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Abstract
Context Code smells (CS) are symptoms of poor design and implementation choices that
may lead to increased defect incidence, decreased code comprehension, and longer times to
release. Web applications and systems are seldom studied, probably due to the heterogeneity
of platforms (server and client-side) and languages, and to study web code smells, we need
to consider CS covering that diversity. Furthermore, the literature provides little evidence for
the claim that CS are a symptom of poor design, leading to future problems in web apps.
Objective To study the quantitative evolution and inner relationship of CS in web apps on the
server- and client-sides, and their impact on maintainability and app time-to-release (TTR).
Method We collected and analyzed 18 server-side, and 12 client-side code smells, aka web
smells, from consecutive official releases of 12 PHP typical web apps, i.e., with server- and
client-code in the same code base, summing 811 releases. Additionally, we collected metrics,
maintenance issues, reported bugs, and release dates.Weused severalmethodologies to devise
causality relationships among the considered irregular time series, such as Granger-causality
and Information Transfer Entropy(TE) with CS from previous one to four releases (lag 1 to 4).
Results The CS typically evolve the same way inside their group and its possible to analyze
them as groups. The CS group trends are: Server, slowly decreasing; Client-side embed,
decreasing and JavaScript,increasing. Studying the relationship between CS groups we found
that the "lack of code quality",measuredwithCS density proxies, propagates from client code
to server code and JavaScript in half of the applications. We found causality relationships
between CS and issues. We also found causality from CS groups to bugs in Lag 1, decreasing
in the subsequent lags. The values are 15% (lag1), 10% (lag2), and then decrease. The group
of client-side embed CS still impacts up to 3 releases before. In group analysis, server-side
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CS and JavaScript contribute more to bugs. There are causality relationships from individual
CS to TTR on lag 1, decreasing on lag 2, and from all CS groups to TTR in lag1, decreasing
in the other lags, except for client CS.
Conclusions There is statistical inference between CS groups. There is also evidence of
statistical inference from the CS to web applications’ issues, bugs, and TTR. Client and
server-side CS contribute globally to the quality of web applications, this contribution is
low, but significant. Depending on the outcome variable (issues, bugs, time-to-release), the
contribution quantity from CS is between 10% and 20%.

Keywords Web apps · Code smells · Software evolution · PHP · Granger causality ·
Transfer entropy

1 Introduction andMotivation

In the last three decades, web applications (web apps for short) have evolved from simple and
almost static apps to fully-fledged ones (Dwivedi et al. 2011), almost rivaling their desktop
counterparts, with the most notable advantages for the users, the absence of installation
or need to update. However, with this "always-on" and "connected" perspective comes the
imperious need for quality and rapid maintenance capability, primarily for corrective actions
(Vern and Dubey 2014; Ricca and Tonella 2003).

One of the prominent areas of study in software quality improvement is code smells (CS).
CS are symptoms of poor design and implementation choices, therefore fostering problems
like increased defect incidence, insufficient code comprehension, and longer times to release,
as reported in studies involving desktop apps (Palomba et al. 2017). Most of these studies
are cross-sectional, but there are also some longitudinal/evolution ones. Software Evolution
is an active research thread in Software Engineering, where longitudinal studies have been
conducted on software products or processes, focusing on aspects such as software metrics,
teams’ activity, defects identification and correction, or time to release (Herraiz et al. 2013;
Radjenović et al. 2013). However, most of the studies target desktop apps.

PHP is the most used server-side programming language in web development 1, making
almost 80% of the web apps built. The research results on CSwithin the server-side code only
(e.g., in Rio and e Abreu 2019; Bessghaier et al. 2020) are very similar to the ones reported
for desktop apps in the literature (Zhang 2010; dos Reis et al. 2021). However, web apps are
not built with only the server-side languages since another part runs in the browser. While
a single language is usually used on the server-side (e.g., PHP, C#, Ruby, Python, or Java),
several languages are used to build the client-side (e.g., JavaScript for the programmatic part,
HTML for content, and CSS for formatting).

We study PHP web applications because they are the most frequently used - as previous
referred. Secondly, because typical PHPweb applications have the server-side and client-side
code in the same code-base (monolithic web apps), makes it possible to study the client and
server-side code relationship. Lastly, because PHP web applications have been around for
many years, they offer more data for long-term studies like ours.

Figure 1 shows an example file that contains client-side and server-side code. The server-
side code is processed in the web server to client code, merges with the untouched client-side
code into a temp file (simplification), and then processed by the browser(web client). Client-
side code runs in the browser and is HTML, CSS and JavaScript. JavaScript is a part of

1 https://w3techs.com/technologies/overview/programming_language
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Fig. 1 Anatomy of a PHP monolithic web app, containing server-side and client-side code - very simplified.
Percentages are examples. Exact percentages are in Table 1

the client code, often more than half of this code. Server code can be PHP, C#, Ruby, Java,
Python, server JavaScript(node.js) or others. While the server code can separated from the
client code, even in monolithic applications, for typical PHP web apps the code is entangled.
An example of a file with mixed client- and server-side code is shown on Listing 1.

The code in Listing 1 is a simple example of mixing client-side and server-side code in
PHP. The server-side code gets data from the database and transforms it into client-side code.
The client-side code, both parsed by the PHP parser and untouched, goes to the browser. The
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browser renders the HTML and CSS and runs JavaScript code. Therefore, the file contains
client and server code mixed, and it gets parsed twice, once in the web server (the PHP
code inside <?php ?> tags) and a second time in the web client, i.e., the web browser (by
different parsers/compilers).

Therefore, web app CS can be found on the server and the client-side code, but more is
needed to know about their evolution, as shown in the literature review. We want to study
client and server CS evolution and their inner relationship due to the entangled code. We
also aim to discover if CS evolution impacts maintainability metrics such as issues, bugs,
and time-to-release, using time-series techniques to assess causality in the same release or
previous releases (with lags, i.e., the delays between the time series). We need to use time
series to infer statistical causality. The time series are irregular because open-source apps’
releases are not regular - they do not release at regular intervals in time.

The main novelties in the study are:

– An evolution study with both server- and client-side CS in web apps;
– The use of irregular time series and special correlation techniques for time series with
different observation granularity (release date vs days);

– The use novel statistical techniques to infer statistical causality (e.g., Transfer Entropy)
and compare it with other causality methods(e.g., Granger-Causality).

– Use typical web apps with server-side and client-side code and a web smells catalog of
both client and server code smells.

– We also developed a tool to detect client CS (link provided in the study design section).

The causality inferred from data, if found, does not mean that CS exclusively determines
the cause of the outcome but instead that it contributes to the outcome variability and pre-
dictability.

This paper is structured as follows: Section 2 overviews the related work on longitudinal
studies on CS and in web apps; Section 3 introduces the study design and methodology;
Section 4 describes the results of data analysis, while Section 5 discusses the findings and
next section identifies validity threats; finally, the last section outlines significant conclusions
and future work.

2 RelatedWork

Extensive literature on software evolution and CS impact have been published during the
last decade. We will refer to CS evolution studies, CS impact studies, and studies with CS in
web apps or web languages. To complement the literature review, we will also refer to other
evolution studies in PHP and SE using Granger-causality and Entropy.

2.1 Evolution of CS

Olbrich et al. (2009) described different phases in the evolution of CS and reported that com-
ponents infected with CS have a higher change frequency. Later, Peters and Zaidman (2012)
results indicate that CS lifespan is close to 50% of the lifespan of the systems. Chatzigeorgiou
and Manakos (2013) reported that a large percentage of CS was introduced in the creation
of classes/methods, but very few CS are removed. Later, Tufano et al. (2017) sustain that
most CS are introduced when artifacts are created and not because of their evolution. Rani
and Chhabra (2017) claim that the latest versions of the observed application have more
CS/design issues than the oldest ones. They also note that the first version of the software is

123



Empirical Software Engineering           (2024) 29:133 Page 5 of 46   133 

cleaner. Next, the authors Digkas et al. (2017) found that TD (Technical Debt, that includes
CS) increases for most observed systems. However, TD normalized to the size of the system
decreases over time in most systems. Habchi et al. (2019) conclude that CS can remain in
the application code for years before removal, and CS detected and prioritized by linters
disappear from code before other CS. Recently, Digkas et al. (2020) found that the number
of TD items introduced through new code is a stable metric, although it presents some spikes;
and also that the number of commits is not strongly correlated to the number of introduced
TD items.

2.2 CS Impact in Issues or Defects/bugs

Li and Shatnawi (2007) analyzed six code smells in three versions of an open-source system,
confirming a correlation between three code smells (God Class, God Method, and Shotgun
Surgery) and class error probability.D’Ambros et al. (2010) explored the relationship between
software defects and the number of design flaws in six open-source software tools across
multiple versions. They found a correlation between code smells and software defects but
noted no single design flaw consistently correlates more than others. Olbrich et al. (2009)
investigated the correlation between the code smells God Class and Brain Class and the
frequency of defects detected post-release. They found a higher defect rate in God and Brain
classes, but this rate decreases when adjusted for class size.

Marinescu andMarinescu (2011) studied three versions of Eclipse focusing on four class-
based code smells and defects. They did not confirm a direct correlation between specific
code smell types and defect rates. However, classes affected by code smells increased the
likelihood of defects in their clients, especially in post-release defects. Zazworka et al. (2013)
examined four approaches to structural flaw detection in thirteen releases of a system, focus-
ing on ten types of code smells. They found a correlation between two code smells (Dispersed
Coupling and God Classes) and higher defect-proneness. Bán and Ferenc (2014) explored
the relationship between antipatterns (code smells), bugs, and maintainability across dif-
ferent systems, finding a significant positive correlation between the number of bugs and
antipatterns.

Khomh et al. (2011) investigated the impact of antipatterns (CS) on the change- and fault-
proneness of classes in object-oriented systems. They concluded that classeswith antipatterns
are more prone to changes and faults than others, and that size alone doesn’t explain this
difference. Palomba et al. (2017) extended Khomh et al.’s work with a large-scale empirical
investigation on the prevalence of code smells and their impact on code change- and fault-
proneness. They found that code smells characterized by long and/or complex code are highly
diffused and that smelly classes are more prone to changes and faults than smell-free classes.

2.3 CS inWeb Apps orWeb Languages

Detection Studies Nguyen et al. (2012) presented a list of 6 client-side CS mainly concern-
ing JavaScript andCSS: JS inHTML,CSS in JS; CSS inHTML; Scattered Sources;Duplicate
JS; HTML Syntax Error. They claim that WebScent is a tool for detecting embedded CS in
server code, but detected CS lie only on the client-side. A year later, Fard andMesbah (2013)
proposed another tool, JNose, to automate the process of detecting JavaScript CS. They also
present some JavaScript CS and the embedding (mixing) of JavaScript with HTML. They
propose the detection of the following JavaScript CS: Closure smell, Coupling JS/HTM-
L/CSS, Empty catch - Lines of code, Excessive global variables, Large object, Lazy object,
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Long message chain, Long method/function, Long parameter list, Nested callback, Refused
bequest, Switch statement,Unused/dead code. InMesbah andMirshokraie (2012), the authors
propose an automated technique to support styling code maintenance, which analyzes the
runtime relationship between the CSS rules and DOM elements of a given web application
and detects unmatched selectors, overridden declaration properties, and undefined class val-
ues. They implement the technique in a tool called Cilla. The results show an average of
60% unused CSS selectors in the applications studied. Gharachorlu (2014) describes a set of
26 CSS smells and errors and proposes an automated technique to detect them, conducting
a large empirical study on 500 websites. The author proposes a model to predict the total
number of CSS CS, and also shows a study of unused CSS code on 187 websites.

Evolution Rio and e Abreu (2019) studies the survival of CS in web apps, and later (Rio and
e Abreu 2021) studies the sudden variations of CS evolution in the life of 8 web applications.
This study was extended in Rio and Brito e Abreu (2021) for 8 apps, and the final version
was Rio and e Abreu (2023) with novel investigations and 12 web apps. Conclusions: In
the evolution of server-side CS of PHP web apps, the CS number increases, like app size.
CS density is mostly stable with variations, correlated with the number of developers. CS
lifespan median is 4 years, and 61% of CS introduced are removed. Scattered CS (CS that are
scattered in the classes) survival is different from localized CS (cs in one class or method).
More CS are introduced and removed in the first half of app life. From the 12 apps, sudden
increases were found in 5 apps.

Impact These studies include (Saboury et al. 2017), which found that for JS applications
and for the time before a fault occurrence, files without CS have hazard rates 65% lower than
files with CS. As an extension to the previous paper, Johannes et al. (2019) show the results:
files without CS have hazard rates of at least 33% lower than files with CS. In Amanatidis
et al. (2017) study with PHP TD, which includes CS, they find that, on average, the number
of times a file with high TD is modified is 1.9 times more than the number of times a file
with low TD is changed. In terms of the number of lines, the same ratio is 2.4.

Bessghaier et al. (2020) study diffusion and impact to change-proneness. They extended
the study in Bessghaier et al. (2021), where they replicated studies in Java for the PHP
language. They studied a total of 430 releases from 10 open-source web-based applications
(5 web-apps and 5 frameworks) on 12 CS. They study the diffuseness of CS, its effects on the
change- and fault-proneness in server-side code (replication of Khomh et al. 2011; Palomba
et al. 2017), and the CS co-occurrences (replication of 2018). Their findings agree with
these previous studies: High complex and large code components have high diffuseness and
frequency rates. CS related to large size and high complexity exhibit higher co-occurrences.
Smelly files are more likely to change and more vulnerable to faults than smell-free files.

2.4 Evolution Studies in PHP

Studies of this type include Kyriakakis and Chatzigeorgiou (2014), where authors study 5
PHP web apps, and some aspects of their history, like unused code, removal of functions, use
of libraries, stability of interfaces, migration to OOP, and complexity evolution. They found
that these systems undergo systematic maintenance. Later in Amanatidis and Chatzigeorgiou
(2016), the authors analyze 30 PHP projects extracting their metrics to verify if Lehman’s
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laws of software evolution are confirmed in web applications and found that not all of them
stand.

2.5 Studies in SE with Granger-causality and Entropy

Granger-causality Some studies have already used Granger-causality. Couto et al. (2014)
proposed a link between source codemetrics and the occurrence of defects, using the Granger
Causality Test to determine if past variations in source code metrics can forecast changes in
defect trends. They applied this approach to four Java-based systems in various life stages
and achieved an average precision greater than 50% in three of the four systems. This sug-
gests that source code metrics can be effective predictors of future software defects. Palomba
et al. (2018) analyzed 13 code smells in 30 software systems to explore the co-occurrence
of code smells, which types often appear together, and the reasons for their introduction and
removal. Key findings include that 59% of classes with code smells are affected by more
than one smell, six pairs of smell types frequently co-occur, method-level smells may lead to
class-level smells, and that code smell co-occurrences are typically removed together during
maintenance. Sharma et al. (2020) implemented detection support for seven architectural
smells and analyzed 3,073 open-source repositories to study the characteristics of architec-
tural smells and their correlationwith 19 design smells. The study, which included a causation
analysis within five repositories, found that smell density is not dependent on repository size,
architectural smells are highly correlated with design smells, most design and architectural
smell pairs do not collocate, and that design smells often lead to architectural smells.

Entropy Some studies used entropy, but in prediction models, with regressions. Gupta et al.
(2018) proposed a mathematical model to predict bad smells using the concept of entropy
defined by the Information Theory. They use 6 code smells and 7 releases of one open-source
software (Apache Abdera). They use different measures of entropy (Shannon, Rényi and
Tsallis entropy) to apply non-linear regression techniques to build a prediction model for bad
(code) smells. Themodel is validated using goodness of fit parameters andmodel performance
statistics and they compared the results of the prediction model with the observed results on
real data in the 7 releases. Other studies used entropy-based bug prediction using support
vector regression (SVR) (Singh and Chaturvedi 2012) and the complexity of code changes
using entropy-based measures (Chaturvedi et al. 2014).

2.6 RelatedWork Conclusions

Because a great percentage of web apps have server and client code entangled, often in the
same files, further studies are needed using both CS from the client and server side in web
apps. Furthermore, the studies on the impact of CS are mainly at the class level (even outside
the web). Therefore, there is a need for studies of the effects of CS at the system level because
HTML and CSS do not have classes. Another reason is that a code smell in file A can cause
a bug in file B. Studies in impact measure and correlate the CS and bugs in one file (calling
it smelly and not smelly, independent of whether the CS appears in the first release or the
last). Therefore, time series longitudinal studies dealing with causality inference are needed
to uncover how CS in past releases impacts bugs, issues, and time to release in the same and
following releases.
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3 Methods and Study Design

We investigate the evolution of CS in typical (monolithic) web apps and what this evolution
causes to the applications’ evolution maintainability problems and time to release delays.
Monolithic web apps have server-side and client-side code entangled in the same code base,
sometimes mixed in the same file. Therefore, we expect some CS from one side to impact
the other for several reasons, including coding culture, knowledge of web code smells, and
reduced time to release the entire app.

First, we study the evolution of server-side and client-side CS and assess if they evolve
similarly or if there is a difference. In larger projects, it is usual to have two teams for
the development (client-side and server-side code) or a third one specialized in JavaScript.
However, in other projects or small projects, one team develops all. We interviewed a group
of specialists with more than ten years of experience, selected from the industry, and the most
common pattern is that client-side code is done first (the templates). Secondly, we will study
if CS from client-side code impact CS from the server-side and vice versa in the monolithic
code base.

For the analysis of CS groups, we will consider three groups: the server-side CS and
we specialized the client-side CS in two groups: embed CS - CS concerning the mixture of
languages - and JavaScript CS.

Next, we aim to discover if the CS evolution of the various types of server-side and client-
side CS contributes to the evolution and number of app issues, bugs, and delays in releases
(or application time-to-release). We study the individual CS and CS groups. Issues are the
reported "issues" in each app development’s "issue tracker" tools. Bugs are issues that can be
classified as bugs; some are labeled as bugs as some have the word "bug" or a synonymous
in the description (Antoniol et al. 2008). Time-to-release is the number of days between two
official releases.

It is expected that if CS increases, that canmake an issue increase that asks for refactorings
(the removal of CS). That will increase maintainability. It is also expected that an increase in
CS will increase the number of bugs; this is studied in the literature. It is also expected that
if CS increases, the time-to-release increases.

Thus, we translated these study topics into the following research questions.

3.1 Research Questions

– RQ1 - How do server and client-side Code Smells evolve? - This question will lead
to uncovering the evolution of the different CS on the server-side and client-side , indi-
vidually and as groups (server side-CS, client-side embed CS, and client-side JavaScript
CS).

– RQ2 - Is there a relationship between server- and client-side Code Smell evolution?
- In our target applications, the server- and client side-code is entangled in the same code
base. So getting CS from all groups in the same files is expected. We want to find if
the evolution of one group of CS impacts the others. The answer to this question will
explain if groups of CS (server-side, client-side embed, and client-side JavaScript CS)
evolve in the same way (by time-series correlation) and if there is statistical causality in
the evolution of one group of CS to the other. The statistical causality is verified between
the same and previous releases of variables, up to four releases behind, with linear and
non-linear measures. In this article, "release" means a full release of the software to the
public.
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– RQ3 - Does server- and client-side code smells evolution impact web app reported
faults (bugs)? We want to understand if the CS evolution of the various smells impacts
the number of reported bugs in the evolution of the app. Furthermore, we want to study if
the CS density change causes changes in the number of bugs reported (considering only
the reported date) in the evolution of the web app. We study correlation, and causality
between individual CS ans bugs, and causality between CS groups and bugs. We also
performed the same studies for the issues not filtered as bugs.

– RQ4 - Does CS evolution impact "time to release" in a web app? The answer to this
question will help us uncover if the evolution of CS causes delays in the "time to release"
of the program, i.e., the dates of the full release of the web apps. We already know that
CS increase will hinder readability (Mannan et al. 2018; Yamashita and Moonen 2012,
2013), but we want to find the answer inferred from observed data. We study causality
relationships between individual CS and time to release, and between CS groups and
time to release.

In summary, the first two questions analyze the evolution of server- and client-side CS and
the possible relation/causality between their evolution. In full-stack development practices,
the same developers work on the server and client code, while there is a clear separation of
teamwork in other web applications with two or even more teams. On the other hand, client-
and server-side code are intertwined in the same codebase and the same files in typical PHP
web apps. Because of this, some causality relations between both sides’ CS evolution are
expected, especially if teams ( or teams) don’t avoid CS in code on both sides. Therefore,
we want to understand whether the CS of the client- and server-side have a relationship or
causality between them. It is expected that if the CS from the client-side rise, the server-side
CS also rise in subsequent releases, and vice-versa, because the CS are on the same code
base and sometimes in the same file.

For the remaining two questions, we want to verify the degree of correlation and causal
statistical impact of the CS evolution with the progression of the issues, bugs and "time to
release" of the application. It is expected that an increase inCS provoke an increase in the bugs
or time-to-release of the app by a certain amount. To measure causality and quantity, we will
use the statistical and time seriesmethods described in the "StatisticsUsed" subsection,which
can statistically uncover these relations and causal inferences. These statistical methods will
have to deal with the irregular release dates of OSS software. We will analyze CS inference
individually and in three groups.

Studying individual CS relations and statistical causalities gives each CS relative impor-
tance and allows prioritizing its removal. Studying the same but in groups gives us a macro
perspective of which group/side of CS has a higher impact on the outcome variable. This can
make lead developers or managers correct quality problems in code made by specific teams
or developers.

3.2 Apps Sample

We built the list of applications to analyze from the most forked PHP applications on GitHub
- not all were web apps. Web apps are installable in a web server. For comparing client and
server CS, the web apps must be complete apps (monolitic), i.e., they must have server-
side code and client-side code, witch is the norm for PHP web apps. Then, we applied the
following criterion:

– Inclusion criteria:
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– open-source web apps built with PHP as the server-side language
– code available;
– self-contained apps (server- and client-side code mixed requirement);
– programmed with object-oriented style (PHP can also be used in a pure procedural
way, but server-side CS used in the study are for object-orient programming);

– Exclusion criteria:

– libraries (libraries do not run alone - they are included in other apps);
– frameworks or apps used to build other apps (the structure of frameworks to build
web apps are very different from the web apps; some of them are to be used to a great
extent in the command line)

– web apps built using a framework (part of the code would be very similar).

The tool we used to detect server-side CSworks with object-oriented programming (OOP)
CS and code. Thus, we excluded somewell-known PHP apps because their corewas not OOP,
and frameworks and libraries since we target typical web apps. These typical web apps must
contain server and client code (monolithic) . Furthermore, we excluded older releases of the
apps when the PHP code was not OOP (for example, phpMyAdmin < 3.0.0). PHP can use
OOP since version 4, but some apps delayed the move to OOP for several years because
of web server support (PHP Apache module version). As usual in web applications, all the
applications use a database for persistence, but we only analyze the code.

Table 1 shows the complete list of apps. The KLOC and percentage of code (% Code)
numbersweremeasured byCLOC CLOC. The percentages in the last three columns represent
the server, client-side (HTML+CSS+JavaScript), and client-side JavaScript (JS) code and
their percentages breakdown. The column "client" contains the JavaScript code, but we also
have the JavaScript code percentage as a separate column. So, in summary, server-side code +
client-side code =100%; the column client code includes JavaScript code, but this JavaScript

Table 1 Web apps sample used in this paper

AVG KLOC % Code Type
Name Purpose #Releases(period) Versions Server Client JS Server Client JS

phpMyAdminDatabase admin. 179 (09/2008-09/2019) 3.0.0 − 4.9.1 138 70 58 66% 34% 28%

DokuWiki Wiki 40 (07/2005-01/2019) 2005-07-01- 92 19 13 83% 17% 12%

2018-04-22b

OpenCart Shopping cart 26 (04/2013-04/2019) 1.5.5.1 − 3.0.3.2 118 177 80 40% 60% 27%

phpBB Forum/BBS 50 (04/2012-01/2018) 2.0.0 − 3.2.2 112 27 2 80% 20% 1%

phpPgAdmin Database admin. 29 (02/2002-09/2019) 0.1.0 − 7.12.0 18 3 2 85% 15% 10%

MediaWiki Wiki 138 (12/2003-10/2019) 1.1.0 − 1.33.1 135 32 24 81% 19% 15%

PrestaShop Shopping cart 74 (06/2011-08/2019) 1.5.0.0 − 1.7.6.1 210 145 81 59% 41% 23%

Vanilla Forum/BBS 63 (06/2010-10/2019) 2.0 − 3.3 61 46 24 57% 43% 23%

Dolibarr ERP/CRM 83 (02/2006-12/2019) 2.0.1 − 10.0.5 310 26 8 92% 8% 2%

Roundcube Email Client 31 (04/2014-11/2019) 1.0.0 − 1.4.1 102 51 30 67% 33% 19%

OpenEMR Medical Records 33 (06/2005-10/2019) 2.7.2 − 5.0.2.1 271 370 225 42% 58% 35%

Kanboard Project manag. 65 (02/2014-12/2019) 1.0.0 − 1.2.13 49 6 2 90% 10% 3%

Sizes and code percentages are averaged by all releases studied
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code is shown again in another column to analyze its percentage in the client code. The
numbers do not include external library/third-party folders.

3.3 Web CS Catalog

The next three sections present the web server catalog for the studies. Besides the apparent
separation between the server-side and client-side, we have further specialized our CS catalog
on the client-side into two categories: the embedded part (mixture of languages) and the
programming part (JavaScript). Most CS used in this paper, covering the server and client-
side,were definedbyother researchers, and tool collection availabilitywas a relevant selection
criterion. Nevertheless, as described later, we had to develop a collection tool for client-side
CS. In the following subsections, we will briefly describe each adopted CS.

For the selection of the PHPand JavaScriptCS,we interviewed another group of specialists
(CS specialists selected in the same investigation center), and only CSs that were not ambigu-
ous were considered. Another reason to consider the CS was the possibility of detection.
Examples of Ambiguous in PHP: Superglobals, CamelCaseClassName, CamelCaseProper-
tyName, GoTo; Ambigous in JavaScript: Closure, Empty Catch, switch. Examples of not
ambiguous - all the others included in the catalog.

3.3.1 Server-side CS Catalog

For the server CS, we used PHPMD, an open-source tool that can detect CS in PHP (Dusch
et al. 2021). The chosen subset of server-side CS, presented in Table 2, corresponds to the

Table 2 Characterization of server-side Code Smells

Code Smell Description Threshold

(Excessive)CyclomaticComplexity Method number decision points plus one 10

(Excessive)NPathComplexity Method number acyclic execution paths 200

ExcessiveMethodLength (Long method) method is doing too much 100

ExcessiveClassLength (Long Class) class does too much 1000

ExcessiveParameterList Method with too long parameter list 10

ExcessivePublicCount Excess public methods/attributes class 45

TooManyFields Class with too many fields 15

TooManyMethods Class with too many methods 25

TooManyPublicMethods Class with too many public methods 10

ExcessiveClassComplexity Exc. Sum complexities all methods class 50

(Excessive)NumberOfChildren Class with an excessive number of children 15

(Excessive)DepthOfInheritance Class with many parents 6

(Excessive)CouplingBetweenObjects Class with too many dependencies 13

DevelopmentCodeFragment Development Code:var_dump(),print_r() 1

UnusedPrivateField Unused private field 1

UnusedLocalVariable Unused local variable 1

UnusedPrivateMethod Unused private method 1

UnusedFormalParameter Unused parameters in methods 1

Names of Code Smells are the ones presented by the tool. "(Excessive)" was added to denote a CS and not a
metric. Original thresholds from the tool
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Table 3 Characterization of Client embedded CS

Code Smell Code Smell Description

embedded JS JavaScript inside HTML page inside <script>tag

inline JS JavaScript inside HTML page in the elements themselves

embedded CSS CSS inside HTML page inside a <style>tag

inline CSS CSS inside the HTML page in the elements themselves

CSS in JS CSS code in JavaScript

CSS in JS: jQuery CSS code in jQuery

more recurrently used in the literature, although sometimes with different names. Although
they may be disputable, we did not change the proposed thresholds used by PHPMD for CS
detection (3rd column in Table 2) for comparability’s sake with other studies using the same
tool. The names of the CS are presented by the tool used,PHPMD, with the word "Excessive"
in parenthesis, to indicate that it is a CS and not a metric.

3.3.2 Client-embedded CS Catalog

The client-embedded CSwere among the first reported in the literature for web apps (Nguyen
et al. 2012; Fard andMesbah 2013). The first article introduces the CS and performs an empir-
ical study revealing their implications. We asked several experts in the field for confirmation,
and they agreed that the embedded client CS hinders several aspects of web development.
Since we could not obtain the collection tool mentioned in Nguyen et al. (2012), we devel-
oped another one dubbed eextractor2 and allowed us to collect the CS represented in Table 3.
We propose the last smell, which refers to jQuery, a widely used JavaScript library designed
to simplify HTML DOM tree traversal and manipulation, event handling, CSS animation,
and Ajax.

3.3.3 Client JavaScript CS Catalog

JavaScript CS for client-side were first reported here (Fard and Mesbah 2013), but since
then used in other studies besides the client-side programming, for example Saboury et al.
(2017) that usesmostly JavaScript libraries as sample.We faced difficulties running the initial
version of JSNose (Fard and Mesbah 2013) with dependency issues at the time of our study.
Therefore, for extracting the client JavaScript CS described in Table 4, we used ESLint, a
pluggable and configurable linter tool for identifying and reporting on patterns in JavaScript
(Zakas et al. 2021).

3.4 Study Design - Data Extraction

We fully automated the workflow of our study through shell and PHP command-line scripts.
First, we downloaded all versions/releases of the selected web apps from GitHub, Source-
forge, or the app’s official site, except the alpha, beta, release candidates, and corrections for
old versions.

2 available in https://github.com/studywebcs/eextractor"

123

https://github.com/studywebcs/eextractor


Empirical Software Engineering           (2024) 29:133 Page 13 of 46   133 

Table 4 Characterization of Client JavaScript Code smells

Code Smell Description Threshold

max-lines exceeds number lines per file 300

max-lines-per-function exceeds number line of code in a function 20

max-params exceeds number parameters in function 3

(Excessive)complexity exceeds cyclomatic complexity allowed 10

max-depth exceeds depth 4

max-nested-callbacks exceeds depth nested callbacks 3

Names of Code Smells are the ones presented by the tool. "(Excessive)" was added

Server-side CS Then, using PHPMD, we extracted the location, dates, and other indicators
of the CS from all versions and stored that data in XML format, which is one of the outputs
of this tool. We excluded some directories not part of the web app (e.g., vendor libraries,
images). The excluded folders in the example apps in 2 of the apps were: phpMyAdmin:
doc, examples, locale, sql, vendor, contrib, pmd and for Vanilla: cache, confs, vendors,
uploads, bin, build, locales, resources. The excluded folders for the other applications are
on the replication package.

Client-side Embedded CS For the embedded CS, we developed a tool, dubbed eextractor
(embedded extractor), that scraps the release, gets the CS, and records their occurrences in a
database. We excluded the same folders from the analysis.

Client-side JavaScript CS For the JavaScript CS, we first separate the embedded JavaScript
that is inside the HTML and PHP files and put them on files in a folder named "embed".
Thus, each release of the apps will have a folder "embed" with the embedded JavaScript
code. Then, we extract the CS from the external (regular .js files) and embedded JavaScript
(.js files in the embed folder). This extraction is performed using ESLint.

Size Metrics We collected Size Metrics by release with the tool CLOC 3and stored them in
tables of the database used, where later we exported them to CSV format.CLOC, and another
tool that we used recently, PHPLoc, counts client code in PHP files as PHP, so we had to use
an older tool, SLOCCount, to provide the correct count of PHP lines, only inside PHP tags.
We made the difference between these two counts and counted the code outside PHP tags as
client code. The code from templates is also counted as client code. We used the lines from
the ".js" files and the embedded JavaScript code we previously separated for the JavaScript
count.
PHP lines of code = CLOC PHP lines of code4 - SLOCCount lines
of code 5 We excluded the same third-party folders in the CS extraction for all the size
counts (in all languages).

Issues For most applications, the issues were taken fromGitHub issues, using their API. For
phpBB, we extract the issues from Jira. The phpMyAdmin devs lost some issues during an
early period, so we retrieved them from Sourceforge and joined them with the GitHub one,

3 https://github.com/AlDanial/cloc
4 including HTML, CSS, JavaScript
5 measured with cloc –use-sloccount

123

https://github.com/AlDanial/cloc


  133 Page 14 of 46 Empirical Software Engineering           (2024) 29:133 

removing the duplicates. We elaborated small scripts/programs that retrieve the issues from
the various APIs and insert them into the database, to be exported later to CSV format files.

Bugs Bugs are the reported issues classified as bugs by label or inwords inside the description
(Antoniol et al. 2008). Part of the applications studied classify the bugs with labels, while
other applications do not do this. Sincewe have all data in a database, we devised an algorithm
that reunites the labeled issues with syntax detection (by word) from studies in the literature
(Śliwerski et al. 2005; Ayari et al. 2007; Antoniol et al. 2008). The "Methodology for each
RQ" section will explain this search criterion.

Time to Release we computed the "time to release" (RQ5) from the release dates of the
apps.

Figure 2 shows the study design to collect data, extract CS and analysis.

3.5 Study Design - Data Pre-processing

After we collected the CS, we stored them in a database, each application having three tables
for CS, ’server’, ’client’, and ’client_javascript’. In another DB table, we stored the Lines
of code for the various languages and the Total LOC, as described in the "data extraction"
sub-section. HTML files allow for CSS and JS inclusion, so we had to count the lines with
this in mind. On the other hand, PHP files allow for HTML, CSS, and JS, so the size count
must consider and count lines inside PHP tags (as referred to in the study design).

Because we want to check for causality in the time series, we count every CS by release
(using a script developed by us) and export them in .csv format. In this dataset (one file
per app), we have the release date, 18 server-side CS, and 12 client-side (embed CS and
JavaScript). We also have the metrics for each language.

CS density - we performed all the studies with CS density. CS density is calculated in the
following way:

– Server CS density = #CS server / PHP lines of code (this excludes HTML lines in ".php"
files as denoted in the study design section).

– Client CS density = #CS client / Client lines of code (HTML, CSS, Javascript, Templates)
– JavaScript CS density = #CS JavaScript / JavaScript lines of code (.js files + embed lines
of code)

Using another script, we extracted the CS densities. At this point, we had the data for the
first two RQ and the RQ4.

For the RQ3, we will have two sets of studies; in the first set (correlation of irregular time
series with different granularity), we compare the CS by release with issues by day, and in the
second set (statistical causality) have to aggregate the bugs by release. After we downloaded
the issues and put them in a separate database for issues, we extracted the bugs from the
issues, as described in the methodology of RQ3. Then, we had to aggregate the daily data by
release to allow for causality statistics inference (it is required to have the same number of
observations in the independent and dependent variables) However, for the ’irregular time-
series correlation’ (cor_ts), we summed the number of bugs by reported day, and there was
no need to aggregate by release. After, we exported the bugs by day and the aggregated bugs
by release to two datasets (per app) available in the replication package. Please see Fig. 4 for
the two time-series of bugs, one by release and the other by day. For some applications, the
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bugs’ initial dates differed from the releases’ initial dates. So we had to remove some values
of the bugs time-series to have intervals with both CS and bugs.

3.6 Statistics Used - Irregular Time Series Analysis and Causality

The software releases from the projects studied do not have releases equally spaced in time,
leading to irregular time series, where the data is not equally spaced in time. Because we
detect the CS from the software releases, they are irregular time series. The reported issues
and bugs are also irregular time series but have a different granularity (the date of the report),
and they are much more frequent in time.

Several challenges are implicit in the study of raw longitudinal data, especially when the
observed data are short and irregularly sampled. Therefore, we must access some unconven-
tional methodologies to obtain validated results to overcome these problems.

Causal inference between irregular time series, with linear and nonlinear relations, can
be detected and quantified through various methods. The techniques include the Granger
Causality Test and Vector Autoregression (VAR)Models, which assume linear relationships,
and nonparametric methods like Convergent Cross Mapping (CCM) for nonlinear systems.
In addition, transfer Entropy helps detect linear and nonlinear relationships in irregular time
series. At the same time, Dynamic Time Warping (DTW) can establish relations between
irregular series 6. Recurrence Networks help detect complex synchronizations, especially
useful for non-stationary series, and Deep Learning Models like LSTM networks or RNNs
can handle irregular series and nonlinear relationships.

We used the Granger-causality method to detect linear relations between the time series
and Transfer entropy to detect both linear and non-linear relations. These relations relate the
present of one time series with the past of the other. We selected TE because it can quantify
in percentage the transfer of information between two time series. Moreover, both of these
methods can work with irregular time series.

To relate the time series at the same time (same release), we used correlations (the standard
correlation if time series have the same granularity, and cor_ts for time series with different
granularity) and linear regression.

In what follows, we summarize the main statistical tools and the R libraries used to attain
our purposes.

3.6.1 Time series Correlation (cor_ts) - with irregular series and with different
timescales

To calculate correlations between unevenly sampled time series (Reschke et al. 2019), we
used the cor_ts7 function from the R package Bincor (Josue et al. 2019). This function
estimates Pearson and Spearman correlations for binned time series, employing the native R
function cor.test (from the stats package). Binning refers to resampling the time series on a
regular grid and assigning mean values within those bins (Josue et al. 2019; Mudelsee 2014).
The cor_ts function can be applied to irregular time series where observations occur at the
same time moments and series with different timescales.

6 https://towardsdatascience.com/inferring-causality-in-time-series-data-b8b75fe52c46
7 https://www.rdocumentation.org/packages/BINCOR/versions/0.2.0/topics/cor_ts
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Unrelated time series can display spurious correlations if they share drift in the long-term
trend. Time series data commonly depend on time, and Pearson correlation is reserved for
independent data. This problem is related to the so-called spurious regression. The simple
solution to this problem is to model the data (linear regression) and then analyze the produced
residuals. If the residuals are stationary, that is,

P{yt1 ≤ b1, . . . , ytn ≤ bn} = P{yt1+m ≤ b1, . . . , ytn+m ≤ bn} (1)

i.e., the probability measure for the sequence yt is the same as that for yt+m,∀m (the distribu-
tion of the values does not changewith time), then the regression/correlation it is not spurious.
Otherwise, we need to apply the first order difference operator, Δyt = yt − yt−1, to elimi-
nate time dependency and subsequently compute the correlations between the transformed
variables in the dataset.

Time series non-stationarity will be analyzed by appropriate statistical tests, like unit root
and stationary tests (Shin and Sarkar 1996; Mills 2019).

3.6.2 Granger Causality

The understanding of cause-effect relationships is a meaningful task for the perception of
the functionality/consequences of CS and the various evolution metrics studied. There are
several studies in the scientific literature related to time-series methods based on the notion
of Granger causality (Bahadori and Liu 2012; Heerah et al. 2020; Siggiridou and Kugiumtzis
2016). This causality concept is based on the idea that causes must precede their effects
in time. Temporal precedence alone is insufficient to prove cause-effect relationships, and
skipping relevant variables can lead to spurious causality (falsely detected causality).

Otherwise, it is said that a spurious relation between two variables occurred if the statistical
summaries show significant relations, where, from the theoretical point of view, there is no
reason for these relations to exist. Another reason for spurious results is the non-stationary
property of time series. The unit root and co-integration analysis were developed to cope
with the problem of spurious regression.

The Granger causality test (Granger 1969, 1988) is a statistical test for determining
whether a time series offers valuable information in forecasting another time series. Pro-
posed by Nobel Prize winner Clive Granger (1969), the causality hypothesis could be tested
by measuring the ability to predict the future values of a time series using prior values of
another time series, or “causes must precede their effects in time.” It is a concept that can be
applied to stationary time series.

More formally, let’s consider the case of two variables xt and yt . Then xt does not Granger
cause yt if, in a regression model of yt on lagged values of xt and yt , that is,

yt =
p∑

i=1

αi yt−i +
p∑

i=1

βi xt−i + ut (2)

all the coefficients of the former are zero. So, xt does not Granger cause yt , if βi = 0, i =
1, ..., p. Straightforward, the null hypothesis of the Granger non-causality can be formulated
as below:

H0 : βi = 0, i = 1, · · · , p (3)

This test is only valid asymptotically since the regression includes lagged dependent
variables, but standard F tests are often used in practice.
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Granger Causality 8 is an algorithm that takes into account the information content of
signals and can be applied to stationary time series. Therefore, we need to remove all com-
ponents that can be predicted from its own history; that is, we convert the given data into
(unpredictable) noise which, as Shannon described (Shannon 2001), represents the informa-
tion contained within it. Then, we test if we can predict the noise time series from prior values
of a second-time series. If possible, the second series is a predictive cause of the first one. This
latter view of Granger causality bridges the third methodology we employed in our analysis,
based on entropy transfer. The Transfer Entropy is considered to be a non-linear version of
Granger causality, and it is a robust approach for estimating bi-variate causal relationships
in real-world applications (Edinburgh et al. 2021).

3.6.3 Transfer Entropy

Information-theoretic measures, such as entropy and mutual information, can quantify the
amount of information necessary to describe a dataset or the information shared between
two datasets. For dynamical systems, the actions of some variables can be closely coupled,
such that information about one variable at a given instance may supply information about
other variables at later instances in time. This flow of information can expose cause-effect
relationships between the state variables.

Transfer Entropy (Behrendt et al. 2019; Schreiber 2000) is already established as an
important tool in the analysis of causal relationships in nonlinear systems since it permits the
detection of directional and dynamical information without assuming any functional form to
describe interactions between variables/systems. The measurement of information transfer
between complex, nonlinear, and irregular time series is the basis of research questions in
various research areas, including biometrics, economics, ecological modeling, neuroscience,
sociology, and thermodynamics. The quantification of information transfer commonly relies
on measures that have been derived from subject-specific assumptions and restrictions con-
cerning the underlying stochastic processes or theoretical models. Transfer entropy is a
non-parametricmeasure of directed, asymmetric information transfer between two processes.

Given a coupled system (X , Y ), where PY (y) is the probability density function (pdf) of
the random variable Y and PX ,Y is the joint pdf between X and Y , the joint entropy between
X and Y is given by:

H(X , Y ) = −
∑

x∈X

∑

y∈Y
PX ,Y (x, y) log PX ,Y (x, y). (4)

and the conditional entropy is defined by the following:

H(Y | X) = H(X , Y ) − H(X) (5)

We can interpret H(Y | X) as the uncertainty of Y given a realization of X .
The Transfer Entropy (Schreiber 2000) can be defined as the difference between the

conditional entropy of each variable in the system:

T E(X → Y | Z) = H
(
Y F | Y P , Z P

)
− H

(
Y F | X P , Y P , Z P

)
(6)

which can be rewritten as a sum of Shannon entropies:

T E(X → Y ) = H
(
Y P , X P

)
− H

(
Y F , Y P , X P

)
+ H

(
Y F , Y P

)
− H

(
Y P

)
(7)

8 https://www.rdocumentation.org/packages/lmtest/versions/0.9-38/topics/grangertest
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where Y F is a forward time-shifted version of Y at lag Δt relatively to the past time-series
X P , Y P and Z P . Within this framework we say that X does not G-cause Y relative to
side information Z if and only if H

(
Y F | Y P , Z P

) = H
(
Y F | X P , Y P , Z P

)
, i.e., when

T E
(
X → Y , Z P

) = 0.
Transfer-entropy is an asymmetric measure, i.e., TX→Y �= TY→X , and it thus allows the

quantification of the directional coupling between systems. The Net Information Flow is
defined as

T̂ E X→Y = T EX→Y − T EY→X . (8)

One can interpret this quantity as a measure of the dominant direction of the information
flow. In other words, a positive result indicates a dominant information flow from X to Y
compared to the other direction.

We used the R package RTransferEntropy 9, which can quantify the information flow
between two stationary time series and its statistical significance using Shannon transfer
entropy (Shannon 2001) and Renyi transfer entropy (Rényi 1970). A core aspect of the
provided package is to allow statistical inference and hypothesis testing in the context of
transfer entropy.

3.6.4 Mapping between Granger-causality and Transfer Entropy

It has been shown (Barnett et al. 2009) that linear Granger causality and Transfer Entropy
are equivalent if all processes are jointly Gaussian. In particular, by assuming the standard
measure (l2-norm loss function) of linear Granger causality for the bivariate case as follows:

GCX→Y = log

(
var (εt )

var
(
ε̂t

)
)

the following can be proved (Barnett et al. 2009):

T EX→Y = GCX→Y /2.

This result provides a direct mapping between the Transfer Entropy and the linear Granger
causality measures.

3.7 Methodology for each RQ

3.7.1 RQ1 - Evolution of CS in Web Apps on the Server and Client Sides

We started by analyzed the evolution of the various individual CS in the proposed catalog.
i.e., server-side CS, client-side embed CS, and client JavaScript CS, and next, we measured
the correlation of the various CS within their group for the three groups, in each application.
We used the standard R (cor) correlation and cross-correlation tables. We also computed the
average correlation on all apps aggregated.

Finally, we analyzed the evolution of CS as a group/programming scope (server-side
programming, client-side, and client-side JavaScript programming). We calculated the trend
with linear regression and plotted the graphs of this evolution to visually understand code
smells’ group evolution.

9 https://cran.r-project.org/web/packages/RTransferEntropy/vignettes/transfer-entropy.html

123

https://cran.r-project.org/web/packages/RTransferEntropy/vignettes/transfer-entropy.html


  133 Page 20 of 46 Empirical Software Engineering           (2024) 29:133 

3.7.2 RQ2 - Relationship between Client-side CS and Server-side CS Evolution

This research question aimed to find relationships betweenCSgroups’ evolution and causality
relations between the same groups, with and without lags. All time series use "code smells
density" to avoid the problems posed by the increase or decrease in the application size.

First, we studied the correlation between CS groups with the standard "cor" function of
R because they are measured in the same release, and the time series have the same number
of observations. As a result, we obtain the following three combinations: server and client,
server and client_js, and client and client_js.

Next, we studied for causal inference from one group of CS to the other, using the six com-
binations possible for the three groups: Server =>Client; Server =>client_js; Client =>Server
; Client =>Client_js; Client =>Server; Client_js =>Client. Because typically the client code
is developed before the server code, we would expect the client-side CS to appear before the
server CS and even contribute to their appearance. For the same reason, we would expect the
client embed smells to appear before the JavaScript smells. However, not all applications are
developed in the same order.

We used Linear regression models to test the causal inference between CS in the same
release. Next, we applied Granger-causality to test for causal inference for CS data, consid-
ering lags (time delays) between one and four. The "lags" mean that we question if a group of
CS’s past values (in a previous software release) would impact the present values of another
group of CS. Figure 3 shows this impact. Finally, we measure nonlinear causality using the
same lags (between one and four). To this end, we used Transfer Entropy since it can detect if
there is information transfer from one "time series" to another and quantify it. The Transfer
Entropy methodology also serves as a double-check of causality but extending it because it
can detect linear and nonlinear causality.

The Granger causality requires time series to be stationary, so we tested this before other
studies. However, considering the absolute number of CS, the time series are mostly non-
stationary, and we have to make some transformations (differentiating, logarithms, etc.) to
stabilize the variables. Nevertheless, because we wanted to study the evolution of CS density
(divided by KLOC), the time series turned out to be stationary.

3.7.3 RQ3 - Impact of CS Intensity Evolution on Faults (bugs)

We wanted to find relations between code smells and faults/bugs in the web applications on
the date the issue was reported, so we filtered the "issues" we had already collected. Some
applications label the faults/bugs as such, while others do not mark them. So we consulted

timeseriesA

timeseriesB 

R1 R2 R3 R4 R5

time

R6

Fig. 3 Previous releases in timeseries 1 impact next release on timeseries2
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the literature (Śliwerski et al. 2005; Ayari et al. 2007; Antoniol et al. 2008) and the words
more common to find the bugs were: bug, problem, error, defect, fail, fix (but not fixed or
fixes, or suffixes) and we constructed the following database query:

insert table_bugs_more SELECT * FROM table_issues WHERE
( labels like ’%bug%’ or title like ’%bug%’ or title like ’%problem%’
or title like ’%error%’ or title like ’%defect%’ or title like ’%fail%’
or title like ’[[:<:]]fix[[:>:]]’ or body like ’%bug%’ or body like ’%problem%’
or body like ’%error%’ or body like ’%defect%’ or body like ’%fail%’ or body
like ’[[:<:]]fix[[:>:]]’ ) and title not like ’%fixe%’
and body not like ’%fixe%’ and not labels like ’%duplicate%’ order by created

This query ensures that the date is the creation/report date of the bug, not the fixing date
of the bug. Since we are searching for causality relations, we want to ensure we relate the
bugs when reported. Hence we search for "fix" but not "fixed" or "fixes".

We could populate a bug table for each applicationwith this query, whichwe later exported
to CSV. However, for the analysis with "cor_ts", we could only use releases with bugs in the
issue tracker, which was not the case in the early releases of every application. So we had to
find the minimum release with bugs reported. In the other studies with regression, Granger
causality, and Transfer Entropy, we did the sameminimum date removal after the aggregation
(aggregation referred to in RQ3) - we found the minimum release with both bugs (or issues)
and CS, and used only data after that release. Next, we performed the same studies as the
previous RQ, first for individual CS and after as a group.

Next, to answer the research question, we analyzed the impact of separated CS first and
later as a group. In the individual CS assessment, we had 30 "time series," one for each code
smell, and did the assessments:
Specialized time-series correlations (cor_ts ) - correlations between two unevenly spaced
time-series or time-series not on the same time grid. In the present study, we also had different
timescales, one on the release date for the CS and another by day for the issues. The issues
are in absolute numbers because we did not have the total app size or the lines of code for
each day to calculate the CS density.
Causality inference from the CS to the bugs: Similarly to RQ2, we analyze causality by
handling Linear regression, Granger Causality, and Transfer entropy.

For the causality studies, we had to aggregate the issues by release date, as shown in what
follows:
Bugs Aggregation: The CS time series data, including metrics, is keyed by the version release
date, while the issues are by days, so they have different granularity. Fortunately, the cor_ts
10 R package allows calculating relations between such time series and allow us to employ
the original time series in the calculation. However, for the other statistical methods, we
aggregated the issue data on the same (release) dates as the CS time series.

Figure 4 shows the feasible structure of the irregular data and how we can use it for
correlation and causality effects.When using the cor_ts function,which can compare irregular
time series with different intervals and measures, we used the time series on the left image
(a) with the bugs reported by day. For the Linear Regression, Granger Causality, and Entropy
Transfer, we aggregated the "issues" by the release date, as shown in the figure on the right
(b).

After, for the CS 3 groups (server, embed client, and JavaScript client) impact on bugs, we
only used the transfer entropy (lags 1 to 4) because is the most complete statistics (as referred
before) - we show the p-values and the percentage of information transfer (TE) between the
two time series.

10 https://www.rdocumentation.org/packages/BINCOR/versions/0.2.0/topics/cor_ts
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Fig. 4 Comparison of irregular series of CS and bugs

We did the very same studies to the issues, not filtered as bugs. Due to the lack of space
we only show the results. We show all the data for this quastion in the appendix.

3.7.4 RQ4 - Impact of CS Intensity Evolution on "time to release"

We wanted to find statistical causality between CS density and delays in releasing a new
version of an app ("time to release"). To this end, we made the same analysis (Linear regres-
sion, Granger Causality, and Transfer Entropy) without aggregating the data because the time
series have the same observations (on the app release date).

For the CS 3 group’s impact on time to release, we only used the transfer entropy (lags 1
to 4) and showed statistical significance and value on information transfer.

3.8 Function Selection and Parameter Estimation

Correlations We tested R standard correlation and time series correlation cor_ts, which can
be applied when the time series are of different granularity and irregular. Because of this, we
used cor in RQ1 and RQ2, and cor_ts in RQ3. The alternative of using cor_ts in RQ3 would
be aggregating (binning) the bugs by release and using the standard correlation. When the
dates axis in the time series are coincident (by release date), cor_ts will give the same results
as cor.

Statistical Causality We used the standard linear regression (lm function in R) to measure
causal inference in the same release. Linear regression can be used for prediction and causal
analysis 11. In the present study, we are more concerned with causal inference.

We used Granger causality (grangertest R function) in RQ2-RQ4, for lags 1 to 4. These
lags mean that we are detecting Granger-causality from time-series X to time-series Y, but
with a previous value of X, using only linear methods. This method should agree with linear
regression if the X in the regression were from a previous release (the same lag). Granger
Causality shows the significant value that allows us to conclude whether Granger causality
exists.

On the other hand, Transfer Entropymeasures the flowof information from a time-series X
to time-seriesY (in each direction), giving both the significance and the amount of information
transferred, using linear and non-linear methods. This means it should agree with the Granger
Causality values and add more information to the relation (the non-linear values). When
measuring with Transfer entropy ("Rtransferentropy" function), we tested the parameter q.
For q=1, Rényi entropy converges to Shannon entropy, and no areas of the time series are

11 https://statisticalhorizons.com/prediction-vs-causation-in-regression-analysis
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given more weight. With q less than 1, some areas of the distribution with less probability
can be emphasized, and with q>1, some areas with more probability can be emphasized. We
tried for values 0.5 to 0.9, 1.0 (Shannon), and 1.1, and found the best values that agree with
Granger causality to be q=0.8.

Differences between Granger-causality and Transfer Entropy Granger-causality mea-
sures the impact of the past values of a time series in another, using linear models. Transfer
Entropy can detect if there is information transfer from the past values of a "time series" to
another, using liner and non-linear methods, and also quantify it.

We studied the times series with lags of 1 to 4 for both Granger causality and Transfer
Entropy. In the study results, we present values with lags 1 and 2, but the values of the rest
of the lags are in the replication package. As introduced, we are more interested in detecting
causal inference between time series than in making prediction models. Nevertheless, we
present all the results from the study (including the entropy transfer values from CS to issues,
bugs, and "time to release" time series) in the appendixes up to lag2 and in the replication
package up to lag 4 12.

4 Results and Data Analysis

This section presents the results, data analysis, and findings of the research questions. We
cannot represent all the correlations, and for the causality inference, all p-values and all the
Transfer Entropy values (lack of space). So we opted for a plus notation (correlations) and
dot notation(causalities), and the reader can consult the total values in the appendices or the
replication package.

4.1 RQ1 - Evolution of CS inWeb Apps on the Server and Client Sides

To answer this question, we studied individual CS timeseries evolution and correlate them
within the same group. Then, we study the evolution and trends of the 3 groups of CS
timeseries.

4.1.1 Individual Code Smell Density Timeseries Evolution and Correlation

We first analyzed the evolution of the various individual CS divided as server-side, client-
side embed, and client JavaScript CS. The complete data is shown in the appendix and the
replication package. Some similarities can be observed between the CS timeseries (CS),
characterized by common patterns for increasing and decreasing periods. To check this sim-
ilarity, we performed a correlation table between the CS timeseries of the same group, first
as individual applications and after as an average.

The averages of the correlations show that some correlations in the same group prevail in
most apps. However, we intend to check for the correlation between CS of the same groups
but in one application at a time to check if it is possible to treat them as a group, and the
answer is yes. This make possible evaluate the CS as a group for this and the next questions.
The correlation data and graphs of all applications are shown in the appendix.

12 available in https://github.com/studywebcs/data
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4.1.2 Evolution of CS as a Group

Next, we evaluate the evolution of CS grouped.
Figure 5 represents the evolution of CS in the same group or programming scope, server-

side programming, client-side, and client-side JavaScript programming. The CS densities for
the different CS groups are all in the same order of magnitude and can be represented on the
same scale. However, some peaks, especially in JavaScript code smells density evolution,
are explained in the discussion section.

We had anticipated that all CS density (by size) would exhibit a downward trend over time,
but this expectation has not been met, and some have even shown an increase. Nevertheless,
there is some similarity in the evolution of the code smells belonging to the same group in
some applications, which we will study in more detail in the following research question.
By visual inspection, we can see this similarity in Fig. 5, in the client-embed smells and
client-JavaScript smells, on OpenCart.

code smells server client client_js

Fig. 5 Evolution of Code Smell groups in web apps (Y axis: CS density by LOC ; X axis: years)
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Table 5 represents the linear trends and the average and standard deviation of theCSdensity
values (by KLOC). Averages were calculated through all the releases of the applications,
dividing per respective size (Lines of code) of the language or section studied. The linear
trend was calculated by making a linear regression. It does not capture all the evolution of
the CS density but serves to analyze the main tendency. The arrows mean the tendency of
the time series. The arrows with the "equal" after mean that the increase or decrease is not
so steep ("==" in OpenEMR means almost stable).

The density of server CS (PHP) increases for three apps, phpMyAdmin, phpBB, and
Dolibarr. There are two peaks for phpMyAdmin, and there is refactoring, but the overall
tendency still increases. In phpBB, there is a reduction in the end, but the shape is similar
to an inverted U. In Roundcube, there is a steady increase. However, the step is not as steep
as the other two apps (increases 50% in the time series). The server CS density increases
or decreases in the other applications, but the step is not stiff, and some are almost stable.
The density of code smells ranges from 8.5 to 20 CS per KLOC (if we do not count with
Kanboard, and outlier with only 1.4 CS/KLOC).

Regarding client embed CS density, phpMyAdmin, DokuWiki, OpenCart, MediaWiki,
PrestaShop, and to a lesser degree, Vanilla and OpenEMR all decrease their value. This
is the type of evolution we were expecting (to make the quality increase). However, php-
MyAdmin,Dolibarr, and to a lesser degree, roundcube, increase the client embed CS density.
For phpBB, there is a stable trend. The client embed CS density values vary between 9 and
50 CS/KLOC).

For the JavaScript CS, the central tendency is increase, except for two considerable
decreases (OpenCart and Dolibarr) and two small decreases (phpMyAdmin and Round-
cube). The values vary from 29 to 159 CS/KLOC, if we consider Kanboard again an outlier
with an excessive number of JavaScript CS, probably due to the tiny size of the application.

Summary for RQ1: The dominant trend, for most applications, in server-side CS density
(by KLOC) is slowly decreasing. For client-side embed CS density, the main tendency
is to decrease. However, for JavaScript CS density, the central tendency is to increase.

Table 5 Averages and trends of Code Smell densities (CS/KLOC)

app server serve server client client client client js client js client js
tendency avg sd tendency avg sd tendency avg sd

phpMyAdmin ↗ 8.5 1.89 ↘ 20.14 9.72 ↘= 159.36 480.52

DokuWiki ↘= 10.41 2.16 ↘ 17.37 8.34 ↗ 38.61 12.98

OpenCart ↗= 15.01 0.48 ↘ 12.16 6.39 ↘ 47.92 12.07

phpBB ↗ 9.29 3.41 → 25.66 8.96 ↗ 29.39 23.25

phpPgAdmin ↘= 18.93 5.91 ↗ 52.37 31.78 ↗= 19.11 6.43

MediaWiki ↘= 14.71 2.57 ↘ 13.7 6.07 ↗= 28.59 4.18

PrestaShop ↗= 10.49 1.62 ↘ 25.89 10.92 ↗= 40.1 9.85

Vanilla ↘= 19.98 2.14 ↘= 8.89 1.62 ↗ 53.46 13.78

Dolibarr ↗ 14.41 1.43 ↗ 27.29 9.01 ↘ 13.86 8.25

Roundcube ↗= 8.8 2.07 ↗= 10.7 1.42 ↘= 39.18 2.8

OpenEMR ↗== 14.89 2.49 ↘= 19.61 6.68 ↗ 29.74 6.88

Kanboard ↘= 1.4 0.69 ↗ 9.83 3.34 ↗= 862.48 1406.87

123



  133 Page 26 of 46 Empirical Software Engineering           (2024) 29:133 

Table 6 Correlation between Code Smells groups

A plus sign indicates correlation > 0.3

4.2 RQ2 - Relationship between Server- and Client-side Code Smells

We studied the possible relationships between the evolution of CS groups and aimed to find
statistical causality relations between variables in the same groups, with and without lags.
All time series use "code smells density."

4.2.1 Correlation between Code Smell Groups Timeseries

Table 6 represents the correlations among the density of CS groups/types ( in CS/KLOC).
The plus signs represent positive correlations greater than 0.3, which is a moderate relation
(Akoglu 2018; Ratner 2009; Kim et al. 2018). A more complete table with p-values can be
found in the appendixes. Half of the applications exhibit a positive linear correlation between
server-side and client-side CS. Furthermore, we find positive correlations between embed
clientCS and JavaScript clientCS in a quarter of the applications.Of course, it is not necessary
to have correlations between the evolution of code smells’ density of different groups, but it
can describe the team’s expertise. We identify three groups, the third being applications with
no correlations between CS time-series. Possible explanations for this phenomenon are put
together in the discussion.

4.2.2 Causal Inference between Code Smell Groups’ Timeseries

This section presents the results from the implementation of regression models to study if
causal inferences exist. First, we use linear regression, which can be used to this end if criteria
are met, as explained in Amanatidis and Chatzigeorgiou (2016) for metrics evolution, but
here for Code Smells evolution. Next, we present the results from the implementation of
dynamic regression models, Granger Causality, and Transfer Entropy between CS groups
to study if cause-effect relations exist. This cause-effect relation is measured with lags. For
example, Lag 1 means we are measuring the effect of release i in release i+1. Lag 2 means
we are searching for the effect of release i in the release i+2. This "X->lag Y" can also be
described as "Y" being one version ahead (lag).

Table 7 represents the resume of our measurements. Dots represent statistical significance
in one web app; the solid dot means a statistical significance of 0.05, and the white dot
means a statistical significance of 0.10. The column Linear Mod. shows the causal inference
measured from linear regression. The columns GClag 1 (Granger Causality lag 1) and TE
lag 1( transfer entropy lag 1) show the Granger causality/information transfer between the
group on the left on the arrow and the one on the right. Lag 1 means the time series on the
right is shifted one release (and Lag 2 two releases). While Granger Causality only captures
the existence of causality in linear relations, transfer entropy also captures the non-linear
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Table 7 Statistical causality between CS density groups using Linear regression, Granger causality (lag 1 and
2) and Transfer Entropy (lag 1 and 2)

CS Linear Mod. GClag1 GClag2 TElag1 TElag2

server =>client •••••••••• ◦ •◦ ••◦◦◦ •◦
server =>client_js •••••◦ • •• •
client =>server •••••••••• ••• ••◦ •••••◦◦ ••••
client =>client_js •••••••••◦ •••◦ ••◦ ••••◦ ••••
client_js =>server •••••◦ •◦ • •••••◦ ••
client_js =>client •••••••••◦ ••◦◦◦ ••◦ •••◦◦ ••
Black dots and white dots represent statistical significance of 0.05 and 0.10, respectively, in one application

relations (both the existence and the value). So we expect them to be in concordance, but TE
should uncover more relations. The column GClag2 and TELag2 are the same, but for lag 2.

The column Linear Mod. of Table 7 represents the sum of the apps with statistical signif-
icance in the linear regressions among groups. The relations that have significance in most
apps are: Server =>Client and Client =>Server; Client =>Client_js and Client_js =>Client. In
the appendix, we show the separated values for all applications. For the applications phpBB,
PrestaShop, Vanilla, and Roundcube, the regression models have statistical significance in
the regression among all CS groups. This significance can indicate a strong relation among
all the groups of CS, in these apps, in the same release. If, for example, the server-side CS
increase, the other two CS groups follow the same pattern in that same release.

Analyzing Granger causality with lag 1, in 3 applications, we measured causal inference
from CS of a release i to CS belonging to a release i+1 from client to both server and client
JavaScript. We found fewer causal relations using lag 2 (from two releases behind).

We can observe that there is a significant flow of information from the series with the lag
1 of the other groups (shift to the date of the next version), especially in Client->Server and
Client_js->Server, followed by Client->Client_js. This result means that if there is a rise in
Client CS density or JavaScript CS density in a release i of the app, the next release will be
followed by a rise in Server-side CS density in half of the applications. Also, the rise in the
Client CS density will impact the rise in JavaScript-only CS density. For lag 2 (two releases
before), the Client CS density impacts both Server and JavaScript CS smells. The TE (value
of transfer entropy from one to the other) and p-values are in the replication package. We
studied GC and TEwith up to 4 lags, but we only show two lags in the table for simplification.
The remaining info is in the appendix and replication package. Both lags 3 and 4 on GC and
TE have fewer apps with statistical significance.

These results mean a transference of information exists between the groups of CS, so they
contribute to the behavior of the other time series. Possible explanations are put forward in
the discussion.

Summary for RQ2: Timeseries correlation analysis - Found correlation between the
server-side CS and client-side CS timeseries on half of the applications and between
client CS and JavaScript client CS timeseries in a quarter of the applications.
Causal Inference between CS timeseries - With Lag1 (the preceding release), the most
significant Transfer Entropy (TE) was from the client-side to server-side CS and from
the client-side JavaScript to server-side CS, followed by the TE from client to client-side
JavaScript. With Lag2 (from two releases before), the most notable TE was from the
client to the client-side JavaScript and the server-side CS.
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4.3 RQ3 - Impact of CS (server and client) on the Faults/reported Bugs of aWeb App

This section presents the results for the impact of CS on faults/reported bugs in a web
application. First, with CS time series individually (correlation and causality) and after, we
evaluate causality from CS grouped to bugs. We used only ten apps for this study because 2
of the apps did not have enough data in the issue tracker.

4.3.1 Relationships between CS and Daily Reported Bugs

To find the relationships, we used the specialized time-series correlation (cor_ts) with CS
density and the absolute number of bugs.

Table 8 represents the significant correlations between CS and daily bugs. Two of the apps
(OpenCart and phpBB) only have 1 CS each that correlates to bugs. This result could be

Table 8 Time-series correlation
(cor_ts) between CS and bugs (10
apps - positive corr. > 0.3

Code Smells #correl.

(Excessive)CyclomaticComplexity + + + + +
(Excessive)NPathComplexity + + + + +
ExcessiveMethodLength + + + + +
ExcessiveClassLength + + + + +
ExcessiveParameterList + + ++
ExcessivePublicCount + + ++
TooManyFields + + + + ++
TooManyMethods + + +
TooManyPublicMethods + + ++
ExcessiveClassComplexity + + + + +
(Excessive)NumberOfChildren + + + + +
(Excessive)DepthOfInheritance

(Excessive)CouplingBetweenObjects ++++

DevelopmentCodeFragment + + +
UnusedPrivateField ++
UnusedLocalVariable + + +
UnusedPrivateMethod + + ++
UnusedFormalParameter + + +
embed.JS + + ++
inline.JS + + ++
embed.CSS + + ++
inline.CSS + + + + +
css.in.JS + + +
css.in.JS..jquery + + ++
max.lines + + ++
max.lines.per.function + + ++
max.params + + + + +
(Excessive)complexity + + + + ++
max.depth + + + + +
max.nested.callbacks + + ++
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related to delays in correcting bugs, closing the issues, longer time to release, or other issues.
However, the remaining eight applications show a strong correlation between CS and bugs;
in some CS, the correlation is present in almost all applications.

4.3.2 Causality Relationships Between CS and Bugs

To uncover causality relationships between CS and bugs, we employed Linear regression,
Granger Causality, and Transfer Entropy, using CS density timeseries. For these causality
inference studies, we had to aggregate the bugs, as we described in the subsection Method-
ology for each RQ.

Table 9 Statistical causality from CS density to Bugs relations (10 apps) using Linear regression, Granger
causality (lag 1 and 2) and Transfer Entropy (lag 1 and 2)

CS LM GClag1 GClag2 TElag1 TElag2

(Ex.)CyclomaticComplexity ••• ••◦ •◦◦ •••◦◦◦ •◦
(Ex.)NPathComplexity ••• ••• ••◦ •••◦◦◦ ••
ExcessiveMethodLength ••••• •••• ••◦ ••••◦ •◦
ExcessiveClassLength ••• ••• •• ••••• ◦
ExcessiveParameterList ••• •◦ •• ••••◦ ••••
ExcessivePublicCount ••◦ •• ◦ •••◦ •
TooManyFields •••◦ •◦ •• ••• ◦
TooManyMethods •••◦◦ •◦◦◦ ••••◦ ••
TooManyPublicMethods •••• ••◦◦ •• ••◦ •◦
ExcessiveClassComplexity ••••• •••◦◦ ••◦ •••••◦ ••◦◦◦
(Ex.)NumberOfChildren •••• ••• ••• ••••• •◦
(Ex.)DepthOfInheritance • •
(Ex.)CouplingBetweenObjects ••◦ •◦◦ • ••••••• •
DevelopmentCodeFragment •◦ •• • ••••• •
UnusedPrivateField ••• •◦ • ••••◦ •••◦◦
UnusedLocalVariable •••• ••◦ • ••◦ ◦
UnusedPrivateMethod ••◦◦◦ •◦ •••◦◦ •
UnusedFormalParameter •••◦ • •◦◦ ◦◦◦ •••
embed.JS •••◦ •••◦ •• ••••• ◦
inline.JS ••◦ ••◦ ••◦ ••••◦ •••
embed.CSS ••◦ •• ••◦ ••••◦ ••
inline.CSS •••• ••• ••◦ •••••◦ •••◦
css.in.JS •◦◦◦ ••◦ ◦ ••••◦ ◦
css.in.JS..jquery ••• •• ••• •••◦ •◦
max.lines ••• ••• •• •••◦◦◦ •
max.lines.per.function ••• •• •• •• ••
max.params •◦◦ •◦ •• •••••••◦ •••••
(Ex.)complexity ••◦ •• ••◦ ••••◦ ••◦
max.depth • •◦ ••••◦◦ •••••◦
max.nested.callbacks •• ••◦ • •••◦◦ ••
Black dots and white dots represent statistical significance of 0.05 and 0.10, respectively, in one application
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Table 9 shows our measurements. The column LM is the linear regression, where the
various CS densities are the independent variables and bugs are the dependent variable.
Almost all the CS time series have a causal inference (measured with linear regression) with
the bugs, and the ones in more apps are ExcessiveMethodLength, ExcessiveClassComplexity,
TooManyPublicMethods, UnusedLocalVariable, from the server-side, and inline.CSS, from
the client-side. For 2 of then apps,Roundcube andOpenCart, there are no significant relations.

For the causality of CS in previous releases to bugs, we have Granger causality lag1
and lag2 (CS in the previous release and two releases before). The column "GC1lag" shows
Granger causality from CS density (lag 1) to bugs, where we can observe several G-causality
relations, being the top with ExcessiveMethodLength. The column "GClag2" shows the
Granger causality from CS from 2 releases before to the bugs in the current release. We can
observe some G-causality relations, but less than with 1 lag. We also studied Granger causal-
ity for lag 3 and 4; the number decreases, except for the code smell "max.nested.callbacks",
which increases. Again, for the same two apps, Roundcube and OpenCart, there is no sig-
nificant relations.

The column TE 1lag shows the Transfer Entropy from the CS in the previous release to
the bugs. Column TE 2lag shows the Transfer Entropy from the CS from 2 releases before
the bug’s actual release. As we know, TE captures both the linear and non-linear infor-
mation transfers, so we expect more than in the Granger causality columns. In TE 1lag,
almost all the CS significantly impact the bug’s evolution, as shown by the "bullets" in
the column. However, the CS with higher information transfer to the bugs are: Coupling-
BetweenObjects, ExcessiveMethodLength, ExcessiveClassLength, ExcessiveParameterList,
TooManyMethods, ExcessiveClassComplexity, NumberOfChildren, DevelopmentCodeFrag-
ment, UnusedPrivateField; all client CS but "css.in.JS..jquery"; and in JavaScript CS,
max.params, complexity, max.depth. In TE lag 2, almost all decrease the number of apps,
but the smell "max.depth" is 5 in lag2, lag3, and lag4. The max.nested.callbacks increases
in lag 4 also. All the apps have values; however, the apps with fewer values are PrestaShop
and roundcube with just 3 CS showing significant TE.

As introduced , we are more interested in the existence of causality relations from indi-
vidual CS than the values themselves. However, as an example, we show the interval ratio
in the contribution (TE) of some significant CS to bugs of the 3 areas, in the apps that
TE was statistical significant with an error of 0.05: CouplingBetweenObjects 10% to 52%,
ExcessiveMethodLength 11% to 51%, ExcessiveClassLength 11% to 52%, ExcessiveParam-
eterList 11% to 52%; embed.JS 13% to 57%, embed.CSS 12% to 20%, css.in.JS 19% to
48%; max.lines 15% to 42%, max.params 14% 53%. All percentage values in rep. package.

We also tested the TE from bugs to CS (inverse Transfer Entropy), but we found no values
worth referencing. This result indicates that information transfer goes from the CS to the bugs
and not from the bugs to the CS (once more, the data is online, in the replications package).

One CS, (Excessive)DepthOfInheritance, is only present in residual numbers in 3 appli-
cations, explaining the empty line in the tables.

4.3.3 Causality Relationships between CS Groups and Bugs

Table 10 represents statistical significance and weighted amount of information transfer
from CS groups to bugs. In half of the applications, server-side CS statistically caused bugs,
measured with a significance of 0.05. If we expand the significance to 0.10, in 60% of the
apps, JavaScript CS can statistically cause bugs, while the other client-side CS cause this
in 40% of the apps. In lag2 and other lags, all start to decrease. The weighted average of
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Table 10 Statistical causality from CS density grouped to Bugs (10 apps) using Transfer Entropy (lag 1 to 4)

CS TElag1 TElag1% TElag2 TElag2% TElag3 TElag3% TElag4 TElag4%

server ••••• 18% ••◦ 10% •• 6% •• 4%

client •••◦ 9% ••• 15% ••• 16% ••• 7%

client_js •••◦◦◦ 17% •• 6% •• 7% •• 3%

Black dots and white dots represent statistical significance of 0.05 and 0.10, respectively, in one application.
Columns with % have the weighted information transfer values

information transfer measured with TE in lag1 from server CS to bugs is around 18%, from
embed client CS 9%, and from client JavaScript CS is around 17%.

Summary for RQ3: We detected significant correlations between all the CS densities
and bugs timeseries in almost all ten applications evaluated except 2. We find statis-
tical causality from almost all the CS densities to bugs timeseries, being the top PHP
(Excessive)CouplingBetweenObjects and JavaScript (Excessive)max.params. The TE
from bugs to CS density timeseries (inverse TE) is almost non-existent. There is signifi-
cant TE from CS densities as groups (Server, Client, and JavaScript) to bugs timeseries
in Lag 1, decreasing in the subsequent lags.

4.4 RQ4 - Impact of CS (server and client) on the Time to Release of aWeb App

We analyzed the causality between CS density and delays in releasing a new version of an app
(time to release). To this end,we used the same approach as before: Linear regression,Granger
Causality, and Transfer Entropy. No aggregation was needed because "time to release" is
measured in the app’s release date.

4.4.1 Causality Relationships between Individual CS and Time to Release

Table 11 represents the LM, Granger-causality, and Transfer entropy of each code smell to
"time to release." Each dot represents a web app with statistical significance (0.05 black, 0.10
white) in the statistic performed in the column.

In the Linear regression (column LM - from CS density to ’Time to release’), which
measures the impact of CS in the same release - as causal inference - we found several
regressions with statistical significance. However, in 2 of the apps (DokuWiki and round-
cube) we found 0, and in phpPgAdmin, we found just 1, so the maximum possible of
apps (and dots) would be 9. These three applications behave differently, i.e., the CS do
not impact in ’Time to release’. However, for most apps, CS impacts ’Time to release’
in the same release of CS. The CS with the most impact are ExcessiveMethodLength
, (Excessive)CyclomaticComplexity, (Excessive)NPathComplexity, ExcessiveClassComplex-
ity, TooManyMethods , UnusedFormalParameter from server-side; embed.JS, inline.CSS,
inline.JS, embed.CSS from client-side;max.lines.per.function andmax.lines from JavaScript.

The column ’GClag1’ represents the linear impact of CS from the previous release in
’Time to release’ of the current release. We found some Granger causalities, but this number
is lower than TE. However, we found some values with statistical significance, being the
max.lines in JavaScript the top one. The column ’GClag2’ represents the Granger causality
values for lag 2, i.e., for CS from 2 versions before the current time to release. With two
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Table 11 Statistical causality from CS density to Time to release relations using Linear regression, Granger
causality (lag 1 and 2) and Transfer Entropy (lag 1 and 2)

CS LM CGlag1 CGlag2 TElag1 TElag2

(Ex.)CyclomaticComplexity •••••• •••◦◦ •• ••••◦◦◦ •◦◦
(Ex.)NPathComplexity •••••• •••◦◦ •• ••••◦◦ ••◦◦
ExcessiveMethodLength ••••••• ••••◦◦ ••• ••••◦◦◦ •••
ExcessiveClassLength •••• ••••◦◦ •• ••••◦◦ ••
ExcessiveParameterList •••• •••◦◦ •• •••••◦ ••◦
ExcessivePublicCount •••◦◦ •◦◦ •• ••◦◦ •
TooManyFields ••◦ •◦ •• ••••◦ ◦
TooManyMethods •••••◦ ••••◦◦ •••◦ •••••◦ ••◦◦
TooManyPublicMethods •••◦ •••◦ •• ••••• ••◦
ExcessiveClassComplexity •••••• •••◦ ••• •••••◦◦◦ ••
(Ex.)NumberOfChildren ••◦ •••◦ ••◦◦ •••••◦◦ •
(Ex.)DepthOfInheritance • ◦
(Ex.)CouplingBetweenObjects ••• •••◦◦ •••◦ •••• ••
DevelopmentCodeFragment ••••◦ •••◦ •• ••◦◦
UnusedPrivateField ••◦ ••◦ ••◦ ••••◦◦
UnusedLocalVariable ••••◦ •••◦ •••• •••◦◦◦ ◦
UnusedPrivateMethod •••• ••••◦ ••◦◦ ••••••• ••
UnusedFormalParameter •••••◦ ••••◦◦ •••• •••••• ••••
embed.JS •••••• ••••◦◦ •••◦ ••••◦◦◦ •••◦◦
inline.JS •••••◦ •••◦ • ••••••• ••◦◦
embed.CSS •••••◦ ••• ••◦ ••••••◦ •◦
inline.CSS ••••••◦ ••••◦ ••◦ ••••••••◦ ••••◦◦◦
css.in.JS ••• •• •• •••••◦ ••◦◦
css.in.JS..jquery ••◦ •••◦◦ •◦ ••••◦ •◦
max.lines ••••◦◦◦ •••••◦ •••• •••◦◦◦◦ ••••
max.lines.per.function ••••••◦ •••◦ ••◦◦ ••◦ •◦
max.params ◦ ••◦ ••◦ ••••••◦◦ ••
(Ex.)complexity ••◦ •◦◦ ••◦ ••••◦◦ ••◦◦
max.depth •◦ ◦ ••◦ ••••••◦◦◦ •••◦◦
max.nested.callbacks •••◦◦ •••◦◦ •••◦◦ ••••••• ••••
Black dots and white dots represent statistical significance of 0.05 and 0.10, respectively, in one application

lags, we find more causality values than in lag 1. The top ones are UnusedLocalVariable,
UnusedFormalParameter, and max.lines from JavaScript. A probable cause: this is related
to time spent in program comprehension, which takes longer.

The column ’TElag1’ represents the Transfer entropy from CS to TTR(time to release)
with 1 lag. The TE measures more than linear methods, so we expected to have more
values here. And indeed, we have, being the top ones: UnusedPrivateMethod, UnusedFor-
malParameter, TooManyMethods, ExcessiveParameterList, TooManyPublicMethod, Exces-
siveClassComplexity , (Excessive)NumberOfChildren, (Excessive)CouplingBetweenObjects,
UnusedPrivateField from the server-side of the app’s code; all from the client embed CS, but
one with slightly less significance: css.in.JS..jquery; andmax.nested.callbacks, max.params,

123



Empirical Software Engineering           (2024) 29:133 Page 33 of 46   133 

max.depth from Javascript CS. The app DokuWiki does not have any CS with statistical
significance. For TE CS->TTR with lag 2, the values decrease, but some still have some
significance and even rise: UnusedFormalParameter (server), inline.CSS (client), max.lines
and max.nested.callbacks in JavaScript. In the replication package and the appendix, we
have these values up to lag 4 in detail (Granger causality and Transfer Entropy). The CS with
almost no values is the (Excessive)DepthOfInheritance because only three apps have this CS,
which does not vary much.

Inverse TE: We also studied inverse TE, the impact from Time to release to CS in the
next version (lag1). None has a particular impact except ExcessiveMethodLength that has
statistical significance in 3 apps: Roundcube, OpenEMR, and Kanboard. These values mean
that if the ’Time to release’ - the time between releases - increases for these apps, some
class methods of the subsequent releases can have excessive lines of code. Specifically, if
the TTR increases several days in these three apps, there is a tendency to write more code
in the methods, making them too long (which raises a CS) instead of dividing them into two
methods.

4.4.2 Causality Relationships between CS Groups and Time to Release

Table 12 represents statistical significance and weighted amount of information transfer from
CS groups to "Time to release." In half of the applications, server-side CS statistically caused
a delay in the release date, measured with a significance of 0.05. If we expand the significance
to 0.10, in 60% of the apps, JavaScript CS can statistically cause delays in "Time to release,"
while the other client-side CS cause this in 40% of the apps. In lag2 and other lags, all start
to decrease, except for the client-side embed CS which still statistically causes delays in
TTR in 60% of the apps. The average of information transfer measured with TE in lag1 from
server CS to TTL is around 14%, from embed client CS 17% and from client JavaScript CS is
around 10%. In lag2, it decreases except for the client-side CS. In lag3 and lag4 it decreases.

Summary for RQ4: There are causal relations from individual CS densities to ’Time to
release’ timeseries of the apps, especially in the same release or with lag1, where the
top CS are the ones from the client-side (both embed and JavaScript). With lag 2, the
values overall decrease, but inline.CSS still presents a high value. There is significant
TE from all CS as groups (server, client, and JavaScript) to time to release timeseries in
Lag 1, and it decreases in the other lags, except for lag2:client CS.

Table 12 Statistical causality from CS density grouped to Time to Release (12 apps) using Transfer Entropy
(lag 1 to 4)

CS TElag1 TElag1% TElag2 TElag4% TElag3 TElag3% TElag4 TElag4%

server •••••◦◦ 14% •◦ 6% •◦ 5% • 2%

client •••••◦◦◦◦ 17% ••••◦◦ 18% ••• 9% •••• 8%

client_js ••◦◦◦◦ 10% •• 5% ••• 9% •◦ 4%

Black dots and white dots represent statistical significance of 0.05 and 0.10, respectively, in one application.
Columns with % have the weighted information transfer values
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5 Discussion

The set of studies presents the following contributions in the methodology and data: an
evolution and statistical inference study with both server CS and client CS in web apps; the
use of (irregular) time-series specialized correlations (cor_ts); inferring statistical causality
with Transfer Entropy, that can measure the flow of information with non-linear relations
and comparing it with linear relations (with Granger-causality and Linear Regressions). In
addition, we provide a tool to extract the embed class of code smells on the client side. We
excluded third-party folders in the server- and the client-side CS and metrics (for some apps,
this makes up around half of the code). Finally, we provide datasets with server-side and
client-side code smells (30 in total) for the 12 applications’ consecutive releases and the
related metrics.

Next, we discuss the RQs’ findings separately and their implications. To explain some
findings (as also select the CS with no ambiguity problems, as previously described), we
assembled a group of 3 experienced developers with more than ten years of experience in
web development, two software engineering professors, and a web development professor.
Possible Comparisons to Desktop Studies As refereed, PHP web apps have server-side
and client-side code in the same codebase and sometimes in the same file, and the server
code runs in the web server and the client code runs in the browser (sometimes the same file
runs twice). This dual processing is entirely different from desktop apps where the code runs
on one platform, and there is no difference in client-side and server-side code. The results
of RQ3 to RQ4 could be compared to desktop counterparts, but only the individual CS and
only from the server-side code.

On the other hand, in desktop CS studies, Granger-causality was used differently, for
example, to verify that method-level code smells may be the root cause for the introduction
of class-level smells (Palomba et al. 2018); causality analysis also revealed that design smells
cause architecture smells (Sharma et al. 2020), so it is not comparable. Lastly, entropy was
used to predict CS from existing CS (Gupta et al. 2018), a different approach than ours.

5.1 RQ1 - Evolution of CS inWeb Apps on the Server and Client Sides

Tendency of Individual CS within the Same Group The CS density evolution is more
important than the absolute number of CS because the application, during its life, can be
refactored, and the size can increase or decrease (removal of code). We already know that in
some apps, we can observe the removal of server CS during the lifespan, while in others, the
CS never get removed (Rio and e Abreu 2019).

There are similarities between the individual CS of the same type (Server, Client embed,
Client JavaScript), so we could examine the CS individually and grouped. This is why we
made the correlation between CS of the same group, to study the possibility of further studies
inCSgroups.Consequently, our investigation extended to each distinctCS and their collective
behavior within their respective groups. The motive behind this approach was to explore any
existing correlations within the same CS group, thereby paving the way for studies on groups
of CS.
CS Groups The most observed trend in server-side CS is "slowly decreasing." In a previous
study (Rio and e Abreu 2023), we found that the server code smells density (by Logical lines
of code - or Effective lines of code) is almost stable. The values are almost the same but
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different because the metric is different. In this study, we use PHP "lines of code" for the size
- the reason for this is explained in the study design. We omitted folders from third parties
(external code) in both studies. The server-side CS result aligns more with the Java language
results from desktop apps.

The most observed tendency for client embed Code Smells’ density is to decrease. This
is because the client "embed" CS group comprehends mainly design smells that concern
the mixing of several languages in the same file. So it makes sense that it decreases as the
developers learn how to separate the concerns (HTML for content, CS for formatting, and
JavaScript for client programming), which should be in separate files whenever possible
(Gilbert and Gilbert 2019; Nguyen et al. 2012; Fard and Mesbah 2013).

Regarding JavaScript CS density, the central tendency is to increase. A possible explana-
tion for this, given by interviewswith developerswithmore than ten years of experience, is the
moving of server-side functionality to client-side code. We plan to expand these interviews
and publish them.

5.2 RQ2 - Relationship between Server- and Client-side Code Smell Evolution

Depending on the web application team expertise and knowledge, the development is made
with just one team, two teams (for the server code and client code), and often a third team
for the client programming, JavaScript. Furthermore, when they have just one team, they can
specializemore in server development or client development; thus, therewill be a difference in
the quality of the code. On the other hand, when there is more than one team, the development
quality can be at the same level, but often not. On the other hand, distributed applications or
systems often have different development teams. Due to this diversity, we expected to find
different relations between the development quality and, therefore, between groups of CS
from app to app.

According to the correlation and correlation type, we divided the applications into three
groups, and according to our group of specialists, we can learn the group constitution possi-
bilities:

– 6 apps with correlation in server-side and client-side CS: one team or various teams but
with similar server- and client-side code knowledge

– 3 apps with correlation in the two client groups (both "embed" and JavaScript) CS: this
means that the server development quality related to CS is different in the server side,
from the two different teams with different know-how in server and client-side or a small
team specializing in one part (server or client code) more than the other.

– 1 app - no correlation - almost the same as before, except that all developments are done
with different levels of quality - probably three developer groups.

Figure 6 shows the transference of information from time series A to time series B, with
the label T EA−>B (Transfer Entropy from A to B).

While we can measure the time-series correlations, we can not measure the team’s con-
stitution from projects from GitHub, where all the developers commit to the same project.
Since most PHP applications are complete applications with server and client-side code, the
code is in just one codebase on control version systems (and so the links to developers),
we would need different studies to assess the constitutions on teams and the expertise of
individual developers on the client-side or server-side code. However, measuring relations
and causalities between groups of CS makes an excellent tool to characterize the team’s
quality-wise behavior in the server and client parts of the code.
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Fig. 6 Venn diagram showing the
transfer entropy of Timeseries A
to Timeseries B

past 
of B

future 
of B

past 
of A

TEA->B

Regarding the Transfer Entropy measurements: the quality of the code, or lack of it,
measured with CS density proxies, propagates from client code to server code and JavaScript
in half of the applications. This result is consistent with the typical development pipeline
of monolithic web applications, in which client-side development is typically done before
server-side development (as referred before).

5.3 RQ3 - Relation between CS and Bugs

As mentioned before, CS alone are not necessarily responsible for increasing bugs numbers.
However, they contribute to their appearance, as shown by our measurements.

Figure 7 shows the transference of information fromCS time series to the bugs time series.
There is significant TE from CS from the previous release (lag1) to Bugs, but for CS from
two releases before (lag2), these values decrease, which can indicate that the bugs are quickly
corrected in the same release.

However, there are some exceptions. Some of the server-side CS that still have an impact
with lag2 are the CS that makes the code difficult to read. As an example, the UnusedFor-
malParameter, in PHP, is possible to initialize a parameter in a method: mtd1($a, $b,
$c=initial). This method can be called as $a->mtd1(a,b), thus possibly making
developers wonder why there is a third parameter not used. For the client-side, the prevailing
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Fig. 7 Previous releases in CS timeseries impact next releases on bugs timeseries
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ones in lag2 are also the problematic CS that hinder readability. However, the phenomena do
not happen so clearly in the "issues" impact studies.

We also calculate (in the replication package and appendix) the value of the contribution
of individual CS time series to the bugs. However, we already knew this was not the only
factor contributing to bugs. However, in a few individual CS, we found some large values
(around 50%), but usually, these values are small. Nevertheless, our study aimed only to find
causality inference from CS to bugs, which we found, as the results show.

When analyzed in a group, the server-side CS contribute more to bugs but also the
JavaScript client ones. This number slowly decreases when measuring older CS. The group
of client-side embed CS still impacts up to 3 releases before. This can be explained by the
difficulty of reading and modifying the embed client code. After some releases, a learning
factor about code knowledge establishes itself (according to our specialist group). In general,
the information transfer from the CS to the bugs is more than 15% (lag1), 10% (lag2), and
then decreases.

5.4 RQ4-Relation between CS and Time to Release

The CS can be the cause directly or because they jeopardize "program comprehension,"
which, in the long term, causes delays. We found these contribution values for the delays in
the releases in almost all individual CS, especially with lag 1, but also in lag 2 for the CS
that impact readability directly.

Analyzing the CS grouped, the results indicate that if the CS increases (especially for
some of them in the individual CS), the web app release date will have a delay in the next
release. When the CS are grouped, we can infer the same conclusion.

5.5 Implications for Researchers

The number of studies on web applications is still tiny compared to desktop applications,
especially in Java. The main difference between web and desktop applications is that they
get processed on at least two platforms: the web server and the browser. Even serverless
applications are processed on the server; the difference is that they implement a web server
in the server-side code (usually a web service). There are even more differences, but this
difference alone implies the necessity for more studies.

Because of the diversity of the languages, it is necessary to complete the catalog or list of
web code smells further. Previous studies in web apps just used the server- or the client-side.

There is a gap in studies on the evolution of CS on both server- and client-side of web
applications and their relations. This type of study is a crucial investigation line that should
have more studies.

Another important research topic is the implications to issues, bugs, and "time to release."
We show that almost all the code smells from the three groups are responsible for these
variables in the web app evolution, and the ones from the client-side are not to be neglected
(sometimes their contribution is even more significant).

Another line of investigation is to build a complete prediction model with other variables.
Some studies aimed this for the desktop word (Java) with only CS similar to the server-side
but on a file/class basis and not an evolutionary perspective (with time series).

Concerning web application code, investigators must inspect the software being analyzed
to avoid the folders from other vendors when collecting the sample. For example, in php-
MyAdmin, if we remove the folders from different vendors from the analysis, we have only
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50% of the original code in the release. Therefore, if we do not perform this step, some ana-
lyzed code comes from other programs. We have performed this step since (Rio and e Abreu
2019). Therefore, we must omit third-party folders from the investigation.

Another concern for investigators is that when measuring size/lines in PHP, not all pro-
grams will count only PHP code lines inside PHP files. In a previous study on server-side
CS only, we used phpLOC that counts HTML lines in PHP files as PHP code for the LOC.
One way to avoid this problem was to use LLOC (logical lines of code). In the present study,
we also had to consider this, but we used LOC measured with CLOC but with a SLOCCount
plugin to count only the PHP lines inside PHP tags ("<? ?>" and ("<?php ?>").

Researchers can use our tool to detect "embed CS" (we can make a version without
database requirements, outputting to .csv, if needed).

Researchers can also use our dataset with three groups of CS, server-side, embed client-
side, and JavaScript client-side, to replicate the study or build other studies.

5.6 Implications for Practitioners

Practitioners should avoid code smells, even if they did not implicate a rise in issues and bugs
or "time to release," but because they make the code harder to read, among other problems.

Due to the findings in causal inference between types of CS (RQ2), developers should
correct the templates (HTML, CSS, and JavaScript) and JavaScript code, both inside HTML
and in external .js files, before implementing server code (in the study case, PHP code, but it
could be code in C#, Java, ruby, python, or even server-side Javascript with nodejs runtime).

After the findings in causal inference from web CS to bugs, issues, and "time to release,"
as a general rule, developers should try to avoid CS; they increase the number of bugs and
even the number of issues and time to release. However, if the time to refactor is scarce,
developers can prioritize CS removal that have more impact on bugs or "time to release"
after the results we found.

Another implication for the developers would be to try to separate client code, especially
CSS inside HTML and JavaScript inside HTML. We found this group of embed CS to be a
casual inference in bugs and delays to the releases. So, always aim to use external ".css" files
and ".js" files in monolithic web apps. As a plus of implementing this separation, it would
be possible to simultaneously develop the HTML, CSS, and JavaScript files by different
developers. Of course, this advice is different for systems with micro-frontends (a front-end
made of parts that glue together), as the JS/HTML/CSS code typically is together in the same
module, but this is out of our scope.

5.7 Implications for Educators

Most Software Engineering or Software Quality courses taught at Universities already have
Code Smells in their curricula. However, they use mainly the Java language for desktops. On
the other hand, courses in Web development tend to leave software engineering issues like
CS out of the syllabus, especially if it is only one course (in some university Computer Sci-
ence related degrees, there are two "web development" courses). Because web programming
involves many technologies simultaneously, this and other SE concerns are often omitted,
and this makes sense because CS are absent from general programming courses. However,
because of web ubiquity (lately, universities found that significant percentages of CS stu-
dents do some form of web development after graduation), adding web development quality
concerns, like CS, to the Software Eng. syllabus makes sense.
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5.8 Threats to Validity

Threats to construct validity concern the statistical relation between the theory and the obser-
vation, in our case, the measurements and treatment of the data. We detected the CS using
PHPMD, where we detected 18 CS. We could compare the detection with other tools for
PHP, but most of them are based on PHPMD. We used ESLint to detect the 6 JavaScript
CS; we rely on their accuracy. We built a tool to detect the client CS, test it by manually
inspection, and perform very well in our tests - no false positives. However, we would like
some feedback on the tool. We could expand this study to consider even more CS. When
filtering the bugs from the issues with the devised filter, we had two results: for the applica-
tions that did not label the bugs, the results were around 93-95%; for the applications that
labeled the bugs, the results were close to 100%. When studying Granger-causality and TE
with issues and bugs, we had to aggregate them by the sum in intervals similar to the releases.
This aggregation could influence the result. However, whenwemeasured the correlation with
cor_ts (time-series correlation), we did not aggregate (CS by release date, Issues, and Bugs
by day). The "time to release" was already in the same irregular interval as the CS.

There should be a balance between statistical significance with the magnitude of effect,
the quality of the study, and findings from other studies (Feise 2002). A p-value adjustment
is necessary when performing multiple tests of significance where only one significant result
will lead to the rejection of an overall hypothesis, or sequential testing during which sig-
nificance calculations are performed a number of times during the A/B test until a decision
boundary is reached 13. False discovery rate control (Benjamini and Hochberg 1995) is sub-
stituting the less power (Verhoeven et al. 2005; Glickman et al. 2014). However, for studies
with hundreds or more comparisons, thesemethods are not recommended (Bender and Lange
2001). Although we should not implement the FDR (the conditions are not met, and there is
an excessive number of comparisons), we experimented with FDR in the three groups of CS,
and an application at a time, in the Bugs Transfer Entropy study and did not find differences.

Threats to internal validity concern external factors we did not consider that could affect
the investigated variables and relations. We can say that PHPMD allows us to change the
metrics thresholds of some CS (some do not come from metrics), but we worked with the
default values for comparing between apps. These values can, however, be questioned for
different apps. We can say the same for JavaScript CS measured with ESLint. However, for
the ’embed client CS,’ the CS is there or not, so this problem does not exist.

Metrics that can influence the results: We tried to make the study independent of metrics,
so we worked with CS density by lines of code. It is possible to work by class (as studies
in desktop apps do), but HTML or CSS do not have classes, so the normalization had to be
the lines of code. Other metrics worth exploring would be the total size or longevity of the
application, which can be used in a future study. Some authors use the metric "Lines of code
affected by CS." This metric is subjective in cases like "Long Method," in which the number
of lines to count as affected is uncertain. Additionally, if a line has 2 or 3 CS, it just counts
as one affected line.

It would also be desirable to have more JavaScript code smells. We plan to do this in the
future. Some of the CS in JavaScript and PHP were considered ambiguous by the teams of
specialists, so we did not try to detect them.

Threats to conclusion validity concern the relation between the treatment and the outcome.
CS are often considered by absolute number or normalized by LOC, or other metric such as
by class - that we could not do here, because HTML and CSS do not have classes. However,

13 https://www.analytics-toolkit.com/glossary/p-value-adjustment/
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our experiments have shown that the CS normalised by LOC gives a better understanding
of the effect of the CS on outcome variables, because its the density of the CS system wide.
Another reason that the CS are system wide is because a CS in file1 can impact a CS or a
bug in file 2, if we just consider within a class or a file we would loose those relations. To
calculate the Transfer Entropy, we made several tests to find the correct parameters, to put it
in concordance with the Granger causality. After the tests, we used the parameter q=0.8 for
all applications; however, this could be analyzed for all applications separately.

Threats to external validity concern the generalization of results.We recognize that having
just 12 web apps may not be enough for generalization’s sake. Also, the apps are different
in evolving, resolving issues and bugs, and removing CS. However, most evolution studies
consider just a small number of apps because it is very computation-intensive to collect all CS
from consecutive app releases and relate them with other outcome variables in consecutive
releases.

6 Conclusions

We studied the evolution and interaction of 18 server-side CS and 12 client-side CS (6 in
JavaScript) in 12 widely used PHP web apps over many years. The CS collection resulted
in datasets of 18 million server, 0.9 million client embed and 1.27 million JavaScript CS.
Furthermore, we measured the impact between them and their impact on web app reported
issues, defects/bugs, and delays/time to release the web applications. We presented an initial
catalog of CS for web apps (aka web smells), both from the server and client-side, for
applications built with PHP language on the server-side. In the scope of the investigation, we
also developed a client embed CS extractor (eextractor), available to download.

We found that most of the CS in the same group have the same tendency in evolution. The
primary trends for CS in most applications are: server-side: slowly decrease; client-embed:
decrease; client-JavaScript: increase. The most significant TE with lag1 between CS groups
happens from both CS client-side groups to server-side, followed by client-embed to client-
JavaScript. With lag2, the TE from client-embed to client-JavaScript and server-side CS are
the most significant.

We found a transference of information (with Transfer Entropy methods) between the
time series of almost all the individual CS and the time series of the bugs, implying a
causal inference from CS to bugs. In conclusion, almost all CS contribute to bugs’ evolution,
especially in lag1; The inverse TE, from bugs to CS density, is practically non-existent. We
also found statistical evidence of causal inference using the various methods between CS and
time-to-release for almost all the individual CS. Developers should remove all CS, but if time
is scarce, they can prioritize its removal based on the study. We also found that individual
client-side CS contribute more to issues’ density evolution, but CS from the server-side code
also impact - this result is only on the appendix.

When analyzing the three groups of CS, the results are similar: from CS to issues, values
of entropy transfer are between 9% and 14% (highest JavaScript CS) - values only in the
appendix; from CS to bugs, the values of entropy transfer are from 9% (client embed) to
17%,18% for JavaScript and server CS respectively; and from CS to time-to-release the
highest value is obtained with the client embed CS.

Wecan conclude that although allCSgroups contribute to issues, bugs andTTR, JavaScript
CS can cause more issues, (server)PHP and JavaScript(from the client side) can cause more
bugs, and the time to release (delays) is more impacted with the density of client embed CS.
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These results and percentages concord with bug prediction models for desktop apps
(Palomba et al. 2019). However, we invite further independent confirmation of this work
or similar studies. It is essential to study the aspects of code that developers can change or
avoid, including code smells.

6.1 FutureWork

Regarding futurework,wewould like to increase the catalog ofweb smells and build detection
tools for these CS. A CS candidate could be "embed HTML in PHP files." However, one of
the strengths of PHP is that it doubles as a server-side language and as a template language
(hence the variables with $ to allow putting them inside strings - this is a BASH, PERL
heritage). So, this is a topic to be discussed. Furthermore, we want to increase the number
of applications and CS studied, provided that more computing power is available. Collecting
and analyzing CS across many consecutive releases and for server-side and client-side (30
CS in total) is a computationally heavy task.

Another research opportunity would be to elaborate the study in distributed apps (web
apps/systems compromising several applications, both frontend/backend and with microser-
vice architecture). However, because these applications no longer use only one code base,
the RQ2 -Interactions of server and client code smells would not be possible to study for
those systems - at least in the same way - mainly because the releases of client and server
(only one or various micro-services) could be not coincident in dates.
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