p, q))

}
connected . forEach { uf.call (" connected ", it.first , it. second ) }

}

(b) Test specification for assignment A2 (excerpt).
Case( CountLoopIterations (1) , " testDequeue ") {

val queue = ref { new (" Queue ") }
queue .call (" enqueue ", " witter ")
queue .call (" enqueue ", "is ")
queue .call (" enqueue ", "cool ")
queue .call (" dequeue ")
queue .call (" dequeue ")
queue .call (" dequeue ")

}
Case( CountLoopIterations (1) + CountMemoryUsage ()) {

val queue = ref { new (" Queue ") }
(1..100) . forEach { queue .call (" enqueue ", it. toString ()) }

}

(c) Test specification for assignment A4 (excerpt).
Case( CountLoopIterations (2) + CheckObjectAllocations , " testSize ") {

val list = ref { new (" List ") }
list.call (" size ")
list.call (" add", " hello ")
list.call (" size ")
list.call (" add", " world ")
list.call (" size ")

}

(d) Test specification for assignments A3 and A5.
Case( CheckSideEffects + CountLoopIterations (1) +
CountArrayWriteAccesses (1) + CountArrayReadAccesses (1)) {

call (" sort", listOf (1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
call (" sort", listOf (7, 3, 2, 1, 5, 6, 10, 8, 9, 4))
call (" sort", listOf (7.32 , 3.14 , 2.14 , 1.93 , 5.99 , 6.74 , 10.21 ,

8.84 , 9.26 , 4.56))
call (" sort", listOf (" sorting ", " algorithms ", "are", " really ",

"very", "cool "))
call (" sort", listOf (10, 9, 8, 7, 6, 5, 4, 3, 2, 1))

}

Figure 5.1. Test specifications for the evaluated assignments (A1–5).
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Table 5.2. Number of black-box and white-box passes and failures for
loaded submissions. Loaded submissions are given as a % of the Valid
submissions, and Passes/Failures are given as a % of the Loaded submissions.
Execution Time is the average over all submissions of the corresponding
assignment.

Assignment Valid Loaded Blackbox Pass Whitebox Fail Time
A1 424 413 (97.4%) 407 (98.5%) 79 (19.1%) 850 ms
A2 490 433 (88.4%) 391 (90.3%) 98 (22.6%) 300 ms
A3 120 110 (91.7%) 107 (97.3%) 49 (44.5%) 20 ms
A4 476 347 (72.9%) 347 (100%) 32 (9.22%) 100 ms
A5 266 233 (83.8%) 221 (99.1%) 58 (26.0%) 30 ms

1776 1526 (85.9%) 1473 (96.5%) 316 (20.7%)

5.3. Results

Table 5.2 summarizes the evaluation results. Witter successfully loaded a total of 1,526
student submissions from the 1,776 valid submissions described in Table 5.1, constituting
approximately 86% of all valid submissions. For these, all the assignments had a black-
box tests pass rate greater than 90%. However, the white-box tests failure rate ranged
approximately between 9% and 45%, with assignment A4 exhibiting the largest failure
rate.

Witter failed to load 250 student submissions, which constitutes approximately 14.1%
of the valid submissions. This limitation stems for the Java translation module used
by the Strudel library, which does not implement translation features for the complete
Java language specification. Additionally, the JavaParser library does not support some
features of more recent Java versions which were used by some students, such as switch
statements.

Figure 5.2 presents the distribution of white-box metrics that produced failures in each
assignment. Approximately 50% of failed assertions for assignment A1 were caused by an
incorrect number of array read operations, with the majority of the remaining errors relating
to an incorrect number of array write operations. Out of the considered metrics, assignments
A2, A3, and A5 contained white-box errors relating to the number of loop iterations and
array read and write operations, the proportion of which are approximately equal, each
constituting approximately one third of each assignment’s detected errors. Assignment
A4 produced the simplest results, with all failed assertions relating to the number of loop
iterations. While a comprehensive analysis of all student submissions with white-box test
failures was not conducted, a brief view of those submissions for assignment A3 seemed to
indicate that students might somewhat struggle with understanding the overall goal of
the assignment, with many having implemented the base Insertion Sort algorithm with
minor syntactic differences as opposed to implementing the desired algorithmic behaviour
changes. Some submissions also indicate some difficulty in thinking of array traversals with
0-based indices, especially when multiple loop variables are interdependent, in particular
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Figure 5.2. Ratio of each white-box failure type per assignment.

indicating that some students have trouble discerning where to start and end their loops in
a way that avoids out-of-bounds exceptions occurring when nested iterations are required.

Of the considered white-box metrics, those whose measured values are integers, namely
loop iterations, array read operations, and array write operations, have a numerical margin
of error relative to the reference solution within which submissions must lie to be considered
correct, as described in Section 4.1. This enables us to analyse the amount by which, for
each metric, each failed assertion on students’ submissions deviated from the respective
reference solution. We thus present in Figure 5.3 the distributions of these deviations. Note
that some data had to be filtered from this visualisation, as some submissions presented
apparent errors relating to the white-box metrics but which were in truth caused by the
students’ code exceeding the Strudel virtual machine’s loop iteration limit, effectively
being timed out. Nevertheless, the valid data is significant enough to observe that, for
assignments A2 and A4, the devations from the reference solutions are considerably
low, while for the remaining assignments, some of the evaluated metrics deviated by a
considerable margin from the reference solution, indicating implementations which are
significantly different from the intended solutions.

Our suspicions regarding code similarity were confirmed by JPlag’s analysis, with
the average similarity between submissions ranging approximately from 20% to 64%,
as summarised in Table 5.3. While an average code similarity between submissions of
approximately 20%, as for assignment A3, can fall within reasonable expectations for an
assignment of this scope, values of 44% or 61% average similarity, as seen for assignments
A5 and A1, respectively, begin to raise concerns of considerable plagiarism and how it
can affect the results of our analysis. Care should be taken in future work to guarantee
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Figure 5.3. Deviations from reference solution for each failed assertion for
each white-box metric. Submissions which failed because they exceeded the
virtual machine’s iteration limit (timed out) are not illustrated.

that code similarity does not skew the results by introducing an accidental bias relating to
students unknowingly plagiarising from incorrect sources.

Table 5.3. Average submission code similarity per assignment.

Assignment Average ± Std. Dev.
A1 64.2 ± 20.0%
A2 25.7 ± 17.5%
A3 19.8 ± 17.6%
A4 22.6 ± 14.0%
A5 44.1 ± 24.0%

The results of the evaluation show that a considerable number of students produce
faulty implementations when it comes to algorithmic behaviour, which would go unnoticed
by an evaluation process focusing only on the results produced by the students’ code.
Even the assignment which contained the least faulty implementations, assignment A4,
shows that 32 students, which is a significant amount, could be misled by a black-box-only
assessment process. Furthermore, in assignment A3, which required arguably the most
originality (as further indicated by the lowest average code similarity among the considered
assignments) in developing an alternative version of a standard algorithm, we saw a
44.5% failure rate, which constitutes nearly half of all considered submissions. We can
thus conclude that the usage of an assessment tool which provides information about
the execution of students’ implementations is useful, not only from the perspective of an
instructor aiming to accurately grade student submissions, but also to prevent misleading
students by informing them of the correctness of their implementation’s results regardless
of how those results were produced.
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The evaluation further allows us to observe that our current work on Witter and
Strudel displays an acceptable coverage of standard Java constructs and language features,
as seen by the overall 85.9% successful file loading rate seen during the evaluation phase,
and the 72% or higher file loading rate within each assignment. Nevertheless, further work
should be carried out to extend the scope of supported functionalities and therefore enable
the usage of more diverse assignments for a more detailed evaluation.

The average time taken to execute the evaluation of each submission demonstrates
Witter’s acceptable performance for usage in educational contexts, with each submission
taking an average of under one second to be evaluated in the scope of the considered
assignments. We note that the execution time is dependent on the complexity of the
specified tests, with longer or more comprehensive tests corresponding to a longer execution
time. For the considered assignments, we note that the noticeable discrepancy in the
average execution time per submission is due to the fact that some assignments, namely
A1, A2, and A4, perform a higher number of method calls than assignments A3 and A5.
In particular, the test case for assignment A1 executes 200 method calls in total, as shown
in Figure 5.1a. Similarly, one of the test cases for assignment A2, as shown in Figure
5.1b, executes 100 method calls. The test case for assignment A4 executes a total of 28
procedure calls, 5 of which are shown in Figure 5.1c. Finally, assignments A3 and A5 were
evaluated with the simplest test case, with each executing only 5 procedure calls. We thus
observe a clear relation between the number of executed procedure calls per test case and
the average time taken to evaluate each submission.

5.4. Threats to Validity

The main limitations of the evaluation come from the scope (number of student sub-
missions), the context (all students from the same institution), and the selected dataset
(limited scope of assignments). Care should thus be taken in any subsequent evaluations
to address these limitations. For instance, taking Strudel’s supported functionalities into
account during the submission process, for example by developing assignment guidelines
such that the required Java language features fall within Strudel’s currently-supported
subset of Java, or by placing stronger focus on assignments’ specific algorithm behaviour
requirements, could provide a larger usable dataset of submissions, enabling a more
significant evaluation.

When collecting student assignments, we observed that a significant portion of the
required solutions was provided almost directly in the available course materials, which
could hinder student originality by motivating them to simply replicate or complete (partial
or full) solutions which are already available, which could skew the results of our evaluation.
This might already be visible in the considerable average similarity of the submissions for
some assignments. Care should be taken to mitigate this in our future work, possibly by
conducting a more controlled submission process (e.g., assignments solved by students in
class under instructor supervision).
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CHAPTER 6

Conclusions

The development of the work described in this dissertation was motivated by the iden-
tification of an important problem in the field of automated programming assessment.
Namely, existing automated assessment tools suffer from limited functionality when it
comes to the evaluation of students’ submissions from dynamically-collected execution data.
We hypothesised that an assessment tool enabling the collection of white-box execution
data from students’ submitted code solutions could serve to benefit existing automated
assessment systems, and consequently proposed Research Questions RQ1 and RQ2 to
assess the validity of this hypothesis.
We arrive at a positive answer to Research Question RQ1 through our successful im-
plementation of Witter, as seen in Section 4.1. Our implementation demonstrates the
feasibility not only of implementing a software library that aligns with our proposed goals
of providing an easy-to-use augmentation tool for current assessment systems, but also
one which does so in an effective manner and is thus adequate for usage in educational
environments. Being provided as a software library implemented in Kotlin, Witter is
straightforward to integrate into JVM-based automated assessment systems. The scalabil-
ity of our implementation is shown by its usage of Strudel, which provides an infrastructure
capable of being adapted to other programming languages, provided that a translation
module for that language can be developed.

When it comes to Research Question RQ2, the application of Witter to real student
assignments offers practical insights that successfully motivate the usefulness of a tool
like Witter in introductory programming contexts. Namely, we observe that a significant
number of standard student submissions could be subject to erroneous evaluations if the
evaluation fails to consider the internal behaviour of the students’ code during its execution.
In particular, students seemed to display a more significant number of algorithm behaviour
errors for assignments which required greater originality or which required the most change
from their standard implementation, even if the end result of the algorithm’s application
was identical to the corresponding reference solution. The results of our evaluation thus
provide practical evidence that basic evaluation methods might not be sufficient for
adequately evaluating students at an introductory programming level, highlighting the
possible benefits of dynamic white-box assessment for automated programming assessment
and its scarcity in existing assessment systems.
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6.1. Limitations and Future Work

We continue to envision Witter as a tool not only aiming to be integrated into existing
automated assessment systems as a way to extend the scope of their assessment func-
tionalities, but also as courseware to be used by introductory programming students in a
classroom environment, providing a learning process augmented through instant feedback
on their attempts to solve programming exercises. We have not yet been able to conduct
a user study with programming students or instructors, and this is undoubtedly the main
focus for potential future work as the scope and stability of both Witter and Strudel’s
functionalities increase. Namely, a study with introductory programming students is
necessary to gauge whether Witter is useful for its envisioned context. Furthermore, a
study with programming instructors could offer insight into the effort required to develop
assignments adopting Witter’s DSL, allowing us to assess whether the proposed methods
effectively offer a practical advantage over existing solutions and to address limitations
identified by instructors using Witter towards its idealised goal of being used as an auto-
mated assessment tool. Finally, given a longer time frame, a study could be conducted
in the context of an introductory programming course to analyse the long-term effect
on the usage of Witter or similar assessment tools in students’ learning outcomes. One
possibility would be to introduce students to Witter in an introductory programming
course and assess how its usage affects their learning outcomes not only for that course,
but for subsequent programming courses.

We envision a potential use case for Witter as a tool to augment systems which generate
questions about students’ understanding of their own code. Since systems which generate
personalised questions for a student’s code can aid the student in consolidating their
knowledge [31,39], we envision that such a tool could be augmented with the information
provided by Witter to generate more comprehensive questions or provide more detailed
feedback on incorrect answers. A code generation system augmented with Witter could
provide a fine-grained, personalised teaching tool to aid introductory programming students
in consolidating concepts and strengthening their code comprehension skills. A similar use
case could consist in using the detailed program execution information to aid in generating
hints about student code [14,17].

Relating to Witter’s functionalities, further work could be conducted in implementing
more observable code execution events, enabling the computation of new metrics, such
as the number of expressions evaluated, exchanges between array elements, or element
comparisons, which are relevant in contexts such as algorithmic complexity analysis.
Similarly, the addition of features to extend Strudel’s functionality could broaden the
scope of programs that Witter can assess. The Java translator used by the Strudel library
could be developed further to support a larger subset of the Java language, which would
also enable the use of more varied assignments.

A more unbiased evaluation of Witter’s efficacy and relevance could be carried out
by utilising an external, publicly-available dataset of programming student submissions,
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guaranteeing the usage of code produced by students outside of our institution, which could
also tackle possible issues of cheating or plagiarism. Moreover, a more refined evaluation
which takes Strudel and Witter’s functionalities into account could further address the
quality of the assignments’ specifications. From an instructor’s standpoint, an analysis
of the test results provided by Witter could aid in refining assignment guidelines to help
direct students towards those aspects in which they show weaker understanding.
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