ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2024-07-11

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Lopes, J. F. & Santos, A. L. (2023). Pescal: A projectional editor for Java featuring scattered code
aggregation. In Tom Beckmann, Robert Hirschfeld, Juan Pablo Sadenz, Mauricio Verano Merino (Ed.),
PAINT 2023: Proceedings of the 2nd ACM SIGPLAN International Workshop on Programming
Abstractions and Interactive Notations, Tools, and Environments. (pp. 44-50). Cascais, Portugal:
Association for Computing Machinery.

Further information on publisher's website:
10.1145/3623504.3623571

Publisher's copyright statement:

This is the peer reviewed version of the following article: Lopes, J. F. & Santos, A. L. (2023). Pescal:
A projectional editor for Java featuring scattered code aggregation. In Tom Beckmann, Robert
Hirschfeld, Juan Pablo Sdenz, Mauricio Verano Merino (Ed.), PAINT 2023: Proceedings of the 2nd ACM
SIGPLAN International Workshop on Programming Abstractions and Interactive Notations, Tools, and
Environments. (pp. 44-50). Cascais, Portugal: Association for Computing Machinery., which has been
published in final form at https://dx.doi.org/10.1145/3623504.3623571. This article may be used for
non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1145/3623504.3623571

PescaJ: A Projectional Editor for Java Featuring
Scattered Code Aggregation

José F. Lopes
josefaulopes@gmail.com
Instituto Universitario de Lisboa (ISCTE-IUL)
Lisboa, Portugal

Abstract

Conventionally, source code (and its documentation) is simul-
taneously a storage and editing representation, through files
and editors to manipulate them as text. Over the years, IDEs
have become increasingly sophisticated, providing features
to augment the visible text content with helpful information
(e.g., overlay documentation popups, inlay type hints), or
on the opposite, to decrease it to reduce clutter (e.g., code
folds on imports, documentation, methods, etc). This is a
sign that the developers seek more convenient code editing
forms than the direct manipulation of text files.

We present PescaJ, a prototype projectional editor for
Java projects that breaks away from file-oriented source
code editing, providing the possibility of forming views that
aggregate methods that belong to different classes, where
single methods may be simultaneously present and edited
in multiple views. Furthermore, we provide documentation
editors, also aggregating scattered Javadoc comments, that
can be used in parallel with source code editing,.

CCS Concepts: - Human-centered computing — Inter-
active systems and tools; - Software and its engineer-
ing — Software maintenance tools.

Keywords: Projectional editors, separation of concerns, doc-
umentation, Java

ACM Reference Format:

José F. Lopes and André L. Santos. 2023. Pesca]J: A Projectional Edi-
tor for Java Featuring Scattered Code Aggregation. In Proceedings of
the 2nd ACM SIGPLAN International Workshop on Programming Ab-
stractions and Interactive Notations, Tools, and Environments (PAINT
"23), October 23, 2023, Cascais, Portugal. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3623504.3623571

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PAINT °23, October 23, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0399-7/23/10...$15.00
https://doi.org/10.1145/3623504.3623571

44

André L. Santos
andre.santos@iscte-iul.pt
Instituto Universitario de Lisboa (ISCTE-IUL), ISTAR-IUL
Lisboa, Portugal

1 Introduction

Conventionally, source code files are simultaneously a stor-
age and editing representation, the latter performed by text
editors (albeit typically with sophisticated support). The na-
ture of text files imposes a linear representation dictated
by the sequence of lines, which in turn directly relates to
the memory chunk that is used to store that information
(sequence of bytes). However, the dependencies between
the members of a class most likely do not align with the
order in which they are in the file. For example, a class con-
taining three methods whose dependencies form a chain
ml — m2 — m3 could match the order in the file, but these
cases are not the norm.

Developers spend much of their time exploring and un-
derstanding the existing code base [9]. Frequently, a method
may depend on another one many lines apart, leading to
scroll activity when inspecting them in sequence. Studies
have shown that up to a third of developers’ time in IDEs is
spent on code navigation activities [5]. Projectional editors
[13] are a technique that can break up this linearity, where
the editing representation is distinct from the storage rep-
resentation. In this way, code views may be formed in more
convenient ways that reduce navigation.

Separation of concerns is a classical design principle in
software engineering that advocates decomposing systems
into artifacts according to distinct concerns. The general
principle is somewhat vague and what is exactly a concern
is a subject of multiple interpretations. Concerns are often
discussed in terms of domain logic and its decomposition
into implementation artifacts. In this context, the notion of
scattering refers to domain features whose implementation
is spread over multiple code artifacts, whereas tangling re-
sults from mixing parts of the implementations of different
features in the same code artifact.

In our approach, we address the separation of technical
concerns. We consider the implementation of reusable code
and its documentation to be two distinct technical concerns.
There is in fact a developer role focusing on documentation
— the technical writers — which may even be a part of inde-
pendent teams from those of implementation [3]. For API
documentation purposes, code artifacts conventionally hold
both implementation and documentation in source code files
— using tools such as Javadoc and Doxygen) — despite the
existence of other external documentation artifacts available

https://orcid.org/0009-0008-5601-3819
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.1145/3623504.3623571
https://doi.org/10.1145/3623504.3623571

PAINT ’23, October 23, 2023, Cascais, Portugal

(e.g., wikis, diagrams). The two activities of implementing
and documenting may not occur at the same stage, most
notably the documentation that targets the API of reusable
software (library or framework). A study of how the docu-
mentation of Eclipse evolves confirmed this fact [11].

We present Pesca], a prototype projectional editor for Java
where a developer is able to quickly form different types of
editable views that aggregate parts of code or documenta-
tion, which otherwise in conventional settings are scattered
across the code files. Different views may overlap with re-
spect to the elements they present, which are kept in sync
through a Model-View-Controller architecture (see Figure 1).
For example, one may be editing methods of a class in a view,
while having another view to edit the whole documentation
of that same class. In this paper, we describe the general
architectural approach and its materialization in the Pesca]
views and their rationale.

2 Related Work

Pesca]J’s goals are closely related to those of CodeBubbles
[2], but the latter is not built as a projectional editor. Code
fragments, called bubbles, can be opened in a virtual environ-
ment, where dependencies between methods are shown by
an arrow that links the method’s respective bubble. Group-
ing and placement of bubbles can be formed and rearranged
freely by the user. This gives developers more freedom over
their workspace, however, it may introduce some overhead
in the time used for navigating, since some organization
of the code fragments is done by the user, and not by the
tool. With these features, CodeBubbles may be effective at
juxtaposing relevant code fragments, at the expense of some
reorganizing by the user. However, some elements of the
code are still somewhat difficult to visualize, seeing as there
is no easy way to aggregate them. For instance, it is burden-
some for a developer to write or consult the documentation
of the classes.

PatchWorks [4] takes a more structured approach, code
fragments are shown in patches, which are arranged in a
two-tall virtual ribbon. There are two main ways to visual-
ize the ribbon, a zoomed-in grid view, where 6 patches can
be seen concurrently, or a zoomed-out view of the ribbon,
where the user can select the target for the zoomed view.
However, much like CodeBubbles, PatchWork’s workspace
organization is placed on the user, lacking an automatic way
to juxtapose related information. PatchWorks also does not
work as a projectional editor, staying confined to the typical
text representation of code fragments.

Structured editors [8] restrict the code editing manipula-
tions so that syntactical correctness is maintained. Barista
[6] is a structured editor where certain code elements can
be represented in alternative views, such as integrated im-
ages for documentation or tables for boolean expressions.

45

José F. Lopes and André L. Santos

/
inter-class code

,,,,,,,,,,,,,,,,,

Figure 1. Pesca] enables overlapping views over shared ele-
ments of ASTs.

In our work, the focus is not on enriching views with ad-
ditional elements or alternative ones, but rather on views
that gather information and allow editing information that is
otherwise scattered throughout several implementation files.
Sandblocks [1] is a tool that is able to generate structured
editors from grammar descriptions, avoiding the need to
“hand-craft” structured editors.

Projectional editors [13] are a technique to implement
structured editors, possibly displaying code in different forms
other than code. Jetbrains’ Meta Programming System (MPS)!
is an industrial tool that allows such views to be defined,
focusing on the definition of Domain-Specific Languages
(DSLs). In MPS, Abstract Syntax Trees (AST) are represented
in a tool-specific format that is used by DSL engineers to
define the concepts of a DSL, and in turn, define their editors
(textual or graphical). The views we propose are not avail-
able in MPS, but in principle, they could be implemented
using the platform to define alternative editors for Java.

Popular IDEs (e.g. Eclipse?, IntelliJ*, VSCode*) feature split
views, where one file may be edited simultaneously in more
than one view, keeping them in sync. This feature may be
used to achieve a similar form of juxtaposing methods to
what we propose in PescaJ. However, using it is not very
practical as it requires a bit of setup to achieve views like for
instance the one we illustrate in Figure 4. Moreover, IDEs
do not feature the notion of a workspace, which in our ap-
proach may evolve by easily adding and removing elements
as needed.

Most IDEs also feature code folding facilities to crop seg-
ments to reduce the “height” of a file. This helps with respect
to the amount of scrolling, but it does not avoid that large
navigation jumps have to be performed to go through the
members of a class. Good documentation should be consis-
tent with respect to terminology and style. Having pieces

https://www.jetbrains.com/mps
Zhttps://www.eclipse.org
Shttps://www.jetbrains.com/idea
4https://code.visualstudio.com

PescaJ: A Projectional Editor for Java Featuring Scattered Code Aggregation

of text spread throughout regions of a file or across several
files is not the most practical form of achieving this. To our
knowledge, there are no available tools that allow developers
to edit the embedded documentation using a separate editing
abstraction that does not require manipulating the source
code directly. We are confident that such a tool would not be
technically difficult to achieve through a custom editor that
performs AST rewriting (offline). However, we argue that a
solution to keep code and documentation views seamlessly
synchronized should be more challenging to accomplish with
conventional source code editors.

The development of Pesca] took into account some Human-
Computer interaction principles. Spatial Contiguity or Spa-
tial Split Attention Effect [12] are concepts that explain that,
while learning, when a subject is required to split their at-
tention between pieces of information, they suffer higher
cognitive load and impaired learning, when compared to
scenarios where information is properly juxtaposed. These
principles can be applied to code editors, where developers
may need to switch files or use the scroll while analyzing
previously written code. Fitt’s law is a concept of ergonomics,
that states that the smaller and farther a target is from the
pointer, the more likely the user is to make a pointing er-
ror [7]. Accurate pointing is a key part of fast navigation,
meaning that code fragments that developers may click con-
secutively should be sized and placed taking Fitt’s law into
account.

3 Approach

The main goal of our approach is to reduce the user’s cogni-
tive load and time spent navigating while coding, by visually
aggregating closely related and relevant information. The
code is displayed to the user in fragments, grouped in views
that aggregate scattered parts of the source code. We seek
not only to lower the split attention effect but also to in-
crease the user’s accuracy while navigating with the mouse,
according to Fitt’s law.

Figure 2 presents an illustrative package, holding three
classes with documentation (grey parts), to introduce PescaJ’s
views. So far, we implemented different views that can be
split into two categories — code and documentation — which
in turn, may be intra or inter-class. Figure 3 schematically
presents which fragments are presented and edited by our
views, referring to the same elements of Figure 2. Notice
that the same element may appear in different views under
different perspectives.

We propose to realize these sorts of views using an archi-
tecture based on Model-View-Controller (MVC), aiming at
having multiple simultaneous views with overlapping model
elements. The overall model is the set of ASTs of the code
files, whereas the views address fragments of one or more
ASTs, not the trees as a whole — a key characteristic of our
approach. Following the MVC principles, each view observes

46

PAINT ’23, October 23, 2023, Cascais, Portugal

c c2 c3
C1 C2 C3
M1 M3 Ma
A Mt K Mg M4
I/// /ﬂ
\ M2
M2

Figure 2. Example package (P) containing classes (C) with
methods (M). Documentation segments are depicted in grey,
dashed arrows represent dependencies.

the nodes under interest and reacts to changes when notified,
whereas editing actions are represented in commands whose
execution is centralized in a controller. Hence, when a com-
mand modifies an AST node, all the views that registered
observers in that node will react to those changes.

Figure 1 illustrates how different views refer to shared
model elements (AST nodes). As an example, a view of class
documentation may be displaying a list of its method names
and their documentation, while observing changes in the list
of members of the AST and their corresponding documenta-
tion node, in order to update the view content accordingly. In
turn, a code editing view may be editing that same class, and
its commands will modify the class AST. For example, the
documentation view may modify a method’s documentation
without any impact on the code view, because the latter is
neither displaying nor observing documentation AST nodes.
Analogously, if the code editing view modifies a method
body, the documentation will remain as is. However, if the
code view renames a method or adds a new one, the docu-
mentation will react to those changes because both views
are referring to the same AST nodes (list of class members,
method, and documentation nodes).

4 Pesca]

Figure 4 presents a screenshot of Pesca]. In the left-hand part,
we can see a conventional package explorer view similar to
those available in most IDEs. PescaJ employs workspaces,
which are similar to the concept of working set of Code-
Bubbles [2]. These are canvases that hold different views,
which are populated either by dragging elements from the
package explorer or expanding method calls within the view.
They enable users to create clusters of information readily
available, for example, a developer may use a workspace to
edit the code of a class and another to visualize and edit its

PAINT ’23, October 23, 2023, Cascais, Portugal

intra-class code inter-class documentation

C1 P1
e
M1 s M2 o1
‘
C1
(o] ~ V3
wo L
e
] .
M4
intra-class documentation inter-class code

Figure 3. Views for aggregating related code and untangling
code and documentation using the elements of Figure 2.
Bidirectional arrows represent elements that are kept in sync.

documentation. Alternatively, a developer could use differ-
ent workspaces for working on distinct features in parallel
without scrolling within or switching between files.

PescaJ works as a projectional editor, but its views do
not resemble conventional text editors where a whole class
source is being edited. Instead, the views display fragments
of classes (i.e., only a part of their members), while they may
aggregate parts of different classes. So far, we developed two
main sorts of views: code and documentation.

4.1 Code Views

The code views allow the user to visualize and edit the code,
either intra-class, meaning that they display fragments of a
class, or inter-class, meaning that they display fragments of
several classes. When creating a workspace, the user may
include views therein by dragging classes and methods from
the package explorer. Views may be expanded with new
elements also by interacting with the current code. If the
user wants to visualize a called method, the editor widget
for editing that method’s code will be placed near the call
site (at its right), following the principle of visual contiguity.
In this way, a chain of dependent methods is visualized from
left to right in the workspace.

Figure 4 shows three methods of the class ArrayList (Java
libraries), annotated with the line distances in the source
code file. The method addAll calls the method rangeCheck-
ForAdd, clicking the call opens a view to the right containing
the latter. The method grow is called as well, which can also
be opened to continue expanding the call graph. The method
growis called a few lines after rangeCheckForAdd, and so the
corresponding view is placed below the latter, maintaining a
consistent order.

Juxtaposing methods is not limited to fragments within
the same class, it can also represent dependencies between
inter-class methods, creating multiple class widgets that are

47

José F. Lopes and André L. Santos

placed following the same logic seen in the last example. For
example, as illustrated in Figure 5, by clicking the method call
inside toArray of the class ArrayList, a class widget is created
for the class Arrays, and placed next to the one corresponding
to the calling method. In typical code editors, these two
fragments are found in two separate text files.

4.2 Documentation Views

Documentation views are responsible for aggregating doc-
umentation parts that are scattered throughout several re-
gions in the code. While using these views, the user can
visualize and edit the documentation of the chosen code frag-
ments, making tasks like comparing documentation style
and coherence easier. Pesca] provides four documentation
views, which resemble the decomposition of the documents
generated by Javadoc: set of packages, containing the pack-
age descriptions; package (see Figure 6), containing a list of
classes with their documentation header; class (see Figure
7), containing a list of methods and the header of their docu-
mentation; method (see Figure 8), containing all the detailed
documentation of a method.

In these list-style views, there are warnings that provide an
indication of non-documented members contained therein.
For example, while viewing the list of classes, those that have
public non-documented methods contain a warning, allow-
ing the user to know what classes need to be documented,
without browsing each one individually for performing ed-
its. When hovering the warning additional information is
presented, such as the number of public non-documented
methods as seen in Figure 6. We also allow filters to, for
instance, only show the public members (as they are more
critical for API documentation). The aim of these sorts of fea-
tures is to embody an environment focused and specialized
for documentation concerns (as opposed to the conventional
code-embedded form).

In the documentation views the user may click a link in the
declaration to navigate to that component’s documentation.
For example, by clicking the ArrayList link seen in Figure 6,
the user would be presented with that class’s documentation
view, as well as the documentation for the methods in the
ArrayList class, as shown in Figure 7. As an alternative to
the documentation views, the user can open a pop-up view
from a code view to display and edit documentation. This
enables easy documentation editing while coding, without
the need to open a dedicated documentation view.

While in the class’s documentation, only the headers of
each method’s documentation are displayed, to preserve
screen space and reduce clutter, the user can expand these
methods into a detailed view that shows the complete doc-
umentation of the method (see Figure 8), including the ex-
panded description and tags. The tags are clustered together
by type to reinforce visual contiguity, the typical documen-
tation syntax is abstracted, looking to lower visual clutter.
Tags that are mandatory by convention, such as those for

PescaJ: A Projectional Editor for Java Featuring Scattered Code Aggregation

i Pescal

workspaces
Project Add Workspace = = - === ——
" = =
+ B Workspace 0 | B Package Documentation £ java.util Documentation
Arraylist

1if (numMoved > 0) { ~

getFirst(): E
getlast(): E
grow(int) : Object[] }
grow () : Object[]
hashCode(): int size = s + numNew
hashCodeRange (int, int) ret n true
indexOf (Object) : int
indexOfRange (Object, ir
isClear(long[], int):

: ~ :
System.arraycopy (elementData, index, elementData, index +numNew, numMoved)
~

System.arraycopy (a, 0, elementData, index, numNew)

PAINT ’23, October 23, 2023, Cascais, Portugal

Ve package explorer ng serialVersionUID =8683452581122892185L
v util
N 1t DEFAULT CRPACITY =10
v ArrayList —
add(E, Object[], int): Object EMPTY ELEMENTDATA = { }
add(E) : boolean Cbject DEFAULTCAPACITY_ EMPTY_ ELEMENTDATA={ }
add(int, E): veid © oba — = ,
Object elementData -——— -——
addAll (Collection<? ext J_ ——— -~ _85 Lines ahead
ize - ~
addall (int, Collection< " _ - ~
addFirst(E): void N = X - = ~
addLast (B) : void N ||| publée bo an addall (int index, CelTection<? extends E>c) { "
= == :
batchRemove (Collections< rangeCheckForAdd (index) : < ate void rangeCheckForAdd (int index) {
checkForComodification| Object[] a=c.toRrray () - . o
checkInvariants(): voic modCount ++ if (index > size || index < 0) {
clear(): wvoid ir throw new IndexOutOfBoundsException (ocutOfBc
clone(): Object)
contains (Object) : boole
elementAt (Object[], int }
elementData(int): E b
ensureCapacity(int): vc Object[] elementData . . .
equals(Object) : boolear s) vate Object[] grow (int minCapacity) {
cual=ArrayList (ArrayLi £ (numNew > (elementData=this.elementData).length— (s=size)) { ¢ oldCapacity=elementData.length
equalsRange (List<?>, 1ir elementData = grow (s + numNew) ~ (oldCapacity > 0 | | elementData != DEFAULTCAP
fastRemove (Dbjectil . 1 } ~ newCapacity=ArraysSupport.newlLength (olc
forEach {Cansumer«? aupe numMoved=s — index ~ - r ' elementData = Arrays.copyOf (elementDa
get(int): E

~ r -1 elementData = new Object [Math.max (DEF:
~
~ -~ 1
N }
~< A
S / 7 {
~ 464 lines behind

Figure 4. Pesca] displaying an intra-class view illustrated with a fragment of the ArrayList class (Java libraries), juxtaposing

methods according to call dependencies.

+ I Workspace 0 X

ArrayList

1 serialVersionUID=8683452581122892189L

© DEFAULT CAPACITY =10

1 0bject EMPTY_ELEMENTDATA = { }

1 object DEFAULTCAPACITY EMPTY ELEMENTDATA={ }

Object elementData

1t size

icObject[] toRrray () {

‘n Arrays.copyOf (elementData,

size)

Arrays

t MIN_ARRAY SORT_GRAN=1<< 13
t INSERTIONSORT THRESHOLD = 7

1cT[] copyOf (T[] original, int newLength) {

(T[]) copyOf(original, newlLength, original.getClass())

Figure 5. An inter-class view illustrated with a fragment of the classes ArrayList and Arrays (Java libraries), where the method

toArray depends on method copyOf, which are juxtaposed.

parameters and return, are automatically generated for non-
documented fragments. Additionally, optional tags can be
added via a context menu. Tags are fully editable, possessing
a text field for the description, as well as for the name, when
applicable.

4.3 Implementation

Since Pesca] works as a projectional editor built adhering
to the MVC pattern, the model concepts have to be defined
(AST). Given that Pesca] is a tool for Java code, we have
used JavaParser [14]°, a well-established library with nearly
complete parsing functionality that defines the meta-classes
for ASTs of Java files. Hence, our model is a set of JavaParser
ASTs. These accept visitors to traverse the parsed code and

Sjavaparser.org

48

observers to listen to changes, features that were extensively
used in Pesca]. The visitors were used to traverse the ASTs
and form the views, whereas the observers enabled the views
to react to changes in the model (performed in other views).
The code fragment editing widgets of Pesca] are those
of Javardise [10], a structured editor for Java, designed to
lighten the syntax hurdles on users for didactic purposes.
The graphical interface was built using the Standard Widget
Toolkit (SWT), to ensure compatibility between the Javardise
components, which were also developed using SWT.

5 Discussion

Colocating code and documentation is convenient for asso-
ciating pieces of API documentation with the respective im-
plementation elements. However, documentation segments

PAINT ’23, October 23, 2023, Cascais, Portugal

+ B workspace 0 £ Package Documentation £ java.util Documentation <

This class contains varicus methods for manipulating arrays (such as
sorting and searching). This class also contains a static factory
that allows arrays to be viewed as lists,

V <p>The methods in this class all throw a {@code MullPointerException},
if the specified array reference is null, except where noted.

<p>The documentation for the methods contained in this class includes
brief descriptions of the <i»implementations</i>. Such descriptions should
be regarded as <i>implementation notes< /i, rather than parts of the

Resizable-array implementation of the {@code List} interface. Implements
all optional list operations, and permits all elements, including

{@code null}. In addition to implementing the {@code List} interface,

this class provides methods to manipulate the size of the array that is

used internally to store the list. (This class is roughly equivalent to

{@code Vector], except that it is unsynchronized.)

Arraylist &

5 A s
2 Undocumented APl Methods . {@code et} {@code set),

g
15 Undocumented Non-Public Methods Lr}uperatlunsrun in constant B
- in <iamaortized constant time</i>,

Mew Description

Collections o

Figure 6. View that aggregates the documentation of classes
in a package. The warning shows that the class ArrayList
contains public undocumented methods.

£ jeva.util Documentation Class: ArrayList >

+
e

Package Documentation

Arraylist

Resizable-array implementation of the {@code List} interface. Implements
all optional list operations, and permits all elements, including

{@code null}. In addition to implementing the {@code List] interface,

this class provides methods to manipulate the size of the array that is

used internally to store the list. (This class is roughly equivalent to
{@code Vector}, except that it is unsynchronized.)

<p>The{@code size}, {@code isEmpty}, {@code get], {@code set},
{@code iterator}, and {@code listiterator} operations run in constant
time, The{@code add} operation runs in <i» amortized constant times</i>,

Trims the capacity of this {@code ArrayList} instance to be the
list's current size. An application can use this operation to minimize
the storage of an {@code Arraylist} instance.

trimToSize(): void

Increases the capacity of this {@code ArrayList} instance, if
necessary, to ensure that it can hold at least the number of elements
specified by the minimum capacity argument.

ensureCapacity(int):

void

Increases the capacity to ensure that it can hold at least the
number of elements specified by the minimum capacity argument.

grow(int): Object]

grow(): Object] emnpty Description

Returns the number of elements in this list.

size(}: int

Figure 7. View that aggregates the documentation of the
methods in a class, showing a documentation header for each
method.

stand in the way of code, taking up a considerable amount of
lines of code, and consequently contributing to longer scrolls
over code files. As an example, we measured the number of
lines that correspond to Javadoc comments in the java.util
package (source code of OpenJDK 12+32°), and found that

Shttps://github.com/openjdk/

49

José F. Lopes and André L. Santos

b\:\blic Object[] toArray()

Returns an array containing all of the elements in this A
list in proper sequence (from first to last element). v

Return Add Author(s)

Add Deprecated
Add Exception

Add See/References
Add Serial

AdA SERIAL NATA

an array centaining all of the elemen
proper sequence

Figure 8. The expanded documentation view for the method
toArray, the context menu enables the expansion of the doc-
umentation without using the Javadoc syntax.

on average those represent almost half of the file lines (ap-
proximately 46%, excluding empty lines). As such, we believe
that a form of isolating the two technical concerns (code and
documentation) as we propose in PescaJ may contribute to
more usable development environments. The documenta-
tion views prevent clutter caused by code without the need
for additional actions (collapse/uncollapse), as the user can
easily explore and edit the aggregated documentation that
is scattered in the code base. This feature is especially useful
for package and class documentation, whose synthesis is
only available in the generated HTML (non-editable).

As a proof of concept, Pesca] shows the viability of pro-
jectional editors to realize similar features to those of Code-
Bubbles [2] and PatchWorks [4]. However, Pesca] provides
structured editing and specialized views for documentation.
This new paradigm of editors could potentially lower user
cognitive load, caused by scattered code fragments that can
be aggregated by the tools. The kind of juxtaposition pro-
vided by tools like Pesca] can hypothetically be beneficial
in lowering time spent navigating and improving the pro-
cess of code understanding. In future work, we plan to carry
out user experiments to assess the efficiency of software
development tasks using the proposed views.

Regarding increments to PescaJ, we envision new types of
views such as gathering all the implementations of a given
interface, or a view addressing member visibility and ex-
tensibility (API design). Given that the composition of our
views offers some freedom, we also plan to develop ways of
forming views from contexts, such as the method calls from
an active call stack (debugging session).

The descriptions in all our documentation views are pre-
sented and edited as raw text. As future work, these views
could be improved if they would use styled text widgets,
which would project the documentation text in a more ap-
pealing way, avoiding aspects such as “@code ...” (visible
in the figures) and allowing features such as hyperlinks in
the text to navigate to related elements. Furthermore, the
integration of images in the documentation editors could
also be of interest.

PescaJ: A Projectional Editor for Java Featuring Scattered Code Aggregation

Acknowledgments

We are grateful to the anonymous reviewers for their valu-
able suggestions to improve this paper. This work was par-
tially supported by Fundacéo para a Ciéncia e a Tecnologia,
LP. (FCT) [ISTAR Projects: UIDB/04466/2020 and
UIDP/04466/2020].

References

[1] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and
Robert Hirschfeld. 2023. Structured Editing for All: Deriving Usable
Structured Editors from Grammars. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (CHI "23). Association
for Computing Machinery, New York, NY, USA, Article 595, 16 pages.
https://doi.org/10.1145/3544548.3580785

[2] Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri,
William Cheung, Joshua Kaplan, Christopher Coleman, Ferdi Adeputra,
and Joseph J. LaViola. 2010. Code bubbles: rethinking the user interface
paradigm of integrated development environments. In 2010 ACM/IEEE
32nd International Conference on Software Engineering, Vol. 1. 455-464.
https://doi.org/10.1145/1806799.1806866

[3] Barthélémy Dagenais and Martin P. Robillard. 2010. Creating and
Evolving Developer Documentation: Understanding the Decisions of
Open Source Contributors. In Proceedings of the Eighteenth ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE ’10). Association for Computing Machinery, New York, NY, USA,
127-136. https://doi.org/10.1145/1882291.1882312

[4] Austin Z. Henley and Scott D. Fleming. 2014. The Patchworks
Code Editor: Toward Faster Navigation with Less Code Arranging
and Fewer Navigation Mistakes. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems (CHI ’14). Associ-
ation for Computing Machinery, New York, NY, USA, 2511-2520.
https://doi.org/10.1145/2556288.2557073

[5] AJ. Ko, Htet Htet Aung, and B.A. Myers. 2005. Eliciting design re-
quirements for maintenance-oriented IDEs: a detailed study of cor-
rective and perfective maintenance tasks. In Proceedings. 27th Interna-
tional Conference on Software Engineering, 2005. ICSE 2005. 126—-135.
https://doi.org/10.1109/ICSE.2005.1553555

[6] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation
Framework for Enabling New Tools, Interaction Techniques and Views
in Code Editors. In Proceedings of the SIGCHI Conference on Human

50

7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

PAINT ’23, October 23, 2023, Cascais, Portugal

Factors in Computing Systems (CHI "06). Association for Computing
Machinery, New York, NY, USA, 387-396. https://doi.org/10.1145/
1124772.1124831

I. Scott MacKenzie and William Buxton. 1992. Extending Fitts’ Law
to Two-Dimensional Tasks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’92). Association for
Computing Machinery, New York, NY, USA, 219-226. https://doi.org/
10.1145/142750.142794

Philip Miller, John Pane, Glenn Meter, and Scott Vorthmann. 1994. Evo-
lution of Novice Programming Environments: The Structure Editors.
In of Carnegie Mellon University. 140-158.

Roberto Minelli, Andrea Mocci and, and Michele Lanza. 2015. I Know
What You Did Last Summer: An Investigation of How Developers
Spend Their Time. In Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension (ICPC °15). IEEE Press, 25-35.
André L. Santos. 2020. Javardise: A Structured Code Editor for Pro-
gramming Pedagogy in Java. In Companion Proceedings of the 4th
International Conference on Art, Science, and Engineering of Program-
ming (Programming °20). Association for Computing Machinery, New

York, NY, USA, 120-125. https://doi.org/10.1 145/3397537.3397561
Daniel Schreck, Valentin Dallmeier, and Thomas Zimmermann. 2007.

How Documentation Evolves over Time. In Ninth International Work-
shop on Principles of Software Evolution: In Conjunction with the 6th
ESEC/FSE Joint Meeting (IWPSE °07). Association for Computing Ma-
chinery, New York, NY, USA, 4-10. https://doi.org/10.1145/1294948.
1294952

Noah L. Schroeder and Ada T. Cenkci. 2018. Spatial Contiguity and
Spatial Split-Attention Effects in Multimedia Learning Environments:
a Meta-Analysis. Educational Psychology Review 30, 3 (2018), 679-701.
https://doi.org/10.1007/s10648-018-9435-9

Charles Simonyi, Magnus Christerson, and Shane Clifford. 2006. In-
tentional Software. SIGPLAN Not. 41, 10 (oct 2006), 451-464. https:
//doi.org/10.1145/1167515.1167511

Danny van Bruggen, Federico Tomassetti, Roger Howell, Malte Langk-
abel, Nicholas Smith, Artur Bosch, Malte Skoruppa, Cruz Maximi-
lien, ThLeu, Panayiotis, Sebastian Kirsch (@skirsch79), Simon, Johann
Beleites, Wim Tibackx, jean pierre L, André Rouél, edefazio, Daan
Schipper, Mathiponds, Why you want to know, Ryan Beckett, ptitjes,
kotari4u, Marvin Wyrich, Ricardo Morais, Maarten Coene, bresai, Im-
plex1v, and Bernhard Haumacher. 2020. javaparser/javaparser: Release
javaparser- parent-3.16.1. https://doi.org/10.5281/zenodo.3842713

Received 2023-07-17; accepted 2023-08-07

https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/1806799.1806866
https://doi.org/10.1145/1882291.1882312
https://doi.org/10.1145/2556288.2557073
https://doi.org/10.1109/ICSE.2005.1553555
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/142750.142794
https://doi.org/10.1145/142750.142794
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1145/1294948.1294952
https://doi.org/10.1007/s10648-018-9435-9
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.5281/zenodo.3842713

