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Fabŕıcio Firmino, Daniel S. Menasché
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Abstract

Weightless Neural Networks (WNNs) are Artificial Neural Networks based on

RAM memory broadly explored as solution for pattern recognition applications.

Memory-oriented solutions for pattern recognition are typically very simple, and

can be easily implemented in hardware and software. Nonetheless, the straight-

forward implementation of a WNN requires a large amount of memory resources

making its adoption impracticable on memory constrained systems. In this pa-

per, we establish a foundational relationship between WNN and Bloom filters,

presenting a novel unified framework which encompasses the two. In particular,

we indicate that a WNN can be framed as a memory segmented Bloom filter.

Leveraging such finding, we propose a new model of WNNs which utilizes Bloom

IThis is an extended version of the paper presented at ESANN’2019 and invited for the
Neurocomputing ESANN 2019 Special Issue (Paper ESANN2019-83).
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filters to implement RAM nodes. Bloom filters reduce memory requirements,

and allow false positives when determining if a given pattern was already seen in

data. We experimentally found that for pattern recognition purposes such false

positives can build robustness into the system. The experimental results show

that our model using Bloom filters achieves competitive accuracy, training time

and testing time, consuming up to 6 orders of magnitude less memory resources

when compared against the standard Weightless Neural Network model.

Keywords: Weightless neural network, Bloom filter, Discriminator

2010 MSC: 00-01, 99-00

1. Introduction

Weightless Neural Networks (WNNs) [1] are neuron models based on Ran-

dom Access Memory (RAM) where each neuron is defined through a RAM

node. These models have been shown as attractive solutions to solve pattern

recognition and artificial consciousness applications achieving competitive per-5

formance against other state of the art solutions. WiSARD (Wilkie, Stoneham

and Aleksander’s Recognition Device) is the pioneering WNN distributed com-

mercially [2] which provides simple and efficient implementation enabling to

deploy learning capabilities into real-time and embedded systems.

The straightforward WiSARD implementation needs a considerable amount10

of memory resources to obtain good learning features. For example, a 1024 ×

1024 binary input with total size of 1, 048, 576 bits can be split into 16, 384

tuples of 64 bits each (64 × 16, 384 = 1, 048, 576). Each tuple is then mapped

into a RAM. In this configuration, each RAM consumes 264 locations which is

impracticable to be implemented in current embedded systems. To deal with15

those constraints, the RAMs are commonly implemented using dictionary/hash

table structures where the tuple values are stored as key-value pairs, with the key

representing the memory address and the value being the content of the RAM

position (either 0 or 1, under the original WiSARD design [3] or a non-negative

integer, in case of WiSARD with bleaching capability [4]).20
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Our key insight consists of observing that RAMs play the role of filters

under WNN designs. By allowing additional flexibility in the implementation of

RAMs, one can explore a wide range of solutions trading between memory costs,

classifier accuracy and computational complexity. Consider an input vector

divided into N tuples of length M bits each. Then, the naive implementation25

of each of the N RAMs using a vector of size 2M bits is memory expensive, but

less computationally costly than a dictionary serving the purpose of indicating

whether each bit in the RAM is set to 1 or 0. Alternatively, a Bloom filter may

be used to trade between the aforementioned costs, opening up a broad range

of opportunities to tune the model accuracy by providing additional degrees of30

freedom in the design of WiSARD classifiers.

We propose a new WiSARD model that leverages Bloom filters for the im-

plementation of RAMs. Bloom filters [5, 6] are probabilistic data structures

which represent a set as small bit array allowing the occurrences of false posi-

tives, i.e., in a Bloom filter, an element can be incorrectly classified as member35

of a set when it is not. Although false positives detract certain applications, we

experimentally discovered that for pattern recognition purposes they can build

robustness into the system (as dropout does to deep neural networks). Bloom

WiSARD presents similar accuracy when contrasted against WiSARD, but uses

significantly less resources and, in this sense, is more robust than WiSARD.40

We discuss a unified framework to bridge Bloom filter and WiSARD concepts

which might be easily extended to other machine learning tools. Our experi-

ments analyze accuracy, training time, testing time and memory consumption

of our model compared against standard WiSARD and WiSARD implemented

with hash tables (see Table 1).45

The rest of the paper is organized as follows. Background related to this

work is presented in Section 2. The unified framework bridging Bloom filters

and WiSARD is discussed in Section 3. Section 4 presents the new WiSARD

model based on Bloom Filters and describes its implementation. In Section 5,

we show the experiments and results related to Bloom WiSARD. Finally, related50

work is discussed in Section 6 and we conclude this work in Section 7.
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Table 1: Comparison of classifiers: simpler models such as Bloom WiSARD typically favor

generalization. WiSARD and Dict WiSARD are logically equivalent whereas Bloom WiSARD

has more degrees of freedom.

Space per

discriminator

Use of hashes

for

Accuracy

WiSARD N2M bits no hashes reference accuracy

Dict

WiSARD

significantly less

than WiSARD

(worst case

equal)

exact set

membership

(with collision

checking)

equal to WiSARD

(given mapping

from input to

RAM)

Bloom

WiSARD

typically similar

to Dict

WiSARD

(tunable by

design)

approximate set

membership (no

collision

checking)

potentially greater

than WiSARD

(hashes are

tunable)

2. Background

In this Section, we briefly give the relevant background on the WiSARD

discriminator followed by Bloom filter concepts.

2.1. WiSARD55

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) is a

multi-discriminator WNN model proposed in the early 80’s [2] that recognizes

patterns from binary data. Each class is represented by a discriminator which

contains a set of RAMs. A binary input with N ×M bits is split into N tuples

of M bits. Each tuple n, n = 1, . . . , N , is a memory address to an entry of the60

n-th RAM. Each RAM contains 2M locations.

A pseudo-random mapping is a deterministic function that maps each binary

input matrix to a set of N tuples of M bits each. The function is typically a

pseudo-random shuffling of the binary input matrix, hence the name pseudo-

random mapping. Each discriminator may be associated to a different pseudo-65
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random mapping, that must remain the same across training and classification

phases.
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Figure 1: Example of training in WiSARD.
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Figure 2: Example of testing operation in one WiSARD discriminator.

At the training phase, initially all RAMs have their locations set to zero

(0). Each training sample is treated by the corresponding discriminator which

sets to one (1) all accessed RAM positions as illustrated in Figure 1. At the70
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Figure 3: Example of testing operation to WiSARD select predicted class.

classification phase, the input is sent to all discriminators generating responses

per discriminators by summing all accessed RAM values as shown in Figure 2.

The discriminator with the highest response is chosen as the representative class

of the input as exemplified in Figure 3.

2.2. WiSARD based on Dictionary75

For certain applications, the standard WiSARD implementation requires

a considerable amount of memory resources in order to achieve the required

learning results. To deal with this constraints, the RAMs are commonly imple-

mented using dictionary/hash table structures (see Section 1). The tuple values

are stored as key-value pairs, with the key representing the memory address80

and the value being the content of the RAM position (either 0 or 1, under the

original WiSARD design [3] or a non-negative integer, in case of WiSARD with

bleaching capability [4]).

Similar to standard WiSARD, each tuple from the binary input is stored to

the corresponding hash table at the training phase as illustrated in Figure 4.85

In the classification phase, the responses are generated by adding up the results

collected from the hash tables as shown in Figure 5.
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2.3. Bloom filter

Figure 6: Bloom filter operations example with 16-bit array and 4 hash functions.

Bloom filters [5] are space-efficient data structures for Approximate Mem-

bership Query (AMQ) which test whether an element belongs to a given set90

or not with a certain false positive probability. In other words, sometimes the

membership query will respond that an element is stored in the considered set

even if it is not. A Bloom filter is composed of an m-bit array and k independent

hash functions that map an element into k bit array positions. The algorithm is

easily extended for application in WISARD. Bloom filters are commonly used95

in the network and database domains to provide approximately correct answers

to set membership queries, and a number of efficient implementations of Bloom

filters have been proposed [7].

For the purposes of set-membership queries, a single-index hash table is

at greater risk of returning many false positives. Consider an element A that100

belongs to a particular set S. A hash of A provides an index to a particular bit

in the table, and one sets this bit to 1 to indicate membership in S. However,

another element B not belonging to S may hash to the same entry as A, which

results in the reporting of a false positive. A Bloom filter uses multiple hashes

for each element, potentially setting several bits in the table for each element105
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that belongs to class S. Consider the same element A hashing into k = 3

different locations. In the classical Bloom filter, an element is considered to be

in S when the bits at all hashed locations are set. Figure 6 also shows element

B and the three entries it hashes to. One of the entries collides with one of As

entries; however, there exists at least one other entry that is not set, and so the110

Bloom filter correctly classifies B as not belonging to the set. For a Bloom filter

to report a false positive a hash collision must occur for each and every one of

the k hash functions.

The standard Bloom filter supports insertion and query operations as exem-

plified in Figure 6. Initially, all bit array positions are zeroed. In the insertion115

operation, an element is mapped into k positions of the bit array designated by

the k hash functions and the corresponding k bits are set to 1. In the example,

a, b and c are inserted using 4 hash functions. The query operation looks up the

k positions mapped from the input element, indicating it as either a member of

the set, considering a false positive rate if all values are 1′s, or a non-member120

when any value is 0. In Figure 6, d is a false positive since it was suggested as

member of the set (only a, b and c were inserted), while e and f do not belong

to the set. Note that a Bloom filter always reports a true negative whenever an

element is not a member.

The false positive probability p is affected by the parameters m, n and k,125

corresponding to bit array size, number of elements to store and number of

hash functions, respectively [8]. Given the target false positive probability p

and capacity n, parameters m and k can be set as follows: m = −n ln(p)/ ln(2)2

[9] and k = m ln(2)/n [8].

3. A unified framework bridging Bloom filters and WiSARD130

3.1. Machine learning and Bloom filters

Machine learning can be leveraged to improve the design of Bloom fil-

ters [10, 11] and, reciprocally, Bloom filters can be used in the design of general-

purpose machine learning tools [12, 13, 14, 15, 16]. In the second direction,
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learning useful features in an effective way is one of the key machine learning135

challenges. The success of convolutional neural networks (CNN) stands for its

ability to efficiently derive useful features, directly from data, with few param-

eters [13]. Alternatively, Bloom filters can be instrumental in the derivation of

such features.

Machine learning discriminators are filters, as they filter the elements that140

should be discriminated from the remainder of the population. Such observation

suggests that foundational results on Bloom filters can be applied to improve

the design of discriminators, and has grounds in biological models relating fa-

miliarity mechanisms in the brain to filters [17]. In this direction of research,

we encompass the search for a unified classification framework wherein Bloom145

filters and other machine learning tools, such as WiSARD, are special instances.

3.2. Similarities and differences between Bloom filters and WiSARD

WiSARD and Bloom filters are closely related data structures. Both store

data in a binary RAM indexed by a function computed over the input. In

the case of WiSARD, the index is determined by the pseudo-random mapping,150

interpreting a certain pattern of bits from the input as a binary number. For

Bloom filters, it is a hash function.

An important distinction is the fact that WiSARD keeps a separate memory

for every tuple of the pseudo-random mapping, whereas all hash functions in a

Bloom filter index into the same hash table. Note that WiSARD accounts for a155

single hash function which maps each tuple instantiation, i.e., each string of bits

comprising a tuple, into a position of the corresponding memory. Bloom filters,

in contrast, account for multiple hash functions, wherein each hash function

maps the whole input into a memory position, always assuming a single memory.

3.3. A unified framework bridging Bloom filters and WiSARD160

3.3.1. Terminology

Let T be a set of vectors corresponding to the tuples comprising each input

instance. The input instances are assumed to be binarized, i.e., each input in-
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stance is a binary vector of length l = |x|. For example, if T = {(1, 2), (3, 4), (5)}

then inputs of size l = 5 are divided into three tuples, |T | = 3, of sizes 2, 2 and165

1. The first tuple corresponds to the first two entries of the input, the second

tuple corresponds to the subsequent two entries, and the last tuple corresponds

to the last entry.

Given an input x, the t-th tuple of the input is denoted by xt, and its size

is denote by Mt. Let Ft be the hash functions applied over the t-th tuple,170

t = 1, . . . , |T |. Each f ∈ Ft receives as input the t-th tuple of the input, and

generates as output a memory position, f ∈ Ft : xt ∈ {0, 1}Mt → N. Whenever

the hash functions applied over the tuples are all the same, we drop subscript t

and denote the set of hash functions simply as F . Similarly, whenever all tuples

have the same size, the latter is simply referred to as M .175

Let Mt be a vector characterizing the memory corresponding to the t-th

tuple, Mt[i] ∈ {0, 1} for i = 1, . . . , |Mt|. Under the Bloom filter framework,

there is a single memory as the input is typically assumed to correspond to a

single tuple. In that case, we drop subscript t and denote the memory simply

as M. Table 2 summarizes the notation.180

3.3.2. Combining Bloom filters and WiSARD

We may combine Bloom filters and WiSARD into a general framework by

explicitly accounting for the decisions about the number of tuples comprising

the input, which translates into the number of memories, and the number of

hash functions per tuple. Consider the training stage described in Algorithm 1.185

If there is only a single tuple, i.e., the entire input is used at once (|T | = 1)

and many functions (|F | > 1), we have a classical Bloom filter. Each function,

in this case, is typically a special hash function which maps data from a large

state space (large size) onto another state space of small size. Otherwise, the

required memory would be prohibitive. On the other hand, if there are many190

tuples (|T | > 1) and only a single function (|F | = 1) we have WiSARD. In this

case we may use a hash function but need a sufficiently large memory if we wish

to avoid collision. WiSARD typically uses a collision-free function that simply

11



Table 2: Table of notation

variable description

x input (binary vector of length |x|)

T set of tuples

N = |T | number of tuples per input

M size of each tuple, M = |x|/N (when tuple sizes are

heterogeneous we denote by Mt the t-th tuple size)

xt t-th tuple of input x, t = 1, . . . , N

(binary vector of length M)

F set of (hash) functions (when sets are heterogeneous

across tuples we denote by Ft the t-th set of hashes)

k = |F | number of (hash) functions (see Section 2.3)

Mt state of memory corresponding to t-th tuple (binary

vector of length |Mt|, |Mt| = 2M in a classical WiS-

ARD)

{M1, . . . ,MN} discriminator state

f(xt) function that maps xt into a position of Mt

interprets the tuple as an address.

Given this generic framework, we can observe the possibility of using multiple195

hash functions per tuple, essentially creating multiple parallel Bloom filters.

This greatly expands the range of usable tuple sizes, because memory size is

no longer dictated by address size and can be tuned, in combination with the

number of hash functions, to a desired collision rate.

The classification phase generalization is similar to that of the training, with200

the caveat that multiple tuples are needed in order to distinguish the most likely

class. In the case of the classic Bloom filter (single tuple), the discriminator

response R is a binary value, and can therefore only be used as a one-class

classifier. The granularity of the discriminator responses increases when using

more tuples (see Algorithm 2).205
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Algorithm 1 Unified framework for training Bloom filters and WiSARD dis-

criminators
1: for all training examples x do

2: for all tuples t ∈ T do

3: for all functions f ∈ Ft do

4: Mt[f(xt)] = 1

5: end for

6: end for

7: end for

Algorithm 2 Unified framework for determining Bloom filters and WiSARD

discriminator responses

1: R← 0

2: for all tuples t ∈ T do

3: for all functions f ∈ Ft do

4: Rt ← Rt +Mt[f(xt)]

5: end for

6: if Rt = |Ft| then

7: R← R + 1

8: end if

9: end for

10: return R

13



Note that in line 5 of the algorithm the response from tuple t, Rt, is compared

against the maximum response, |Ft|. If they are equal, this means that the given

tuple is stored in memory, and the final response R is incremented by one unit.

In particular, note that by restricting the increment to the scenario wherein

Rt = |Ft| naturally prevents false negatives. Alternatively, requiring less than210

the full amount of hash hits in line 6 consists of an additional generalization of

Bloom filters, allowing for both false positives and false negatives when assessing

the pertinence of a given element to a given class.

Recall that for each target class there is a corresponding discriminator.

Given an input, for each discriminator the algorithm above returns a value215

R. Then, the discriminators are compared against each other through the cor-

responding returned values. The discriminator that yields maximum return is

typically chosen as the class corresponding to the given input. There are mul-

tiple variations with respect to how the returned value R is computed given

the input (e.g., depending on whether one accounts for bleaching [4]), but the220

algorithm above serves to capture the essence behind all variants.

3.4. Collision rates

There is a vast literature on dimensioning and tuning Bloom filters to achieve

a given target collision rate [18]. We envision that by establishing connections

between Bloom filters and WiSARD we can leverage such results for the dimen-225

sioning of WiSARD. The dimensioning of WiSARD, based on first principles,

in turn, is a vastly unexplored field. The same holds for many other discrimi-

nators, including CNNs [13, 19, 20], for which most of the tuning is executed in

an ad-hoc experimental fashion. The perspective of doing such tuning of Bloom

WiSARD based on first principles may shed light into other discriminators.230

Note that collisions are a negative side effect in the realm of Bloom filters. In

the realm of WiSARD, in contrast, collisions may actually increase the accuracy

of the discriminator. This is because a higher collision rate may correspond to

an increased capacity of generalization, which may, in turn, benefit the system.

Therefore, the system should first be tuned to attain a desired target collision235
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rate, greater than zero. Then, as a second step that target may be varied to

find the best spot accounting for the training and test sets.

3.4.1. Perspectives towards collision rate tuning

Next, we briefly overview two different approaches for collision rate tuning.

The first is inspired by the architectural design of Bloom filters in hardware.240

The second is based on an extension of Bloom filters to answer queries such as

“is x close to an element in S?” rather than “is x an element in S?” [21, 22]

Recent advances in the design of Bloom filters [7] accounting for its hardware

implementation suggest that dividing the memory used to implement a Bloom

filter into separate memory banks is beneficial. The efficient implementation of245

Bloom filters in hardware involves the manipulation of hash functions to avoid

collisions and to make simultaneous access to multiple memory banks. Such

manipulation of hash functions proposed in [7] accounting for multiple memory

banks is similar in spirit to the manipulation of hash functions and of sizes of the

memories of a WiSARD discriminator, as advocated in this work, albeit for very250

different purposes. Whereas in [7] the goal is to improve the efficiency of the

Bloom filter implementation in hardware, our goal is to increase the accuracy of

WiSARD discriminators. In both cases, the collision rates must be controlled

to achieve the desired goals.

A structured way of dealing with collisions under the Bloom WiSARD frame-255

work to improve classification accuracy may involve “distance sensitive Bloom

filters” [23]. Under distance sensitive Bloom filters, similar inputs are mapped

into similar memory positions. We envision that such similarity may be explored

in the design of Bloom WiSARD, and leave that as subject for future work [21].

4. WiSARD based on Bloom Filters260

When adopting a WiSARD architecture, the binary transformation impacts

the accuracy and the learning capacity of the model affecting its input size,

which determines the number of RAMs and the tuple size for each discriminator.

Thus, huge RAMs might be required to achieve a good accuracy.
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Figure 8: Example of classification in Bloom WiSARD with 16-bit input, 4-bit tuples and 4

Bloom filters.
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The memory structures subsumed by a WiSARD WNN are typically sparse.265

We extend WiSARD by replacing RAMs with Bloom filters to reduce its memory

footprint by avoiding storage of irrelevant zero positions. The new model is

termed Bloom WiSARD.

On the training phase, the tuples are inserted into Bloom filters by updating

the k bit array positions as depicted in Figure 7. On the classification phase,270

the tuples are queried into their associated Bloom filters returning whether each

tuple is a member or not by ANDing all k bit values as presented in Figure 8.

Similar to WiSARD, the discriminator responses are calculated by summing

the N Bloom filter membership results. The responses of the discriminators

are then compared, and the class corresponding to the discriminator with the275

highest response is selected.

Our Bloom WiSARD implementation utilizes a double hashing technique [24]

to generate k hash functions in the form: h(i, k) = (h1(k) + i×h2(k)) (mod n),

where h1 and h2 are universal hash functions. We adopt MurmurHash for h1

and h2 [25].280

5. Experiments and Results

Table 3: Specification of binary classification data sets.

Dataset # Train # Test # Features

Adult 32, 561 16, 281 14

Australian 460 230 14

Banana 3, 532 1, 768 2

Diabetes 512 256 8

Liver 230 115 6

Mushroom 5, 416 2, 708 22

To evaluate the proposed model, we compare Bloom WiSARD against two

different WiSARD versions: standard WiSARD introduced in Section 2.1 and
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Table 4: Specification of multiclass classification data sets.

Dataset # Train # Test # Features # Classes

Ecoli 224 112 7 8

Glass 142 72 9 7

Iris 100 50 4 3

Letter 13, 332 6, 668 16 26

MNIST 60, 000 10, 000 784 10

Satimage 4, 435 2, 000 36 6

Segment 1, 540 770 19 7

Shuttle 43, 500 14, 500 9 7

Vehicle 564 282 18 4

Vowel 660 330 10 11

Wine 118 60 13 3

Table 5: Hyper-parameters of binary classification data sets. All the parameters are the

same for the three WiSARD versions: thermometer bit (Therm.) is the length of numerical

attributes in binary format, nominal bit is the number of 1’s used to represent each value of

the categorical attribute using one hot encoding and capacity is the Bloom filter configuration.

The value − indicates that there is no numerical (Therm.) or categorical attributes in the

dataset.

Dataset Tuple

size

Therm.

(Bits)

Nominal

(Bits)

Capacity

Adult 28 128 30 500

Australian 20 20 5 460

Banana 20 512 − 50

Diabetes 20 20 − 512

Liver 20 64 − 100

Mushroom 20 − 5 100
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Table 6: Hyper-parameters of multiclass classification data sets. All the parameters are the

same for the three WiSARD versions: thermometer bit (Therm.) is the length of numerical

attributes in binary format, nominal bit is the number of 1’s used to represent each value of

the categorical attribute using one hot encoding and capacity is the Bloom filter configuration.

The value − indicates that there is no numerical (Therm.) or categorical attributes in the

dataset.

Dataset Tuple

size

Therm.

(Bits)

Nominal

(Bits)

Capacity

Ecoli 20 20 − 100

Glass 20 128 − 100

Iris 20 20 − 100

Letter 28 20 − 500

MNIST 28 − − 5000

Satimage 20 20 − 100

Segment 20 20 − 100

Shuttle 20 20 − 100

Vehicle 20 20 − 100

Vowel 20 20 − 100

Wine 20 20 − 100
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Table 7: Accuracy and memory results of classifiers in binary classification problems.

Dataset WNN Acc Acc (Std) Memory

(KB)

Stats.

signif.

Adult

WiSARD 0.722 0.0069129626 8978432

Dict WiSARD 0.721 0.0055560122 383.535 7

Bloom WiSARD 0.718 0.0061495748 80.173 X

Australian

WiSARD 0.843 0.0166130202 4096

Dict WiSARD 0.841 0.0141203978 11.299 7

Bloom WiSARD 0.834 0.0223775813 8.613 7

Banana

WiSARD 0.87 0.0054630514 13312

Dict WiSARD 0.871 0.0061359655 23.428 7

Bloom WiSARD 0.864 0.0057860498 3.047 X

Diabetes

WiSARD 0.698 0.0202749051 2048

Dict WiSARD 0.689 0.0195351559 6.553 7

Bloom WiSARD 0.69 0.0262359291 4.793 7

Liver

WiSARD 0.593 0.0406562425 5120

Dict WiSARD 0.587 0.0271486839 6.387 7

Bloom WiSARD 0.591 0.0483371899 2.344 7

Mushroom

WiSARD 1.0 0 8192

Dict WiSARD 1.0 0 19.209 7

Bloom WiSARD 1.0 0 3.75 7

dictionary WiSARD discussed in Section 2.2 (see Table 1). The implementa-

tions are made available on a GitHub repository [26].285

5.1. Dataset

We select the MNIST database [27] and a subset of binary classification and

multiclass classification datasets used in [28]. Most of the problems were taken

from UCI public repository [29] and they have different characteristics in terms

of number of samples, number of classes and number of features. Some datasets290

do not provide the training set and testing set in separated files. For these
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Table 8: Accuracy and memory results of classifiers in multiclass classification problems.

Dataset WNN Acc Acc (Std) Memory

(KB)

Stats.

signif.

Ecoli

WiSARD 0.793 0.0284596026 7168

Dict WiSARD 0.799 0.0233683077 5.664 7

Bloom WiSARD 0.799 0.0202621531 3.281 7

Glass

WiSARD 0.72 0.030516073 51968

Dict WiSARD 0.73 0.0286242553 20.884 7

Bloom WiSARD 0.726 0.0367137219 23.789 7

Iris

WiSARD 0.985 0.01396424 1536

Dict WiSARD 0.977 0.0284780617 0.747 7

Bloom WiSARD 0.976 0.0215406592 0.703 7

Letter

WiSARD 0.845 0.006130619 10223616

Dict WiSARD 0.846 0.0044277676 121.748 7

Bloom WiSARD 0.848 0.0045028728 91.292 X

MNIST

WiSARD 0.917 0.0043519651 9175040

Dict WiSARD 0.916 0.0042990086 1368.457 7

Bloom WiSARD 0.915 0.0056781577 819.049 7

Satimage

WiSARD 0.851 0.0080425043 27648

Dict WiSARD 0.853 0.0083887946 69.141 7

Bloom WiSARD 0.851 0.0057708318 12.656 7

Segment

WiSARD 0.935 0.0079103597 17024

Dict WiSARD 0.934 0.0077444423 7.724 7

Bloom WiSARD 0.933 0.0080506388 7.793 7

Shuttle

WiSARD 0.87 0.0107019751 8064

Dict WiSARD 0.869 0.0112712713 4.956 7

Bloom WiSARD 0.868 0.012279044 3.691 7

Vehicle

WiSARD 0.67 0.021343718 9216

Dict WiSARD 0.672 0.017094994 17.617 7

Bloom WiSARD 0.662 0.0238480121 4.219 7

Vowel

WiSARD 0.876 0.0161340516 14080

Dict WiSARD 0.876 0.0135044121 16.221 7

Bloom WiSARD 0.876 0.0262235043 6.445 7

Wine

WiSARD 0.932 0.0260741464 4992

Dict WiSARD 0.924 0.030945741 4.248 7

Bloom WiSARD 0.926 0.0260741464 2.285 7
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Table 9: Training and testing time of classifiers in binary classification problems.

Dataset WNN Training

(s)

Training

(Std)

Testing

(s)

Testing

(Std)

Adult

WiSARD 4.414 0.8035190 1.05 0.0036088

Dict WiSARD 1.947 0.0023436 1.188 0.0021732

Bloom WiSARD 1.932 0.0024696 1.166 0.000236

Australian

WiSARD 0.002 1.5453E− 05 0.001 1.5212E− 05

Dict WiSARD 0.002 8.1612E− 06 0.001 7.6577E− 06

Bloom WiSARD 0.002 1.0162E− 05 0.001 1.5519E− 05

Banana

WiSARD 0.052 9.7794E− 05 0.028 0.0003726

Dict WiSARD 0.054 0.0001169 0.033 9.0079E− 05

Bloom WiSARD 0.058 3.9803E− 05 0.036 0.0001168

Diabetes

WiSARD 0.001 9.269E − 06 0.0007 7.0736E− 06

Dict WiSARD 0.001 0.000004 0.0008 4.5087E− 06

Bloom WiSARD 0.001 4.0986E− 06 0.0008 1.6984E− 05

Liver

WiSARD 0.001 1.47E − 05 0.0007 1.3299E− 05

Dict WiSARD 0.001 4.2355E− 06 0.0008 3.3714E− 06

Bloom WiSARD 0.001 1.6464E− 06 0.0009 1.1822E− 06

Mushroom

WiSARD 0.0509 8.7859E− 05 0.0278 0.0003098

Dict WiSARD 0.054 0.0001117 0.0335 8.932E − 05

Bloom WiSARD 0.057 0.0002169 0.0348 0.0001105

datasets, we adopt the same methodology applied in [28]: we randomly shuffle

the data and partition it in 3 parts, such that 2/3 and 1/3 are used for training

and testing sets, respectively. Table 3 and Table 4 show the parameters of the

binary and multiclass classification data sets, respectively.295

5.2. Experimental Setup

The experiments were performed on an Intel Core i7-6700(3.40GHz) pro-

cessor with 32GB of RAM running Ubuntu Linux 16.04. The core of all WiS-

ARD experiments was implemented in a single-thread C++11 library accessed
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Table 10: Training and testing time of classifiers in multiclass classification problems.

Dataset WNN Training

(s)

Training

(Std)

Testing

(s)

Testing

(Std)

Ecoli

WiSARD 0.0005 8.0849E− 06 0.0005 0.000020714

Dict WiSARD 0.0005 2.3084E− 06 0.0005 4.390E − 06

Bloom WiSARD 0.0005 0.000001152 0.0007 2.7085E− 06

Glass

WiSARD 0.003 2.6116E− 05 0.003 4.6433E− 05

Dict WiSARD 0.003 2.0587E− 05 0.003 0.000032357

Bloom WiSARD 0.003 3.5548E− 06 0.003 1.1031E− 05

Iris

WiSARD 0.0001 8.5413E− 06 0.000009 0.000002083

Dict WiSARD 0.0001 6.9818E− 06 0.000008 9.8382E− 07

Bloom WiSARD 0.0001 0.00000131 0.0001 6.6729E− 06

Letter

WiSARD 1.483 0.9651815243 0.16 0.0082967305

Dict WiSARD 0.0717 0.0001674798 0.22 0.0006118143

Bloom WiSARD 0.07 0.000032443 0.208 0.0003070775

MNIST

WiSARD 4.317 2.1310536808 0.33 0.0095871641

Dict WiSARD 0.811 0.0025265669 0.475 0.0036404496

Bloom WiSARD 0.775 0.0037293041 0.369 0.0007896101

Satimage

WiSARD 0.048 6.9346E− 05 0.034 0.0006351119

Dict WiSARD 0.05 8.8147E− 05 0.049 0.0002178829

Bloom WiSARD 0.053 7.6182E− 05 0.05 0.0001132872

Segment

WiSARD 0.009 3.3891E− 05 0.007 4.7123E− 05

Dict WiSARD 0.009 2.0399E− 05 0.01 6.513E − 05

Bloom WiSARD 0.01 2.3205E− 05 0.011 2.9526E− 05

Shuttle

WiSARD 0.119 0.0001553173 0.064 0.0013783008

Dict WiSARD 0.12 0.0002099746 0.078 0.0006038582

Bloom WiSARD 0.132 8.0745E− 05 0.103 0.0003318945

Vehicle

WiSARD 0.003 1.9918E− 05 0.0021 3.9435E− 05

Dict WiSARD 0.003 1.0621E− 05 0.0026 1.4197E− 05

Bloom WiSARD 0.003 3.2052E− 06 0.0028 8.6081E− 06

Vowel

WiSARD 0.0023 1.6889E− 05 0.0025 4.5306E− 05

Dict WiSARD 0.0023 1.083E − 05 0.0032 5.1637E− 05

Bloom WiSARD 0.0022 7.5554E− 06 0.0036 0.000012788

Wine

WiSARD 0.0006 1.0351E− 05 0.0003 1.54E − 05

Dict WiSARD 0.0005 6.0381E− 06 0.0003 2.096E − 06

Bloom WiSARD 0.0005 6.4565E− 06 0.0004 1.2886E− 06
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through a Python interface. To convert the input attributes to binary format,300

we concatenate all binary attributes using thermometer (resp., hot encoding) to

transform the continuous (resp., categorical) attributes. The input size, num-

ber of RAMs and tuple size varied according to the dataset, but were kept

constant across all considered WiSARD architectures. Bloom filters are setup

with 10% of false positive probability. The capacities were empirically selected305

for each dataset and m and k were obtained through the formulas presented in

Section 2.3. Table 5 and Table 6 show the hyper-parameters of the binary and

multiclass classification data sets, respectively.

5.3. Accuracy, Performance and Memory Consumption Results

All results are obtained through the mean of 20 runs with negligible standard310

deviation. Table 7 and Table 8 show the results for binary classification and

multiclass classification datasets, respectively. Note that the accuracy of Dict

WiSARD and WiSARD slightly differ as we used different pseudo-random map-

pings at each training epoch (see Table 1). We ran statistical hypothesis tests

to check if the gain or loss in accuracy of Bloom WiSARD against WiSARD is315

statistically significant. We used a two tail test, with significance value of 5%.

The results are reported in the last column of Table 7 and Table 8. A check

mark indicates that the gains or losses of accuracy of Bloom WiSARD and Dict

WiSARD are statistically significant when compared against WiSARD.

The training and testing time results are shown in Table 9 and Table 10 for320

binary classification and multiclass classification datasets, respectively. Over-

all, Bloom WiSARD achieved comparable accuracy, training time and testing

time when compared against WiSARD and Dict WiSARD, while consuming a

smaller amount of memory. Bloom WiSARD’s memory consumption is reduced

up to 6 orders of magnitude (Adult and Letter) compared against standard325

WiSARD and approximatelly 7.7 times (Banana) when compared against dic-

tionary WiSARD. The memory resources can be further reduced by increasing

the false positive rate and the accuracy can be increased by tuning the hash

functions to capture essential aspects of the data, which we leave as subject for
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future work.330

5.4. False Positive Rate vs. Accuracy vs. Memory Analysis

Table 11: Standard deviation of accuracy when varying the false positive rate (FPP) of Bloom

WiSARD for binary classification problems.

FPP
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10% 0.0061496 0.0223776 0.0057860 0.0262359 0.0483372 0

20% 0.0058269 0.0155309 0.0058466 0.0284882 0.0366251 0

30% 0.0044720 0.018285 0.0078729 0.0250549 0.0299053 0

40% 0.0035480 0.021014 0.0061894 0.0166406 0.0413020 0

50% 0.0049795 0.019081 0.009687 0.0183635 0.030360 0

60% 0.0072392 0.0177929 0.0068795 0.0234342 0.035050 0.000161

70% 0.0059162 0.0185115 0.0168765 0.0175129 0.03928 0.0001761

80% 0.0082073 0.0226118 0.0269275 0.0239359 0.028563 0.000787

90% 0.0091519 0.0237056 0.0359376 0.0183749 0.0461771 0.0191718

In Section 5.3, the false positive rate of Bloom filters were fixed to 10%. In

contrast to traditional use of Bloom filters where one needs to ensure correct

query responses with high probability, Bloom WiSARD does not require low

false positive rate because even if a tuple is erroneously returned as member of335

a Bloom filter, the model is not compromised and false positives can still improve

the generalization capability of the system. In order to evaluate the potential

of Bloom WiSARD, the accuracy and memory consumption are evaluated for

different configurations of the false positive rate. For all data sets, the rate is

varied from 10% to 90%.340

Results are presented in Figure 9. Memory consumption and accuracy de-

crease as the false positive probability increases.Overall, the accuracy is kept

acceptable until reaching a 50% false positive rate. At that point, accuracy is

decreased on average by 1.3% with a worst case of about 4.3% (Vehicle). Ac-
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(a) Part 1: Wine, Mushroom, Liver, Iris and Banana

(b) Part 2: Vowel, Vehicle, Shuttle, Ecoli and Diabetes.

Figure 9: Accuracy and memory consumption results when varying the false positive rate of

Bloom WiSARD. In the legend, the number of hash functions is shown in parentheses at end

of each false positive rate. The accuracy is shown at right side of each bar.
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(c) Part 3: Segment, Satimage, Australian and Glass.

(d) Part 4: Letter, Adult and MNIST.

Figure 9: (Cont.) Accuracy and memory consumption results when varying the false positive

rate of Bloom WiSARD. In the legend, the number of hash functions is shown in parentheses

at end of each false positive rate. The accuracy is shown at right side of each bar.
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Table 12: Standard deviation of accuracy when varying the false positive rate (FPP) of Bloom

WiSARD for multiclass classification problems.
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10% 0.0202621 0.0367137 0.0215406 0.0045029 0.0056781 0.0057708

20% 0.0196581 0.0257881 0.0170587 0.005713 0.0042678 0.0076205

30% 0.0150135 0.027252 0.0177764 0.0056912 0.0027261 0.0056868

40% 0.0257965 0.0352734 0.014526 0.0050576 0.004139 0.0130475

50% 0.0179628 0.0225133 0.0247184 0.006447 0.0042574 0.0101778

60% 0.0252341 0.030198 0.02498 0.0084854 0.0046192 0.0139484

70% 0.0311094 0.0371317 0.0339853 0.0065570 0.0054063 0.0140646

80% 0.025939 0.0421900 0.0435431 0.006557 0.0056860 0.0229456

90% 0.0375212 0.0250770 0.048775 0.0082801 0.0086809 0.05209

cordingly, memory consumption is reduced by roughly 3.3 times after an increase345

in 10% of false positive rate. In addition, as the false positive rate increases the

number of hash functions, for each Bloom filter is reduced from 4 (10%) to 2

(50%) hash functions resulting in a slight increase of speed up at the training

and classification phases.

Table 11 (binary classification datasets), Table 12 (multiclass classification350

datasets) and Table 13 (multiclass classification datasets) present the standard

deviation of the accuracy related to different false positive probability configu-

rations in Bloom WiSARD related to the accuracy results in Figure 9.

6. Related Work

Weightless neural networks have been studied for more than six decades [30].355

A significant body of work has tackled the memory and computational efficiency

of weighted [31] and weightless neural networks [32].

The memory required by the Virtual Generalising RAM weightless neural

model (VG-RAM) [32, 33], for instance, is bounded by the size of the training
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Table 13: Standard deviation of accuracy when varying the false positive rate (FPP) of Bloom

WiSARD for multiclass classification problems (cont.).
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10% 0.0080506 0.012279 0.023848 0.0262235 0.0260741

20% 0.0079239 0.012454 0.0267349 0.0165499 0.0255359

30% 0.0081353 0.011607 0.024524 0.0160635 0.0335307

40% 0.0092052 0.0107775 0.0237721 0.0173125 0.0308558

50% 0.0077433 0.023087 0.0242694 0.0136733 0.0226538

60% 0.0079103 0.0109617 0.0317173 0.0185388 0.0235112

70% 0.013266 0.0152805 0.0220679 0.0187756 0.0473975

80% 0.0126708 0.0086389 0.0319956 0.0227475 0.0583274

90% 0.0199910 0.0102771 0.0231014 0.0261485 0.0361325

set. Input/output pairs presented during training phase are kept in memory.360

In the test phase, the memory of VG-RAM neurons is searched associatively by

comparing the input presented to the network against all inputs in the learned

input/output pairs. The output of each VG-RAM neuron is taken from the pair

whose input is nearest to the input presented.

A number of recently proposed methods such as Bitwise Neural Networks [34],365

XNOR-Net [35], binarized neural networks [36] and ternary neural networks [37]

leverage the binarization of the input or of the neural network weights to improve

efficiency. The training phase considered in those models is similar in spirit to

that of WiSARD (and Bloom WiSARD), as they are all memory-oriented ap-

proaches. Nonetheless, whereas WiSARD (and Bloom WiSARD) is intrinsically370

weightless, which renders it a natural choices to extend Bloom filters, the re-

lationship between [34, 35, 36, 37] and Bloom filters is not as straightforward,

and is left as subject for future work.
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7. Conclusion

WiSARD is a powerful WNN model based on RAM memory that can be375

easily implemented in hardware and real-time systems. Nevertheless, certain

applications require a considerable amount of memory to achieve good learning

capabilities becoming impracticable to implement it in current technology. Al-

ternative structures like dictionaries are required to implement the RAM nodes

and turn feasible the use of the model.380

In this work we propose the Bloom WiSARD model which extends WiSARD

by implementing RAM nodes as Bloom filters. By using Bloom filters, mem-

ory resources are significantly reduced and for pattern recognition purposes we

experimentally found that Bloom filters can build robustness into the system.

Our experiments show that the model provides good accuracy and requires low385

training and testing times. In addition, it consumes up to 6 orders of magni-

tude less resources than standard WiSARD and about 7.7 times less resources

than WiSARD implemented with dictionaries. In addition, increasing the false

positive rate of Bloom WiSARD 50% results in 3.3 times less memory and aver-

age of 1.77% decreased accuracy compared against a false positive rate of 10%390

configuration.

This work opens up a number of avenues for future research. Future work

will focus on leveraging extended Bloom filter operations such as the Bloom

filter false free zone [38] or frequency counts of elements stored [39, 40], in order

to enable Bloom WiSARD to use improved techniques such as DRASiW [41].395

In this work, we focused on the use of Bloom filters for the implementation of

discriminators, i.e., two-class classifiers. Bloom filters have been extended to

allow for more than two output classes [42], and those extensions may be in-

strumental in the design of general purpose multi-class classifiers. More broadly,

we envision that this work is one step further towards the use of Bloom filters400

for machine learning purposes [6, 14].
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