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1 Introduction

In this paper we develop a decentralized zero growth version of the model in King, Plosser and

Rebelo (1988). By zero growth model we mean a model where physical output is constant in the

steady-state. Note that, for the purposes of simulation, King, Plosser and Rebelo also transform

their exogenous growth model into a model which is essentially a zero growth model.

Our use of a decentralized version can also be explained. First, with a decentralized approach

the assumptions we are using and their role become clearer. For example, with a Constant Returns

to Scale production function the number of households and the number of firms is not important

in terms of describing the equilibrium behaviour of the economy. But we may want to try other

technologies.

Second, the decentralized approach is more general. It can be used even when the assumptions

of the second welfare theorem do not hold. Imperfect competition and distorting taxation are

examples of realities which cannot be tackled using the second welfare theorem.

In the model we construct, there are only two types of economic agents: households and firms.

It is also important to note from the outset that we only have real variables in the model.

2 The model

This is a closed economy model with no government. There are H homogeneous households

and F homogeneous firms operating in this economy. There is only one (homogeneous) physical

good produced in this economy which we denote physical output. There are two possible uses for

this output: it can be consumed or it can be used for investment (i.e. used to increase the capital

stock).

We next examine the typical household’s preferences, the technology available in the economy

(production function and capital accumulation equation), the resource constraints that exist in a

given period and the market structure.

Let us suppose that we are at t0 and that households and firms are considering decisions for

periods (t0 + j) with j = 0, 1, 2, 3, ....
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Let us start by describing the preferences of the typical household.

Utility in period (t0 + j) is given by

u(ct0+j, ct0+j)

where ct0+j is the flow of consumption during period (t0+ j) and ct0+j is the amount of leisure

enjoyed in that period. The function u(., .) is assumed to be twice continuously differentiable and

strictly concave with u1(c, c) > 0, u2(c, c) > 0, u11(c, c) < 0 and u22(c, c) < 0. Here, ui denotes the

first partial derivative of u(., .) with respect to its ith variable and uii is the partial derivative of ui

with respect to the ith variable. The function u(., .) is also assumed to fulfill the Inada conditions

lim
c→0

u1(c, c) = +∞, lim
c→0

u2(c, c) = +∞, lim
c→+∞u1(c, c) = 0 and lim

c→+∞
u2(c, c) = 0.

The household maximizes the discounted sum of its stream of utilities from t0till the end of

time1, i.e., it maximizes

Ut0 = Et0

⎡⎣j=∞X
j=0

βju(ct0+j , ct0+j)

⎤⎦
where β is a discount factor (0 < β < 1) that reflects a preference for current over future

consumption-leisure bundles2. Application of the operator Et0 [.] yields the mathematical expec-

tation, conditional on complete information pertaining to period t0 and earlier, of the indicated

argument.

Let us now describe the technology available in the economy: production function and capital

accumulation equation. There is a single final good in this economy which, as already mentioned,

we denote physical output. Each firm’s production function is described by

yt0+j = At0+jF (kt0+j , n
d
t0+j)

where yt0+j is the physical output of the firm in period (t0 + j), At0+j is a technological

parameter, kt0+j is the firm’s capital stock and n
d
t0+j

is the firm’s labour demand in period (t0+j).

1We assume that households are infinitely-lived. The assumption of infinitely-lived households can be interpreted

as households with finite lifetime plus an operational bequest motive linking the utility of the current generation

with the utility of future generations.
2 It is obvious that, since 0 < β < 1, the weight of utilities in periods that are far from the present counts little

when compared with the weight of utilities in periods nearer to the present.
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The function AF (., .) is a Constant Returns to Scale production function. It is twice continu-

ously differentiable and concave with positive but decreasing marginal productivity of capital and

positive but decreasing marginal productivity of labour. It satisfies the following Inada conditions:

lim
k→0

AF1(k, n
d) = +∞, lim

nd→0
AF2(k, n

d) = +∞, lim
k→+∞

AF1(k, n
d) = 0 and lim

nd→+∞
AF2(k, n

d) = 0.

Both factors of production are assumed to be essential in production which means that AF (0, nd) =

0 and AF (k, 0) = 0.

At0+j is the realization in period (t0 + j) of a random variable that represents the state of

the technology. Changes in At0+j are changes in “total factor productivity”. We assume that the

realization of At0+j is known at the beginning of period (t0 + j).

Physical output can either be consumed by households or stored by firms. Stored output

increases next period’s capital stock, i.e., it represents investment3.

Capital accumulation is described by

kt0+1+j = (1− δ)kt0+j + it0+j

where it0+j is the flow of investment in period (t0 + j) and δ is the per-period rate of physical

depreciation of the stock of capital. δ is assumed to be constant and belonging to the closed interval

[0,1].

The resource constraints are as follows. Each firm starts period (t0+ j) with a stock of capital

kt0+j which is pre-determined [ which was determined in (t0 − 1 + j) ]. In other words, the stock

of capital that will enter the production function in (t0 + j) cannot be changed by decisions taken

during (t0 + j). Each household has an endowment of time per-period which is normalized to one

by an appropriate choice of units. This amount of time can either be used to work or to rest.

Therefore, we can write

nst0+j + ct0+j ≤ 1

where nst0+j is the household’s supply of labour during (t0 + j).

3Note that this implies that the price of consumption goods and the price of investment goods is the same. To

deviate from this assumption would require a two-sector model where the final good would be produced in one

industry and physical capital would be produced in the other industry.
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The previous assumptions about preferences and technology ensure that, at an optimal solution,

we will have

nst0+j + ct0+j = 1

This is because any tiny amount of time can be used to increase the level of utility either by

raising the amount of leisure (we are assuming non-satiety in leisure except at infinity) or by using

it to work and use the increased wage earnings to raise the level of consumption.

Finally, we describe the market structure. There are four markets: the goods market, the

labour market, the loans market and the shares market. H and F are assumed to be large enough

to guarantee that all agents are price-takers. Prices are perfectly flexible and adjust so as to clear

all markets in every period. There are three prices in this model: the real wage, the real interest

rate and the price of shares in real terms. All these prices are measured in units of output. We

can think of these three prices as adjusting to clear the labour market, the loans market and the

shares market, respectively. If these three markets are in equilibrium, then (by Walras Law), the

goods market is also in equilibrium.

3 The typical firm’s behaviour

Each firm uses capital and labour to produce physical output. The profits earned by each firm in

a given period are distributed to households in the form of dividends.

Each firm f (f = 1, 2, ..., F )maximizes the Value of its Assets (VA), i.e., the expected discounted

value of the stream of present and future dividends. Therefore, when we are at t0 , the typical

firm’s optimization problem is

Max
ndt0+j

,kt0+1+j
V A = Et0

"
j=∞P
j=0

1
1+rt0,t0+j

πft0+j

#

where

πft0+j = At0+jF (kt0+j , n
d
t0+j)− wt0+jn

d
t0+j − [kt0+1+j − (1− δ)kt0+j ]

for j =0,1,2,...
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where wt0+j is the real wage in period (t0 + j).

The only loans market in this model is the one-period loans market (there are no markets

for loans of other maturities). Therefore, (1 + rt0,t0+j) [meant to represent the real interest rate

between t0 and (t0 + j)] must be

(1 + rt0,t0+j) = 1 for j =0

(1 + rt0,t0+j) = (1 + rt0)(1 + rt0+1)(1 + rt0+2)...(1 + rt0+j−1) for j =1,2,3,...

where rt is the real interest rate between period t and period (t+ 1).

There is also an initial condition for the capital stock. We denote the typical firm’s initial

capital stock by kt0 . We assume kt0 > 0.

There is also a transversality condition on the capital stock. This condition is given by

lim
j→+∞

Et0

£
βju1(ct0+j , n

s
t0+j)kt0+1+j

¤
= 0 (1)

Let us summarize the meaning of this condition. In period (t0 + j), the firm chooses kt0+1+j .

As j → +∞, (t0 + j) → +∞. In other words, making j → +∞ corresponds to making (t0 + j)

tend to the end of the world. Hence, (t0+1+ j) denotes the period after the end of the world and

kt0+1+j the capital stock that is left for the period after the world has ended. Since u1(ct0+j , n
s
t0+j

)

denotes the marginal utility of consumption in period (t0 + j), βju1(ct0+j, n
s
t0+j

)kt0+1+j denotes

the present utility value of the capital stock that the firm leaves for the period that follows the

end of the world ( remember that, in this model, units of capital correspond to units of output).

Therefore, lim
j→+∞

Et0

£
βju1(ct0+j , n

s
t0+j

)kt0+1+j
¤
represents the way a shareholder in t0 views the

utility value of the capital stock that the firm is planning to leave for the period that follows the

end of the world. Hence, the transversality condition given by 1 is merely saying that the utility

value of the capital stock that the firm is planning to leave for the period that follows the end of

the world (as evaluated by a shareholder in t0) must be zero. In other words, this transversality

condition says that, if the world is going to end in a certain period, the firm must either not leave

capital for the period that follows the end of the world (giving it for shareholders to use on the

period the world ends or before would be a better solution) or if the firm is planning to leave

a positive capital stock for the period that follows the end of the world, it must be because the

marginal utility that the shareholders would obtain from receiving it at the world’s last period

7



would be zero4.

The transversality condition plays the important role of eliminating the possibility that the

firm would forever accumulate capital at an excessive rate, something which none of the first-order

conditions prevents.

Also, we have non-negativity constraints: ndt0+j ≥ 0 and kt0+1+j ≥ 0 for j = 0,1,2,....

The assumptions about technology that we made imply that we could never have an optimal

solution with ndt0+j = 0 for any j. Since n
d is essential in production, ndt0+j = 0 would imply zero

physical output in period (t0+ j). On the other hand, the Inada condition lim
nd→0

AF2(k, n
d) = +∞

tells us that, if ndt0+j = 0, then the firm would obtain an enormous amount of output simply by

raising ndt0+j by a tiny amount. This would lead the firm to indeed increase ndt0+j . Therefore,

ndt0+j = 0 could never be an optimal solution.

A similar reasoning leads us to conclude that we could never have an optimal solution with

kt0+1+j = 0 for any j.

We can summarize as follows. There is a non-negativity constraint for each of the two variables

but we have assumptions which guarantee that none of the variables will be equal to zero at

an optimal solution. Therefore, the optimal solution is not a corner solution. Thus, standard

first-order conditions (equalities) are necessary conditions for the optimal solution.

The first-order conditions to the firm’s optimization problem are:

∂V A

∂ndt0+j
= Et0

"
Ato+jF2

¡
kt0+j,n

d
t0+j

¢− wt0+j

(1 + rt0)...(1 + rt0−1+j)

#
= 0 (2)

∂V A

∂kt0+1+j
= Et0

∙
(−1)

(1 + rt0)...(1 + rt0−1+j)

¸

+Et0

"
Ato+1+jF1

¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

(1 + rt0)...(1 + rt0−1+j)(1 + rt0+j)

#
= 0 (3)

for j = 0, 1, 2, 3, ...

We have already explained that equations 2 and 3 are necessary for an optimal solution.

4Note that the shareholders in this model are the households.
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Since the function AF (., .) is concave, the weights 1
1+rt0,t0+j

are positive, and Et0 [.] is a linear

operator which will be applied to a reality whose events occur with positive probability, we can

conclude that the objective function is also concave. Therefore, equations 2 and 3 are also sufficient

for a maximum.

In the appendix, we derive the first order conditions of the firm’s problem in an intuitive way

and it is easy to see that the conditions derived using mathematics correspond to the ones we

obtain in an intuitive way.

Since it is not possible, in general, to obtain an explicit solution to the firm’s optimization

problem, we take equations 2 and 3 as representing this solution (because these equations represent

the solution in an implicit way). The optimal solution includes, among other values, values for

period t0: ndt0 and kt0+1. Given the (pre-determined) value of kt0 this implies a value for yt0 =

At0F (kt0 , n
d
t0) and a value for it0 = kt0+1 − (1− δ)kt0 .

We can conclude that equations 2 and 3 give, in an implicit way, the firm’s demand and supply

functions for period t0 (ndt0 ,it0 and yt0) as well as planned demand and supply functions for all

future periods. The firm’s demand and supply functions for period t0 will depend on the current

values of the various prices (real wage, real interest rate), on the firm’s initial capital stock, on the

value of the technological parameter in period t0 and on the expectations of the firm about the

future.

4 The typical household’s behaviour

At t0 the household is facing the following sequence of budget constraints

wt0+jn
s
t0+j +

f=FX
f=1

zft0+jπ
f
t0+j

+

f=FX
f=1

zft0+jq
f
t0+j

+
bt0+1+j
1 + rt0+j

≥ ct0+j + bt0+j +

f=FX
f=1

zft0+1+jq
f
t0+j

for j = 0,1,2,3,...

All terms are measured in units of output (in real terms). Let us examine these budget con-

straints in detail. The way loans work in this model is as follows. In a given period (period t,

for example), the household can either borrow from other households (bt+1 > 0) or lend to other

households ( bt+1 < 0). If it borrows 1
1+rt

units of output in period t [ rt is the interest rate
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between period t and period (t+1) measured in units of output, i.e., the real interest rate be-

tween period t and period (t+1)], it shall have to pay 1
1+rt

(1 + rt) = 1 units of output in period

(t+1). Therefore, if the household borrows bt+1 1
1+rt

units of output in period t, it will have to pay

bt+1
1

1+rt
(1 + rt) = bt+1 units of output in period (t+1).

The way shares work in this model is as follows. qft is the price [measured in units of output]

that the household would have to pay to buy 100% of firm f in period t. zft is the percentage of

firm f [i.e. the share of firm f] that the household bought in period (t-1) and sells in period t. zft

entitles the household to a share in the dividends of firm f generated in period t, i.e., it entitles the

household to receive the amount zft π
f
t during period t. After receiving these dividends, households

can trade shares5. In period t, the household sells the amount zft and buys the amount z
f
t+1 (hence,

zft+1 is the percentage of firm f that the household buys in period t). zft+1entitles the household

to a share in the dividends of firm f generated in period (t + 1), i.e., it entitles the household to

receive the amount zft+1π
f
t+1 during period (t+1). The percentages z

f
t and zft+1are measured as a

number belonging to the closed interval [0,1]. So, (zft+1 − zft ) is the net percentage of firm f that

the household buys in period t. Therefore, qft (z
f
t+1− zft ) is the amount that the household spends

on shares of firm f in period t. To make this clear, suppose that zft = 0 and that the household

wants to buy the whole of firm f in period t so that zft+1 = 1; then clearly it would have to pay q
f
t

(1− 0) = qft units of output which fits our definition of q
f
t .

The interpretation of the budget constraint is as follows. In the left-hand side of the constraint,

wt0+jn
s
t0+j

is the amount that the household receives as wages during period (t0 + j). The term
f=FP
f=1

zft0+jπ
f
t0+j

denotes the amount of dividends that the household receives in period (t0 + j) in

return for the shares of the F firms that it bought in period (t0− 1+ j) . The term
f=FP
f=1

zft0+jq
f
t0+j

denotes the amount the household receives in period (t0+ j) from selling the shares of the F firms

that it bought in period (t0 − 1 + j).The term bt0+1+j
1+rt0+i

is the amount that the household borrows

from other households in period (t0 + j). All these terms are measured in units of output.

In the right-hand side of the constraint, ct0+j is consumption expenditure in period (t0 + j),

bt0+j is the amount that the household has to pay to other households in period (t0 + j) because

of the credit it obtained in the previous period [in period (t0 − 1 + j)], and
f=FP
f=1

zft0+1+jq
f
t0+j

is

5 In equilibrium, they won’t trade shares with each other because they are all equal to each other.
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the household’s expenditure buying shares of the F firms in period (t0 + j). All these terms are

measured in units of output. Note that in period t0 the household sells all the shares of the F firms

it had bought in period (t0 + 1) and then she buys new amounts of shares.

The previous assumptions about preferences ensure that, at an optimal solution, this budget

constraint will hold as an equality. This is because any unit of output can be used to increase the

level of utility. For example, consuming it in period (t0 + j) will increase utility because we are

assuming non-satiety in consumption except at infinity.

Consequently, at t0 the household is looking into the future and maximizes the present dis-

counted value of lifetime utility subject to the relevant constraints as follows:

Max
ct0+j , ct0+j ,n

s
t0+j

, bt0+1+j , z
f
t0+1+j

Et0

"
j=∞P
j=0

βju(ct0+j , ct0+j)

#
s.t.

wt0+jn
s
t0+j +

f=FX
f=1

zft0+jπ
f
t0+j

+

f=FX
f=1

zft0+jq
f
t0+j

+
bt0+1+j
1 + rt0+j

= ct0+j + bt0+j +

f=FX
f=1

zft0+1+jq
f
t0+j

nst0+j + ct0+j = 1

for j = 0,1,2,3,...

We also have initial conditions and a transversality condition. There are initial conditions on

holdings of shares. Assuming that we had market clearing6 in the shares’ market in period (t0−1),

these initial conditions for period t0 will be z
f
t0 =

1
H and slt0 =

1
H . There is an initial condition

defining the household’s initial debt position. Assuming that we had market clearing in the loans

market in period (t0−1), this initial condition for period t0 will be bt0 = 0. There is also a standard

transversality condition on the amount of borrowing by the household which is given by

lim
j→+∞

Et0

∙
1

(1 + rt0)(1 + rt0+1)(1 + rt0+2)...(1 + rt0+j−1)
bt0+1+j

¸
= 0

This transversality condition is theoretically relevant. It means that the pattern of borrowing

by an household must be such that at the end of the world, the household owes nothing (put

6Market clearing conditions will be derived in the next section.

11



more precisely, it either owes nothing or, if it owes something, the amount it owes is so small that,

as evaluated from today, it is worth nothing). This prevents one household from consuming at

the expense of others during its lifetime. In the model we have at hand, this condition won’t be

important in terms of describing the competitive equilibrium because market clearing conditions

in the loans market and Rational Expectations will ensure that it holds.

Finally, there are also non-negativity constraints: ct0+j ≥ 0 , ct0+j ≥ 0, nst0+j ≥ 0 and

zpt0+1+j ≥ 0 for j = 0,1,2,....

The assumptions about preferences that we made imply that we could never have an optimal

solution with ct0+j = 0 for any j. The proof of this is as follows. u11(c, c) < 0 tells us that, as

ct decreases, u1(c, c) increases. The respective Inada condition [ lim
c→0

u1(c, c) = +∞] tells us that

this happens in such a way that, as ct0+j → 0, the increase in utility that would result from

consuming one extra unit becomes very large (it approaches infinity). Hence, if ct0+j was equal

to zero the household would always be compelled to obtain a tiny bit of consumption good (for

example, working a little bit and using the income earned from it to buy a small amount of the

consumption good).

A similar reasoning leads us to conclude that we could never have an optimal solution with

ct0+j = 0 for any j.

A solution with nst0+j = 0 for one or more js is theoretically possible. The household could,

for example, use share income to consume. However, in this chapter we are interested in the

competitive general market equilibrium with homogeneous households. At such an equilibrium,

nst0 = 0 will not occur because the market equilibrium condition in the labour market implies

that all households work an equal (positive) number of hours7. With Rational Expectations,

the household takes into account future market clearing conditions in making its plans and, as a

consequence, it will not plan nst0+j = 0. Since the equilibrium we are interested in is the competitive

general market equilibrium of an economy with homogeneous agents under Rational Expectations,

the solution to the household’s problem that we are looking for is one where nst0+j > 0.

A solution with zft0+1+j = 0 for one or more js is theoretically possible. An household could

simply choose to work and use the wage income to consume without engaging in the purchase of

7Market clearing conditions will be derived in the next section.
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shares. However, in this chapter, we are interested in the competitive general market equilibrium

with homogeneous households. At such an equilibrium, zft0+1 = 0 will not occur because the market

equilibrium condition in the shares’ market will make every household hold an equal (positive) share

of each firm. With Rational Expectations, the household takes into account future market clearing

conditions in making its plans and, as a consequence, it will not plan zft0+1+j = 0. Since the

equilibrium we are interested in is the competitive general market equilibrium of an economy with

homogeneous agents under Rational Expectations, the solution to the household’s problem that

we are looking for is one where zft0+1+j > 0.

Since for all variables that have a non-negativity constraint we can conclude that the value of

the variable at the optimal solution will not be zero, we know that the optimal solution is not a

corner solution. Thus, standard first-order conditions (equalities) are necessary conditions for the

optimal solution.

The first order conditions to the household’s optimization problem set above can be obtained as

follows. After using the constraint nst0+j + ct0+j = 1 to substitute ct0+j in the objective function,

we can write the Lagrangean to the household’s optimization problem as

L = Et0

"
j=∞P
j=0

βju(ct0+j , 1− nst0+j)

#
+

+Et0

"
j=∞P
j=0

βjλt0+j

"
wt0+jn

s
t0+j

+
f=FP
f=1

zft0+jπ
f
t0+j

+
f=FP
f=1

zft0+jq
f
t0+j

+
bt0+1+j
1+rt0+j

−ct0+j − bt0+j −
f=FP
f=1

zft0+1+jq
f
t0+j

##
Here, λt0+j is the current value Lagrangean multiplier. β

jλt0+j is the present value multiplier,

i.e., the current value multiplier discounted from period (t0 + j) to period t0.

The first-order conditions are:

∂L

∂ct0+j
= Et0

£
βju1(ct0+j , 1− nst0+j)

¤−Et0

£
βjλt0+j

¤
= 0 (4)

∂L

∂nst0+j
= (−1)Et0

£
βju2(ct0+j , 1− nst0+j)

¤
+Et0

£
βjλt0+jwt0+j

¤
= 0 (5)

∂L

∂bt0+1+j
= Et0

∙
βjλt0+j

1

1 + rt0+j

¸
−Et0

£
βj+1λt0+1+j

¤
= 0 (6)

∂L

∂zft0+1+j
= Et0

h
βjλt0+j(−qft0+j)

i
+

13



+Et0

h
βj+1λt0+1+j(π

f
t0+1+j

+ qft0+1+j)
i
= 0 (7)

∂L

∂λt0+j
= Et0

⎡⎣βjλt0+j
⎡⎣wt0+jn

s
t0+j +

f=FX
f=1

zft0+jπ
f
t0+j

+

f=FX
f=1

zft0+jq
f
t0+j

+
bt0+1+j
1 + rt0+j

−ct0+j − bt0+j −
f=FX
f=1

zft0+1+jq
f
t0+j

⎤⎦⎤⎦ = 0 (8)

for j = 0, 1, 2, 3, ...

In the appendix, we derive the first order conditions of the household’s problem in an intuitive

way. It is easy to see that the conditions derived using the Lagrangean are the same as the ones

we obtain intuitively.

Another easy way of obtaining the first order conditions using mathematics consists in using

the two constraints to substitute ct0+j and n
s
t0+j

in the objective function and then take derivatives

of the objective function with respect to the remaining decision variables.

We have already explained that equations 4-8 are necessary for an optimum. Since the function

u(., .) is concave, the weights βj are positive, and Et0 [.] is a linear operator which will be applied to

a reality whose events occur with positive probability, we can conclude that the objective function

is also concave. Therefore, equations 4-8 are also sufficient for a maximum.

Since it is not possible, in general, to obtain an explicit solution to the household’s optimization

problem, we take equations 4-8 as representing this solution (because these equations represent the

solution in an implicit way). The optimal solution includes, among other values, values for period

t0: ct0 , ct0 ,n
s
t0 , bt0+1 , z

f
t0+1

.

We can conclude that equations 4-8 give, in an implicit way, the household’s demand and

supply functions for period t0 (ct0 , bt0+1 , z
f
t0+1

and nst0) as well as planned demand and supply

functions for all future periods. The demand and supply functions for period t0 will depend on

the current values of the various prices (real wage, real interest rate and price of shares in real

terms), on the expectations of the household about the future, on initial holdings of shares and on

the household’s initial debt position.
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5 The market clearing conditions

We have seen that equations 2 and 3 give us, in an implicit way, the typical firm’s demand and

supply functions for period t0 (ndt0 , it0 and yt0). Because all firms are identical and all experience

the same value of the technological parameter, the demand and supply functions are the same for

every firm. We have also seen that equations 4-8 give us, in an implicit way, the typical household’s

demand and supply functions for period t0 (ct0 , bt0+1 , z
p
t0+1

and nst0). Since all households are

identical, the demand and supply functions are the same for every household. Thus, with H

homogeneous households and F homogeneous firms, the market clearing conditions for period t0

are:

( i ) In the goods market, the amount of consumption demanded by the H households plus the

amount of investment demanded by the F firms must be equal to the amount of output supplied

by the F firms:

h=HX
h=1

ct0 +

f=FX
f=1

it0 =

f=FX
f=1

yt0 ⇔

⇔ Hct0 + F [kt0+1 − (1− δ)kt0 ] = FAt0F (kt0 , n
d
t0)

⇔ ct0 +
F

H
[kt0+1 − (1− δ)kt0 ] =

F

H
At0F (kt0 , n

d
t0) (9)

( ii ) In the labour market, the number of “hours of work” supplied by the H households must

be equal to the number of “hours of work” demanded by the F firms:

h=HX
h=1

nst0 =

f=FX
f=1

ndt0 ⇔ Hnst0 = Fndt0 ⇔

⇔ nst0 =
F

H
ndt0 (10)

( iii ) Let us now examine the loans market. If an household borrows from another household,

we have positive borrowing on the part of the first household and negative borrowing in the same
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amount on the part of the other household. The sum of the two households’ debt positions is

therefore equal to zero. Combining this observation with the fact that we only have households

borrowing and lending in this economy makes it easy to conclude that the sum all households’ debt

positions must necessarily be equal to zero. Therefore, we can write:

h=HX
h=1

bt0+1
1 + rt0

= 0⇔ H
bt0+1
1 + rt0

= 0⇔

⇔ bt0+1 = 0 (11)

This means that, in equilibrium, the typical household will neither borrow from nor lend

to other households (this is the usual result with homogeneous households).

( iv ) In the shares market, the market clearing condition is that each firm should be completely

held. In other words: the sum of the shares of each firm f held by the H households must be equal

to 100%

h=HX
h=1

zft0+1 = 1⇔ Hzft0+1 = 1⇔

⇔ zft0+1 =
1

H
(12)

for f=1,2,3,..., F

6 The competitive equilibrium

At t0, the competitive equilibrium assuming H homogeneous households and F homogeneous firms

is a system which includes
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A) The first-order conditions of the typical household’s optimization problem (which give,

in an implicit way, the household’s demand and supply functions8). These are given by equations

4-8.

B) The first-order conditions for the typical firm’s optimization problem (which give, in

an implicit way, the firm’s demand and supply functions9). These are given by equations 2 and 3

C) The market-clearing conditions in period t0 for all markets. These are given by equations

9 -12

Putting together A), B) and C), the system we obtain is

Et0

£
βju1(ct0+j , 1− nst0+j)

¤
= Et0

£
βjλt0+j

¤
(13)

Et0

£
βju2(ct0+j , 1− nst0+j)

¤
= Et0

£
βjλt0+jwt0+j

¤
(14)

Et0

∙
βjλt0+j

1

1 + rt0+j

¸
= Et0

£
βj+1λt0+1+j

¤
(15)

Et0

h
βjλt0+jq

f
t0+j

i
= Et0

h
βj+1λt0+1+j(π

f
t0+1+j

+ qft0+1+j)
i

(16)

Et0

⎡⎣βjλt0+j
⎡⎣wt0+jn

s
t0+j +

f=FX
f=1

zft0+jπ
f
t0+j

+

f=FX
f=1

zft0+jq
f
t0+j

+
bt0+1+j
1 + rt0+j

−ct0+j − bt0+j −
f=FX
f=1

zft0+1+jq
f
t0+j

⎤⎦⎤⎦ = 0 (17)

Et0

"
Ato+jF2

¡
kt0+j,n

d
t0+j

¢
(1 + rt0)...(1 + rt0−1+j)

#
= Et0

∙
wt0+j

(1 + rt0)...(1 + rt0−1+j)

¸

Et0

"
Ato+1+jF1

¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

(1 + rt0)...(1 + rt0−1+j)(1 + rt0+j)

#
=

8We should include one set of first-order conditions for each household. However, because households are all equal,

the set of first-order conditions is the same for all households. Hence, we only have to write it once. Otherwise we

would have a system with repeated equations (i.e., redundant equations).
9We should include one set of first-order conditions for each firm. However, because firms are all equal, the set

of first-order conditions is the same for all firms. Hence, we only have to write it once. Otherwise we would have a

system with repeated equations (i.e., redundant equations).
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= Et0

∙
1

(1 + rt0)...(1 + rt0−1+j)

¸
(18)

ct0 +
F

H
[kt0+1 − (1− δ)kt0 ] =

F

H
At0F (kt0 , n

d
t0) (19)

nst0 =
F

H
ndt0 (20)

bt0+1 = 0 (21)

zft0+1 =
1

H
(22)

πft0+j = At0+jF (kt0+j , n
d
t0+j)− wt0+jn

d
t0+j − [kt0+1+j − (1− δ)kt0+j ] (23)

for j = 0, 1, 2, 3, ...

Equation 23 is the definition of profits of firm f in period (t0+ j). To complete this system, we

have to add the initial condition on the firm’s capital stock (kt0) and the transversality condition

on the firm’s capital stock given by equation 1.

7 The competitive equilibrium assuming Rational Expecta-

tions

We are interested in the Rational Expectations equilibrium. The Rational Expectations way of

solving the “problem of expectations” 10 consists in assuming that the expectations about economic

10By “the problem of expectations” we mean the fact that the solution of the system given by equations 13-

23 requires some way of computing the expected values of several variables in that system. To assume Rational

Expectations is perhaps the easiest acceptable way of solving this problem.

The dependence of the current equilibrium on the expectations of economic agents about the future is a key feature

of the model and is easy to understand. For example, if households expect the real wage to increase significantly

within 5 periods, they will probably wish to work less and borrow more today because the reward of working within

5 periods is greater and, therefore, they can work more and pay their debts in those later periods.

18



variables in periods (t0 + 1), (t0 + 2), (t0 + 3), ... are formed by economic agents by assuming that

the value of these variables will be the outcome of a Competitive Equilibrium in each future period.

In other words, economic agents assume that:

- the value of economic variables in period (t0 + 1) will be the solution to a system like 13-23

but with t0 replaced by (t0 + 1);

- the value of economic variables in period (t0 + 2) will be the solution to a system like 13-23

but with t0 replaced by (t0 + 2);

- the value of economic variables in period (t0 + 3) will be the solution to a system like 13-23

but with t0 replaced by (t0 + 3);

-...

This means that to represent the Rational Expectations equilibrium, we have to take into

account equations 13-23 not only in period t0, but also in periods (t0 + 1), (t0 + 2), (t0 + 3), ...

. Therefore, the Rational Expectations Equilibrium can be written as a system like 13-23 where

instead of t0 we will write t and then emphasize that t = t0, (t0 + 1), (t0 + 2), (t0 + 3), ...

Et

£
βju1(ct+j , 1− nst+j)

¤
= Et

£
βjλt+j

¤
(24)

Et

£
βju2(ct+j , 1− nst+j)

¤
= Et

£
βjλt+jwt+j

¤
(25)

Et

∙
βjλt+j

1

1 + rt+j

¸
= Et

£
βj+1λt+1+j

¤
(26)

Et

£
βjλt+jq

p
t+j

¤
= Et

£
βj+1λt+1+j(π

p
t+1+j + qpt+1+j)

¤
(27)

Et

⎡⎣βjλt+j
⎡⎣wt+jn

s
t+j +

f=FX
f=1

zft+jπ
f
t+j +

f=FX
f=1

zft+jq
f
t+j +

bt+1+j
1 + rt+j

−ct+j − bt+j −
f=FX
f=1

zft+1+jq
f
t+j

⎤⎦⎤⎦ = 0 (28)

Et

"
At+jF2

¡
kt+j,n

d
t+j

¢
(1 + rt)...(1 + rt−1+j)

#
= Et

∙
wt+j

(1 + rt)...(1 + rt−1+j)

¸
(29)

Et

"
At+1+jF1

¡
kt+1+j,n

d
t+1+j

¢
+ (1− δ)

(1 + rt)...(1 + rt−1+j)(1 + rt+j)

#
= Et

∙
1

(1 + rt)...(1 + rt−1+j)

¸
(30)
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ct +
P

H
[kt+1 − (1− δ)kt] =

P

H
AtF (kt, n

d
t ) (31)

nst =
P

H
ndt (32)

bt+1 = 0 (33)

zpt+1 =
1

H
(34)

πpt+j = At+jF (kt+j , n
d
t+j)− wt+jn

d
t+j − [kt+1+j − (1− δ)kt+j ] (35)

for t = t0, (t0 + 1), (t0 + 2), ...

and for j = 0, 1, 2, 3, ...

To complete this system, we have to add the initial condition on the firm’s capital stock (kt0)

and the transversality condition on the firm’s capital stock given by equation 1.

In particular, these equations are valid for j = 0

u1(ct, 1− nst ) = λt (36)

u2(ct, 1− nst ) = λtwt (37)

λt
1 + rt

= βEt [λt+1] (38)

λtq
f
t = βEt

h
λt+1(π

f
t+1 + qft+1)

i
(39)

λt

⎡⎣wtn
s
t +

f=FX
f=1

zft π
f
t +

f=FX
f=1

zft q
f
t +

bt+1
1 + rt

− ct − bt −
f=FX
f=1

zft+1q
f
t

⎤⎦ = 0 (40)

AtF2(kt, n
d
t ) = wt (41)

Et

"
At+1F1

¡
kt+1, n

d
t+1

¢
+ (1− δ)

1 + rt

#
= 1 (42)
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ct +
F

H
[kt+1 − (1− δ)kt] =

F

H
AtF (kt, n

d
t ) (43)

nst =
F

H
ndt (44)

bt+1 = 0 (45)

zft+1 =
1

H
(46)

πft = AtF (kt, n
d
t )− wtn

d
t − [kt+1 − (1− δ)kt] (47)

for t = t0, (t0 + 1), (t0 + 2), ...

Assuming Certainty Equivalence11, we obtain

u1(ct, 1− nst ) = λt (48)

u2(ct, 1− nst ) = λtwt (49)

λt
1 + rt

= βEt [λt+1] (50)

λtq
f
t = βEt [λt+1]

h
E
h
πft+1

i
+Et

h
qft+1

ii
(51)

11The argument of Certainty Equivalence runs as follows. Suppose, as an example, that we have a func-

tion g(kt+1, nt+1). If we expand g around the expected values of its variables, we obtain g(kt+1, nt+1) '

g [Et(kt+1), Et(nt+1)] + [kt+1 −Et(kt+1)] g1 [Et(kt+1), Et(nt+1)] + [nt+1 −Et(nt+1)] g2 [Et(kt+1), Et(nt+1)].

Taking expectations on both sides of this equation, we obtain

Et [g(kt+1, nt+1)] ' g [Et(kt+1), Et(nt+1)]

This is the result we are going to use to simplify the equations.

To assume Certainty Equivalence is a standard practice in the literature because it is a good way of obtaining a

system which can easily be solved numerically.
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wtn
s
t +

f=FX
f=1

zft π
f
t +

f=FX
f=1

zft q
f
t +

bt+1
1 + rt

− ct − bt −
f=FX
f=1

zft+1q
f
t = 0 (52)

AtF2(kt, n
d
t ) = wt (53)

Et [At+1]F1
¡
kt+1, Et

£
ndt+1

¤¢
+ (1− δ)

1 + rt
= 1 (54)

ct +
F

H
[kt+1 − (1− δ)kt] =

F

H
AtF (kt, n

d
t ) (55)

nst =
F

H
ndt (56)

bt+1 = 0 (57)

zft+1 =
1

H
(58)

πft = AtF (kt, n
d
t )− wtn

d
t − [kt+1 − (1− δ)kt] (59)

for t = t0, (t0 + 1), (t0 + 2), ...

Note that kt+1 is chosen by the firm in period t.

8 Walras’ Law

Substituting the market clearing condition in the labour market (equation 56), the market clearing

condition in the loans market (equation 57) and the market clearing condition in the shares market

(equation 58) into the household’s budget constraint (equation 52), we obtain

wt
F

H
ndt +

f=FX
f=1

zft π
f
t +

f=FX
f=1

zft q
f
t = ct + bt +

f=FX
f=1

1

H
qft

Assuming that the loans market and the shares market were in equilibrium in period (t− 1) so

that bt = 0 and zft =
1
H , we obtain
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wt
F

H
ndt +

F

H
πft − ct = 0

Using equation 59 this last equation becomes

F

H
AtF (kt, n

d
t )−

F

H
[kt+1 − (1− δ)kt]− ct = 0

which is the same as equation 55. In short, starting from equation 52 we have obtained equation

55. This means that the two equations are redundant. Therefore, we can drop one of the two

equations12 . In the system which follows, we shall drop equation 52.

9 The second welfare theorem

With a production function that is homogeneous of degree one, it follows that F
HAtF (kt, n

d
t ) =

AtF (
F
H kt,

F
Hndt ). Also, if the production function is homogeneous of degree one, then its par-

tial derivatives will be homogeneous of degree zero. From this it follows that AtF2(kt, n
d
t ) =

AtF2(
F
H kt,

F
Hndt ) and that Et [At+1]F1

¡
kt+1, Et

£
ndt+1

¤¢
= Et [At+1]F1

¡
F
H kt+1,

F
HEt

£
ndt+1

¤¢
. If

we use these results and then define the following new variables

kt =
F
H kt , ndt =

F
H ndt , π

f
t =

F
Hπft , q

f
t =

F
H qft ,

we can write the system describing the competitive equilibrium with H homogeneous households

and F homogeneous firms plus Rational Expectations as

u1(ct, 1− nst ) = λt (60)

u2(ct, 1− nst ) = λtwt (61)

12This result corresponds to Walras’ Law.
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λt = βEt [λt+1] (1 + rt) (62)

λtq
f
t = βEt [λt+1]

³
Et

h
πft+1

i
+Et

h
qft+1

i´
(63)

AtF2(kt, n
d
t ) = wt (64)

Et [At+1]F1
¡
kt+1, Et

£
ndt+1

¤¢
+ (1− δ) = 1 + rt (65)

ct + [kt+1 − (1− δ)kt] = AtF (kt, n
d
t ) (66)

nst = ndt (67)

bt+1 = 0 (68)

zft+1 =
1

H
(69)

πft = AtF (kt, n
d
t )− wtn

d
t −

£
kt+1 − (1− δ)kt

¤
(70)
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for t = t0, (t0 + 1), (t0 + 2), (t0 + 3), ...

Equation 70 is the definition of profits of firm f multiplied on both sides by F
H . We have one

exogenous variable (At) and 11 endogenous variables: ct, nst , λt, wt, rt, q
f
t , π

f
t , bt+1, kt, n

d
t and

zft+1.

Note that ct, nst , bt+1and zft+1 are per-household values (per capita values). Since kt, n
d
t and πt

are per-firm values, kt, ndt and πft are per capita values.

Let us now show that this model is a zero growth version of the model in King, Plosser and

Rebelo (1988a). Equation 60 can be written as

u1(ct, 1− nst )− λt = 0 (71)

Using 67 to substitute ndt in 64 and then using the resulting equation to substitute wt in 61

and then rearranging the equation, we obtain

u2(ct, 1− nst )− λtAtF2(kt, n
s
t ) = 0 (72)

Using 62 to substitute (1+ rt) in 65 and then using 67 to substitute ndt+1 in the same equation

and then rearranging the equation, we obtain

βEt [λt+1]
£
Et [At+1]F1

¡
kt+1, Et

£
nst+1

¤¢
+ (1− δ)

¤− λt = 0 (73)

Using equation 67 to substitute ndt in equation 66 and then rearranging the equation, we obtain

AtF (kt, n
s
t ) + (1− δ)kt − kt+1 − ct = 0 (74)

Let us now look at equations (2.11)-(2.15) in the King, Plosser and Rebelo (1988a) paper (page

203). If we set γX = 1 in equations (2.11)-(2.14), we obtain the same set of equations as the

set of equations given by 71-74. Taking equation 60 into account it is easy to see that equation

(2.15) in their model is just another way of writing the same as we have written in equation 1 (the

transversality condition on the firm’s capital stock).
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Since γX corresponds to one plus the rate of growth in their model, γX = 1 means zero growth.

This proves that our model is a zero growth version of their model.

We can summarize as follows. We developed our model in a decentralized way whereas King,

Plosser and Rebelo solve their model as a central planner’s problem. We have shown that setting

the rate of growth to zero in their model produces the same set of equations as the ones we

obtained. Hence our claim that the model in this chapter is a decentralized zero growth version of

their model.

The fact that we have used a decentralized approach and arrived at the same equations as King,

Plosser and Rebelo - who have used a central planner’s approach - is a proof of the second welfare

theorem. It proves that in the context of the set of assumptions we are using the second welfare

theorem holds.

10 Near steady-state dynamics

We are interested in studying the behaviour of the system 71-74 around its steady-state. A steady-

state is a dynamic equilibrium in which the level of each variable grows at some constant rate

(different variables can grow at different rates). In the context of the model we have at hand,

if we assume At = A ∀t, imposing a constant rate of growth for every variable implies zero rate

of growth for all variables (i.e., it implies that all variables must be constant). To prove this we

proceed as follows. With At = A ∀t, we have a non-stochastic situation. Therefore, we can drop

the expectations operator. Since the endowment of time per household is bounded, nst cannot grow

in a steady-state. Hence, a steady-state must be such that nst = ns,∀t. From equation 67 it follows

that ndt must also be constant in the steady-state. In other words, in the steady-state we will also

have ndt = nd,∀t. Taking this into account and assuming that the real interest rate is constant in

the steady-state, equation 65 in the steady-state can be written as

AF1
¡
kt+1, n

d
¢
+ (1− δ) = 1 + r

This implies that kt+1 must be constant in the steady-state. In other words, a steady-state

must be such that kt+1 = k, ∀t. Note that, given the definition of kt, this means constant stock of
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capital per capita.

Therefore, equation 66 in the steady-state will be

ct +
£
k − (1− δ)k

¤
= AF (k, nd)

This implies ct = c,∀t.

From this it follows that equation 60 in the steady-state will be

u1(c, 1− ns) = λt

This implies λt = λ,∀t.

Hence, this model’s steady-state is one where all variables are constant. The conclusion to be

drawn is that, in the present model, a quick way of obtaining the steady-state is as follows: (i)

take the system 71-74 with specific utility and production functions; (ii) set At = A, At+1 = A,

ct = c, nst = ns, nst+1 = ns, λt = λ, λt+1 = λ, kt = k and kt+1 = k in the resulting system; (iii)

solve for c, ns, k, λ.

The specific utility and production functions we will use in this paper are as follows:

u(ct, ct) = ln ct + φ ln ct (75)

AtF (kt, n
d
t ) = At (kt)

1−α ¡
ndt
¢α

(76)

With these specific utility and production functions the steady-state values we obtain are

k =
(α/φ)A

h
1

β(1−α)A +
δ−1

(1−α)A
iα−1

α

(α/φ)A
h

1
β(1−α)A +

δ−1
(1−α)A

i
+ 1

β(1−α) +
δ−1
1−α − δ

(77)

ns =

∙
1

β(1− α)A
+

δ − 1
(1− α)A

¸ 1
α

k (78)

c = (1− ns)(α/φ)A
¡
k
¢1−α

(ns)
α−1 (79)

λ =
1

c
(80)
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We want to examine the dynamics of the system 71-74 around its steady-state13. Therefore,

we log-linearize each of the four equations around the steady-state values (c, ns, λ, k). To make the

system deviate from the steady-state we use technological shocks14.

Given a sequence of technological shocks which make At deviate from A, we can apply the King,

Plosser and Rebelo (1988) method on the log-linearized system of equations 71-74 to obtain the

percentage deviations of ct, nst , λt and kt from their steady-state values. Using these solutions, we

can then use the log-linearized version of equation 67 to obtain the percentage deviation of ndt from

its steady-state value; use the log-linearized production function to obtain the percentage deviation

of physical output from its steady-state value; use the log-linearized capital accumulation equation

to obtain the percentage deviation of investment from its steady-state value; use the log-linearized

version of equation 64 to obtain the real wage percentage deviation from its steady-state; use the

log-linearized version of equation 62 to obtain the real interest rate percentage deviation from its

steady-state; and use the log-linearized version of equation 63 and the log-linearized version of

equation 70 to obtain the percentage deviation of the real price of shares from its steady-state.

Equations 68 and 69 tell us that bt+1 and zt+1 never deviate from their steady-state values.

Once technological shocks cease (i.e., once At becomes constant again) the system 71-74 will

converge again to a steady-state (which will be the same as the initial steady-state if the value of

the technological parameter is the same as the one it started from).

11 Calibration

We have already mentioned that, in order to study the dynamic properties of the model, we first log-

linearize each of the four equations 71-74 around the steady-state values of its variables (c, ns, λ, k).

What we obtain is a linear system where instead of each variable appears the percentage deviation

of that variable from its steady-state value [for example, instead of ct we have ĉt = ln ( ctc ) where c

is the steady-state value of ct]. The log-linearized system can then be calibrated as follows. With

13We don’t need to compute the steady-state to obtain the deviations of the various variables from their steady-

state values. However, to check the existence of a steady-state, we may want to do it.
14 In general, any shock to any exogenous variable will make the system deviate from its steady-state.
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the specific utility function we are using - equation 75 - we obtain:

Elasticity of the MU of consumption with respect to consumption -1

Elasticity of the MU of consumption with respect to leisure 0

Elasticity of the MU of leisure with respect to consumption 0

Elasticity of the MU of leisure with respect to leisure -1

From the U.S.A. data, we obtain

value source

investment share of output in the steady-state (i/y) 0.167 Barro (1993)

labour’s share of output (α) 0.58 King et al. (1988a)

labour supply in the steady-state (ns) 0.2 King et al. (1988a)

real interest rate in the steady-state (r) 0.007060 FRED and Barro

As usual, we take the post-war average as representing the steady-state value. The last value

in the table is a per-quarter value. It was obtained using data from the Federal Reserve Economic

Data (FRED) to compute the average nominal interest rate15 for the period 1949-1986 and the

data from Barro (1993) to compute the average rate of inflation for the same period. The value

obtained for the average nominal interest rate was 0.016383 and the value obtained for the average

rate of inflation was 0.009258.

Using the values in the preceding table we then proceed as follows. First, it is straightforward

to conclude that the consumption share of output will be 0.833. Second, equation 62 in the

steady-state can be written as

λ

1 + r
= βλ⇔

⇔ β =
1

1 + r
(81)

Since r = 0.007060, we calibrate

β = 0.993

Third, the capital accumulation equation in the steady-state is

15The specific nominal interest rate used was the Bank Prime Loan Rate.
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k = (1− δ)k + i⇔ i = δk

Therefore, the share of investment will be given by

i

y
=

δk

Ak1−α(nd)α
⇔ i

y
=

δ

Ak−α(nd)α
⇔ i

y
=

δ(1− α)

(1− α)Ak−α(nd)α

Using the Cobb-Douglas production function and equation 81 above, equation 65 in the steady-

state can be rearranged to give (1− α)Ak−α(nd)α = 1
β − (1− δ). Therefore, we can write

i

y
=

δ(1− α)
1
β − (1− δ)

⇔ δ =

i
y (

1
β − 1)

1− α− i
y

Hence, we calibrate

δ = 0.0047

We can summarize the new information in a table

consumption share of output in the steady-state (c/y) 0.833

household’s intertemporal discount factor (β) 0.993

per-quarter rate of depreciation of the capital stock (δ) 0.0047

Note that we don’t need to calibrate the parameter φ because it disappears when we do the

log-linearization16.

12 Response of the model to exogenous shocks

As already mentioned, the response of the log-linearized model to shocks in the exogenous variables

can be obtained using the King, Plosser and Rebelo (1988) method, which is based on Blanchard

and Khan (1980). We next present the result of two experiments that use shocks to the technological

parameter: an impulse response experiment and a stochastic simulation experiment.

16To obtain the steady-state values of the four main variables, note that the four equations that give these values

[equations77-80], will have φ as a variable but will have ns = 0.2 from our calibration. Also, we can set any value

we want for the steady-state value of the technological parameter (set A = 1, for example) because that corresponds

to a specific choice of units in terms of measuring physical output.
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To do these two experiments, we assume that the technological parameter evolves according

to

Ât = 0.9Ât−1 + εt (82)

where εt is a white noise17 .

12.1 Impulse response

We first perform an impulse response experiment. Let us suppose that t0 = 2 and use the

following steps:

( i ) Assume that at t = 1 the economy is in its steady-state with Â1 = 0;

( ii ) Assume that at t = 2, the shock is ε2 = 0.01;

( iii ) From equation 82 above it follows that Â2 = 0.01. And using the same equation we can

also compute the expected values of Âs for s = 3, 4, 5, ...;

( iv ) Use the values from ( iii ) and the Blanchard and Khan algorithm to obtain the expected

path that the “percentage deviation of each variable from its steady state” will take from t0 until

some point in the future ( 20 quarters ahead, for example ).

The results are plotted in figures 1 to 8.

12.2 Stochastic Simulation

We next perform a stochastic simulation exercise. Let us suppose that t0 = 2 and use the following

steps:

( i ) Assume that at t = 1 the economy is in its steady-state with Â1 = 0;

( ii ) Use the “standard normal distribution random number generator” in Gauss to obtain a

random shock ε2;

17Note that Ât denotes the percentage deviation of At from its steady-state value A.
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( iii ) From equation 82 above it follows that Â2 = ε2. And using the same equation we can

also compute the expected values of Âs for s = 3, 4, 5, ...;

( iv ) Use the values from ( iii ) and the Blanchard and Khan algorithm to obtain the values of

the “percentage deviation of each variable from its steady state” in period t = 2;

( v ) Use the “standard normal distribution random number generator” in Gauss to obtain a

random shock ε3;

( vi ) From equation 82 above it follows that Â3 = 0.9Â2 + ε3. And using the same equation

we can also compute the expected values of Âs for s = 4, 5, 6, ...;

( vii ) Use the values from ( vi ) and the Blanchard and Khan algorithm to obtain the values

of the “percentage deviation of each variable from its steady state” in period t = 3;

( viii ) ...

We can do this for 10000 periods and then summarize the statistical properties of the series we

obtained for the various variables ŷt, ĉt, ı̂t, n̂st , ŵt, ...

The results are shown in table 1.
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Table 1. Stochastic simulation. Shocks in the firms’ technological parameter.

A. Standard deviations (s.d.)

Variable s.d. s.d. of the variable divided by the s.d. of ŷt

ŷt 4.20 1.00

ĉt 1.76 0.42

ı̂t 21.49 5.12

n̂st 2.82 0.67

ŵt 2.00 0.48

ret − r 0.04 0.01

B. Autocorrelations

Variable correlation with ŷt−1 correlation with ŷt−2 correlation with ŷt−3

ŷt 0.906 0.824 0.751

Variable correlation with ĉt−1 correlation with ĉt−2 correlation with ĉt−3

ĉt 0.997 0.993 0.989

Variable correlation with ı̂t−1 correlation with ı̂t−2 correlation with ı̂t−3

ı̂t 0.885 0.783 0.695

Variable correlation with n̂st−1 correlation with n̂st−2 correlation with n̂st−3

n̂st 0.883 0.781 0.691

Variable correlation with ŵt−1 correlation with ŵt−2 correlation with ŵt−3

ŵt 0.974 0.950 0.928

Variable correl. with (rt−1 − r) correl. with (rt−2 − r) correl. with (rt−3 − r)

ret − r 0.889 0.792 0.707

C. Cross-correlations
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Variable Correlation with

ŷt−12 ŷt−8 ŷt−4 ŷt−2 ŷt−1 ŷt ŷt+1 ŷt+2 ŷt+4 ŷt+8 ŷt+12

ŷt 0.35 0.49 0.69 0.82 0.91 1.00 0.91 0.82 0.69 0.49 0.35

ĉt 0.64 0.64 0.61 0.59 0.58 0.56 0.51 0.47 0.41 0.30 0.23

ı̂t 0.15 0.31 0.55 0.72 0.82 0.94 0.85 0.77 0.64 0.45 0.32

n̂st 0.10 0.27 0.51 0.69 0.79 0.91 0.82 0.74 0.61 0.43 0.30

ŵt 0.60 0.65 0.72 0.76 0.79 0.81 0.74 0.68 0.57 0.42 0.31

ret − r -0.07 0.10 0.35 0.53 0.64 0.77 0.69 0.62 0.51 0.35 0.24

In these tables, (ret − r) denotes the deviation of the ex-ante real interest rate from its steady-

state value.

We may summarize as follows the main results obtained in table 1 and in figures 1 to 8. First:

consumption, investment and “labour effort” are procyclical. Second: consumption is less volatile

than output and investment is more volatile than output. These are very well documented stylized

facts about the United States economy [ references on this include Kydland and Prescott (1990)

and Backus and Kehoe (1992)].

Our pattern of results is similar to the one obtained by King, Plosser and Rebelo (1988). The

reason why our results are not exactly the same as those obtained by King, Plosser and Rebelo has

to do both with the fact that ours is a zero growth version of their model and with the fact that

our calibration is slightly different. For example, in our calibration the investment share of output

was set at 0.167 whereas King, Plosser and Rebelo use the value 0.295 (their value probably results

from including expenditure on consumer durables in the total amount of investment expenditure).

13 Conclusion

We have presented a detailed derivation of the competitive equilibrium of an economy. We have

used a decentralized way of obtaining this equilibrium and have specified all the assumptions

involved. Our method makes clear how each of these assumptions could be replaced by a different

one and still let us proceed with the derivation of the general equilibrium without much difficulty.
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Although we have arrived at the same set of equations as King, Plosser and Rebelo (1988) - who

use a central planner’s approach - our method has the advantage that it can be used in many

situations where the second welfare theorem does not hold.

It results obvious that we are able to generate the same key business cycle facts that King,

Plosser and Rebelo are able to generate with their model: (i) consumption, investment and work

hours are procyclical; (ii) consumption is less volatile than real output whereas investment is more

volatile than real output.
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Appendix

In this appendix, we derive in an intuitive way the first order conditions of the firms’ problem

and the first order conditions of the households’ problem. Let us start with the firms’ problem.

The first order condition in terms of the choice of labour demand can be obtained as follows.

The expected marginal benefit of increasing ndt0+j by one unit is the increased output that will

be obtained. This is given by the marginal product of labour, Ato+jF2
¡
kt0+j,n

d
t0+j

¢
. Discounting

this to period t0, we have

Ato+jF2
¡
kt0+j,n

d
t0+j

¢
(1 + rt0)...(1 + rt0−1+j)

Since the firm is in period t0 when it is making these decisions, it must think in terms of

Et0

"
Ato+jF2

¡
kt0+j,n

d
t0+j

¢
(1 + rt0)...(1 + rt0−1+j)

#

The expected marginal cost of increasing ndt0+j by one unit is the wage payment that it implies,

wt0+j . Discounting this amount to period t0, we have

wt0+j

(1 + rt0)...(1 + rt0−1+j)

Since the firm is in period t0 when it is making these decisions, it must think in terms of

Et0

∙
wt0+j

(1 + rt0)...(1 + rt0−1+j)

¸
The optimal choice of ndt0+j is the point where expected marginal benefit is equal to expected

marginal cost. Therefore, the condition is

Et0

"
Ato+jF2

¡
kt0+j,n

d
t0+j

¢
(1 + rt0)...(1 + rt0−1+j)

#
= Et0

∙
wt0+j

(1 + rt0)...(1 + rt0−1+j)

¸
(83)

Let us now try to obtain the first order condition in terms of the choice of capital. Note that

in period (t0 + j) the household chooses kt0+1+j . kt0+j is pre-determined [it was determined in

period (t0 − 1 + j)].
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The expected marginal benefit of increasing kt0+1+j by one unit is obtained as follows. If, in

period (t0 + j), the firm decides to increase kt0+1+j by one unit, that extra unit of capital shall

produce an increase in output in period (t0+1+j) given by Ato+1+jF1
¡
kt0+1+j,n

d
t0+1+j

¢
. The use

of capital in production involves depreciation so that, after production, all that is left of that extra

unit of capital is (1−δ) units of capital [or (1−δ) units of output since units of capital in this model

correspond to units of output]. Therefore, the overall benefit of increasing kt0+1+j in period (t0+j)

by one unit is that in period (t0+1+j) the firm will obtain
£
Ato+1+jF1

¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

¤
units of output. Discounting this amount to period t0, we obtain

Ato+1+jF1
¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

(1 + rt0)...(1 + rt0−1+j)(1 + rt0+j)

Since the firm is in period t0 when it is making these decisions, it must think in terms of

Et0

"
Ato+1+jF1

¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

(1 + rt0)...(1 + rt0−1+j)(1 + rt0+j)

#

The expected marginal cost of increasing kt0+1+j by one unit is the reduction in the amount of

dividends paid in period (t0 + j). This reduction in real terms corresponds to one unit of output:

the one unit of output that is used for investment. Discounting this amount to period t0, we have

1

(1 + rt0)...(1 + rt0−1+j)

Since the firm is in period t0 when it is making these decisions, it must think in terms of

Et0

∙
1

(1 + rt0)...(1 + rt0−1+j)

¸
Hence, the first order condition in terms of the choice of capital is

Et0

"
Ato+1+jF1

¡
kt0+1+j,n

d
t0+1+j

¢
+ (1− δ)

(1 + rt0)...(1 + rt0−1+j)(1 + rt0+j)

#
=

= Et0

∙
1

(1 + rt0)...(1 + rt0−1+j)

¸
(84)

Let us now derive the first order conditions for the household’s problem in an intuitive way.
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We start by defining λt0+j as the marginal utility of output in period (t0 + j). In other words,

λt0+j gives us the increase/decrease in an household’s utility that would follow an increase/decrease

of one (infinitesimal) unit in the amount of output available to that household. This corresponds to

the increase/decrease in the household’s utility that would be caused by consuming one more/less

unit of output.

In short, λt0+j is defined as giving us the marginal utility that the consumer would obtain if

he/she were given an extra unit of output to consume. Mathematically, then, we can write

λt0+j = u1(ct0+j , 1− nst0+j)

Applying the expectations operator to both sides of this equation we obtain

Et0 [λt0+j ] = Et0

£
u1(ct0+j , 1− nst0+j)

¤
(85)

Let us now look at the optimal choice of nst0+j .

The expected marginal cost of increasing nst0+j by one unit is that this implies a reduction of one

unit in the amount of leisure that the household enjoys during period (t0+j). The decrease in utility

that results from this is given by u2(ct0+j , ct0+j) = u2(ct0+j , 1−nst0+j). Since we are taking decisions

at period t0, we have to use the expected value of this amount which is Et0

£
u2(ct0+j , 1− nst0+j)

¤
.

The expected marginal benefit of increasing nst0+j by one unit is that we receive wt0+j units

of output. In period (t0 + j) utility terms, the value of this is λt0+jwt0+j . Since the household is

taking decisions at period t0, it has to think in terms of Et0 [λt0+jwt0+j ].

The first order condition on nst0+j is obtained by equating expected marginal cost to expected

marginal benefit. Hence, the condition is

Et0

£
u2(ct0+j , 1− nst0+j)

¤
= Et0 [λt0+jwt0+j] (86)

Let us now look at the optimal choice of bt0+1+j . Note that in period (t0 + j) the household

chooses bt0+1+j . bt0+j is pre-determined [it was determined in period (t0 − 1 + j)].

The expected marginal cost of increasing bt0+1+j [the amount of output paid to other households

in period (t0 + 1 + j)] by one unit is the corresponding loss in utility. By having one less unit
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of output in period (t0 + 1 + j), the household loses λt0+1+j in period (t0 + 1 + j) utility terms.

Discounting this to period (t0+j) utility we obtain βλt0+1+j . Since plans are being made in period

t0, the household has to think in terms of Et0 [βλt0+1+j ].

The expected marginal benefit of increasing bt0+1+j [the amount paid to other households in

period (t0 + 1 + j)] by one unit is obtained as follows. If the household is going to pay one more

unit of output in period (t0 + 1 + j) it must be because it borrowed an extra 1
(1+rt0+j)

units of

output in period (t0 + j). In period (t0 + j) utility terms, this is worth λt0+j
(1+rt0+j)

. Since plans are

being made in period t0, the household has to think in terms of Et0

h
λt0+j

(1+rt0+j)

i
.

The first order condition on bt0+1+j is obtained by equating expected marginal cost to expected

marginal benefit. Hence, the condition is

Et0

∙
λt0+j

(1 + rt0+j)

¸
= Et0 [βλt0+1+j ] (87)

Let us now look at the optimal choice of zft0+1+j .

The expected marginal cost of increasing zft0+1+j by one unit is obtained as follows. If the

household decides to buy a fraction (1/v) of firm f in period (t0+ j), it will have to pay (1/v)qft0+j .

In period (t0 + j) utility terms, the value of this is λt0+j(1/v)q
f
t0+j

. Since the household is at t0

when it is making these plans, it must think in terms of Et0

h
λt0+j(1/v)q

f
t0+j

i
.

The expected marginal benefit of increasing zft0+1+j by one unit is obtained as follows. If the

household buys a fraction (1/v) of firm p in period (t0 + j), it will be entitled to a share in the

dividends in period (t0+1+ j) amounting to (1/v)πft0+1+j . In addition to this, the household will

be able to sell this fraction (1/v) of firm p in period (t0 + 1 + j) thereby earning (1/v)qft0+1+j .

In period (t0 + 1 + j) utility terms the sum of the two amounts that the household receives is

worth λt0+1+j

h
(1/v)πft0+1+j + (1/v)q

f
t0+1+j

i
. In period (t0 + j) utility terms, the value of this

is βλt0+1+j
h
(1/v)πft0+1+j + (1/v)q

f
t0+1+j

i
. Since the household is at t0 when it is making these

plans, it must think in terms of Et0

h
βλt0+1+j

h
(1/v)πft0+1+j + (1/v)q

f
t0+1+j

ii
.

Therefore, the condition is

Et0

h
λt0+j(1/v)q

f
t0+j

i
= Et0

h
βλt0+1+j

h
(1/v)πft0+1+j + (1/v)q

f
t0+1+j

ii
or equivalently
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Et0

h
λt0+jq

f
t0+j

i
= Et0

h
βλt0+1+j(π

f
t0+1+j

+ qft0+1+j)
i

(88)

When making its plans regarding present and future amounts of consumption, work effort,

borrowing and shares, the household must also take into account the budget constraints that it

will be facing in each period (present and future). The budget constraint for period (t0 + j) is

given by

wt0+jn
s
t0+j +

bt0+1+j
1 + rt0+j

+

f=FX
f=1

zft0+jπ
f
t0+j

= ct0+j + bt0+j +

f=FX
f=1

qft0+j(z
f
t0+1+j

− zft0+j)

Since the household is at t0 when it is making its plans, it must think in terms of

Et0

⎡⎣wt0+jn
s
t0+j +

bt0+1+j
1 + rt0+j

+

f=FX
f=1

zft0+jπ
f
t0+j

⎤⎦ =

= Et0

⎡⎣ct0+j + bt0+j +

f=FX
f=1

qft0+j(z
f
t0+1+j

− zft0+j)

⎤⎦ (89)
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