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Performance measures in discrete supervised
classification

Ana Sousa Ferreira and Anabela Marques

Abstract The evaluation of results in Cluster Analysis frequently appears in the lit-
erature, and a variety of evaluation measures have been proposed. On the contrary,
in supervised classification, particularly in the discrete case, the subject of results
evaluation is relatively rare in the literature of the area. This is the motto for the
present study. The evaluation of the performance of any model of supervised classi-
fication is, generally, based in the number of cases correctly or incorrectly predicted
by the model. However, these measures can lead to a misleading evaluation when
data is not balanced. More recently, another type of measures had been studied as
coefficients of association or agreement, the Huberty’s index, Mutual information or
even ROC curves. Exploratory studies have been made to understand the relation-
ship between each measure and data characteristics, namely, samples size, balance
and separability of classes. For this purpose, we resort to simulated data and use a
Beta regression model on the performance of the models.

Key words: Balanced classes, Performance measures, Separability of classes, Su-
pervised classification.

1 Introduction

In Statistics, a supervised classification problem exists when the aim is to identify
to which, of a set of classes defined a priori, a new observation belongs, on the basis
of a training set of data containing subjects whose class membership is known. For
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example, consider a breast cancer dataset that contains nine variables describing 300
women that have suffered breast cancer and whether or not breast cancer recurrence
within five years. So, we are facing a a binary classification problem: of the 300
observed women, how many will or will not suffer a recurrence of breast cancer
within five years?
Performance evaluation allows either to evaluate the quality of a new classification
model either to choose the most appropriate technique to solve a specific supervised
classification problem. In fact, performance evaluation is fundamental in supervised
classification: ”it is almost unthinkable to carry out any research work without an
experimental section where the performance of the new proposed algorithm is tested
and compared with other already proposed methods” ([9], p.1).
In the breast cancer example, are False Negatives (women wrongly diagnosed with
no breast cancer recurrence) probably worse than False Positives (women wrongly
diagnosed with recurrence) in this problem? In fact, more detailed screening will
certainly clear the Positives, but the False Negatives women will be sent home and
probably will lost follow-up evaluations.
The results of a supervised classification problem can be resumed in a contingency
table named the confusion matrix. In Table 1 is presented the confusion matrix for
the breast cancer data:

Table 1 Breast cancer confusion matrix

Predicted classes
Recurrence No Recurrence

True Recurrence 25 (T P) 75 (FN) 100
Classes No Recurrence 18 (FP) 182 (T N) 200

43 257 300

In the Medicine field, the 25, 75, 18 and 182 values are habitually referred to as
True Positives (TP), False Negatives (FN), False Positives (FP) and True Negatives
(TN), respectively. This terminology, which has been extended to many other fields
of application, stems, for example, from the fact that a diagnostic exam indicates
that a given woman suffers a recurrence while in reality, the woman didn’t. There-
fore, here we are dealing with a False Positive case. Some evaluation measures in
classification are associated with this type of classification problem.
In supervised classification, global accuracy (or misclassification error) is widely
used in classification problems since it is easy to compute and understand. Some-
times, accuracy is selected without considering in depth whether it is the most ap-
propriate score to measure the quality of a classifier for the specific classification
problem at hand. For Table 1, the global accuracy value is 0.69 (and the misclassifi-
cation error 0.31).
In the discrete field there is often a problem of dimensionality, due to the number of
parameters to be estimated in each model being too large, frequently samples being
small and sparseness. So, most of the discrete models perform poorly, especially
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when classes are unbalanced and there is also a class separability problem. Thus, in
discrete supervised classification the evaluation of results becomes even more rel-
evant, when comparing new proposed models with other important models of the
supervised classification literature. It is the aim of this paper to explore the evalu-
ation of results in supervised classification, by comparing the correct classification
rate with other types of measures ([3], [8]).

2 Performance measures

In the statistical literature, the most reported measure is accuracy that evaluates the
overall efficiency of an algorithm. However, accuracy can be a misleading evalua-
tion measure when data is not balanced ([9],[3], [5], [8]). Then, several measures
have been defined in order to evaluate correctly the performance of each algorithm.
The Accuracy (Acc) rate is the most commonly used measure, and quantifies the
overall efficiency of the model. In fact, the Accuracy seeks to respond to the ques-
tion: ”Overall, how frequently does the classification model decide correctly?”
The Correctly classified rate of cases in class 1 is also referred to as Sensitivity, and
measures efficiency in class 1. The Correctly classified rate of cases in class 2 is
also referred to as Specificity, and measures efficiency in class 2. In Table 2, some
of the evaluation measures based on the confusion matrix are presented:

Table 2 Performance measures based on the confusion matrix

Measures Definition

Correctly classified rate or Accuracy (Acc) TP+TN
TP+TN+FP+FN

Accuracy of class 1 (Acc1) or Sensitivity TP
TP+FN

Accuracy of class 2 (Acc2) or Specificity TN
TN+FP

Precision (Pre) TP
TP+FP

Clearly, a good classification model should be capable of identifying both True
Positive and True Negative cases. In precise terms, Sensitivity is the rate of True Pos-
itive cases, while Specificity is the rate of True Negative cases. Finally, Precision,
also referred to as the positive predictive value, measures the precision of the model,
providing the answer to another question: ”Among the cases classified by the model
as Positive, that is, belonging to Class 1, how many effectively are?” Thus, a high
Precision value shows a model that it is a good predictor.
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In general, the performance measures used do not provide a balance between
the False Positive and False Negative cases. The combined performance measures,
presented in Table 3, seek to obtain improved parity between them.

Table 3 Combined performance measures

Measures Definition

Balanced accuracy (B Acc) Sensitivity+Speci f icity
2

Geometric mean (G mean)
√

Sensitivity×Speci f icity

F measure (F) 2×Sensitivity×Precision
Sensitivity+Precision

Balanced accuracy is the arithmetic mean between Sensitivity and Specificity
and, when compared with the Overall accuracy, will tend to be lower when the
model is unable to classify both classes equally correctly. The Geometric mean
measures the balance between the classification in the two classes. A low Geometric
mean value indicates a weak performance in the class considered to be positive (usu-
ally deemed the class of most interest). Finally, the F measure combines the Sen-
sitivity and Precision measures, even when the classes of data are really balanced.
The afore-mentioned evaluation measures, which are generally simple or combined
rates, naturally vary in the [0,1] interval.
Evaluation measures of a different type ([9], [3], [5], [8]), which indicate associ-
ation or agreement between real and predicted classes ([2]), have been referred to
by several authors. On the other hand, an evaluation of the effective improvement
the model brings to the majority rule appears to be of relevance ([6]). These less
traditional measures in supervised classification are presented in Table 4.

The Phi coefficient (φ ) is a known measure of association between two binary
variables, and take values in the interval [−1,1]. The positive sign of this coeffi-
cient indicates a higher number of cases where the classification model has decided
correctly. The negative sign, on the contrary, points to the existence of more incor-
rectly decided cases. Cohen’s Kappa statistic ([2]) may be defined as the proportion
of agreement between two classifications after removal of the agreement propor-
tion owing to the random, and may also take values in the interval [−1,1]. Finally,
Huberty’s index ([6]) evaluates the performance of a model as the degree of classi-
fication correction achieved, in comparison with a percentage of correctly classified
cases by the majority rule, defined as the ratio between effective improvement and
possible improvement in the classification. This index is the only evaluation mea-
sure presented that take values outside the interval [−1,1].
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Table 4 Less traditional performance measures

Measures Definition

Phi coefficient (φ ) TP×TN−FP×FN√
(TP+FP)(FN+TN)(TP+FN)(FP+TN)

Cohen’s Kappa statistic (K) Acc−Prandom
1−Prandom

, where

Prandom = (TP+FN
N × TP+FP

N ) + (TN+FP
N ×

TN+FN
N )

and N = TP+TN+FP+FN

Huberty’s index (H) Pcc−Pm
1−Pm

, where

Pcc - % correctly classified cases and
Pm - % correctly classified cases in
accordance with the majority rule

3 Numerical results

In order to understand the relationship between each performance measure and data
characteristics, Beta regression ([7]) or Multiple linear regression models were used,
according to the variation intervals of the performance measures. For this purpose,
we resort to simulated data to predict performance measures based on data charac-
teristics and understand the relative impact of each experimental complexity factor
on performance. For the sake of simplicity , in our study, we will be focused in a
two classes problem and four binary predictors.
Data have been simulated considering two levels of separability of the classes (Low
and High) and according to the Multinomial distribution, with the occurrence prob-
abilities of the four predicting binary variables, presented in Table 5:

Table 5 Parameters of the Multinomial distribution used in data simulation

Separability C1 C2

Low (0,5;0,5;0,5;0,5; (0,5;0,5;0,5;0,5;
0,5;0,5;0,5;0,5) 0,5;0,5;0,5;0,5)

High (0,1;0,9;0,7;0,3; (0,9;0,1;0,3;0,7;
0,2;0,8;0,6;0,4) 0,8;0,2;0,1;0,9)

Two other characteristics were considered for simulated data: Sample size (small
(n = 60), moderate (n = 120) and large (n = 400); Balance (classes with equal size),
classes with moderate unbalanced and with severe unbalanced) and 30 classification
runs in each scenario were considered. To implement the regression models, the
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three complexity factors were used in order to study the impact of each one in the
performance measure:

• Separability of classes: The Affinity coefficient ([1]), defined in the interval [0,1],
is used to measure separability of classes;

• Balance: The ratio between the minority and the majority class sizes is used to
measure balance;

• Sample size: The ratio between the ”number of degrees of freedom” and sample
size is used to measure sample size importance.

Based on the 270 sets of generated data, the performance measures referred pre-
viously were obtained using a reference model in discrete supervised classification,
the First-Order Independence Model (FOIM) ([4]), and were estimated by twofold
cross-validation. For the performance measures that assume values in the standard
unit interval (0,1) Beta regression models were used and the estimated coefficients
were obtained using the Betareg R package ([7]); For the performance measures
that assume values elsewhere, Linear regression models were used. The estimated
regression models are presented in Tables 6, 7 and 8.

Table 6 Estimated coefficients for performance measures based on the confusion matrix

Accuracy − Pseudo R2 = 0.88 Sensitivity − Pseudo R2 = 0.38
Estimate St. Error z Sig. Estimate St. Error z Sig.

Intercept 2.43 0.08 29.36 ∗∗∗ 2.30 0.21 10.91 ∗∗∗
Separability -3.21 0.08 -41.63 ∗∗∗ -3.23 0.18 -17.93 ∗∗∗
Balance 0.15 0.05 3.13 ∗∗ 0.38 0.12 3.19 ∗∗
Sample size 0.95 0.11 8.78 ∗∗∗ 0.80 0.27 3.01 ∗∗

Specificity− Pseudo R2 = 0.68 Precision − Pseudo R2 = 0.73
Estimate St. Error z Sig. Estimate St. Error z Sig.

Intercept 2.78 0.12 22.83 ∗∗∗ 0.40 0.13 6.77 ∗∗∗
Separability -3.26 0.11 -30.50 ∗∗∗ -3.05 0.11 -27.55 ∗∗∗
Balance 0.07 0.07 1.05 0.29 2.35 0.08 22.31 ∗∗∗
Sample size 0.61 0.15 4.00 ∗∗∗ 0.70 0.16 4.38 ∗∗∗

∗∗ p < 0.01; ∗∗∗p < 0.001

The estimated regression models exhibited an adequate to good fit to data and
the three complexity measures impacts significantly in all evaluation measures.
Separability, measured by the Affinity coefficient, emerges as the most important ex-
perimental factor with a negative impact on performance. Sample size is the second
most important factor for Accuracy, Sensitivity, Specificity, Balanced accuracy and
Geometric mean with a positive impact on performance. Balance is the second most
important factor, for Precision, F measure, Phi coefficient, Cohen’s Kappa statistics
and Huberty’s index, also with a positive impact on performance.
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Table 7 Estimated regression coefficients for combined performance measures

Balanced accuracy − Pseudo R2 = 0.81 Geometric mean − Pseudo R2 = 0.74
Estimate St. Error z Sig. Estimate St. Error z Sig.

Intercept 2.17 0.10 20.96 ∗∗∗ 1.79 0.13 13.61 ∗∗∗
Separability -2.95 0.09 -32.60 ∗∗∗ -2.87 0.11 -25.00 ∗∗∗
Balance 0.27 0.05 4.52 ∗∗∗ 0.38 0.08 4.97 ∗∗∗
Sample size 0.88 0.13 6.69 ∗∗∗ 1.11 0.17 6.54 ∗∗∗

F measure − Pseudo R2 = 0.84
Estimate St. Error z Sig.

Intercept 0.87 0.13 6.77 ∗∗∗
Separability -2.92 0.11 -27.55 ∗∗∗
Balance 1.74 0.08 22.31 ∗∗∗
Sample size 0.71 0.16 4.38 ∗∗∗

∗∗ p < 0.01; ∗∗∗p < 0.001

Table 8 Estimated regression coefficients for less traditional performance measures

Phi1 − Pseudo R2 = 0.78 Kappa1 − Pseudo R2 = 0.80
Estimate St. Error z Sig. Estimate St. Error z Sig.

Intercept 0.84 0.02 39.15 ∗∗∗ 0.59 0.04 16.45 ∗∗∗
Separability -0.89 0.03 -30.08 ∗∗∗ -0.91 0.03 -31.63 ∗∗∗
Balance 0.21 0.02 9.36 ∗∗∗ 0.22 0.02 10.67 ∗∗∗
Sample size -0.01 0.00 -3.41 ∗∗ 0.35 0.05 7.38 ∗∗∗

Huberty’s index1 Pseudo R2 = 0.56
Estimate St. Error z Sig.

Intercept -0.33 0.20 -1.62 ∗∗∗
Separability -1.90 0.16 -11.62 ∗∗∗
Balance 1.80 0.12 14.99 ∗∗∗
Sample size 0.45 0.27 1.65 ∗∗∗

1−Multiple linear regression
∗∗ p < 0.01; ∗∗∗p < 0.001

4 Conclusions

This study has revealed to be an interesting contribution to the goal of understanding
how to choose an evaluation measure that really takes into account the classification
problem at hand. Separability of classes emerges as the factor that really influences
classifier performance: the weakly separated the classes are, the higher the affinity
coefficient and the weaker the classification performance is. Note that the estimated
weight of this factor in the regression models is always in the order of three points.
The size of the samples and the balance between them also have an important impact
on the quality of the classifier performance. Sample size is the second most impor-
tant factor for all but two simple and combined measures (Precision and F mea-
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sure): the larger samples size are the better classification performance is. Balance is
the second most important factor important factor for the less traditional measures,
Precision and the F measure: the more balanced classes are the stronger the classifi-
cation performance is. Naturally, classification results improve as the classification
problem becomes easier (better separability, bigger samples and classes more bal-
anced).
Although not presented here due to being a short article, exploratory analysis with
real data showed that with balanced classes, all performance measures show sim-
ilar results; on the opposite, with low separability, was observed large differences
between results of association or agreement measures and all the others. In the un-
balanced case with high separability of classes, measures tend to be similar but
with low separability, measures values are discrepant. Finally, let’s note that the Hu-
berty’s index it’s a very demanding but interesting measure, hardly reaching high
values in real life problems.
The evaluation of results in Discrete Supervised Classification will continue to be
further explored, using both simulated and real data, particularly in the case of un-
balanced classes, with a view to better understanding the interest of other perfor-
mance measures almost always absent in the literature of the area.
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