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Weightless Neural Networks for Efficient Edge Inference
OMITTED FOR BLIND REVIEW

ABSTRACT
Weightless neural networks (WNNs) are a class of machine learn-
ing model which use table lookups to perform inference, rather
than the multiply-accumulate operations typical of deep neural
networks (DNNs). Individual weightless neurons are capable of
learning non-linear functions of their inputs, a theoretical advan-
tage over the linear neurons in DNNs, yet state-of-the-art WNN
architectures still lag behind DNNs in accuracy on common clas-
sification tasks. Additionally, many existing WNN architectures
suffer from high memory requirements, hindering implementation.
In this paper, we propose a novel WNN architecture, BTHOWeN,
with key algorithmic and architectural improvements over prior
work, namely counting Bloom filters, hardware-friendly hashing,
and Gaussian-based nonlinear thermometer encodings. These en-
hancements improve model accuracy while reducing size and en-
ergy per inference. BTHOWeN targets the large and growing edge
computing sector by providing superior latency and energy effi-
ciency to both prior WNNs and comparable quantized DNNs. Com-
pared to state-of-the-art WNNs across nine classification datasets,
BTHOWeN on average reduces error by more than 40% and model
size by more than 50%. We demonstrate the viability of a hardware
implementation of BTHOWeN by presenting an FPGA-based in-
ference accelerator, and compare its latency and resource usage
against similarly accurate quantized DNN inference accelerators,
including multi-layer perceptron (MLP) and convolutional models.
The proposed BTHOWeN models consume almost 80% less energy
than the MLP models, with nearly 85% reduction in latency. In our
quest for efficient ML on the edge, WNNs are clearly deserving of
additional attention.

CCS CONCEPTS
• Computing methodologies→ Neural networks; •Hardware
→ Hardware accelerators; • Computer systems organization
→ Special purpose systems.

KEYWORDS
Weightless Neural Networks, WNN, WiSARD, Neural Networks,
Hardware Acceleration, Inference, Edge Computing
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1 INTRODUCTION
In the last decade, deep neural networks (DNNs) have driven revo-
lutionary advancements in fields such as object detection, image
classification, speech recognition, and natural language process-
ing. In fact, it is widely acknowledged that modern DNNs can
achieve superhuman accuracy on image recognition and classifi-
cation tasks [33]. However, the implementation of these models is
expensive in bothmemory and computation. Table 1 shows the num-
ber of weights and multiply-accumulate operations (MACs) needed
for some widely-known networks. These networks have excellent
accuracy, but performing inference with them requires significant
memory capacity and numerous MAC computation, which in turn
consume a substantial amount of energy. This may be acceptable on
large servers, but in the emerging domain of edge computing, mod-
els must be run on small, power-constrained devices. The amount
of weight memory and the number of computations required by
these DNNs make them impractical to implement in edge solutions.
Consequently, DNNs for edge inference must typically trade off ac-
curacy for reduced complexity through techniques such as pruning
and low-precision quantization [22].

Weightless neural networks (WNNs) are an entirely distinct
class of neural model, inspired by the decode processing of input
signals in the dendritic trees of biological neurons [2]. WNNs are
composed of artificial neurons known as RAM nodes, which have
binary inputs and outputs. Unlike neurons in DNNs, RAM nodes do
not use weighted combinations of their inputs to determine their
response. Instead, RAM nodes use lookup tables (LUTs) to represent
a Boolean functions of their inputs as a truth table. RAM nodes
concatenate their inputs to form an address into this table, and
produce the corresponding table entry as their response. A RAM
node with 𝑛 inputs can represent any of the 22

𝑛
possible logical

functions of its inputs using 2𝑛 bits of storage.

Table 1: Weights and MACs for popular DNNs [20, 39]

Metric LeNet-5 AlexNet VGG-16 Resnet-50 OpenPose
#Weights 60k 61M 138M 25.5M 46M
#MACs 341k 724M 15.5G 3.9G 180G
Year 1998 2012 2014 2015 2018

Foundational research inWNNs occurred from the 1950s through
the 1970s. However, WiSARD (Wilkie, Stonham, and Aleksander’s
Recognition Device) [3], which was introduced in 1981 and sold
commercially from 1984, was the first WNN to be broadly viable.
WiSARD was a pattern recognition machine, specialized for image
recognition tasks. Two factors led to its success. First, then-recent
advancements in integrated circuit manufacturing allowed for the
fabrication of complex devices with large RAMs. Additionally, WiS-
ARD incorporated algorithmic improvements which greatly in-
creased its memory efficiency over simpler WNNs, allowing for
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the implementation of more sophisticated models. As recent re-
sults have formally shown, the VC dimension1 of WiSARD is very
large [10], meaning it has a large theoretical capacity to learn pat-
terns. Many subsequent WNNs [28], including the model proposed
in this paper, draw inspiration from WiSARD’s basic architecture.

Training a WNN entails learning Boolean functions in its com-
ponent RAM nodes. Both supervised [32] and unsupervised [41]
learning techniques have been explored for this purpose. Many
training techniques for WNNs directly set values in the RAM nodes.
The mutual independence between nodes when LUT entries are
changed means that each input in the training set only needs to
be presented to the network once. By contrast, most DNN training
techniques involve iteratively adjusting weights, and many epochs
of training may be needed before a model converges. By lever-
aging one-shot training techniques, WNNs can be trained up to
four orders of magnitude faster than DNNs and other well-known
computational intelligence models such as SVM [9].

Algorithmic and hardware improvements, combined with wide-
spread research efforts, drove rapid and substantial increases in
DNN accuracies during the 2010s. The ability to rapidly train large
networks on powerful GPUs and the availability of big data fueled
an AI revolution which is still taking place. While DNNs drove this
revolution, we believe that WNNs are now a concept worth revisit-
ing due to increasing interest in low-power edge inference. WNNs
also have potential as tools to accompany DNNs. For instance, it
has been demonstrated that WNNs can be used to dramatically
speed up the convergence of DNNs during training [5]. There are
also many applications where a small network is run first for ap-
proximate detection; then, if needed, a larger network is used for
more precision [25]. The approximate networks by design do not
need high accuracy; high speed and low energy usage are more
important considerations. WNNs are perfect for these applications.
However, in order to realize the benefits of this class of neural net-
work, work needs to be done to design optimized WNNs with high
accuracy and low area and energy costs.

Microcontroller-based approaches to edge inference, such as
tinyML, have attracted a great deal of interest recently due to their
ability to use inexpensive off-the-shelf hardware [36]. However,
these approaches to machine learning are thousands of times slower
than dedicated accelerators.

In this paper, we explore techniques to improve the accuracy
and reduce the hardware requirements of WNNs. These techniques
include hardware-efficient counting Bloom filters, hardware im-
plementation of recent algorithmic improvements such as bleach-
ing [12, 24], and a novel nonlinear thermometer encoding. We
combine these techniques to create a software model and hard-
ware architecture for WNNs which we call BTHOWeN (Bleached
Thermometer-encoded Hashed-input Optimized Weightless Neu-
ral Network; pronounced as Beethoven). We present FPGA imple-
mentations of inference accelerators for this architecture, discuss
their associated tradeoffs, and compare them against prior work in
WNNs and against DNNs with similar accuracy.

Our specific contributions in this paper are as follows:

1The Vapnik–Chervonenkis (VC) dimension measures the complexity of the knowl-
edge represented by a set of functions that can be encoded by a binary classification
algorithm [40]. While usually approximated by statistical methods, it is possible to
establish the exact VC dimension for some learning methods, including WiSARD.

(1) BTHOWeN, a weightless neural network architecture de-
signed for edge inference, which incorporates novel, hardware-
efficient counting Bloom filters, nonlinear thermometer en-
coding, and bleaching.

(2) Comparison of BTHOWeN with state-of-the-art WiSARD-
basedWNNs across nine datasets, with amean 41% reduction
in error and 51% reduction in model size.

(3) An FPGA implementation of the BTHOWeN architecture,
which we compare against MLP and CNN models of similar
accuracy on the same nine datasets, finding a mean 79%
reduction in energy and 84% reduction in latency versus
MLP models. Compared to CNNs of similar accuracy, the
energy reduction is over 98% and latency reduction is over
99%.

(4) A toolchain for generating BTHOWeN models, including
automated hyperparameter sweeping and bleaching value se-
lection. A second toolchain for converting trained BTHOWeN
models to RTL for our accelerator architecture. These are
available at: https://github.com/ZSusskind/BTHOWeN.

The remainder of our paper is organized as follows: In Section 2,
we provide additional background onWNNs, WiSARD, and prior al-
gorithmic improvements. In Section 3, we present the BTHOWeN ar-
chitecture in detail. In Section 4, we discuss software and hardware
implementation details. In Section 5, we compare our model ar-
chitecture against prior memory-efficient WNNs, and compare
our accelerator architecture against a prior WNN accelerator and
against MLPs and CNNs of comparable accuracy. Lastly, in Section
6, we discuss future work and conclude.

2 BACKGROUND AND PRIORWORK
2.1 Weightless Neural Networks
Weightless neural networks (WNNs) are a type of neural model
which use table lookups for computation. WNNs are sometimes
considered a type of Binary Neural Network (BNNs), but their
method of operation differs significantly from other BNNs. Most
BNNs are based around popcounts, i.e. counting the number of 1s
in some bit vector. For instance, the McCulloch-Pitts neuron [29],
one of the oldest and simplest neural models, performs a popcount
on its inputs and compares the result against a fixed threshold in
order to determine its output. More modern approaches first take
the XNOR of the input with a learned weight vector, allowing an
input to be negated before the popcount occurs [14].

By contrast, the fundamental unit of computation in WNNs is
the RAM node, an 𝑛-input, 2𝑛-output lookup table with learned
1-bit entries. Conventionally, all entries in the RAM nodes are
initialized to 0. During training, inputs are binarized or discretized
using some encoding scheme and then presented to the RAM nodes.
The input bits to a node are concatenated to form an address, and
the corresponding entry in the node’s LUT is set to 1. Note that
presenting the same input to the node again has no effect, since
the corresponding bit position has already been set. Therefore, an
advantage of this approach is that each training sample only needs
to be presented once.

Lookup tables are able to implement any Boolean function of
their inputs. Therefore, in theory, a WNN can be constructed with a
single RAM node which takes all (encoded) input features as inputs.

https://github.com/ZSusskind/BTHOWeN
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However, this approach has two major issues. First, the size of a
RAM node grows exponentially with its number of inputs. Suppose
we take a dataset such as MNIST [27] and apply a simple encoding
strategy such that each of the original inputs is represented using 1
bit. Since images in the MNIST dataset are 28x28, our input vector
has 784 bits, and therefore the RAM node requires 2784 bits of
storage, about 1.7 ∗ 10156 times the number of atoms in the visible
universe. The second issue is that such a RAM node has no ability
to generalize: if a single bit is flipped in an input pattern, the node
can not recognize it as being similar to a pattern it has seen before.

A great deal of WNN literature revolves around finding solutions
to these two issues. A discussion of many of these approaches
can be found in [2, 28]. Many of these techniques require random
behavior (e.g. replacing the entries in RAM nodes with Bernoulli
random variables), which is challenging to implement in hardware.
The WiSARD model is deterministic, addressing both issues with
the single-RAM-node model while avoiding the pitfalls of other
solutions, and is therefore a good starting point for designing more
complex WNNs.

There are some structural similarities between WNNs and ar-
chitectural predictors in microprocessors. For instance, using a
concatenated input vector to index into a RAM node is concep-
tually similar to using a branch history register in a table-based
branch predictor.

2.2 WiSARD
WiSARD [3], depicted in Figure 1, is perhaps the most broadly
successful weightless neural model. WiSARD is intended primarily
for classification tasks, and constructs a submodel known as a
discriminator for each output class. Each discriminator is in turn
composed of 𝑛-input RAM nodes; for an 𝐼 -input model, there are
𝑁 ≜ 𝐼/𝑛 such nodes per discriminator. Inputs are assigned to these
RAM nodes using a pseudo-randommapping; typically, as in Figure
1, the same mapping is shared between all discriminators.

During training, inputs are presented only to the discriminator
corresponding to the correct output class, and its component RAM
nodes are updated. During inference, inputs are presented to all
discriminators. Each discriminator then forms a bit vector from the
outputs of its component RAM nodes and performs a popcount on
this vector to produce a response value. The index of the discrimi-
nator with the highest response is taken to be the predicted class.
For example, if the input image contains the digit "1", the response
from discriminator 1 should be the highest.

If an input seen during inference is identical to one seen during
training, then all RAM nodes of the corresponding discriminator
will yield a 1, resulting in the maximum possible response. On the
other hand, if the input is similar but not identical, then some subset
of the RAM nodes may produce a 0, but many will still yield a 1. As
long as the response of the correct discriminator is still stronger
than the responses of all other discriminators, the network will
output a correct prediction. In practice, WiSARD has a far greater
ability to generalize than simpler WNN models.

WiSARD’s performance is directly related to the choice of 𝑛.
Small values of 𝑛 give the model a great deal of ability to generalize,
but may be insufficient to capture complex input patterns. Larger

values of 𝑛 increase the complexity of the Boolean functions that
the model can represent [3], but may result in overfitting.

Figure 1: A depiction of the WiSARD WNN model with 𝐼

inputs,𝑀 classes, and 𝑛 inputs per RAMnode. 𝐼/𝑛 RAMnodes
are needed per discriminator, for a total of𝑀 (𝐼/𝑛) nodes and
𝑀 (𝐼/𝑛)2𝑛 bits of state.

2.3 Bloom Filters
Although the WiSARD model avoids the state explosion problem
inherent in large, simple WNNs, practical considerations still limit
the sizes of the individual RAM nodes. Increasing the number of
inputs to each RAMnodewill, up to a point, improve the accuracy of
the model; however, the model size will also increase exponentially.
Fortunately, the contents of these large RAM nodes are highly
sparse, as few distinct patterns are seen during training relative
to the large number of table entries. Prior work has shown that
using hashing to map large input sets to smaller RAMs can greatly
decrease model size at a minimal impact to accuracy [15].

A Bloom Filter [7] is a hash-based data structure for approximate
set membership. When presented with an input, a Bloom filter can
return one of two responses: 0, indicating that the input is definitely
not amember of the set, or 1, indicating that the element is possibly a
member of the set. False negatives do not occur, but false positives
can occur with a probability that increases with the number of
elements in the set and decreases with the size of the underlying
data structure [23]. Bloom filters have foundwidespread application
for membership queries in areas such as networking, databases,
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web caching, and architectural predictions [8]. A recent model,
Bloom WiSARD [15], demonstrated that replacing the RAM nodes
in WiSARD with Bloom filters improves memory efficiency and
model robustness [35].

Internally, a Bloom Filter is composed of𝑘 distinct hash functions,
each ofwhich takes an𝑛-bit input and produces an𝑚-bit output, and
a 2𝑚-bit RAM. When a new value is added to the set represented
by the filter, it is passed through all 𝑘 hash functions, and the
corresponding bit positions in the RAM are set. When the filter is
checked to see if a value is in the set, the value is hashed, and the
filter reports the value as present only if all 𝑘 corresponding bit
positions are set.
2.4 Bleaching
Traditional RAM nodes activate when presented with any pattern
they saw during training, even if that pattern was only seen once.
This can result in overfitting, particularly for large datasets, a phe-
nomenon known as saturation. Bleaching [12] is a technique which
prevents saturation by choosing a threshold 𝑏 such that nodes only
respond to patterns they saw at least 𝑏 times during training. Dur-
ing training, this requires replacing the single-bit values in the RAM
nodes with counters which track how many times a pattern was
encountered. After training is complete, 𝑏 is selected to maximize
the accuracy of the network2. Once 𝑏 has been selected, counter
values greater than or equal to 𝑏 can be statically replaced with 1,
and counter values less than 𝑏 with 0. Therefore, while additional
memory is required during training, inference with a bleached
WNN does not introduce any overhead.

In practice, bleaching can substantially improve the accuracy
of WNNs. There have been several strategies proposed for finding
the optimal bleaching threshold 𝑏; we use a binary search strategy
based on the method proposed in [12]. Our approach performs a
search between 1 and the largest counter value present in any RAM
node. Thus, both the space and time overheads of bleaching are
worst-case logarithmic in the size of the training dataset.

2.5 Thermometer Encoding
Traditionally, WNNs represent their inputs as 1-bit values, where
an input is 1 if it rises above some pre-determined threshold3 and
0 otherwise. However, it is frequently advantageous to use more
sophisticated encodings, where each parameter is represented using
multiple bits [26]. Binary integer encodings are not a good choice for
WiSARD, since individual bits carry dramatically different amounts
of information. For instance, in an 8-bit integer encoding, the most
significant bit carries a great deal of information about the value of
a parameter, while the least significant bit is essentially noise when
taken in isolation. Since the assignment of bits to RAM nodes is
randomized, this would result in some inputs to some RAM nodes
being effectively useless.

In a thermometer encoding, a value is compared against a series
of increasing thresholds, with the 𝑖’th bit of the encoded value rep-
resenting the result of the comparison against the 𝑖’th threshold.
Clearly if a value is greater than the 𝑖’th threshold, it is also greater

2Alternatively, 𝑏 may be chosen dynamically to serve as a tiebreaker when two or
more discriminators produce an equal response. We do not explore this method of
bleaching in this work.
3Frequently the mean value of the input in the training data

than thresholds {0 . . . (𝑖 − 1)}. This unary encoding resembles mer-
cury passing the markings on an analog thermometer, with bits
becoming set from least to most significant as the value increases.

3 PROPOSED DESIGN: BTHOWEN
In this section, we present BTHOWeN, a WNN architecture which
improves on the prior work by incorporating (i) counting Bloom
filters to reduce model size while enabling bleaching, (ii) an inex-
pensive hash function which does not require arithmetic operations,
and (iii) a Gaussian-based non-linear thermometer encoding to im-
prove model accuracy. We also present an FPGA-based accelerator
for this architecture, targeting low-power edge devices, shown in
Figure 2. We incorporate both hardware and software improve-
ments over the prior work.

3.1 Model
Our objective is to create a hardware-aware, high-accuracy, high-
throughputWNN architecture. To accomplish this goal, we enhance
the techniques described in Section 2 with novel algorithmic and
architectural improvements.

3.1.1 Counting Bloom Filters. While Bloom filters were used in
prior work [15], we augment them to be counting Bloom filters.
Bloom filters can only track whether a pattern has been seen; in
order to implement bleaching, we need to know how many times
each pattern has been encountered. To accomplish this, we replace
single-bit filter entries with multi-bit counters. When an item is
added to the filter, rather than setting the corresponding entries,
we instead increment the corresponding counter with the smallest
value (or multiple counters in the event of a tie).

When performing a lookup, a counting Bloom filter returns 1
if the smallest counter value accessed is at least some threshold 𝑏;
thus, the possible responses become “possibly seen at least 𝑏 times"
and “definitely not seen 𝑏 times". Note that false negatives are still
impossible; if a pattern has been seen 𝑖 times, then the smallest of
its corresponding counter values must be at least 𝑖 .

Our implementation of counting Bloom filters is conceptually
similar to count-min sketches under the conservative update rule [6].
However, count-min sketches use a separate data array for each
hash function, while counting Bloom filters use a unified data array;
this creates a tradeoff of false positive rate versus memory footprint.

3.1.2 Hash Function Selection. Bloom filters require multiple dis-
tinct hash functions, but do not prescribe what those hash functions
should be. Prior work, including Bloom WiSARD [15, 35], used a
double-hashing technique based on the MurmurHash [4] algorithm.
However, this approach requires many arithmetic operations (e.g.
5 multiplications to hash a 32-bit value), and is therefore imprac-
tical in hardware. We identified an alternative approach based on
sampling universal families of hash functions which is much less
expensive to implement. Thus, while prior work used software-
implemented Bloom filters, our design incorporates realistic filters
which abide by hardware constraints.

A universal family of hash functions is a set of functions such
that the odds of a hash collision are low in expectation for all
functions in the family [11]. Some universal families consist of
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Figure 2: A diagram of the BTHOWeN inference accelerator architecture. We divide Bloom filters into dedicated Hasher and
Lookup blocks. The Hasher block computes the H3 hash function on the input data, using a shared set of random hash
parameters. The Discriminator block takes hashed data as input, passes it through Lookup units, and performs a popcount on
the result, returning a response. The Lookup block contains a LUT, which is accessed using the addresses produced by the
hashers, and performs an AND reduction on the results of multiple accesses.

highly similar functions, which differ only by the choices of con-
stant "seed" parameters. We considered two such families when
designing BTHOWeN.

The Multiply-Shift hash family [17] is a universal family of non-
modulo hash functions which, for an 𝑛-bit input size and an𝑚-bit
output size, implement the function ℎ(𝑥) = (𝑎𝑥 + 𝑏) ≫ (𝑛 −𝑚),
where 𝑎 is an odd 𝑛-bit integer, and 𝑏 is an (𝑛 − 𝑚)-bit integer.
The Multiply-Shift hash function consists of only a few machine
instructions, so a software implementation is inexpensive. However,
multiplication is a relatively costly operation in FPGAs, especially
when many computations must be performed in parallel.

By contrast, the H3 family of hash functions [11] requires no
arithmetic operations. For an 𝑛-bit input 𝑥 and𝑚-bit output, hash
functions in the H3 family take the form:

ℎ(𝑥) = 𝑥 [0]𝑝0 ⊕ 𝑥 [1]𝑝1 ⊕ . . . ⊕ 𝑥 [𝑛 − 1]𝑝𝑛−1
Here, 𝑥 [𝑖] is the 𝑖’th bit of 𝑥 , and 𝑃 = {𝑝0 . . . 𝑝𝑛−1} consists of 𝑛
random 𝑚-bit values. The drawback of the H3 family is that its
functions require substantially more storage for parameters when
compared to the Multiply-Shift family: 𝑛𝑚 bits versus just 2𝑛 −𝑚.

In practice, using Bloom filters in a WiSARD model requires
many independent filters, each replacing a single RAM node. Each
filter in turn requires multiple hash functions. We draw all hash
functions from the same universal family, and use P = {𝑃0 ...𝑃𝑘−1}
to represent the random parameters for a filter’s 𝑘 hash functions.

For an implementation which uses Multiply-Shift hash functions,
many multiplications need to be computed in parallel. This requires
a large number of DSP slices on an FPGA. On the other hand, when
using H3 hash functions, a large register file is needed for each
set of hash parameters P. However, we observed that sharing P
between Bloom filters did not cause any degradation in accuracy.
This effectively eliminates the only comparative disadvantage of
the H3 hash function; hence, BTHOWeN uses the H3 hash function
with the same P shared between all filters.

Cryptographically-secure hash functions such as SHA and MD5
are a poor choice for hardware-friendly Bloom filters, as their secu-
rity features introduce substantial computational overhead.

3.1.3 Implementing Thermometer Encoding. Another enhancement
we introduce in BTHOWeN is Gaussian non-linear thermometer

encoding. Most prior work using thermometer encodings uses equal
intervals between the thresholds. The disadvantage of this approach
is that a large number of bits may be dedicated to encoding outlying
values, leaving fewer bits to represent small differences in the range
of common values.

For thermometer encoding in BTHOWeN, we assume that each
input follows a normal distribution, and compute its mean and
standard deviation from training data.For a 𝑡-bit encoding, we divide
the Gaussian into 𝑡 + 1 regions of equal probability. The values of
the divisions between these regions become the thresholds we use
for encoding. This provides increased resolution for values near
the center of their range.

3.2 Training BTHOWeN
The process of training a network with the BTHOWeN architecture
is shown in Figure 3. Hyperparameters, including the number of
inputs in each sample, the number of output classes, details of
the thermometer encoding, and configuration information for the
Bloom filters, are used to initialize the model.

During training, samples are presented sequentially to the model.
The label of the sample is used to determine which discriminator
to train. The input is encoded, passed through the pseudo-random
mapping, and presented to the filters in the correct discriminator.
Filters hash their inputs and update their corresponding entries.

After training, the model is evaluated using the validation set at
different bleaching thresholds. A binary search strategy is used to
select the bleaching threshold 𝑏 which gives the highest accuracy.
The model is then binarized by replacing filter entries less than 𝑏
with 0, and all other entries with 1. Binarization does not impact
model accuracy, and allows counting Bloom filters to be replaced
with conventional Bloom filters, which require less memory and
are simpler to implement in hardware.

3.3 Inference with BTHOWeN
Figure 2 shows the design of an accelerator for inference with
BTHOWeNWNNs. Since reusing the same random hash parameters
for all Bloom filters does not degrade accuracy, we use a central
register file to hold the hash parameters. Since all discriminators
receive the same inputs, Bloom filters which are at the same index
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Figure 3: The training process for BTHOWeN models. Hy-
perparameters, consisting of the numbers of inputs and cate-
gories for the dataset, as well as tunable parameters, are used
to construct an “empty" model, where all counter values are
0. Encoded training samples are sequentially presented to
the model to update counter values. A validation set is used
to select the optimal bleaching threshold 𝑏. This threshold is
then used to binarize the trained model, replacing counters
with binary values. We compare multiple models with dif-
ferent hyperparameters to find targets for implementation.

but in different discriminators (e.g. filter 1 in 𝑑1 and filter 1 in 𝑑2)
also receive identical inputs. This means that their hashed values are
also identical. It is therefore redundant and inefficient to compute
hashes in each discriminator separately. Instead, we divide the
Bloom filters into separate hashing units and lookup units, where
hashing units perform H3 hash operations, and lookup units hold
the Bloom filter data and perform AND reductions to determine the
filter response. We place the hashing units at the top level of the
design, before the discriminators, and broadcast their outputs to all
discriminators. Since Bloom filters at the same index across different
discriminators have different contents in their RAMs, lookup units
can not be shared across discriminators.

If the bus bringing data from off-chip has insufficient bandwidth,
then the accelerator will finish before the next input is ready. In
this case, we can reduce the number of hash units by having each
one compute the hashed inputs for multiple lookup units. We store
partial results in a large central buffer until all hashes have been
computed for a single set of parameters, then pass the hash re-
sults to all filters simultaneously, ensuring they operate in lockstep.
This strategy allows us to reduce the area of the design without
decreasing effective throughput.

The popcount module counts the number of 1s in the outputs of
the filters in a discriminator, and the argmax module determines
the index of the discriminator with the strongest response. These
are equivalent to the corresponding modules in a conventional
WiSARD model.

Since training with bleaching requires multi-bit counters for
each entry in each Bloom filter, it introduces a large amount of
memory overhead. For instance, in our experimentation, we found
that some models had optimal bleaching values of more than 400. If
we used saturating counters large enough to represent this value in
the accelerator, it would increase the memory usage of the design

by a factor of 9. Since our accelerator is intended for use in low-
power edge devices, the advantages of supporting on-chip training
do not seem worth the cost.

4 EVALUATION METHODOLOGY
4.1 Hardware Implementation
Our hardware source is written using Mako-templated SystemVer-
ilog. Mako is a template library for Python which allows the Python
interpreter to be run as a preprocessing step for arbitrary languages.
This allows for greater flexibility and ease of use than the SystemVer-
ilog preprocessor alone. When Mako is invoked, it generates pure
SystemVerilog according to user-specified design parameters.

We targeted two different Xilinx FPGAs for this project. For most
designs, we used the xc7z020clg400-1, a small, inexpensive FPGA
available in the Zybo Z7 development board, which was used for
prior work [19]. For our largest design, we targeted the Kintex
UltraScale xcku035-ffva1156-1-c. Timing, power, and area numbers
were obtained from Xilinx Vivado. Prior work implementingWNNs
on FPGAs chose to profile the entire system, which revealed a major
bottleneck in the form of SD card read bandwidth [19]; we are in-
terested in the performance of the accelerator itself. We implement
all models with a 100 MHz clock rate, and collect power numbers
assuming a 12.5% switching rate.

Hash units produce output at a maximum throughput of 1 hash
per cycle. Lookup units can consume hashed inputs at a rate of
1/cycle, and produce output at a rate of 1/𝑘 cycles, where 𝑘 is the
number of hash functions associated with a Bloom filter. Therefore,
there is no point in having more hashing units than lookup units,
and the maximum throughput of the design is 1/𝑘 cycles. This
throughput could be improved by allowing multiple addresses to
be read simultaneously in the lookup units. However, this would
greatly increase circuit area, and such a design would generally not
be any faster in practice; 𝑘 is typically small enough that reading
data into the accelerator from off-chip is the bottleneck.

At the top level of the design, we use a double-buffered deserial-
ization unit which accumulates input data from the bus until a full
sample has been read, then passes the entire sample to the accel-
erator. This helps enable all hardware units to operate in lockstep,
simplifying our state machine logic and verification effort.

4.2 Datasets and Training
We created models for all classifier datasets discussed in [15]:
MNIST [27], Ecoli [31], Iris [21], Letter [37], Satimage [38], Shut-
tle [13], Vehicle [30], Vowel [16], andWine [1]. Since our accelerator
does not support on-chip training, we implemented the training of
models in software. This was done in Python, using the Numba JIT
compiler to reduce the runtime of performance-critical functions.
We performed a 90-10 train/validation split on the input dataset,
using the former to learn the values in the counting Bloom filters
and the latter to set the bleaching threshold.

4.3 WNN Model Sweeping
There are several model hyperparameters which can be changed to
impact the size and accuracy of the model. Increasing the size of the
Bloom filters decreases the likelihood of false positives, and thus
improves accuracy. However, this greatly increases the model size,
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and eventually provides diminishing returns for accuracy as false
positives become too rare to matter. Increasing the number of input
bits to each Bloom filter broadens the space of Boolean functions the
filters can learn to approximate, and makes the model size smaller
as fewer Bloom filters are needed in total. However, it also increases
the likelihood of false positives, since more unique patterns are
seen by each filter. Increasing the number of hash functions per
Bloom filter can improve accuracy up to a point, but past a certain
point actually begins to increase the frequency of false positives [7].
Lastly, increasing the number of bits in the thermometer encoding
can improve accuracy at the cost of model size, but again provides
diminishing returns as the amount of information each bit conveys
decreases.

In order to identify optimal model hyperparameters, we ran
many different configurations in parallel using an automated sweep-
ing methodology. For MNIST, we used 1008 distinct configurations,
sweeping all combinations of the hyperparameter settings shown
in Table 2. For smaller datasets, we explored using 1-16 encoding
bits per input, 128-8192 entries per Bloom filter, 1-6 hash functions
per filter, and 6-64 input bits per Bloom filter.

Table 2: Hyperparameters swept for the creation of
BTHOWeN models for the MNIST dataset

Hyperparameter Values
Encoding Bits per Input 1, 2, 3, 4, 5, 6, 7, 8

Input Bits per Bloom Filter 28, 49, 56
Entries per Bloom Filter 128, 256, 512, 1024, 2048, 4096, 8192

Hash Functions per Bloom Filter 1, 2, 3, 4, 5, 6

4.4 DNN Model Identification and
Implementation

For each dataset, we trained MLPs that had similar accuracy to
our BTHOWeN models. We identified the smallest iso-accuracy
MLPs using a hyperparameter sweep. The trained models were then
quantized to 8-bit precision to generate a TensorFlow Lite model.
Hardware was generated for each MLP using the hls4ml tool [18].
hls4ml takes 4 inputs: (1) the weights generated by TensorFlow
(.h5 format), (2) the structure of the model generated by TensorFlow
(.json format), (3) the precision to be used for the hardware, and (4)
the FPGA part being targeted. It generates C++ code corresponding
to the model, and then invokes Xilinx Vivado HLS to generate the
hardware design.Wemodified the generated C++ code such that the
I/O interface width matched that of our hardware design for WNNs
in order to ensure a fair comparison. We also modified HLS pragmas
as needed to ensure that the resultant RTL could fit on the Zybo
FPGA. The hardware design generated by Vivado HLS (invoked
by hls4ml) was then synthesized and implemented using Xilinx
Vivado to obtain area, latency, and power consumption metrics.

For the MNIST dataset, in addition to MLPs, we compared the
BTHOWeN implementation with comparably accurate CNNs based
on the LeNet-1 [27] architecture. The default convolutional layer
implementations generated by hls4ml were too large to fit on our
FPGA, and tuning HLS pragmas to reduce area resulted in a very
inefficient implementation. This issue only impacted convolutional
layers, and did not affect theMLPs. Tomake a more fair comparison

with CNNs, we used the latency and resource utilization values for
optimized implementations reported by Arish et. al. [34]. We then
used the Xilinx Power Estimator (XPE) [42] to get approximate
power values for the CNN.

5 RESULTS
5.1 Selected BTHOWeN Models
After performing a hyperparameter sweep, we needed to select
one or more trained models for FPGA implementation, balancing
tradeoffs between model size and accuracy. For each dataset except
for MNIST, there was one model which was very clearly the best,
with all more accurate models being many times larger.

Since MNIST is a more complex dataset, there was no clear single
“best" model - instead, we identified “Small", “Medium", and “Large"
models, which balanced size and accuracy at different points. Our
objectives for the three MNIST models were:

• The small model would be comparable in area to the prior
FPGA model in [19]

• The medium would be larger, but could still fit on the same
FPGA (i.e. the Zybo Z7 board)

• The large model would fit on a mid-size commercial FPGA
We also experimented with MNIST models using traditional linear
thermometer encodings, and observed a 12.9% reduction in mean
error using the Gaussian encoding.

The configurations for all the models we selected are shown in
Table 3.

Table 3: Details of the selected BTHOWeN models

Model Bits Bits Entries Hashes Size Test
Name /Input /Filter /Filter /Filter (KiB) Acc.

MNIST-Small 2 28 1024 2 70.0 0.934
MNIST-Medium 3 28 2048 2 210 0.943
MNIST-Large 6 49 8192 4 960 0.952

Ecoli 10 10 128 2 0.875 0.875
Iris 3 2 128 1 0.281 0.980

Letter 15 20 2048 4 78.0 0.900
Satimage 8 12 512 4 9.00 0.880
Shuttle 9 27 1024 2 2.63 0.999
Vehicle 16 16 256 3 2.25 0.762
Vowel 15 15 256 4 3.44 0.900
Wine 9 13 128 3 0.422 0.983

5.2 Comparison with Iso-Accuracy Deep Neural
Networks

Table 4 shows FPGA implementation results for BTHOWeN models
and iso-accuracy quantized DNNs identified using a hyperparame-
ter sweep across the nine datasets. We italicize the superior results
for throughput, power, energy, and area. For the MNIST dataset,
the medium BTHOWeN model is only 0.3% less accurate than the
MLP, consumes just 16% of the energy of the MLP model, and re-
duces latency by almost 96%. The MLP uses fewer LUTs and FFs
than the medium BTHOWeN model, but also requires DSP blocks
and BRAMs on the FPGA. The BTHOWeN model compares even
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Table 4: Comparison of BTHOWeN FPGA Models with Quantized DNNs of similar accuracy implemented in FPGAs. CNNs for
MNIST are LeNet-1 variations from [34]. The WNN and MLP for each dataset are grouped in nearby rows for easy comparison;
winning results are italicized. (For MNIST, we compare BTHOWeN-Medium and the MLP.)

Dataset Model Bus
Width

Cycles
per
Inf.

Hash
Units

Dyn.
Power (Tot.
Power) (W)

Dyn. Energy
(Tot. Energy)
(nJ/Inf.)

LUTs FFs BRAMs
(36Kb)

DSPs Accuracy

MNIST

BTHOWeN-Small 64 25 5 0.195 (0.303) 48.75 (75.8) 15756 3522 0 0 0.934
BTHOWeN-Medium 64 37 5 0.386 (0.497) 142.8 (183.9) 38912 6577 0 0 0.943
BTHOWeN-Large 64 74 6 3.007 (3.509) 2225 (2597) 151704 18796 0 0 0.952
BTHOWeN-Large* 256 19 24 3.158 (3.661) 600.0 (695.6) 158367 25905 0 0 0.952
MLP 784-16-10 64 846 - 0.029 (0.134) 245 (1133) 2163 3007 8 28 0.946

CNN 1 (LeNet1) [34] 64 33615 - 0.058 (0.163) 19497 (54792) 5753 3115 7 18 0.947
CNN 2 (LeNet1) [34] 64 33555 - 0.043 (0.148) 14429 (49661) 3718 2208 5 10 0.920
Hashed WNN [19] 32 28 - 0.423 (0.528) 118.4 (147.8) 9636 4568 128.5 5 0.907

BTHOWeN 64 2 7 0.012 (0.117) 0.24 (2.34) 353 223 0 0 0.875Ecoli MLP 7-8-8 64 14 - 0.03 (0.135) 4.2 (18.9) 1596 1615 0 0 0.875

Iris BTHOWeN 64 1 6 0.005 (0.109) 0.05 (1.09) 57 90 0 0 0.980
MLP 4-4-3 64 10 - 0.008 (0.112) 0.8 (11.2) 427 488 0 0 0.980
BTHOWeN 64 4 12 0.623 (0.738) 24.92 (29.52) 21603 2715 0 0 0.900Letter MLP 16-40-26 64 26 - 0.109 (0.259) 39.52 (67.34) 17305 15738 0 0 0.904

Satimage BTHOWeN 64 5 24 0.084 (0.190) 4.2 (9.5) 3771 1131 0 0 0.880
MLP 36-16-16-6 64 25 - 0.039 (0.144) 9.75 (36) 7007 7558 0 0 0.878
BTHOWeN 64 2 3 0.018 (0.123) 0.36 (2.46) 593 121 0 0 0.999Shuttle MLP 9-4-7 64 14 - 0.013 (0.118) 1.82 (16.52) 693 711 0 0 0.999

Vehicle BTHOWeN 64 5 18 0.038 (0.143) 1.9 (7.15) 1781 597 0 0 0.762
MLP 18-16-4 64 15 - 0.024 (0.128) 3.6 (19.2) 2824 3035 0 0 0.766
BTHOWeN 64 2 12 0.040 (0.145) 0.8 (2.9) 1559 756 0 0 0.900Vowel MLP 10-18-11 64 18 - 0.070 (0.175) 12.6 (31.5) 5743 4663 0 0 0.903

Wine BTHOWeN 64 3 9 0.012 (0.117) 0.36 (3.51) 585 239 0 0 0.983
MLP 13-10-3 64 14 - 0.026 (0.131) 3.64 (18.34) 1836 1832 0 0 0.983

more favorably against CNNs. For example, CNN-1 has an accuracy
of 94.7%, which is only slightly better than the 94.3% accuracy of
the medium BTHOWeN model. But even with a pipelined CNN
implementation, BTHOWeN consumes less than 0.4% of the energy
of the CNN, while reducing latency from 33.6k cycles to just 37.

As Table 4 illustrates, for all datasets except MNIST and Letter,
the BTHOWeN model’s hardware implementation consumes fewer
resources (LUTs and FFs) than its MLP counterpart. The reduction
in total energy consumption of the BTHOWeN models ranges from
56.2% on Letter to 90.8% on Vowel. Reduction in latency ranges
from 66.7% on Letter to 90.0% on Iris.

Figure 4 summarizes these results, showing the relative latencies,
dynamic energies, and total energies of BTHOWeN models com-
pared to DNNs. Overall, BTHOWeN models are significantly faster
and more energy efficient than DNNs of comparable accuracy.

The different-sized models for MNIST, shown in Table 4, pro-
vide multiple tradeoff points for energy and accuracy. The Small
and Medium models provide good energy efficiency, though the
Medium model uses over twice the energy for a 0.9% improvement
in accuracy. The Large model does not fit on the Zybo FPGA, so is
implemented on a larger FPGA with much higher static power con-
sumption, and is much slower and less energy-efficient. However,
if we take advantage of the large number of I/O pins on the large

FPGA and implement a 256b bus, energy consumption is reduced
by nearly a factor of 4 (the “Large*" row in Table 4).

5.3 Comparison with Prior Weightless Neural
Networks

Bloom WiSARD, the prior state-of-the-art for WNNs, used Bloom
filters to achieve far smaller model sizes than conventionalWiSARD
models with only slight penalties to accuracy [15]. Results were
reported on nine multi-class classifier datasets, which we adopted
for our analysis. No hardware implementation (FPGA or ASIC) was
provided in this work, hence the comparison we present here is
based only on accuracy and model parameter size.

We compared the BTHOWeN models in Table 3 against the
results reported by Bloom WiSARD on all nine datasets, achiev-
ing superior accuracy with a smaller model parameter size in all
cases. The results are summarized in Figure 5. On average, our
models have 41% less error with a 51% smaller model size com-
pared to Bloom WiSARD, which did not incorporate bleaching or
thermometer encoding. Our improvements indicate the benefits of
these techniques. Although the prior work did not propose a hard-
ware implementation, we anticipate that our advantage in hardware
would be even larger due to our much simpler and more efficient
choice of hash function.
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Figure 4: The relative latencies and energies of BTHOWeN models versus iso-accuracy DNNs. For MNIST, our Medium model
is compared against the MNIST MLP model, and our Large (64b bus) model is compared against CNN 1. The results of the
comparison with CNN 1 are not used in the computation of the average, since the Large model uses a different FPGA. We
implemented baseline MLPs and BTHOWeN models at 100MHz and obtained metrics from Xilinx tools.

One unusual result is on the Shuttle dataset, for which our model
has ~99% less error than prior work. Shuttle is an anomaly-detection
dataset in which 80% of the training data belongs to the “normal"
class [13]. We suspect that, since Bloom WiSARD does not incorpo-
rate bleaching, the discriminator corresponding to this class became
saturated during training.

5.4 Comparison with Prior FPGA
Implementation

In [19], a WNN accelerator for MNIST was implemented on the
Zybo FPGA (xc7z020clg400-1) with Vivado HLS. We used this same
FPGA at the same frequency (100MHz). The rowwithModel=“Hashed
WNN" in Table 4 shows the implementation results for the prior
art accelerator. Its latency and energy consumption are between
our small and medium models, but it is much less accurate than
even our small model. This accelerator is greatly harmed by its slow
memory access, which increases the impact of static power on its
energy consumption.

Exact accelerator latency values were not published. The accel-
erator reads in one 28-bit filter input per cycle, and uses a 1-bit-
per-input encoding, so it takes 28 cycles to read in a 784-bit MNIST
sample. Therefore, we use 28 cycles as a lower bound on the time
per inference for their design. The energy number in Table 4 for [19]
is a lower bound based on this cycle count and published power
values.

Our implementation has significant differences which contribute
to BTHOWeN’s superior accuracy and efficiency: (1) The prior
accelerator used a simple hash-table-based encoding scheme which
had explicit hardware for collision detection; we use an approach
based on counting Bloom filters which does not need collision
detection. (2) Models for the prior accelerator did not incorporate
bleaching or thermometer encoding; instead, they used a simple
1-bit encoding based on comparison with a parameter’s mean value.
We use counting Bloom filters to enable bleaching.

Since the accelerator in [19] did not incorporate bleaching, train-
ing did not require multi-bit counters, making it inexpensive to
support.

5.5 Model Tradeoff Analysis
We use MNIST as an illustrative example of the tradeoffs present in
model selection. Figure 6 presents the results obtained from sweep-
ing over the MNIST dataset with the configurations presented in
Table 2. In the first four subplots of Figure 6, we vary one hyper-
parameter of the model: respectively, the number of bits used to
encode each input, the number of inputs to each Bloom filter, the
number of entries in each filter, and the number of distinct hash
functions for each filter. We show four lines: three of them repre-
sent the Small, Medium, and Large models where only the specified
hyperparameter was varied, while the fourth represents the best
model with the given value for the hyperparameter.

We see diminishing returns as the number of encoding bits per
input and the number of entries per Bloom filter increase. The Small
and Medium models rapidly lose accuracy as the number of inputs
per filter increases, but the Large model, with its large filter LUTs, is
able to handle 49 inputs per filter without excessive false positives.
These results align with the theoretical behaviors discussed earlier.

One surprising result was that, although there was a slight accu-
racy increase going from 1 hash function per filter to 2, continuing
to increase this had minimal impact. In theory, we would expect
that continuing to increase this value would eventually result in
a loss of accuracy due to high false positive rates. One explana-
tion for this is that the BTHOWeN model reports the index of the
class with the strongest response; since a higher false positive rate
would impact the response of all classes, the predicted class should
remain unaffected as long as the increase is proportional. Another
observation, shown in Figure 6.e with the second y-axis, is that the
optimal bleaching value 𝑏 (i.e. the smallest value which becomes
1 when the model is binarized) increases to compensate for the
larger number of hash functions. This plot shows variants of the
Small model with up to 128 hash functions per Bloom filter. When
𝑏 is fixed at 16, accuracy collapses, but when the optimal value is
chosen using the same binary search strategy we use normally, it
is better able to compensate. This provides a good example of how
bleaching improves the robustness of BTHOWeN.

The last subplot shows the most accurate MNIST model we were
able to obtain with a given maximum model size. We notice dimin-
ishing returns as model size increases. It is evident that in order
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Figure 5: The relative errors andmodel sizes of themodels shown in Table 3 versus BloomWiSARD [15]. BTHOWeN outperforms
the prior work on all nine datasets in both accuracy and model size. For the MNIST dataset, our MNIST-Medium model was
used for comparison.

A B C

D E F

Figure 6: Sweeping results for MNIST with the configurations described in Table 2. (a) Accuracy versus the number of bits
used to encode each input. (b) Accuracy versus the number of inputs to each Bloom filter. (c) Accuracy versus the number
of entries in the LUTs of each Bloom filter. (d) Accuracy versus the number of distinct hash functions per Bloom filter. (e)
Accuracy (shown on left y-axis) versus hash function with a fixed (𝑏=16) and variable bleaching value. Right y-axis shows the
best bleaching value. (f) The most accurate model which we could obtain under a given maximummodel size.

to exceed 96% accuracy with reasonable model sizes, additional
algorithmic improvements will be needed.

6 CONCLUSION
While most machine learning research centers around DNNs, we
explore an alternate neural model, the Weightless Neural Network,
for edge inference. We incorporate enhancements such as counting
Bloom filters, inexpensive H3 hash functions and a Gaussian-based
non-linear thermometer encoding into theWiSARDweightless neu-
ral model, improving state-of-the-art WNN MNIST accuracy [15]
from 91.5% to 95.2%. The proposed BTHOWeN architecture is com-
pared to state-of-the-art weightless models as well as MLPs and
CNNs of similar accuracy. An FPGA accelerator for BTHOWeN is

also presented. Compared to prior WNNs, BTHOWeN reduces er-
ror by 41% and model size by 51% across nine datasets. Compared
to iso-accuracy MLP models, BTHOWeN consumes ~20% of the
total energy while reducing latency by ~85%. Energy/latency im-
provements over CNNs are even larger, although CNNs have higher
accuracy.

There are many opportunities for future work in this domain.
There are algorithmic improvements we would like to explore, in-
cluding weightless convolutional neural networks, better input
remapping, and converting pretrained DNNs to WNNs. Prelim-
inary experiments suggest that backpropagation-based training
approaches can significantly improve WNN model accuracy, mak-
ing them feasible for broader applications.
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We believe that WNNs hold substantial promise for inference
on the edge. While WNNs have historically trailed in accuracy to
DNNs, algorithmic improvements such as bleaching demonstrate
that accuracy and efficiency can be greatly improved by enhanced
architectures and training techniques. The potential latency and
energy efficiency benefits that can be obtained through WNNs
warrant further research in this area.
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