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Abstract: Stress is the inherent sensation of being unable to handle demands and occurrences. If not
properly managed, stress can develop into a chronic condition, leading to the onset of additional
chronic health issues, such as cardiovascular illnesses and diabetes. Various stress meters have been
suggested in the past, along with diverse approaches for its estimation. However, in the case of more
serious health issues, such as hypertension and diabetes, the results can be significantly improved.
This study presents the design and implementation of a distributed wearable-sensor computing
platform with multiple channels. The platform aims to estimate the stress levels in diabetes patients
by utilizing a fuzzy logic algorithm that is based on the assessment of several physiological indicators.
Additionally, a mobile application was created to monitor the users’ stress levels and integrate data
on their blood pressure and blood glucose levels. To obtain better performance metrics, validation
experiments were carried out using a medical database containing data from 128 patients with chronic
diabetes, and the initial results are presented in this study.

Keywords: blood glucose monitoring; fuzzy logic; mobile application; photoplethysmography;
physiological parameters extraction; stress assessment; wearable devices

1. Introduction

Stress is a pervasive condition that affects an individual’s physical, mental, and
emotional well-being. It has an impact on sleep patterns, dietary habits, self-perception,
and cognitive functions. Individuals experiencing comorbid stress and mental disorder
face difficulties in achieving prompt recovery. Without treatment, the symptoms can persist
for extended periods of time, ranging from weeks to months or even years. Many people
face challenging barriers in life that may clash or intersect, leading to stress that can have
negative effects on their well-being. The workplace, interpersonal, and domestic factors
can all contribute to the onset of stress.

Stress can manifest both physically and cognitively, resulting in alterations in multiple
physiological reactions and potentially leading to pathological conditions. These can have
a detrimental impact on an individual’s ability to focus and be productive, particularly
by disrupting task execution. Over time, stress can exacerbate cognitive deficiencies
and contribute to several issues, including diabetes, high blood pressure (BP), increased
vulnerability to substance addiction, weakened immune system, and depression [1,2].

Effective stress management is crucial for sustaining optimal health. Currently, self-
assessment questionnaires such as the Perceived Stress Scale (PSS) [3] are commonly used
to measure stress levels. However, this method is not very practical. Technology can
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play a vital role in the evaluation of stress. Various suggestions have emerged, mostly
utilizing smart bands, smartphones, and wearables, to acquire physiological measurements
that are associated with stress detection, such as the heart rate (HR), heart rate variability
(HRV), and galvanic skin response (GSR), among others. No comprehensive solution for
acquiring several parameters has been suggested yet due to various challenges, such as
limited battery life, interference from noise, device compatibility issues, system portability,
user acceptance, and accuracy concerns.

This study presents significant advancements to the previous research conducted by
the same authors [4]. The previous work involved the development of a multichannel
sensory system that focused on acquiring and processing photoplethysmography (PPG)
signals. The novelty of this study lies in the substantial expansion of the system’s capa-
bilities by incorporating the acquisition of GSR and body temperature, two parameters
closely associated with stress. Moreover, the innovation in this study includes the addition
of new channels for monitoring BP and blood glucose levels, which enhances the system’s
ability to cater to the needs of individuals with diabetes and hypertension. These novel
channels significantly broaden the scope of the physiological data collected, making the
system more comprehensive.

Furthermore, the authors have integrated sophisticated algorithms for the estimation
of physiological parameters and applied machine learning techniques (fuzzy logic) for the
classification of stress levels, demonstrating a leap towards intelligent health monitoring.
The proposed advancements also include enhancements to both the intelligent stress
assessment system and the developed mobile application. These innovations are designed
to greatly assist patients in their daily lives, emphasizing practical application and user
experience. Overall, this study not only introduces novel monitoring parameters but
also leverages advanced analytical techniques to provide a more robust and user-friendly
system for health monitoring.

The structure of this article is as follows. The history of health monitoring and stress
assessment is discussed in Section 2, as well as the connections and effects between stress,
blood pressure, and glucose levels. The methodology employed is described in Section 3,
including the materials and tasks that were performed. The findings acquired through the
executed experimental procedures are elaborated upon in Section 4. The conclusions and
future work are presented in Section 5.

2. Related Work

Stress is a state of tension or pressure that results from everyday experiences or
situations. It has a direct impact on the management of chronic diseases, such as heart
disease, asthma, obesity, diabetes, headaches, depression and anxiety, gastrointestinal
problems, Alzheimer’s disease, accelerated aging, premature death, among others [5]. Of
these, the close link between hypertension and diabetes associated with stress stands out.
Moreover, stress can be a significant burden on individuals’ lives. Therefore, it is crucial to
effectively manage stress levels.

2.1. Impact of Stress on Diabetes

The main endocrine reactions to stress are glucocorticoids and catecholamines. Al-
though these compounds do not have any negative effects in the short term, they might
gradually alter the balance of glucose in the body by hindering the muscles and tissues
from absorbing and using glucose. The prolonged elevation of blood sugar levels caused
by this disruption in glucose regulation can lead to insulin resistance and the development
of type 2 diabetes [1]. In addition, it can lead to a gradual decrease in muscle mass and the
accumulation of visceral fat [6].

Metabolic abnormalities are recognized as products of chronic stress and obesity.
Insulin resistance is the outcome of this metabolic anomaly. Survival under stress is
facilitated by physiological responses that have been maintained through evolution, such as
hyperglycemia and insulin resistance [7]. White and red blood cells, the reticuloendothelial
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system, the central and peripheral nervous systems, and the bone marrow are the largest
consumers of glucose without requiring insulin [8]. The immune system and the brain are
also fueled by stress hyperglycemia in response to injury, infection, and stress [9,10]. Acute
hyperglycemia during stress may be advantageous to the body and an integral part of its
evolutionary process, as discussed previously. However, chronic stress induces insulin
resistance because of various factors, including chronic hyperglycemia. Thus, persistent
stress causes type 2 diabetes.

Type 2 diabetes is defined by the presence of an excessive amount of glucose in the
bloodstream, which cannot be effectively used by the body due to a condition called
insulin resistance. It can lead to significant challenges, disturbance of daily living, and
persistent health problems. Possible effects include neuropathy, nephropathy, cataracts,
glaucoma, increased susceptibility to severe fungal infections, delayed wound healing,
auditory impairment, and other similar issues. Patients should be motivated to participate
in daily activities and adhere to regular follow-up consultations, as prevention is always
better, especially considering that the illness is predominantly associated with obesity and
can be reversed with dietary changes, physical exercise, and medications [11].

2.2. Stress and Blood Pressure

Concerning the relationship between stress and BP, it is important to understand that
the human body produces an abundance of hormones because of stress. These hormones
transiently elevate blood pressure, resulting in increased HR and the constriction of blood
vessels. Fluctuations in the size of blood vessels might increase the likelihood of experi-
encing health issues, such as hypertension (which is characterized by high blood pressure
caused by narrowed blood vessels) and hypotension (which is associated with low blood
pressure due to widened blood vessels) [12]. Clinical trials have examined the impact of
cognitive behavioral approaches on blood pressure [13].

2.3. Correlation between Diabetes and Blood Pressure

Diabetes is a long-term condition caused by insufficient insulin, which can be due
to a lack of insulin production or insensitivity to insulin [14]. It is linked to various
complications, primarily caused by consistently high blood glucose levels, which can
result in the development of microvascular diseases (damage to small blood vessels) and
macrovascular diseases (damage to arteries). Diabetic complications, such as neuropathy
(nerve damage), retinopathy (eye disease), and nephropathy (kidney disease), occur due to
the vascular damage that affects organs and tissues [15].

Previous studies have confirmed a connection between hypertension and diabetes [16].
This connection is not only because individuals with diabetes are more likely to develop
hypertension compared to those without diabetes [17], but also because it increases the
likelihood of these two illnesses occurring together. Therefore, the simultaneous presence
of these two circumstances may result in the emergence of novel public health concerns,
such as an elevated vulnerability to stroke [18], a notable rise in disruptions to the body’s
natural sleep–wake cycle, and harm to specific organs [19]. Furthermore, in patients with
both diabetes and hypertension, insulin resistance is a separate risk factor for ischemic
cerebral infarction, particularly lacunar infarction [20].

2.4. Stress Management

Managing stress requires maintaining an active, wholesome, and enjoyable lifestyle.
Lifestyle modifications, exercise, meditation, yoga, relaxation, and the modification of
behavior and attitude are all components of stress treatment programs. Changes in perspec-
tive are vital for stress management. This necessitates an optimistic mindset and a positive
perspective. Rather than a ritual, stress management is a holistic process that balances
physical, psychological, emotional, and spiritual health. It enhances concentration, serenity,
productivity, and perseverance.
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Continuous monitoring of stress levels is essential for effective stress management. The
golden standard for assessing stress is self-assessment questionnaires, but new methods
have been proposed using non-invasive physiological assessment methods, including
electrocardiography (ECG), HR, GSR, and BP, as well as respiratory activity [21–23].

Additionally, stress monitoring using face recognition technology has been docu-
mented [24,25]. This approach leverages the functionalities of mobile devices, including
tablets and smartphones [26,27]. An illustration of this concept is face recognition, which
attempts to determine an individual’s affective state through the comparison of a captured
facial expression and a database comprising instances of facial expressions that correspond
to a predetermined meaning.

3. Materials and Methods

This section provides an overview of the healthcare monitoring system that has been
proposed, along with the experimental procedure used to validate the system and the fuzzy
logic model that has been developed for stress assessment. Considerations are also given
to the classification of blood glucose levels.

3.1. Proposed Healthcare System

The physiological parameters gathered by the proposed system can be used to evaluate
the stress level and overall health of the user. The system architecture is illustrated in
Figure 1. To provide greater specificity, the architecture of the system comprises the
subsequent layers:

• Sensing system: wearable device developed for the acquisition of physiological param-
eters and the establishment of a communication channel with the mobile application,
allowing users to be authenticated and data to be stored locally or remotely, depending
on the availability of the network.

• Mobile application: A user interface is provided to access the data stored in the
database. This interface allows the entry of data such as glucose and blood pressure
levels. It also includes a feature to classify stress levels, user authentication, and
clinical advice based on the analysis of physiological indicators.

• Database: tasked with the remote storage of user-specific data and information. The
Google NoSQL database “Firebase” was selected for the proposed system because of
its benefits in developing mobile and web applications, including its interoperability
with IOS, Android, Web, Unity, and C++.

• Glucose monitor: Element NEO is a straightforward glucose monitor designed to
assist users in managing diabetes by incorporating functions that reduce the likelihood
of complications associated with this condition. With its backlit display, ergonomic
design, and illumination at the test strip insertion point, this device is suitable for all
types of users. This device has been certified by Common Era (CE) [28].

• Blood pressure monitor: measures BP and pulse rate and allows users to check the
results directly on the screen, which changes color depending on the level of blood
pressure (red, yellow, and green). This device has been certified by the U.S. Food and
Drug Administration (FDA) and CE [29].

3.1.1. Sensing System

The proposed sensing system builds upon the prior research [4] and utilizes PPG
signal processing to estimate HR, pulse rate variability (PRV), blood oxygen saturation
(SpO2), and respiratory rate (RR). This system also has channels for gathering physiological
indicators that are essential to monitoring health status and classifying stress levels, such
as GSR and body temperature (BT). The architecture of the sensing system is depicted in
Figure 2. The system’s sampling rate is 300 samples per second, enabling it to accurately
reproduce the PPG signal. To determine the values of HR, PRV, RR, and SpO2, it is crucial to
identify the highest points in the signals. Therefore, the system collects two measurements
of each physiological parameter every second.
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The sensing system consists of an ESP32 microcontroller with a Dual-Core 32-bit CPU,
a maximum clock speed of 240 MHz, a ROM memory capacity of 448 Kbytes, a RAM
capacity of 520 Kbytes, and a flash memory capacity of 4 MB. Utilizing Digital Signal
Processing (DSP), the PPG signal was analyzed to determine the highest, lowest, and
average values. Additionally, the HR, PRV, RR, and SpO2 were estimated. The data were
thereafter transmitted via Bluetooth 5.1 to the mobile application for data storage purposes.

The system incorporates a MAX30102 PPG sensor that enables the capture of the
infrared component of the PPG signal, which is essential for estimating HR, PRV, and RR.
Additionally, it captures the red-light component of the PPG signal, which is important
for estimating SpO2. Additionally, a GSR sensor was incorporated to measure changes
in sweat gland activity caused by stress. The GY906 sensor accurately monitors infrared
body temperature within a temperature range of −70 ◦C to +380 ◦C, with a precision of
0.5 ◦C, regardless of whether there is physical contact or not. The system is equipped with
a real-time data display screen and Li-Po batteries, each offering up to 4 h of uninterrupted
monitoring autonomy. The system components establish communication with the ESP32
through the Inter-Integrated Circuit (I2C) protocol.
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3.1.2. Database

As technology advances, intelligent systems are more dependent on efficient and
automated data processing methods, such as machine learning (ML) approaches, neural
networks, deep learning, data mining, and others. For these technologies to carry out
their functions effectively and precisely, they require substantial quantities of data kept
within databases. Therefore, selecting the most appropriate database for a system is of
utmost importance. Some databases are specifically designed for processing and imple-
menting algorithms, while others are more advantageous for quick access and customized
organization based on data type [30].

The Google “Firebase” platform was selected for implementing this system because
of its dynamic database capabilities, which offer significant benefits for mobile and web
application development. It is compatible with IOS, Android, Web, Unity, and C++. This
platform offers both real-time access and a high level of interaction with cloud storage, use
of ML techniques, rapid and secure authentication methods, and other features [31].

Figure 3 demonstrates how Firebase is configured to store data. Each user is assigned
a unique identification (ID), and the data transmitted from the detection system and both
monitors (glucose and blood pressure) are accompanied by a timestamp. Firebase organizes
the data within the nodes associated with each ID according to real-time data and the data
stored previously.
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3.1.3. Mobile Application

The user interface is built upon an Android mobile application, as depicted in Figure 4.
The mobile application enables user authentication, continuous monitoring of their phys-
iological parameters, input of glucose and blood pressure readings, and the classifica-
tion of stress into three categories using the fuzzy logic model outlined in Section 3.2,
“Stress Assessment”.
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As shown in Figure 4a, the application displays this classification and physiological
parameter values. Interactive blue and red spheres provide physiological parameter infor-
mation. In Figure 4d, each physiological parameter’s real-time progression is graphically
illustrated. In Figure 4b, users can access their daily and monthly physiological parameter
averages. As shown in Figure 4c, these averages can be displayed on graphs with colors
according to physiological parameter classifications.

3.1.4. Glucose and Blood Pressure Monitors

The glucose monitor Element NEO is a device designed for the self-monitoring of
blood glucose levels, commonly used by individuals with diabetes. It is compact and
portable, making it easy to carry, and features a clear, easy-to-read LCD screen that displays
blood glucose readings and other relevant information.

This monitor provides quick and accurate blood glucose readings, often within sec-
onds, and can store a significant number of past readings, allowing users to track their
blood glucose levels over time. It uses specific test strips that require a small blood sample
for measurement and may support testing on alternative sites such as the forearm or palm,
which can be less painful than fingertip testing. The automatic coding feature eliminates
the need for the manual coding of test strips, reducing user error.

Element NEO is designed for easy operation, with a simple interface and a minimal
number of buttons. It offers connectivity options such as USB or Bluetooth to transfer
data to a computer or smartphone for more detailed analysis. Additionally, it can include
features such as alarms to remind users to test their blood sugar at regular intervals.

This monitor is designed to provide highly accurate readings, which is crucial for
effective diabetes management. Some models require calibration with control solutions
to ensure accuracy, while others may be factory calibrated. It is typically powered by
replaceable batteries, with a long battery life due to low power consumption.

Some models might have the capability to warn users if blood ketone levels are too
high. Temperature compensation ensures accurate readings, even in varying temperature
conditions, and hemoglobin correction allows some advanced models to adjust readings
based on the hemoglobin levels in the blood.

Regarding the iHealth Track Blood Pressure Monitor, it is a device designed for
measuring and tracking blood pressure at home. It has a sleek and compact design, making
it easy to use and portable. The monitor features a large, backlit LCD screen that displays
readings clearly, even in low light conditions.
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This blood pressure monitor has a user-friendly interface with simple, one-button
operation, making it easy to use for people of all ages. It can store multiple readings,
allowing for individual tracking and comparison over time. The device comes with a
comfortable, adjustable cuff that fits a wide range of arm sizes. It also offers Bluetooth
connectivity, allowing it to sync with the iHealth MyVitals app, enabling users to store and
track their readings on their smartphones.

The iHealth Track provides accurate systolic and diastolic blood pressure readings, as
well as pulse rate. It includes color-coded indicators to quickly identify normal, prehyper-
tension, and hypertension levels based on World Health Organization (WHO) standards.
The device can also detect irregular heartbeats and alert the user if an irregular pattern is
found during measurement.

3.2. Stress Assessment

The proposed algorithm for stress assessment relies on collecting stress-related phys-
iological parameters, including HR, PRV, RR, SpO2, GSR, and BT, as described in [4].
Additionally, BP has been incorporated into the model. The stress levels were classified
using fuzzy logic, where we defined the reference values for each physiological parameter
(HR [32], PRV [33], RR [34], SpO2 [35], GSR [36], BT [37], and BP [38]). The classification
and type of membership function were determined based on Table 1, which displays the
mean values that are representative of the overall healthy population, and they are equally
applicable to individuals with chronic conditions. Variations in these parameters, for exam-
ple for high-performance athletes, have not been considered due to the wide disparity in
values. The aim of this work is to offer improvements in health care for the chronically ill,
as well as stress management for the general population.

Table 1. Physiological parameters treatment.

Parameter
Classification Based on Parameter Reference Values

Low Normal High

HR [beat-per-minute] <60 60–90 >90
PRV 1 [ms] <32 32–77 >77

RR
[breath-per-minute] <12 12–18 >18

SpO2 [%] <97 97–99 >99
GSR [kOhm] <30 30–50 >50

BT [◦C] <36.5 36.0–37.5 >37.5
Systolic BP [mmHg] <90 90–120 >120
Diastolic BP [mmHg] <60 60–80 >80

1 The PRV reference values are determined using the root mean square of successive differences (RMSSD) and
include the whole range of possible values for all healthy age groups, apart from children.

The membership functions used in the proposed model are categorized as the trape-
zoidal function Type R for “Low”, trapezoidal function Type L for “High”, and triangular
function for “Normal”, as documented in [4], based on the physiological parameter’s
configuration and classification, presented in Table 1.

To implement the fuzzy logic model designed for stress level classification, three
rules were established in accordance with the examined correlation between physiological
parameters and stress [21]. The rules are outlined in Table 2. Following this, the stress level
is quantified using Equation (1). Note that in fuzzy logic, the final process of defuzzification
requires the application of the maximum method or the centroid method, the latter being
used. The variables R1, R2 and R3 refer to the indices obtained by applying the rules shown
in Table 2, where each parameter of these rules refers to the membership degree, obtained
through the membership functions identified previously and detailed in [4].

Stress =
(R1 × 1) + (R2 × 2) + (R3 × 3)

R1 + R2 + R3
(1)
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Table 2. Fuzzy logic model for stress assessment.

Status Rules (R)

Calm R1 = Low(HR) Λ Low(HRV) Λ Low(RR) Λ High(SpO2) Λ High(GSR) Λ
High(BT) Λ Low(Systolic BP) Λ Low(Diastolic BP)

Normal R2 = Normal(HR) Λ Normal(HRV) Λ Normal(RR) Λ Normal(SpO2) Λ
Normal(GSR) Λ Normal(BT) Λ Normal(Systolic BP) Λ Normal(Diastolic BP)

Stressed R3 = High(HR) Λ High(HRV) Λ High(RR) Λ Low(SpO2) Λ Low(GSR) Λ
Low(BT) Λ High(Systolic BP) Λ High(Diastolic BP)

3.3. Blood Glucose Levels

Blood glucose levels are measured in milligrams per deciliter (mg/dL) and are a
crucial category for carbohydrates in biology, as they play a vital function as a metabolic
energy source for cells. Prolonged elevation of glucose levels typically indicates the
presence of diabetes. Diabetes is a medical condition characterized by insufficient
production of insulin by the body (type 1 diabetes) or inadequate response of the body’s
cells to insulin (type 2 diabetes).

To diagnose diabetes, individuals usually undergo blood glucose and hemoglobin
tests. However, the results of these tests may vary depending on whether the patient has
fasted or eaten food during the day. Therefore, the fluctuations in blood glucose levels [39]
are outlined in Table 3.

Table 3. Tabulated values for blood glucose levels.

Glucose Levels in Fasting
[mg/dL]

Glucose Levels after
Meals [mg/dL] Blood Glucose Category

<70 <70 Low blood glucose levels associated
with hypoglycemia.

70–99 70–139 Normal blood glucose levels.

100–125 140–199 Pre-diabetes status.

>125 >199 Diabetes diagnosis.

3.4. Experimental Procedure

In order to obtain better performance metrics, validation experiments were carried out
using a public database [40] containing data from 128 patients with chronic diabetes. The
dataset was collected from a variety of sources, including medical records, surveys, and
interviews. The data were cleaned and processed to ensure their accuracy and integrity
and are licensed under CC BY 4.0. The volunteers’ specific biometric information is shown
below, in Table 4. All participants gave their verbal consent.

Table 4. Volunteers’ specific biometric information.

Male Gender Female Gender Total

Volunteers 68 60 128
Age Range 12–75 17–75 12–75

Average Age 41 43 42
Standard Deviation of Ages 17 16 17

The primary aim of this study is to examine the impact of stress on individuals with
chronic conditions, particularly those diagnosed with diabetes. Considering the correlation
between diabetes and hypertension, a system that was previously created and verified in [4]
has been modified to include two more channels. One channel is dedicated to monitoring
blood glucose levels, while the other is focused on tracking blood pressure. Furthermore,
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the stress level assessment model used and validated in [4] was modified to incorporate a
three-level scale and membership functions better suited to the characteristics of the data.

The experimental protocol established the simultaneous acquisition of stress, BP, and
glucose data, which enabled the correlation between these three indicators. All data
collection was conducted during a fasting state, taking into consideration that this is the
optimal time of day for individuals with diabetes to obtain their glucose levels, unaffected
by the impact of food intake.

To enhance this study, an additional phase was implemented for some participants,
during which physiological parameters were collected four times each day, over a period of
five consecutive days. The selection of these four time periods throughout the day was made
in order to evaluate the impact of both meals and medicine intake. Consequently, during
the first and second stages, all the physiological measurements were obtained following
food intake and after the medication began to produce its effects, respectively. This enabled
the evaluation of the effectiveness of the medication. In the third and fourth stages, we
collected the physiological parameters both before and after food intake, respectively. This
enabled us to evaluate the impact of food intake on individuals with diabetes.

4. Results and Discussion

This section provides an analysis of the findings pertaining to the correlation between
blood glucose levels and stress levels, as well as blood glucose levels and BP values.
Furthermore, a comparison is conducted on the reduction of the stress assessment model’s
scale from five, as it was originally proposed in prior research [4], to three.

4.1. Stress Level Classification Model Update

In a previous study, a stress assessment model comprising five levels was utilized [4].
Nevertheless, it is important to mention that the extreme levels only consisted of residual
data, which did not have any noticeable effect on the system’s performance, but did result
in a small divergence in the accuracy of the model. Therefore, this study aimed to update
these levels and thereby reduce them from five to three.

The performance of the model was evaluated using a multi-class confusion matrix,
which is depicted in Figure 5. Note that the “True Classification” refers to the volunteers’
classification of their stress levels through a self-assessment questionnaire, while the “Pre-
dicted Classification” refers to the stress levels estimated by the proposed fuzzy logic
algorithm. This enables the identification of true positives (TPs), true negatives (TNs),
false positives (FPs), and false negatives (FNs). Furthermore, several metrics were used to
analyze the performance of the proposed stress assessment model, as outlined in Table 5.
In this case, sensitivity measures the proportion of TPs that are correctly identified by the
model; specificity measures the proportion of TNs that are correctly identified by the model;
precision measures the proportion of predicted positives that are correct; accuracy measures
the overall correctness of the model; the F1 score is the harmonic mean of precision and
sensitivity, providing a balance between the two.

Table 5. The application of performance metrics to the stress model.

Metric
Stress Levels Classification

Calm Normal Stressed

Sensitivity 0.94 0.82 0.93
Specificity 0.97 0.94 0.94
Precision 0.94 0.88 0.88
Accuracy 0.96 0.90 0.94
F1 Score 0.94 0.85 0.90
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Table 5 shows that updating the proposed fuzzy logic methodology produces sat-
isfactory results in terms of precision, accuracy, sensitivity, and specificity, compared to
the work carried out in [4], thus demonstrating that reducing the number of stress level
classifications has improved the data, reducing dispersion, without this having influenced
the system’s performance. Another motivating factor is comparing the accuracy of the
proposed method with others, proposed in the more detailed literature review presented
in [4]. To enhance the suggested model, it is necessary to carry out supplementary stress
induction studies or explore alternative methods of inducing stress, such as noise or light.

4.2. Correlation between Stress and Glucose Levels

Regarding the correlation of stress with blood glucose levels, the results obtained were
promising, allowing to identify a clear relationship between the two parameters. In Figure 6
below, it is possible to observe the evolution of the stress levels (classified from 1 to 3, as
stipulated in the proposed model) and the blood glucose levels. The samples identify each
of the 128 participants, clearly showing that when one increases, the other follows, and
vice versa.
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Figure 6. Correlation between stress and glucose levels. Highlighted in blue are the blood glu-
cose values of the volunteers. In turn, highlighted in orange are the stress levels obtained at the
same moments.
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Considering a more specific case, in Figure 7 below, we have the acquisition of the
physiological parameters for one of the participants who took part in the extra stage of
the experimental protocol, namely the acquisition during four phases of the day over five
consecutive days. Note that the timestamp refers to the day and time of acquisition.
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Figure 7. Correlation between stress and glucose levels for a random volunteer. Highlighted in blue
are the blood glucose values of the volunteer. In turn, highlighted in orange are the stress levels.

The data acquired and presented in Figure 7 show that after food intake (the third and
fourth phases), more precisely about forty minutes after eating, the human body begins
the process of food digestion, which results in an increase in glucose levels. Note that this
reaction is normal for anyone; however, for diabetics, this reaction can be quite accentuated,
which is why they must take medication after the meal to counteract this effect. On the other
hand, it takes about one hour for the medication to take effect (the first and second phases),
leading to a reduction in glucose levels, suggesting that the medication is appropriately
adjusted. Concerning the correlation between glucose and stress levels, it is clear that the
increase in one is linked to the increase in the other, and vice versa.

4.3. Correlation between Glucose Levels and Blood Pressure

The correlation between blood glucose levels and blood pressure was also found to be
promising, as the results enabled the identification of a distinct relationship between the
two parameters, considering both the systolic and diastolic blood pressure components. In
Figure 8 below, it is possible to observe the evolution of glucose levels and blood pressure,
where the samples identify each of the 128 participants, showing that when one parameter
increases, the same change is visible in the other parameter, and vice versa.

Considering a more specific case, in Figure 9 below we have the acquisition of the
physiological parameters for one of the participants who took part in the extra stage of
the experimental protocol, namely the acquisition during four phases of the day over five
consecutive days. The timestamp refers to the day and time of acquisition.

As stated before, and shown in Figure 9, approximately forty minutes after food intake
(between the third and fourth phases), the body begins the process of digesting the food,
which results in an increase in glucose levels. However, it takes around one hour for the
medicine to take effect (between the first and second phases), resulting in a decrease in
glucose levels, which demonstrates that it is correctly adjusted. Concerning the correlation
between glucose levels and blood pressure, it is clear that when one increases, the same is
visible in the other parameter, and vice versa.
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Figure 8. Correlation between glucose levels and blood pressure. Highlighted in blue are the systolic
blood pressure values of the volunteers. In turn, highlighted in orange are the diastolic blood pressure
values obtained at the same moments. Highlighted in grey are the glucose levels of the volunteers.
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Figure 9. Correlation between glucose levels and blood pressure for a random volunteer. Highlighted
in blue are the systolic blood pressure values of the volunteer. In turn, highlighted in orange are the
diastolic blood pressure values. Highlighted in grey are the glucose levels.

4.4. Correlation between Stress and Blood Pressure

In relation to the correlation of stress with blood pressure, the results obtained were
promising, allowing to identify a clear relationship between the two parameters. In
Figure 10 below, it is possible to observe the evolution of the stress levels (classified from
1 to 3, as stipulated in the proposed model) and the blood pressure represented here
through its two components, i.e., systolic blood pressure and diastolic arterial pressure.
Furthermore, the samples identify each of the 128 participants.
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Figure 10. Correlation between stress and blood pressure. Highlighted in blue are the systolic blood
pressure values of the volunteers. In turn, highlighted in orange are the diastolic blood pressure
values obtained in the same moments. Highlighted in grey are the stress levels of the volunteers.

Considering a more specific case, in Figure 11 below, we have the acquisition of the
physiological parameters for one of the participants who took part in the extra stage of
the experimental protocol, namely the acquisition during four phases of the day over five
consecutive days. Again, the timestamp refers to the day and time of acquisition.
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Figure 11. Correlation between stress and blood pressure for a random volunteer. Highlighted in
blue are the systolic blood pressure values of the volunteer. In turn, highlighted in orange are the
diastolic blood pressure values. Highlighted in grey are the stress levels.

Figure 11 shows that the highest blood pressure value of the day is also associated
with the highest level of stress, thus corroborating the relationship between stress and
blood pressure. It should be noted that eating can lead to changes in various physical
parameters, which can indirectly influence stress levels; for example, after eating, blood
flow directed to the digestive system can cause drowsiness or lethargy, which can interfere
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with productivity and cause stress. Eating also increases metabolic activity, temporarily
increasing the heart rate and blood pressure, which can be stressful, especially for people
with cardiovascular problems.

5. Conclusions

The multichannel sensing system that has been implemented offers an important
level of mobility and interactivity, enabling the real-time visualization of health status
parameters, such as stress levels. In pursuit of this objective, a mobile application was
effectively designed and verified. Given that many patients with diabetes believe that
controlling their well-being entails merely altering their daily routines, the way this work
integrates a mobile application’s user-friendly interface and an efficient system with a
significant number of crucial components and mechanisms for acquiring physiological
parameters is an asset. This integration assists these patients to gain a better understanding
of how their daily activities impact their health.

Significant conclusions were drawn from the experimental validation conducted to
investigate the correlation between stress, diabetes, and blood pressure. These conclu-
sions establish the relationship between these parameters and emphasize once more the
importance of patients with diabetes incorporating the management of nervous system
responses into their daily routines. Despite adhering to a healthy lifestyle and carefully
monitoring their blood glucose levels, patients with diabetes should be more aware of the
impact of stress.

Regarding future work, one of the next steps is to enhance the system’s robustness
by perhaps incorporating new mechanisms and implementing changes. One of the goals
is to replace the fuzzy logic technique with more powerful machine learning techniques.
Furthermore, given that the purpose of this project is to assist individuals with diabetes
in their everyday activities, it would be advantageous to prioritize the development of an
intelligent and mobile interface that allows for seamless user interaction. In the future, it
would be beneficial to incorporate features for measuring glucose levels and blood pressure
directly into the system, rather than relying on the external devices currently available in
the market.
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