

Repositório ISCTE-IUL

Deposited in Repositório ISCTE-IUL:
2024-08-02

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:
Rio, A. & Brito e Abreu, F. (2017). Analyzing web applications quality evolution. In 12th Iberian
Conference on Information Systems and Technologies, CISTI 2017. (pp. 1760-1763). Lisboa: IEEE.

Further information on publisher's website:
10.23919/CISTI.2017.7975959

Publisher's copyright statement:
This is the peer reviewed version of the following article: Rio, A. & Brito e Abreu, F. (2017). Analyzing
web applications quality evolution. In 12th Iberian Conference on Information Systems and
Technologies, CISTI 2017. (pp. 1760-1763). Lisboa: IEEE., which has been published in final form at
https://dx.doi.org/10.23919/CISTI.2017.7975959. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.23919/CISTI.2017.7975959

Analyzing Web Applications Quality Evolution

Américo Rio

Fernando Brito e Abreu

Instituto Universitário de Lisboa (ISCTE-IUL)

ISTAR-IUL

Lisboa, Portugal

{jaasr, fba}@iscte-iul.pt

Abstract — Software evolution is a well-established research

topic, but not in the web applications area. Web projects are

normally more complex than other software development

projects because they have both server and client code,

encompass a variety of programming languages, and are

multidisciplinary.

We aim to produce a catalog of web smells to help mitigating

quality problems in web apps implementation, thus saving time

and reducing cost. By means of longitudinal studies, we plan to

analyze the impact of these web smells in web apps

maintainability and reliability. This paper describes several

particularities of the proposed research work, as well as

introduce procedures and techniques to be used.

Keywords—software evolution, web code smells, web

engineering, software quality, longitudinal studies, irregular time

series

I. INTRODUCTION

The main goal of this research is to reduce time and cost
spent in the initial development and maintenance of a web
project, and to improve its global quality. A web project, like
any software development project, evolves with time, due to
changes in the environment and requirements, and it is
essential to mitigate the problems and malformations in code
that cause delays in releases and bugs.

Web systems or applications are normally more complex
than other software development projects, because they have
the server part (that can run in a remote server or cloud server)
and the client part (that is displayed and runs in a browser).
They are also more complex because they encompass a mix of
programming languages (e.g. PHP, C#, JavaScript and Java),
and formatting and content languages (e.g. HTML and CSS).

We previously proposed an automatic model for the
evaluation of web sites supported by a tool that extracted
around 60 metrics from the client code [1], retrieved
automatically from online sites. We could also perform with
success a validation of the metrics and the model, and
compared it with the Google page rank, using statistical
methods. The limitations of that study were that: i) despite our
quality model was comprehensive, only objective metrics were
used, leaving out subjective aspects that only humans could
assess and ii) the code analyzed was only from the client side.

We will deal now with the complete code, both at the client
and server sides of a web application. We will address the
quality of web systems in a longitudinal perspective, as an
evolution study. This requires choosing metrics that can serve

as adequate surrogates for software quality. That choice is not
consensual for various reasons [2]. For instance, in a previous
study of ours, we found that some web systems quality
characteristics may depend on the application domain [3]. To
mitigate this problem, several authors have chosen to study the
evolution of code smells [4-6]. We plan to do that, but in the
scope of web systems. In concrete, our prospects are to perform
various longitudinal studies on open-source web systems to
find evidence on the relation between the existence of the web
smells – the explanatory variables – and maintainability and
reliability problems, such as release delays, failures occurrence
and faults (aka defects or bugs) density, which will be the
outcome variables.

Thus, we now aim at researching if maintainability and
reliability problems found in web projects may be due to the
violation of fundamental software design and coding
principles. Code smells (aka bad smells), typically indicate
those violations, require refactoring and, if spotted early, can
improve quality and save time [7]. Code smells are not bugs,
since they do not prevent a program from functioning, but
rather symptoms of software maintainability and reliability
problems.

Web smells are code smells in the specific context of web
systems. Since awareness is fundamental for prevention
purposes, we need a web smells catalog. Such a documented
ontology of web smells can become an important learning
instrument, and a good starting point for producing web smells
detection and refactoring tools.

We already introduced our research proposal in a previous
paper [8]. In this one we will provide more details on the
procedures and techniques to be used.

This document is structured as follows: section II reviews
the related work; section III describes the experimental
procedures to be applied; finally, in section IV, we present
some preliminary conclusions.

II. STATE-OF-THE-ART

A. Web Systems Smells

“Bad Smells in Code” was an essay by Kent Beck and
Martin Fowler [9], published as a chapter of the famous book
“Refactoring – Improving the Design of Existing Code” [7].
Since then, the term gained popularity and there are many
studies about the subject, normally using Java, although the
main ideas can be applied to any object-oriented programming
language. A comprehensive list of code smells can be found in

a paper by Mantila et al. [4], as well as online in various
sources [10-12].

The published work on web systems smells is considerably
scarce. Some papers on web applications have focused on
clone detection [13] (just one among many smells) and tools
for code smells detection on client-side JavaScript [14, 15].
These studies mostly concern client-side programming issues,
therefore not covering all the spectrum of relevant issues. As
for web systems smells on the server-side, published work is
even scarcer. In the next two sections, we will review and
comment published works on both sides.

1) Client side

Hung Viet Nguyen et al. [15] propose a list of 6 client side
smells, mainly concerning JavaScript (JS) and CSS: They
claim that WebScent is a tool for detecting embedded code
smells in server code, but detected smells lie only on the client
side (i.e. the smells are only in the part of code that runs in the
browser – HTML, CSS, JavaScript). However, to detect code
duplication, one must examine the server code, because a lot of
code will be perceived as duplicated in the browser, but it is
really a server side include and not repeated (i.e. a false clone).

Fard et al. [14], a year later, proposed a set of 13 JavaScript
code smells. This set of code smells is considerably based on
the Fowler’s catalog [9]. The authors developed a tool – JNose
– to automate their collection. This tool uses a web crawler, so
it can only analyze the client side.

2) Server side

The most used server side programming language, PHP,
accounts for over 80% of the server programing in the world
[16]. A good choice for our study will then be PHP. Besides its
representativeness, PHP projects are normally open source and
therefore we can analyze its code.

As shown in [17], most of Martin Fowler’s code smells [7]
still make sense for PHP. However, we could not find any
published work on the corresponding detection algorithms. The
closest we could find was the PHPMD tool [18]. The latter is a
rule-based static analyzer of PHP source code base and looks
for several potential problems within that source that can be
code smells, and one can define a ruleset and use it
accordingly.

B. Longitudinal Studies in Software Development

To obtain evidence that web systems smells may in fact
cause problems, we need to perform longitudinal studies. We
did not find such studies in the web engineering area.
Nevertheless, there are a few important studies with code
smells that, albeit outside the web systems scope, are worth
mentioning, as follows:

Mäntylä et al. [4] describe a survey they performed on
developers, where they concluded that organizations should
make decisions regarding software evolvability improvement,
based on a combination of subjective evaluations and code
metrics.

Olbrich et al. [5] discuss the effect that two code smells
(God and Brain Classes) have in the quality of software
systems. This study uses the information on bugs found, and
instead of considering major releases, this study divides the
schedule into chunks of 50 code revisions. The authors
concluded that the presence of the aforementioned code smells
is not necessarily harmful and such classes may be an efficient
way of organizing code.

Ouni et al. [6] studied five medium and large-size open-
source systems and four types of code smells. They used data
mining techniques upon the change history data available on
control versioning systems. Their experimental results show
the effectiveness of the approach, compared to three different
state-of-the-art approaches, with more than 85% of code smells
fixed and 86% of suggested refactorings semantically coherent
when the change history is used.

III. EXPERIMENTAL PROCEDURES

In our previous paper on this PhD research topic [8], we
outlined some of the research questions, and expected
contributions. In this paper, we present how we are going to
answer the questions, i.e. the experimental procedure. The
latter will include four steps: systematic literature review,
building of web smells catalog, web smells detection and
evolution studies, as described in this section.

A. Systematic literature review (SLR)

SLRs are secondary studies that provide researchers and
practitioners a vehicle to gain access to distilled evidence
synthesized from results of multiple original studies (aka
primary studies). SLRs thus substantially reduce the time and
expertise it would take to locate and subsequently appraise and
synthesize primary studies. To delimit bias in our SLR, we
follow the guidelines provided in [19].

We are interested in longitudinal studies, or evolution
studies, that analyze the quality of applications according to
time or versions, and deal with empirical data. This led to the
questions asked in this SLR, which are:

i) What are the attributes that have been used to describe
web software quality in longitudinal studies?

ii) What are the factors that have been found to influence
the evolution of web software quality?

iii) Which techniques have been used to deal with the
unevenly time-spaced nature of development data in web
software evolution studies? In other words, how can we model
the web software evolution phenomenon to allow forecasting?

Our search string, to apply on several databases, crosses the
definition of web application /system / software with evolution
studies in various ways:

(("web application" OR "web-based application" OR "web
system" OR "web software") AND ("longitudinal study" OR
"time series" OR "software evolution"))

We planned to use six databases, however we had to take
Springer out because it was not possible to use our search
string in it – it always searches for every term. In the hope that

Springer articles are indexed in Scopus or ISI, we used the
results from five databases: Scopus, IEEE, ACM, ISI - Web of
knowledge and Science Direct.

The search produced a result of 308 articles. After a first
filtering pass, we identified 62 articles with a related subject,
marked YES and MAYBE, and we are currently in the deep
analysis process. In this second pass, some of the articles will
be taken out. We already identified some longitudinal studies,
but none deals with web code smells. This is a work in
progress, to be published soon.

B. Building of Web Smells Catalog

Some preliminary attempts have been made to define web
smells, as described in section II, but they have limited
coverage and their validation was almost exclusively done
through peer review in the corresponding publication fora. To
the best of our knowledge, there is no comprehensive web
smells catalog that addresses both client and server sides.

Setting up a web smells catalog should be more than an
experienced practitioner’s exercise based on “gut feeling”. To
validate our catalog and hopefully obtain an initial consensus
on the relevance of each web smell contained in it, we are
preparing a collaborative web platform to support a large-scale
survey on practitioners, both from academia and industry. In
this platform, it is possible to propose new web smells and vote
in the existing ones. This will serve two purposes: to reduce the
amount of subjectivity in the catalog proposal; to increase the
external validity of each proposed web smell, through peer
assessment.

The addition of new web smells and the issuing of votes are
logged operations to avoid tampering with the catalog
construction. We hope that this collaborative construction of
the catalog yields better results than its elaboration by just one
or two researchers.

The metadata on each web smell includes, but is not limited
to, the following attributes:

TABLE I. WEB SMELL ATTRIBUTES

Attribute Name Description

Name Web smell name

Short description Brief description / abstract

Long description Detailed characterization of this web smell

Detection algorithm Algorithm in pseudocode

Author name Author of the proposed smell

Author affiliation Author affiliation

Proposal date Date when the web smell was proposed

Votes Number of votes the smell gets

All proposals and votes are logged to allow recording its
author/issuer and corresponding affiliation.

This catalog will include parts for the client side and for the
server side. The server part will cover PHP that accounts for
over 80% of the market (see section II). A problem to be faced
here is that PHP can be used in a procedural or object-oriented
manner. The client part will cover JavaScript, HTML and CSS.

We started to produce a candidate catalog composed of 22
web client smells and 28 server smells. Some of them,
especially on the client side, were taken from the literature (see
section II.A). We will continue this preliminary web smells
identification task as a jump-start in the platform.

C. Web Smells Detection

Depending on each concrete web smell type, different
detection techniques may be required [20]. Although there is a
considerable amount of research on code smells detection
techniques, their application on the context of web systems is a
largely uncovered topic.

Collecting web smells location data manually is unfeasible.
We have already identified two possible approaches for
automating their collection:

The direct approach is the one based on lexical analysis
and typically implies developing algorithms based on abstract
syntax tree (AST) manipulation. For the server side, we plan to
extend the open-source PHPMD tool. As for the client side
languages, we can build upon some open-source lexical
analyzers for JavaScript, HTML and CSS, since developing
those analyzers from scratch would take too long. The
downside of this approach is that the implementation of the
algorithm for detecting the same web smell will be different for
each target language, since it will be dependent on the
corresponding AST.

In the reverse engineering approach, we transform the code
into an instance of a higher abstraction model (a metamodel)
and then detect the web smells by operating upon that
metamodel. We are currently experimenting with OMG’s
Knowledge Discovery Metamodel (KDM). This KDM-based
approach can be done with a generalized tool, Modisco1, using
a "PHP discoverer", or with a specialized parser. The Modisco
approach is preferred because it can be extended to other server
languages and purposes.

In both approaches we will explore and compare the results
of different detection algorithms, either using thresholds,
traditional statistics or machine learning techniques [21].

D. Evolution Studies

Based on our preliminary literature review, we could
conclude that the evolution of web systems quality is mostly an
unknown phenomenon, since we could not find published
works on this topic.

We will first perform the descriptive statistics of the
variables involved, and then the evolution studies. The first
obvious aspect we will address is the relative distribution of
web smells. If that distribution varies throughout time, it is
worth understanding why. If there is a co-occurrence of two
smells, are they assessing the same aspect, or is there some
causality effect? The relevance of each code smell, along with
its relative frequency, will be an interesting decision factor for
refactoring. In other words, relevant web smells that occur
more often are the ones that should be considered as first
candidates for refactoring. If defects are classified in the issue

1 https://www.eclipse.org/gmt/modisco/infrastructure/KDM/

tracking system, we will also assess if it is possible to forecast
certain types of defects based upon the occurrences of one or
more code smells. Generically speaking, we will observe how
web smells manifest themselves in large open-source web
systems, namely if they have some impact on maintainability
and reliability problems, such as release delays, failures
occurrence and faults density.

The expected outcome of these quasi-experimental studies
will hopefully help increasing the awareness on the importance
of detecting web systems smells as early as possible. Removing
them is expected to reduce the failure potential, as well as the
time spent developing new features, in other words, improving
web systems reliability and maintainability.

Statistical longitudinal studies in software engineering
have a major drawback: web software systems are released at
unequally spaced time intervals. Traditional time series
techniques (e.g. ARMA and ARIMA) are therefore not
appropriate, since they assume that data is collected at a
constant pace. To mitigate this issue, we plan to use irregular
time series techniques that have been used, for instance, to
predict the stock market volatility [22] and in electronic
commerce research [23]. This is an active research area and
new algorithms have been recently proposed [24]. For
detecting anomalies in those longitudinal time series, we plan
to use an existing library, either in R [25] or in Python [26].

IV. CONCLUSION

In this paper, we presented some details and progress from
the previous paper. We showed some preliminary results in the
SLR, that we hope to publish soon. We briefly detailed the
process we are using to build a web smells catalog, namely the
prospects for a collaborative platform to mitigate subjectivity
in that catalog. We also introduced our current work in web
smells detection in the server side, where we are comparing an
AST based approach to a metamodel-based approach. Last, but
not the least, we hope our research efforts will contribute to the
Web Engineering community, by providing a systematic
approach for analyzing web applications quality evolution,
where irregular time series techniques will be used. We expect
our results will help increasing the awareness for the use of
web smells detection techniques, with the hopefully increase in
maintainability and overall quality of web applications.

REFERENCES

[1] Rio, A., Modelo Automático de Qualidade para Sítios Web (MSc
Thesis). 2010, FCT/UNL.

[2] Drouin, N., M. Badri, and F. Touré. Metrics and Software Quality
Evolution: A Case Study on Open Source Software. in Proceedings of
the 5th International Conference on Computer Science and Information
Technology, Hong Kong. 2012.

[3] Rio, A. and F. Brito e Abreu. Websites Quality: Does It Depend on the
Application Domain? in Quality of Information and Communications

Technology (QUATIC), 2010 Seventh International Conference on the.
2010.

[4] Mäntylä, M. and C. Lassenius, Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software
Engineering, 2006. 11(3): p. 395-431.

[5] Olbrich, S.M., D.S. Cruzes, and D.I.K. Sjoberg. Are all code smells
harmful? A study of God Classes and Brain Classes in the evolution of
three open source systems. in Software Maintenance (ICSM), 2010
IEEE International Conference on. 2010.

[6] Ouni, A., et al., Improving multi-objective code-smells correction using
development history. Journal of Systems and Software, 2015. 105: p. 18-
39.

[7] Fowler, M., Refactoring: improving the design of existing code. 1999:
Addison-Wesley Longman Publishing Co., Inc. 464.

[8] Rio, A. and F.B. e Abreu. Web Systems Quality Evolution. in Quality of
Information and Communications Technology (QUATIC), 2016 10th
International Conference on the. 2016. IEEE.

[9] Beck, K., M. Fowler, and G. Beck, Bad smells in code. Refactoring:
Improving the design of existing code, 1999: p. 75-88.

[10] A Taxonomy for "Bad Code Smells" 2015-07-30]; Available from:
http://mikamantyla.eu/BadCodeSmellsTaxonomy.html.

[11] Atwood, J. Code Smells on Code Horror Blog. 2015-07-30]; Available
from: http://blog.codinghorror.com/code-smells/.

[12] Fowler, K.B.a.M. Code smells on sourcemaking.com. 2015-07-30];
Available from: https://sourcemaking.com/refactoring/bad-smells-in-
code.

[13] Lanubile, F. and T. Mallardo. Finding function clones in web
applications. in Software Maintenance and Reengineering, 2003.
Proceedings. Seventh European Conference on. 2003. IEEE.

[14] Fard, A.M. and A. Mesbah. JSNOSE: Detecting JavaScript Code Smells.
in Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th
International Working Conference on. 2013.

[15] Hung Viet, N., et al. Detection of embedded code smells in dynamic
web applications. in Automated Software Engineering (ASE), 2012
Proceedings of the 27th IEEE/ACM International Conference on. 2012.

[16] W3Techs. Usage of server-side programming languages for websites. 1-
4-2016]; Available from:
http://w3techs.com/technologies/overview/programming_language/all.

[17] Reiersøl, D., Code smells in PHP, in International PHP Conference
2009, 15-18 Nov. 2009: Karlsruhe Congress Center.

[18] PHP Mess Detector. 2015-07-31]; Available from: http://phpmd.org/.

[19] Kitchenham, B., Procedures for performing systematic reviews. 2004.

[20] Fontana, F.A., P. Braione, and M. Zanoni, Automatic detection of bad
smells in code: An experimental assessment. Journal of Object
Technology, 2012. 11(2): p. 5:1-38.

[21] Fontana, F.A., et al., Comparing and experimenting machine learning
techniques for code smell detection. Empirical Software Engineering,
2016. 21(3): p. 1143-1191.

[22] Dionisio, A., R. Menezes, and D.A. Mendes, An econophysics approach
to analyse uncertainty in financial markets: an application to the
Portuguese stock market. The European Physical Journal B - Condensed
Matter and Complex Systems, 2006. 50(1-2): p. 161-164.

[23] Jank, W. and G. Shmueli, Functional data analysis in electronic
commerce research. Statistical Science, 2006. 21(2): p. 155-166.

[24] Eckner, A., Algorithms for unevenly-spaced time series: Moving
averages and other rolling operators. 2012, Working Paper.

[25] Twitter AnomalyDetection R package. 2015; Available from:
https://github.com/twitter/AnomalyDetection.

[26] A Python port of Twitter's AnomalyDetection R Package. 2016.

http://mikamantyla.eu/BadCodeSmellsTaxonomy.html
http://blog.codinghorror.com/code-smells/
https://sourcemaking.com/refactoring/bad-smells-in-code
https://sourcemaking.com/refactoring/bad-smells-in-code
http://w3techs.com/technologies/overview/programming_language/all
http://phpmd.org/
https://github.com/twitter/AnomalyDetection

