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ABSTRACT
We present Jask, a system capable of generating questions about a
learner’s code written in Java. Given Java code as input, Jask pro-
vides a set of meaningful questions formulated in terms of the actual
code (using its constructs and identifiers) and the corresponding
correct answers. We integrated Jask in a web-based system where
students submit their code (e.g., from lab exercises), answer ques-
tions about it, and obtain immediate formative feedback with the
correct answers. An initial study involving 123 distinct introduc-
tory programming students providing 2274 answers revealed that
questions pertaining to program dynamics tend to register low
scores, possibly evidencing fragile comprehension of programming
constructs. Participants were surveyed, revealing a positive view
towards the usefulness of Jask, especially with respect to consoli-
dating terminology.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Applied computing→ Computer-assisted instruction.

KEYWORDS
question generation, automatic assessment, program comprehen-
sion, self-explanation
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1 INTRODUCTION
Learning activities addressing program comprehension gather a
wide interest in the CSE community [5]. In an ideal learning process,
students would fully understand the code they write, but in reality
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this is seldom the case [7]. A programming assignment whose
output matches the expected one does not imply that students fully
grasp the applied programming constructs. For instance, one may
solve a problem by drawing analogies from existing code solutions,
and consequently, only achieve a superficial understanding what is
being coded.

In previous work we proposed the notion of Questions about
Learner’s Code (QLC) [11] as a learning activity to promote self-
reflection and contribute to deeper comprehension of programs.
These are questions obtained by static and dynamic analysis of a
learner’s own program (e.g., possibly submitted to an assessment
system) that ask about program characteristics in terms of program-
ming concepts (e.g., Which is the role of variable [i] in function [f]?,
with f being a function authored by the learner and i a variable
therein). Although we have discussed possible applications of the
concept, no system development had been carried out.

The main contributions of this paper are the description of Jask,
a QLC system for Java programs, and the results of a first evaluation
of using the latter in an introductory programming course. Jask
is a web-based system where students submit working code and
are presented with QLCs, for which they obtain the result of their
answers, getting the correct answers when they fail (see Figure 1).

Our main aim is to provide a lightweight and scalable means of
formative feedback [17] for students to reflect on their own code and
knowledge, with the intent of modifying their thinking towards
improved learning. When facing an incorrect answer or a poorly
understood question, a student may reinforce learning by gaining
awareness of fragile mastery of concepts and terminology (e.g.,
programming primitives, recursion, roles of variables [15]) or mis-
conceptions [6, 14] (refer to [1] for a catalog). To our knowledge
there is no system that provides the kind of automated formative
feedback we propose (refer to [8] for a survey of feedback genera-
tion for programming exercises).

We evaluated Jask by carrying out an experiment during an
introductory programming course, recruiting student volunteers
for using the system autonomously. We had a total of 123 partici-
pants and two rounds of questions. Whereas QLCs pertaining to
concepts and terminology scored relatively high (above 80%), the
QLCs scores reveal weak results in questions related to program
dynamics (below 50%). A post-experiment questionnaire reveals
a general positive attitude towards the usefulness of Jask, and a
majority of participants indicated that they felt it contributed to
strengthen their mastery of programming skills, especially with
respect to terminology (indicated by 89% of respondents).
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Figure 1: User interface of Jask. Input code and presentation of question results after submitting answers.

2 RELATEDWORK
Aqualitative study [7] closely observed the behavior of introductory
programming students, revealing that they often reach a solution
that outputs the correct output without fully understanding the
applied programming concepts. A common strategy is based on
trial-and-error until the desired outcome is achieved. This goes
in line with another study that found that students may reflect
negative views on self-efficacy even after a positive programming
experience [9], such as a successful exercise submission. Therefore,
students may go through the assignment (possibly because they
have to), but they recognize the fragility of their skills for that task.
Our approach aims at fostering self-comprehension of student-
authored solutions by means of the QLCs. We decided to provide a
feedback type of knowledge of correct response (KCR [13]), which
revealed a positive effect in a programming learning context when
compared to knowledge of result (KR) without informing the correct
answer [3].

In previous work we have conducted a small scale experiment
whereQLCswere used as learning activity in an introductory course
on web programming [10]. However, QLCs were prepared manually
and accepted open-ended text answers (e.g., “Describe the respon-
sibilities of your outer loop in few words.”). We found that about
one third of students struggle to explain their code, corroborating
the findings of the previously mentioned studies [7, 9]. Further, we
found that students answering QLCs correctly correlates stronger
with course retention and success than students only submitting
correct programs.

Henley et al. propose the notion of an “inquisitive editor” that
proactively asks pop-up questions about code when a misconcep-
tion is detected [4]. This approach is still in a concept development
stage with no working prototype. Their approach is closely related
to ours, but questions are posed earlier, during the code writing
process instead of when a program is complete (i.e. suitable to
be executed). Their approach seems more suitable as an advisor

that warns about potential problems on the spot, rather than a
post-coding activity to assess code understanding (what we aim at).

GenCODE [19] is a system to generate program tracing exercises
with multiple-choice answers obtained by simulating execution to
obtain distractor items. The questions address generated program
snippets without any theme or meaning, comprising in isolation
or combination, assignments, loops, and conditionals, solely with
the purpose of asking tracing questions. In our approach, we also
simulate execution for tracing-related questions, but the latter ad-
dress the learners’ own code instead of generated snippets. Whereas
GenCODE is specialized for practicing tracing skills, we aim at a
self-explanation and reflection about one’s code.

3 QUESTIONS ABOUT LEARNERS’ CODE
A QLC may address any aspect that relates to a piece of code, rang-
ing from questions related to terminology, mastery of programming
primitives, algorithmic strategy, relation to other pieces of code,
program dynamics, etc [11]. Depending on the question’s nature,
some are suitable to determine the correct answer automatically,
whereas others are not, particularly those with an open-ended an-
swer (e.g., “explain the purpose of this code segment”). In this paper
we focus only on types of QLCs whose answer can be obtained
automatically, either by means of static code analysis, dynamic
analysis, or a combination of both.

A QLC can only be meaningful if it makes sense in the context
that it is posed. For instance, asking how many loop iterations are
performed given a function execution should only be applicable if
that same function has loop structures. As another counter-example,
asking to trace the values of a variable in the context of a function
that has no mutable variables makes no sense either. Therefore,
some types of QLC may require that certain preconditions are met
in order that the question formulations are applicable to the context.



Question type id Question template Function precondition
CallsOtherFunctions Does function [f] depend on other functions? -
HowManyFunctions How many functions does function [f] depend on? -
WhichFunctions Which other functions does function [f] depends

on?
There is at least one call statement to another
function.

IsRecursive Is function [f] recursive? There is at least one call statement.
HowManyParams How many parameters does function [f] have? -
WhichParameters Which are the parameter names of function [f]? -
HowManyVariables How many variables (not including parameters)

does function [f] have?
-

WhatVariables Which are the variables names (not including pa-
rameters) of function [f]?

-

WhichVariableHoldsReturn Which variable will hold the return value of func-
tion [f]?

Result is given by a single variable.

WhichFixedVariables Which are the fixed value variables of function [f]? There are fixed value variables (local constants)
being used.

WhichVariableRole What is the role of variable [v] in function [f]?
(Options: Gatherer, Stepper, Most-Wanted Holder)

There is at least one variable whose role can be
determined.

HowManyLoops How many loops does function [f] have? There is at least one control structure.
HowDeepCallStack What was the maximum call stack depth when

calling [f(arg1, arg2, ...)]?
There is at least one call statement.

HowManyFunctionCalls How many function executions are performed
when calling [f(arg1, arg2, ...)]?

There is at least one call statement.

HowManyVariableAssignments How many times is variable [v] assigned when
calling [f(arg1, arg2, ...)]?

There is at least one variable that is assigned
multiple times.

WhichVariableValues Which is the sequence of values taken by variable
[v] when calling [f(arg1, arg2, ...]?

There is at least one variable that is assigned
multiple times.

WhatIsResult What is the value returned by the function call
[f(arg1, arg2, ...)]?

Return type is a value.

Table 1: Questions about Learner’s Code supported by Jask. Elements in brackets denote placeholders for concrete elements
obtained from submitted code. The upper section contains static QLCs, whereas the bottom section contains dynamic QLCs.

Within our scope of question generation there are two broad
categories: static and dynamic. The former addresses structural as-
pects of code and does not require a context of program execution
in order to be formulated, whereas the latter addresses behavioral
aspects that require a concrete execution scenario to formulate
the question and obtain the corresponding answer. While static
QLCs require static analysis of the code, dynamic QLCs are more
challenging, given that some form of program simulation or in-
strumentation is necessary. Further, dynamic QLCs require the
generation of meaningful inputs to formulate the question.

Table 1 presents the QLC types that we had implemented by
the time when the first evaluation of Jask was performed with
student users (details in Section 5). So far, we successfully address
QLCs focusing on functions (Java methods) and their inner behav-
ior. Other types of QLC could be addressed within this scope, for
instance addressing side-effects (e.g., pure functions) or recursion
(e.g., base/recursive cases and tail calls).

4 JASK
4.1 User interface
Jask a web-based system in which users submit the code of a Java
class and are presentedwith a set of QLCs addressing that same code.
Upon the submission of the answers to the QLCs the user obtains
the correct answer. The QLCs and both the expected (correct) and
user answers are stored in a database. Additionally, we included an
answer confidence (1 to 5) for each question. Figure 1 presents the
key screens of the user interface of Jask, where the input code holds
a function to produce a sub-array of an existing one, comprising
the indexes in the range [a, b]. On the right hand side we present
two QLCs as examples. The first is static (user result was correct),
whereas the second is dynamic (user result was incorrect, and the
correct answer is given).

4.2 Implementation
The process of generating questions in Jask is illustrated in Figure
2. The system has four internal components:

• Static analyzer. The starting point is a Java file written by the
user. The code is first analyzed in order to obtain a program
model that holds all the structural information (e.g., method
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Figure 2: Process of generating questions in Jask. Dashed ar-
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signatures, statements, types, etc). The program model con-
sists of an in-memory data structure that facilitates querying
and analyzing the user code, for instance to classify roles of
variables automatically [16]. This is currently being achieved
using a library of our own.

• Question template selector. This represents the complete set of
currently supported QLCs. At this point, using the program
model, a subset of applicable QLCs will be selected based on
their preconditions. The generation of static QLCs can be
performed straight away, as the program model itself holds
all the necessary information to formulate the question and
obtain the answer.

• Execution engine. The generation of dynamic QLCs requires
an additional step, which consists of executing the program
model through simulation to collect dynamic facts to obtain
the answer. Distinct QLCs will require different information.
However, for the QLCs we support so far, the dynamic facts
consist mainly of call stack and variable state history.

• Question-Answer database. The generated QLCs, along with
their correct answers and the source code that served as
input to the generation, are stored in a database, before being
delivered to the user. The user provides an answer to each
QLCs, which are checked against the stored information to
deliver the final result.

4.3 Limitations and future improvements
The current implementation supports the elementary Java con-
structs related to structured programming (assignment, sequence,
selection, iteration, recursion), leaving out the possibility of using
system libraries and advanced features (e.g., inheritance, lambdas).
This limitation is mostly due to the fact that the execution engine is
working with the program models. Although working with the pro-
gram models facilitates the collection of dynamic facts, the need to
address fully-fledged Java while maintaining semantics most likely
requires executing the bytecode itself, using some form of program

instrumentation. Nonetheless, Jask supports the kind of program
logic that is typically approached in an introductory programming
exercises.

We have used Jask experimentally in a course of our institution
for research purposes, but not on a regular basis and as a mandatory
learning activity. Hence, we did not address issues related to the
frequency, quantity, and repetition of QLCs. In a scenario where this
kind of systemwould be used on aweekly basis, the system behavior
could have to be adapted according to student performance. For
instance, if a student consistently gives correct answers a certain
type of QLC, perhaps the system should stop asking it, or at least
lower its frequency.

5 EXPERIMENT
As a first evaluation of Jask, we investigated how students perform
in the QLC answers in the context of an Introductory Programming
course. Our research questions (RQ) were the following:

(1) How do students perform in QLCs on their lab exercises?
(2) How do students perceive the activity of answering QLCs?

5.1 Context
The Introduction to Programming course is a 12-week course (CS1)
taught using Java, offered by our university (University Institute of
Lisbon, Portugal). In each week there is a lecture of 1.5h and a lab
class of 3h where students solve code exercises. Lab classes are in
groups of 20 to 25 students and guided by a teaching assistant.

Course syllabus is divided into two parts. The first 6 weeks
address procedural programming, whereas the remaining of the
course focuses on classes and objects. In the context of this ex-
periment, we targeted student code written in the first part of the
course. The main reason is that we did not develop any QLCs that
are specific to classes, and hence, the content of the first weeks
would be a better match to test the questions. Table 2 presents a
summary of which contents are introduced on each week of the
first part of the course, with example lab class exercises.

5.2 Method
Student volunteers were recruited by sending an email to all en-
rolled students in the Autumn term of 2021, offering extra points
for the course final mark (1% of total for each round of participa-
tion). The extra points were given for participation only, no matter
how students performed in terms of correct answers. Students were
asked to use Jask in two rounds:

(1) By week 5, targeting week 2 exercises
(2) By week 7, targeting week 4 exercises
Participation was unsupervised, and the task of a participant

consisted of accessing the website of Jask, uploading their code,
and finally answering the questions (as in Figure 1). Although the
questions that are visible in Figure 1 are written in English, in
this experiment questions were given in Portuguese, which is the
teaching language of the course, using the same terminology as in
the course syllabus.

Each code submission consisted of a Java file with several static
methods. The policy for selecting QLCs for each submission obeyed
the following process: (1) draw a subset of QLC types (recall Table 1)



New contents Example exercises
1 functions, parameters, argu-

ments, operators
check interval boundaries,
check even/odd

2 if statements, loops absolute value, power
3 function calls, recursion find primes, factorial
4 arrays summation, find maximum,

create sub-arrays
5 procedures, references array swaps, array sorts
6 matrices, nested loops algebra matrix operations
Table 2: Course syllabus summary by week (first half).

that are applicable to at least one Java method of the submission; (2)
for each QLC type obtained in (1), randomly select one applicable
method for generating a QLC. This guaranteed that students were
not getting the same QLCs for the same exercises. A small number
of generated QLCs implied a very incomplete code submission that
made use of a few programming constructs.

Because QLCs generated for very limited programming con-
structs can be much easier to answer than QLCs for programs
that solve a real task, we decided to exclude those submissions
that generated less than 8 QLCs from our analysis. This resulted
in excluding 10 of the 112 submissions of the first round (while
no submission was excluded in the second round). We offered the
possibility of a third round targeting week 6 exercises, but the low
number of volunteers with valid submissions at this point (8) made
us decide not to investigate further.

Finally, by the end of the course, study participants were asked
to fill-in a small online questionnaire, on a voluntary basis. The
questionnaire items aimed at the perceptions of students regard-
ing effort, learning, and usefulness of answering QLCs (see Table
3). Items were answered using a five-point Likert scale, where 1
represents low and 5 represents high.

5.3 Results
We collected 2274 answers to QLCs from 123 distinct students
(34% of a total of 360 enrollments). Figure 3 presents the student’s
proportion of correct answers (p̂ = k/n) on the left and self-reported
confidence on the right (RQ1). Values are given for each question
type and the two rounds of asking questions. In the first round
102 students participated, whereas the second round had a lower
participation of 58 students. Figure 4 presents the distribution of
overall student performance in all the answered QLCs (mean score
of 74.7% ± 15.5% SD).

Success rates for 4 of the last 5 QLCs, that target program dynam-
ics, are considerably lower (below 50%) than most of the QLCs that
target static aspects (above 80%). Apart from the HowDeepCallStack,
students still had high confidence in their answers.

The final questionnaire collected 44 answers (36% of the par-
ticipants), which are summarized in Table 3 (RQ2). Q3 included a
set of general course concepts, which participants could select to
complement their answer. These options, and the percentage of
participants that selected them were: (a) terminology (89%), loops
(39%), recursion (33%), variable values (28%), function definitions
(17%), function calls (17%).

CallsOtherFunctions100/102 0.98
54/58 0.93

HowManyFunctions48/50 0.96
33/41 0.80

WhichFunctions44/50 0.88
31/41 0.76

IsRecursive91/101 0.90
48/58 0.83

HowManyParams95/102 0.93
52/58 0.90

WhichParameters90/102 0.88
47/58 0.81

HowManyVariables98/102 0.96
43/58 0.74

WhichVariables81/102 0.79
41/58 0.71

WhichVariableHoldsReturn88/99 0.89
50/55 0.91

WhichFixedVariables60/102 0.59
11/58 0.19

WhichVariableRole65/82 0.79
42/49 0.86

HowManyLoops87/101 0.86
52/58 0.90

HowDeepCallStack7/42 0.17
3/17 0.18

HowManyFunctionCalls4/20 0.20
2/5 0.40

HowManyVariableAssignments36/91 0.40
19/55 0.35

WhichVariableValues26/91 0.29
20/55 0.36

WhatIsResult87/98 0.89
39/55 0.71

Success rate k / n= ̂p
4.79
4.62

± 0.63
± 0.77

4.68
4.46

± 0.82
± 0.98

4.54
4.27

± 1.05
± 1.10

4.52
4.33

± 0.93
± 1.05

4.60
4.59

± 0.85
± 0.86

4.34
4.24

± 1.14
± 1.11

4.52
4.33

± 0.86
± 0.96

4.44
4.24

± 0.87
± 1.11

4.61
4.38

± 0.84
± 1.03

3.92
3.97

± 1.31
± 1.27

4.48
4.45

± 0.88
± 0.89

4.23
4.40

± 1.22
± 1.08

2.67
3.41

± 1.36
± 1.66

4.00
4.20

± 1.12
± 1.30

4.38
4.47

± 0.90
± 0.96

4.33
4.56

± 0.99
± 0.96

4.69
4.40

± 0.72
± 1.10

Confidence mean and SD

Figure 3: Student’s success rate and self-reported confidence
for eachQLC type of Table 1. Round 1 is presented on darker
and round 2 on lighter color.

The questionnaire results indicate that students perceive the
required effort to answer QLC as moderate (Q1) with a fair level of
self-reported comprehension (Q2). A significant percentage (48%)
were positive or very positive regarding the learning benefits (Q3),
whereas a majority of respondents (74%) considered the process of
answering QLCs useful (Q4).

5.4 Discussion
The low scores on dynamic QLCs corroborates previous studies
that identified that code tracing skills are problematic even for post-
CS1 students [12, 18]. A couple of respondents mentioned that in
few cases the concepts stated in the QLCs were not aligned with
course contents. After discussing with the course coordinator, we
hypothesize that the very low scores of the HowDeepCallStack
QLC may have been negatively influenced by this. Nevertheless,
in a related QLC, HowManyFunctionCalls, the scores were also
among the lowest, but nevertheless registering high confidence
levels, making us believe that misconceptions regarding the call
stack execution model may be frequent among students.

The high scores on the easier QLCswere not surprising. However,
there is still a significant number of students that fail on such QLCs.
Also, the fact that these simpler QLCs got lower scores on the
second round is apparently counter-intuitive. This may be due to



Id Question Mean ± SD

Q1 When compared to other course tasks, how do you classify the necessary effort to answer QLCs? 2.7 ± 0.9
1 2 3 4 5

Q2 When answering QLCs, how to you classify your comprehension of those questions (terms, etc)? 3.8 ± 0.9
1 2 3 4 5

Q3 When answering QLCs, did you feel any learning or reinforcement of programming concepts? Which sort? 3.5 ± 1.1
1 2 3 4 5

Q4 To what extent do you find useful answering questions about your own code? 4.0 ± 0.9
1 2 3 4 5Table 3: Questionnaire results: answers on a 5-point Likert scale.
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Figure 4: Distribution of individual student success rates.

the more complex exercises of week 4 (when compared to week
2), that combine multiple programming constructs. Therefore, the
difficulty for the same type of QLC can depend on the source code
that it targets, which is visible in comparing round 1 and 2 (clear
difference at least on WhichFixedVariables).

5.5 Threats to validity
The recruitment of participants on a voluntary basis could have
resulted in a group of subjects that is not representative of our
student population in terms of programming skills. However, the
distribution of individual scores (recall Figure 4) indicates a fairly
balanced class subset with respect to the ability of answering QLCs.

The fact that the learning activity task was unsupervised gave
us no control if the answers were actually given by the partici-
pants, and without interference from others. We addressed this
threat by rewarding course points solely for participation, giving
no incentive to quest for higher scores dishonestly. Further, partici-
pants might have checked other sources, such as course materials,
when answering the QLCs. Although this is a positive side-effect
of the learning activity, it might imply that some QLC answers do
not correspond to the actual knowledge that a student had in the
immediate moment when facing the questions.

6 FUTUREWORK
We plan to develop support and evaluate additional QLC types,
namely addressing topics that require more complex concepts. As
examples that we already managed to develop: Does function [f]
has side-effects? (static), The execution of [f(arg1, arg2,...)] allocates
one array, what is its length? (dynamic). In addition, we envision
that QLC results could provide not only the correct answer, but
also an elaborated feedback with response contingent [17], holding
explanations targeting typical mistakes or misconceptions using
the students’ answers (refer to [2] for a catalog of semantic errors).

Whereas the current QLC types aim at checking if a learner
understands the code, we envision another kind of QLC designed
for addressing specific misconceptions. For instance, when spotting
certain “anomalies” in the code structure or behavior, a QLC could
drive the student to reflect on that aspect and possibly cause a
student misconception to emerge when giving an incorrect answer
(in a similar fashion as in [4]). In this way, a system like ours would
not only promote deeper understanding, but could also spot for
“silent” knowledge gaps that otherwise could remain unrevealed
for longer periods.

Finally, in addition to the automatic QLC answer we would
like to have an automated form of classifying incorrect answers
with well-defined categories for each QLC type. For instance, the
WhichVariableValues QLC could have the following incorrect an-
swer types:missing initialization,missing last value on loop iteration,
which were frequent incorrect answers we found when looking at
the collected answers. This information could be used for instructor
dashboards that would present not only the success rates for each
QLC, but also which were the frequent mistakes. That would pro-
vide valuable insights to steer lecture time towards more emphasis
on the weaker points of the class.

7 CONCLUSIONS
Jask stands as a proof of concept that it is feasible to automati-
cally generate questions about a learner’s code at an introductory
level. In general, students tend to perform poorly when answering
questions about program dynamics of their own code. Deeper un-
derstanding of program dynamics should, in principle, strengthen
the programming and algorithmic skills, which are necessary for
more advanced courses in the CS curricula.

We believe that a systematic adoption of Jask would at least raise
student awareness of their weaker aspects, fostering the solidifica-
tion of concepts and skills. The questionnaire results suggest that
students have a positive view on the learning activity of answering
QLCs, encouraging us to adopt the approach in regular course set-
tings, and further carry out a larger study comprising more rounds
and question types.
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