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ABSTRACT In recent years, Portugal has seen wide variability in wildfire damage associated to high
unpredictability of climatic events such as severe heatwaves and drier summers. Therefore, timely and
accurate detection of forest and rural wildfires is of great importance for successful fire containment and
suppression efforts, as wildfires exponentially increase their spread rate from the moment of ignition. In the
field of early smoke detection, the CICLOPE project currently trailblazes in the employment of a network
of Remote Acquisition Towers for wildfire prevention and observation, along with a rule-based automatic
smoke detection system, covering over 2, 700, 000 hectares of wildland and rural area in continental Portugal.
However, the inherent challenges of automatic smoke detection raise issues of high false alarm rates that
affect the system’s prediction quality and overwhelm the Management and Control Centers with numerous
false alarms. The researchwork presented in this paper evaluates the potential improvement inwildfire smoke
detection accuracy and specificity using deep learning-based architectures. It proposes a solution based on a
Dual-Channel CNN that can be deployed as a secondary prediction confirmation layer to further refine the
CICLOPE automatic smoke detection system. The proposed solution takes advantage of the high true alarm
coverage of the current detection system by taking only the predicted alarm images and respective bounding
box coordinates as inputs. The Dual-Channel network combines the widely used DenseNet architecture with
a novel detail selective network with spatial and channel attention modules trained separately with image
data obtained from CICLOPE, fusing the extracted features from both networks in a concatenation layer.
The results demonstrate that the proposed Dual-Channel CNN outperforms both single-channel networks,
achieving an accuracy of 99.7% and a low false alarm rate of 0.20%when re-examining the alarms produced
by the CICLOPE surveillance system.

INDEX TERMS Computer vision, convolutional neural networks, deep learning, smoke detection, wildfire
detection.

I. INTRODUCTION
With the increasing variability of climate around the world,
rural and forest fires pose a serious threat to public safety,
with severe environmental and socio-economic effects. The
Mediterranean region has observed some of the most
disastrous wildfire occurrences in the last two decades, and
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while the total number of fires has shown a decreasing trend,
the total burnt land area reflects the high unpredictability
associated with extreme meteorological conditions, such as
the severe heatwave experienced in Portugal that led to a
catastrophic season of very large forest fires in 2017 [1],
as can be observed in the plot depicted in Fig. 1.

From the moment of their ignition to their fully-developed
stage, wildfires expand rapidly with an exponential increase
in their spread rate [2]. Therefore, early and accurate
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FIGURE 1. Number of wildfires and total burnt area in mainland portugal,
over the last two decades.

wildfire detection, particularly during the initial smoldering
stage when the first smoke columns appear, is essential
for increasing the chance of success of fire containment
efforts, as the time span between ignition and detection is
proportional to potential damage [3].

Traditional human observation detection has inherent
drawbacks, as it is human resource intensive, and becomes
increasingly difficult in large-scale wildland coverage, even
with the employment of watchtower surveillance imagery
solutions. Automatic detection systems are therefore the
optimal solution for timely smoke detection, capable of
simultaneously covering extensive land areas, limited only by
the optical reach and the spatial resolution of the cameras.
However, the issue of accuracy and performance becomes
more prominent in these systems, and concerns with wildfire
coverage and false alarm rates define its applicability to real-
world scenarios.

CICLOPE1 is an integrated wildfire surveillance system
with automatic detection capabilities operating in Portugal,
covering over 2.700.000 hectares of wildland and rural
area, as shown in Fig. 2. It is built upon a network
of Remote Acquisition Towers mounted with visible and
infrared wavelength cameras with continuous 360 degree pan
range, 40 kilometers of effective zoom range, and a detection
range of about 20 kilometers, along with autonomous power
supply and weather data collection abilities. The video
feeds from the camera network are processed and streamed
to the Management and Control Centers for real-time
observation and monitoring, while smoke alarms identified
by the automatic detection system trigger visual and audio
alerts for manual confirmation, constituting a valuable tool
for timely first-response action. The automatic wildfire
detection system operates with a rule-based algorithm that
continuously analyses the video feeds in a frame-wise basis,
identifying regions with a sudden increase or decrease in
brightness levels. While the detection system reports very
good coverage ability, correctly identifying most occurrences
of true smoke alarms, the algorithm’s over sensitivity tends to
produce a higher rate of false alarm occurrences, resulting in
a worse model specificity.

1https://www.inov.pt/en/project/ciclope/index.html

FIGURE 2. CICLOPE surveillance coverage in mainland portugal (green),
as of december 2022.

With an average of about 34 daily wildfire occurrences
in Portugal during the past five years, with many more
during the warm season, and a high volume of image
frames continuously collected, each subject to the detection
algorithm, a high rate of false alarms results in a flood of
noisy fire alarms that hide the true alarm occurrences and
reduce the operators’ confidence and trust in the automatic
detection system. Therefore, there is a strong need to improve
the specificity and overall accuracy of the system. Exploring
innovative computer vision and deep learning-based solutions
could prove of significant benefit to the integrated CICLOPE
surveillance system.

The work developed and presented in this paper aims to
answer the following research question: ‘‘Is it possible to
improve the overall accuracy and reduce the false alarm
rate of an automatic wildfire detection system by applying
further Deep Learning-based classification methods?’’. Thus,
it addresses a critical issue in current computer vision-based
wildfire detection systems: the presence of high false alarm
rates. It also emphasizes the benefit of combining rule-based
and deep learning models. While designed for CICLOPE, the
proposed solution’s adaptability allows an easy application to
other use cases.

The paper is organized as follows: after the literature
review presented in Section II, Section III provides a valuable
analysis on different data preparation strategies. This analysis
is supported not only by the classification results but also by
statistical significance tests directly comparing the possible
data configurations. This may provide valuable information
for future research. Section IV compares various deep
learningmodels, highlighting their strengths and weaknesses,
aiming to provide a better understanding on the models and to
determine which are the most adequate for the wildfire smoke
detection task. An enhanced fire detection model is then
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proposed, combining a well-established model (DenseNet)
with a detail-selective network based on attention models.
This architecture is one of the main contributions of this
paper, since it significantly lowers the false alarm rate
when re-examining the alarms outputted by the rule-based
CICLOPE’s smoke detection algorithm. Finally, the main
conclusions and directions for future work are provided in
Section V.

II. LITERATURE REVIEW
A systematic review was performed following the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) methodology [4], with a search over articles
and conference papers in the Scopus database based on the
following search query:

("smoke detect*" OR "wildfire detect*"
OR "forest fire detect*") AND
("deep learning" OR "computer vision"
OR "image classification" OR
"semantic segmentation")
AND PUBYEAR > 2009.

The search query returned 262 documents, with the large
majority dating to the last five years, which highlights the
relative novelty of deep learning studies for wildfire detection
applications.

The identified references were subject to a screening pro-
cess by analyzing document titles, abstracts and keywords,
in order to determine their applicability to the topic of this
research.

Afterwards, a full-text article analysis was conducted
to assess the eligibility of the screened documents for
quantitative synthesis, identifying references with relevant
methods, approaches, and outcomes that were deemed useful
for reviewing. In this stage, documents were excluded based
on unsuitable data collection methods, proprietary software
applications, or similar redundant approaches, resulting in
about 20 papers used in this state-of-the-art review.

A. IMAGE CLASSIFICATION
In [5], the authors performed a review on deep learning-based
methods for wildfire detection based on unmanned aerial
vehicles (UAV) imagery, gathering 15 different articles.
Of these, five used image classification techniques, seven
used object detection approaches, and the remaining three
were based on semantic segmentation. The authors concluded
that smoke detecting models achieve better results than
those based on flame detection, especially for early wildfire
detection. However, smoke detection showed poorer perfor-
mance for nighttime images and for images containing fog,
clouds, or other smoke-like objects. Some researchers applied
flame detection algorithms with thermal images to improve
model performance, while others achieved good results with
combinations of smoke and flame detecting algorithms with
both optical and thermal images.

The work presented in [6] proposes a Convolutional Neural
Network (CNN) model that achieves good performance in
both clear and foggy environments, suggesting a multi-class
approach instead of binary classification. Four classes are
thus defined: smoke, non-smoke, non-smoke with fog, and
fog. The authors used a VGG16 type architecture pre-trained
on ImageNet, which uses smaller filter sizes and shorter
strides. It outperformed other pre-trained models, namely
GoogleNet and AlexNet, achieving an accuracy of 97.72%.

Another review, [7], performed a survey of recent tech-
niques applied for computer vision-based fire and smoke
detection. One of the methodologies analyzed was the use
of dual-channel CNNs for image classification. This type of
architecture utilizes two separate networks, with one channel
focusing on extracting generalized features, and the second
channel extracting detailed features.

In [8], this method was accomplished using an AlexNet
network with transfer learning for the extraction of more
general features, and a separately trained CNN to extract
detailed features, fusing the output features of both networks
in a concatenation layer. With this method, the authors
combined the more comprehensive features generated from
a pre-trained AlexNet architecture, with a task-specific fully
trained network, and achieved an accuracy of 99.33%,
outperforming AlexNet with transfer learning (99.08%).

Similarly, [9] also applies a Dual-Channel CNN, although
taking a different approach, using a Selective-based
Batch Normalization Network (SBNN) and a Skip
Connection-based Neural Network (SCNN). The SBNN is
a sequence of convolution layers with max pooling and batch
normalization layers and aims at extracting detailed smoke
features such as texture, while the SCNN introduces skip
connection and a global average pooling layer to extract
generic features, such as contour. When applying max
pooling, the largest valued pixels are passed on, enhancing
texture features, while average pooling has a smoothing
effect, highlighting contour and shape features. The authors
compared the performance of the proposed Dual-Channel
CNN (DC-CNN) to various state-of-the-art architectures and
each component network in terms of accuracy, detection rate,
and false alarm rates over two different test sets. In both sets,
the DC-CNN achieved the highest accuracy rate and lowest
false alarm rates, with an accuracy of 99.7% and 99.4%, and
a false alarm rate of 0.12% and 0.24%, over Sets 1 and 2,
respectively. The best performing state-of-the-art networks
on accuracy rates were DenseNet (98.6% and 98.4%),
Xception (97.9% and 98.4%), and DNCNN (97.8% and
98.0%), while the lowest false alarm rates were achieved by
DNCNN (0.48% and 0.48%), Xception (0.13% and 1.10%),
and DenseNet (1.08% and 1.10%). The proposed DC-CNN
also performed better than each subnetwork alone, as SBNN
achieved accuracy of 98.3% and 98.7% and false alarm rates
of 0.96% and 0.98%,whereas SCNN reached accuracy scores
of 98.6% and 98.5% and false alarm rates of 0.84% and
0.48%. The significant improvement in performance from the
proposed DC-CNN demonstrates that a larger diversification
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of extracted features can produce a better generalizing
model.

The aforementioned DNCNN was proposed in [10] and
stands for Deep Normalization and Convolutional Neural
Network. Using batch normalization, the authors replaced
the traditional convolution layers in CNNs with normal-
ization and convolutional layers. This process minimizes
the effects of internal covariate shifts related to changes
in the distribution of network activations during training,
significantly accelerating the processing time and increasing
model efficacy.

In [11], a dilation mechanism is employed in convolution
layers in order to extract larger features, ignoring smaller
ones, while reducing processing time and the number of
parameters. Dilated convolutions apply a modified kernel by
inserting gaps between the pixel elements based on a factor,
where a factor of one is a regular convolution, and a factor
of n expands the kernel by skipping n − 1 pixel elements.
The author compared network performance with and without
the dilation operator, having achieved an accuracy of 99.06%
with the Dilated CNN and 97.53% without dilation. The
authors also compared the proposed network with several
state-of-the-art architectures, reporting the highest accuracy
and F1 scores. However, model recall and precision scores
were 97.46% and 98.27% respectively, while Inception V3
achieved a recall score of 99.80%, and VGG19 achieved
a precision score of 99.49%. The authors also reported a
larger error rate when classifying images in cloudy weather
conditions. Processing time was also compared, with the
dilated CNN reducing training time and prediction time
considerably as opposed to other networks.

A Convolutional Block Attention Module (CBAM) was
proposed in [12] by combining a Channel Attention Module
(CAM) and a Spatial Attention Module (SAM). CAM
attempts to focus on meaningful information between input
channels by exploring the inter-channel relationships of
the extracted features, whereas SAM focuses on the most
informative spatial location of the feature maps. In [13],
the authors applied a similar mechanism in the proposed
SmokeNet model and applied it to smoke detection in
satellite imagery, classifying between six different classes:
Cloud, Dust, Haze, Land, Seaside, and Smoke. The pro-
posed SmokeNet model outperformed several state-of-the-art
architectures, reaching an accuracy score of 92.75%, with a
precision score of 87.68% and a recall score of 94.68% on
the smoke class.

B. OBJECT DETECTION
Object detection approaches have been widely applied in
wildfire detection applications in order to identify and
localize the object of interest within the picture frame.
However, these algorithms are usually more computationally
intensive than image classification models. Furthermore,
object detection models can follow two-stage or single-stage
architectures. In the case of two-stage detectors, the first stage

selects regions of interest to be classified in the second stage.
In contrast, single-stage architectures detect the image objects
and classify them on a single pass.

In [14], the authors compared two two-stage detectors
(Faster R-CNN and R-FCN) and one single-stage detector
(SSD), implementing the feature extraction backbone with
different CNN architectures. In the case of Faster R-CNN
and R-FCN, they used Inception ResNet V2, Inception V2,
ResNet V2 and MobileNet as feature extractors, while in
the case of SSD only MobileNet and Inception V2 were
used. The performance of the different detectors on a smoke
detection dataset showed that SSD is faster to process test
images but is less accurate, while Faster R-CNN is more
computationally expensive but more accurate with each
different feature extraction backbone. The results also show
that Faster R-CNN with Inception ResNet V2 performed
better, achieving a mean average precision (mAP) of 56.04%.

Another widely used single-stage detector is YOLO.
In [15], YOLO-SMOKE is proposed, based on YOLOv3,
which uses darknet-53 as the feature extraction backbone.
The authors compared the performance of the original
YOLOv3 model with the modified YOLO-SMOKE model,
by introducing an efficient channel attention module (ECA),
changing the loss function to focal loss in order to handle
the problem of class imbalance, and introducing dropblock
layers as a regularization method. The experiments on the test
set showed that the proposed model improved YOLOv3mAP
from 81.95% to 86.86%without increasing image processing
time.

Similarly, [16] proposes an improved framework based
on YOLOv4 with CSPdarknet53 as backbone, using depth-
wise separable convolutions and spatial pyramid pooling.
Depthwise separable convolutions significantly reduce the
number of parameters by performing the convolution on each
channel layer separately and afterward performing pointwise
convolutionwith a 1×1×n kernel, where n corresponds to the
number of channels. Since the fully connected layer requires a
fixed-size input, spatial pyramid pooling enables multi-scale
input images by making the pooling operation proportional
to the image size. The proposed model achieved an accuracy
rate of 97.8% and a false alarm rate of 1.7%, while YOLOv4
performed at an accuracy rate of 96.7% and a false alarm rate
of 3.0%.

In [17], a dynamic background modeling mechanism
was applied for improving the performance of an SSD
detector using a MobileNet backbone. Considering the
motion characteristic of smoke objects in video sequences,
the ViBe algorithm separates the dynamic foreground objects
from the stationary background in the image. The proposed
framework intersects the SSD detection output with the
extracted moving target to improve detection accuracy. The
proposed model achieved a mAP of 51.87% with R = 3
and IoU = 0.03, improving on the single application of
SSD-MobileNet with a mAP of 23.81%.

Ensemble methods work by combining the outputs of
various models to improve the prediction output. In [18],
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an ensemble strategy is employed, merging object detection
and image classification. Two detectors, YOLOv5 and
EfficientDet, are trained separately to generate candidate
boxes, applying a non-maximum suppression algorithm to
remove redundant bounding boxes. In parallel, a classifi-
cation network based on EfficientNet is applied to classify
the entire image, retaining the bounding box based on the
image classification output. The proposed framework was
compared to a two-learner framework without the image
classification branch and other object detection architectures.
The two-learner model achieved the highest AP with an
IoU = 0.5 of 79.7% followed by the proposed three-learner
model with an AP of 79.0%, however, the false alarm rate
for the two-learner model was 51.6%, whereas the proposed
framework achieved 0.3%, suggesting that the ensemble
approach of combining an image classification model with
object detection appreciably reduces false positives while not
decreasing AP significantly.

C. SEMANTIC SEGMENTATION
Semantic segmentation approaches are more computationally
intensive due to the classification of each pixel within the
image set. In smoke detection, it becomes particularly hard
given that the smoke target is not well defined, as diffusion
introduces ambiguity in the precise location of smoke. In [19]
a new method is proposed to solve this problem, utilizing
concentration weight labeling by incorporating a mask over
the ground truth label based on the relationship to pixel
values. The authors applied an encoder-decoder architecture
with MobileNet as the downsampling layer, and PSPnet as
the upsampling layer, with a weighted loss function and
4 smoke categories – Thick smoke, Thin smoke, Thick smoke
and clouds, and Thin smoke and clouds. The results show
that the weight-based network achieved a mIoU of 75.38%,
as opposed to 73.86% without concentration weighting.

D. TRANSFER LEARNING
Transfer learning can be a very useful technique when
implementing state-of-the-art architectures that have already
been intensively trained on very large datasets. In [20], the
authors compared several architectures on performance levels
and training time with and without transfer learning, over a
smoke recognition task. The studied networks were AlexNet,
VGG16, Inception V3, ResNet50, and MobileNet, and the
authors concluded that the application of transfer learning
sorely improved model accuracy and training time, with the
best model trained without transfer learning being AlexNet,
reaching an accuracy of 98.91% after 200 epochs, while
VGG16with transfer learning reached an accuracy of 99.73%
after 15 epochs.

Another work, [21], applies a pre-trained MobileNetV2
network over a smoke detection dataset and compares it
to two pre-trained models, AlexNet and FireNet, as well
as a fully trained standard CNN, and achieved an accuracy
of 99.3% with MobileNetV2 with transfer learning, while

AlexNet, FireNet, and the standard CNN, performed at
accuracy scores of 95%, 97.5%, and 85.6%, respectively.

E. DATA AUGMENTATION
As also stated, data augmentation can too be beneficial,
especially in the event of small and imbalanced datasets.
In [22], an image manipulation technique was used through
synthetically implanting smoke column objects in non-smoke
images, in order to increment the number of positive samples.
The authors applied a Faster R-CNN detection network,
and tested a network trained on only real data samples
against a network trained on synthetically augmented data,
over four video sets. The detection rates improved from
98.90% to 100.00% on video 1, from 51.84% to 73.62% on
video 2, from 73.62% to 98.77% on video 3, and maintained
at 100.00% on video 4, suggesting that the applied data
augmentation technique can improve detection ability on the
same architecture.

The work in [23] presents a deep learning data augmenta-
tion approach, and trained aVGG16, ResNet50 andDenseNet
networks on a smoke detection dataset, and compared
performance with real training data against augmented
training data. The authors applied a CycleGAN network to
produce new artificial samples based on the original data and
concluded that accuracy decreased for VGG16 from 93.76%
to 93.28%, while for ResNet50 it increased from 96.73%
to 96.93%, and DenseNet improved more expressively from
96.73% to 98.27%.

F. RULE-BASED METHODS
Many current wildfire detection applications still use
rule-based image processing techniques for automatic smoke
identification, reason why incorporating these along with
deep learning models could configure worthwhile solutions.

Reference [24] applies CNN models over suspected
regions extracted through image processing techniques. The
authors applied dynamic background subtraction, based on
the notion that smoke objects will tend to expand and move
through different frames, and subsequently extracted the
dark-channel image using the dark-channel prior method,
and inputted the suspected target into a CNN. The registered
performance over two test sets showed an improvement with
the application of the proposed image processing techniques,
increasing accuracy on test set 1 from 93.96% to 99.77%, and
on test set 2 from 93.37% to 99.06%.

A similar strategy was employed in [25], with the
application of Kalman filtering to extract foreground moving
objects, followed by a color segmentation to extract gray
shaded pixels, feeding into a fully-trained standard CNN
model. Model performance was compared to an entirely
rule-based algorithm, AdViSED, over the same test set,
in which the results were comparable, with the proposed
model reaching an accuracy score of 84.38%, as opposed
to 85.00% on the AdViSED algorithm, while F1-Score was
88.37% and 87.50%, respectively.
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FIGURE 3. Example of a CICLOPE surveillance camera mounted on a
watchtower.

The dark-channel prior method was also applied in [26]
along with the Lucas-Kanade Optical Flow method for
vertical flow detection between image frames. Inception
V3 was used as the CNN architecture for smoke detection
on the pre-processed images. It outperformed SSD and
Faster R-CNN detectors, FireNet, rule-based optical flow
and dark-channel pre-processing algorithm, and Gaussian
Mixture Modeling (GMM) with Inception V3. The proposed
framework achieved an accuracy of 97.0% with an F1-Score
of 97.0%.

In [27], a different technique was adopted, applying
multichannel binary thresholding and HSV colorspace
thresholding over the original images. Binary thresholding
comprises defining a fixed threshold value and minimizing
or maximizing each pixel value based on whether it is
below or above the threshold. Multichannel binary thresh-
olding performs this function on each color channel. HSV
colorspace thresholding will apply a cutoff value over the
resulting image and turn each pixel below this value equal to
zero. The authors compared the performance of a depth-wise
separable convolution network without image processing
against rule-based image processing, based on if the resulting
processed image contains pixels not equal to zero, as well as
the combination of both methods. The proposed combined
model outperformed both alternatives, achieving an accuracy
of 93.60% on the test set, while the rule-based technique
achieved 90.99%, and the single network tallied 91.76%.

III. DATASETS
Image data used in the scope of this research comprise four
image sets captured by the CICLOPE cameras mounted on
watchtowers, such as the one depicted on Fig. 3. The collected
images represent wildfire alarms signaled by the rule-based
smoke detection algorithm currently in operation, classified
into true and false fire alarms. The collected image sets were
as follows:

• CasteloBranco_TP contains 538 annotated images
of true wildfire smoke alarms with associated bounding
boxes encompassing the image region responsible
for triggering the alarm. These bounding boxes are
outputted by the current detection system.

TABLE 1. Training, validation and test split for the used image sets.

• Leiria_FP_fields&forest contains a collection
of 718 annotated images of false fire alarms and
associated bounding boxes. These false fire alarms were
further classified into the subtype ‘‘Fields and Forest’’,
as the false detections were due to shadowing and
lighting effects occurring over image regions showing
fields and forest.

• Leiria_FP_clouds&fog contains 3231 annotated
images of false alarms with bounding box identification,
belonging to the subtype ‘‘Clouds and Fog’’, where
smoke was incorrectly detected due to the presence of
clouds or fog.

• Fires_2020_Gnd comprises a collection of
4504 annotated images of true alarms, without bounding
box annotations regarding the smoke region. For
the latter, a manual bounding box identification was
performed using the application CiclopeAFDTools
which enables manual annotation and produces a CSV
file containing each image name and the bounding box
coordinates.

Table 1 presents the split details across the four image sets
used in this work. For each image set, a 70/20/10% split was
applied to build the training, validation, and test sets, ensuring
a proportional representation of samples coming from each
original image set.

A. DATA ANALYSIS
The collected images were captured from 2018 to 2021, with
the earliest image taken on 2018-10-03, and the latest on
2021-10-27. In the span of total available dates, 195 days
have associated images, which corresponds to 17.4% of all
possible days in the considered time period.

Fig. 4 illustrates the distribution of images across the time
of day (with timestamps rounded up to the nearest hour).
The figure shows a clear distinction between the distribution
of true and false fire alarms (true and false positives).
The latter predominantly occurs early in the day, between
08:00AMand 10:00AM,while the former exhibits a stronger
prevalence between 11:00 AM and 05:00 PM.

B. CLASSES
As previously detailed in [6], a multi-class approach was
implemented to deal with the challenge of smoke detection
in foggy environments. Taking into consideration the char-
acteristics of the available image sets, two separate datasets
were created using distinct labeling strategies:
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FIGURE 4. Distribution of true and false fire alarms along the daytime, for
all samples in the available data.

FIGURE 5. Image examples for each considered class: Smoke (left
column), Clouds and fog (central column), and fields and forest (right
column).

• Dataset binwill employ a binary classification strategy,
where True Alarms represent verified wildfire smoke
occurrences and will be assigned a label of 1. In contrast,
false alarms congregate all other images without the
verified presence of wildfire smoke, with an assigned
label of 0.

• Dataset multi will follow a multi-class approach and
classify between ‘‘Smoke’’, ‘‘Clouds and Fog’’, and
‘‘Fields and Forest’’.

By training and comparing the performance of the same
models across both labeling strategies, an assertion can
be made regarding the benefit of binary or multi-class
classification as it concerns to this particular use case.

As Fig. 5 illustrates, ‘‘Smoke’’ class samples are character-
ized by a funnel-like shape, with a denser smoke base, and a
diffusing smoke column that typically propagates diagonally
in accordance with wind direction. Smoke columns will
display different characteristics depending on the landscape
of the background, with lighter coloration on dark terrain
backgrounds, whereas on light above-horizon background
smoke can appear darker in color.

In the case of ‘‘Clouds and Fog’’, these occurrences
represent the majority of false alarms collected, as the passing
of these objects more frequently triggers the current detection
system. It is often hard to distinguish from true smoke

objects as they share similar characteristics in texture and
color. However, these objects can exhibit larger variation in
shape and size, where smoke displays a columnar form more
consistently.

‘‘Fields and Forest’’ represent a small portion of false
alarms collected, and gather samples which neither contain
smoke, or clouds and fog, where detected objects do not
include the haze and shape characteristics of one or the other.

C. BOUNDING BOXES
Many approaches to the problem of wildfire detection have
adopted object detection strategies, where two separate
operations take place – the first establishes a suspected region
as a bounding box of the original image, and the second
classifies the extracted suspect region. Other approaches,
such as the ones reflected in [24], [25], [26], and [27],
implement an initial rule-based image processing strategy to
extract foreground or otherwise define a suspected smoke
region. Such implementations can benefit from reducing
noise in the original image by eliminating features and
background objects that are irrelevant to the target label.

A comparison can be drawn from the aforementioned
methods to the use case of this research work, where the
images collected are gathered from a rule-based image
processing algorithm that produces bounding box (BB)
coordinates, enabling the extraction of the suspected region.

However, as previously stated, images collected from
the Fires_2020_Gnd dataset do not contain associated
bounding box coordinates identification and were thus
manually classified, resulting in rather distinct BB sizes
as the current rule-based system produces very small-sized
BBs. This can be verified as the average BB area extracted
from the detection system contains about 1930 pixels, while
the manually annotated BBs contained an average of about
43095 pixels per BB.

In order to obtain similar sized BBs for both cases, the
original bounding boxes were enlarged by p pixels, where
p = 5 for the manually annotated BBs case, and p = 150 for
the detection system’s outputted BBs. Assuming that (x1,y1)
and (x2,y2) are the original BB upper-left and lower-right
corners, respectively, the enlarged BB coordinates (x ′

1,y
′

1) and
(x ′

2,y
′

2) can be computed using the following rules:

x ′

1 = max(x1 − p, 0);

x ′

2 = min(x2 + p,W );

y′1 = max(y1 − p, 0);

y′2 = min(yy + p,H ), (1)

where W and H represent the images’ width and height,
respectively.

Two additional datasets bin-bbox and multi-bbox
were created, where the former compiles the extracted
bounding box images labeled in the binary strategy that
corresponds to the full-image dataset two-classes, whereas
the latter gathers the extracted bounding box images labeled
in the multi-class approach used in three-classes.
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Comparing model performance across datasets allows for
an evaluation on the best pre-processing strategy, by assessing
the noise reduction advantages of bounding box images in
contrast to a potential gain in contextual information that the
full images may provide.

D. AUGMENTED DATA
In situations where the different classes within a dataset are
represented disproportionately, wemay encounter difficulties
associated with class imbalance, such as poor performance on
the minority class. Due to the dominance of a majority class
in the dataset, if a model predicts the dominant class there is
a greater chance that prediction might be correct, therefore
the model may conform to a bias towards the majority class,
leading to a higher probability of misclassification of the
minority class.

In the case of the binary labeled datasets bin and
bin-bbox, the imbalance is not significant as True Alarms
represent 56.1% of the training set, and false alarms make up
the remaining 43.9%. However, in the case of the multi-class
labeled datasets multi and multi-bbox, the ‘‘Smoke’’
class represents 56.1%, ‘‘Clouds and Fog’’ represents 35.9%,
and ‘‘Fields and Forest’’ only 8.0%, configuring a more
severe case of class imbalance.

Typically, the two most widely used techniques to han-
dle class imbalance are undersampling and oversampling.
In undersampling, the size of the majority class is reduced
by extracting a randomized sample of the total original
set, whereas oversampling can include randomly duplicating
records in the minority class to increase its relative size.

Similarly, data augmentation can be leveraged to artifi-
cially increase the number of samples within the minority
class. Considering the nature of our dataset, image manip-
ulations were performed with horizontal flipping operations
on each ‘‘Fields and Forest’’ image, creating a duplicate
mirrored version of each. Other operations, such as vertical
flipping, or rotations, were not applied as they may disturb
the natural orientation of the original set, where the top and
bottom of each picture show the sky and ground, respectively.

The horizontal flip operation can be computed as:

FI (x, y) = I (W − x − 1, y), (2)

where I is the input image, FI is the horizontally flipped
image, W is the image’s width, and (x, y) are the pixel
coordinates.

The flipping operation was applied to the training set only,
to maintain the original distribution throughout the validation
and test sets and each of the previously generated datasets
were replicated to evaluate the impact of data augmentation
applied on the minority class Fields and Forest as it pertains
to model performance across all classes.

The augmented datasets leveled class imbalance where
in the case of binary datasets the distribution changed to
51.9% for true alarms and 48.1% for false alarms, while in
the case of multi-class datasets, ‘‘Smoke’’ class represents

TABLE 2. Class distribution for the different dataset configurations.

51.9%, ‘‘Clouds and Fog’’ represents 33.2%, and ‘‘Fields and
Forest’’ increased to 14.9%.

The distribution of the eight dataset configurations created
for model application are presented in Table 2.

IV. FIRE DETECTION FRAMEWORK
A. INITIAL TRANSFER LEARNING APPROACH
At the early development stages of machine learning
applications, starting off with simple approaches that can
quickly return results can be beneficial, as it enables a fast
output that can be examined in order to guide the workflow,
rather than investing too much time in a detailed approach
that may lead to less conclusive results [28].

In this section, a set of state-of-the-art models are used
as an initial approach to the problem of wildfire detection
observed in this research. The goal of this initial framework
is to analyze the results obtained from the various models
implemented regarding the defined datasets, to understand
the differences of each implementation and their impact on
the problem, and ultimately to select the most promising
dataset and best performing model. The models were
compiled using the Keras library with TensorFlow as the
backend, using Python 3.7.13 on Google Colab Pro running
on High-RAM Google Compute Engine with TPU backend.

Algorithm 1 transcribes the pipeline followed to
pre-process each dataset, compile and train each model,
return predictions, and output evaluation metrics, where D
represents each dataset directory, M identifies each selected
model, and C defines the classification type as either binary
or multi-class. In the sequential processes, α, β, and γ stand
for the training, validation, and test sets, respectively, µ and
ν represent the compiled model and the trained model, while
π represents the predicted classes returned.
The final classification report method will output a list

of evaluation metrics that will be referenced for interpre-
tation: Accuracy rate (Acc), Precision (Prec), Recall (Rec),
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F1-Score (F1) and False Alarm Rate (FAR). These evaluation
metrics can be computed using (3) to (7), where True
Positives (TP) are predicted fire alarms that correspond to
real fires, False Positives (FP) are predicted fire alarms that
are actually false alarms, True Negatives (TN) are correctly
predicted false fire alarms, and False Negatives (FN) are true
fire alarms incorrectly classified as false alarms.

Acc =
TP + TN

TP + TN + FP + FN
; (3)

Prec =
TP

TP + FP
; (4)

Rec =
TP

TP + FN
; (5)

F1 =
2 · Prec · Rec
Prec + Rec

; (6)

FAR =
FP

TP + FP
. (7)

Algorithm 1 Pre-Processing, Training and Testing
Models
Input: D, M , C
[α, β, γ ] = Pre-process Images (D + [train, val, test],
target size = (224, 224), rescale ratio = 1/255, batch
size = 128, C)

µ = Compile Model (M , initial weights = ’imagenet’,
optimizer = Adam, C)
if C is binary then

classification nodes = 1
activation = sigmoid
loss function = binary cross entropy

else
classification nodes = 3
activation = softmax
loss function = categorical cross entropy

ν = Fit Model(µ, train data = α, val. data = β, epochs
= 10)

π = Predict Classes (ν, test data = γ )
evalMetrics = Classification Report (π , γ )

1) DATA SELECTION
Table 3 presents a comparison of each model-dataset pairing
in terms of accuracy and false alarm rates. The best per-
forming model for each dataset configuration is highlighted
in bold, while the highest accuracy scores for each model
are underlined, in order to emphasize the outcomes of the
different data preparation strategies.

The binary bounding box strategies, with and without
data augmentation, produced substantial better results, where
Xception and DenseNet returned their highest accuracy
rates on bin-bbox, and VGG16 having its best result
with bin-bbox-aug, whereas MobileNetV2 obtained the
same accuracy rate for both, but a lower False Alarm Rate
on the augmented dataset. In terms of model evaluation,
DenseNet achieved the highest accuracy scores with all

TABLE 3. Performance comparison: Accuracy (Acc) and False Alarm Rate
(FAR) for each dataset configuration and tested CNN architecture (values
in percentage).

dataset strategies, while VGG16 consistently produced the
worst scores.

Table 4 further analyses dataset configuration strategies by
evaluating the statistical significance of the results achieved
for each option. The Pearson correlation (R-Score) resulting
from an hypothetical improvement in model accuracy using
the multi-class strategy instead of the binary approach shows
a strong negative correlation with a value of −0.736. This
negative value, combined with a very lowP-Value of less than
10−5, means that the multi-class strategy leads to statistically
significant worse results for the fire detection task when
compared with the binary classes strategy. These results can
be justified on the fact that multi-class models are forced to
learn additional features that are not indicative of the presence
of smoke, reducing their ability to discern the false alarms
when compared with binary classification models.

On the other hand, using the extracted bounding boxes for
classification has shown to be a better method when com-
pared with using the entire image. Furthermore, removing
contextual noise from multiple objects that can be present in
the wide landscape images, which in some cases include the
presence of fog and clouds in true alarm images, significantly
improves model accuracy, with a R-Score of 0.589 and a P-
Value of 0.000391 (< 0.05).
As for data augmentation, its use is less conclusive as

some models improved on these augmented datasets, while
others had worse or comparable performances. The statistical
significance tests led to a low absolute value of the Pearson
correlation coefficient (R-Score = −0.064), and a P-Value of
0.732, which means that the test is not statistically significant
(P > 0.05).
Considering this analysis for the experimented dataset

configuration strategies, further experiments have been
performed using the bin-bbox dataset configuration, as it
showed to have the most potential for achieving better model
performance.

2) MODEL SELECTION
Examining the performance metrics of the various models
applied over dataset bin-bbox, displayed in Table 5, it is
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TABLE 4. Statistical significance of accuracy improvement between the
dataset configuration strategies used (negative R-Scores mean that the
configuration strategy on the right side led to better results).

TABLE 5. Classification assessment metrics for the tested models.

apparent that VGG16 presents a significant performance
gap in relation to other models. In terms of accuracy rates,
Xception, MobileNetV2, and DenseNet returned comparable
results, with the highest score being attributed to DenseNet
at 99.3%, which slightly edges over the former two.
MobileNetV2 achieved the lowest False Alarm Rate (0.40%),
which is directly related to a higher Precision score of
99.6%. On the contrary, both Xception and DenseNet achieve
a lower Precision score, but the highest Recall of 99.6%.
This duality presents the balance between prediction quality,
which pertains to Precision, and sensitivity to the target
label, which is highlighted by Recall. F1-Score present
a single-value metric to combine both perceptions, and
DenseNet achieves the highest score of 99.4%, signifying a
better decision balance.

When applying each model to the test set, the produced
outputs reflect the prediction probability from the sigmoid
activation function, where a value close to 1 signifies a higher
probability of True Alarm, and a value close to 0 indicates
a low probability of True Alarm. To achieve a categorical
classification on the prediction probabilities, a cut-off value is
employed within a decision function. The mentioned metrics
were calculated over classifications generated using a cut-off
value of 0.5, meaning prediction probabilities above or equal
to 0.5 were classified as True Alarms, and those below
0.5were classified as false alarms. Themore deterministic the
models are, the more spread out the prediction probabilities
will be, where values will be very close to 1 or very close to
0, indicating a high level of discrimination between classes,
whereas if values are closer to the cut-off value, the models
have decreased discrimination capacity.

We can obtain a good indication of this property with the
Receiver Operating Characteristic (ROC) curve. The ROC
curve computes the ratio of True Positives Rate (TPR) over
the False Positives Rate (FPR), across different decision
threshold values. This relation can be better summarized in
a single-value metric using the Area Under the Curve (AUC),
given by

AUC =

∫ 1

0
TPR

(
FPR−1(x)

)
dx. (8)

FIGURE 6. ROC curves corner detail for the tested models.

An AUC score of 1 would indicate the model can perfectly
distinguish between classes, where all True Alarms have
a prediction probability of 1.0, and false alarms have a
prediction probability of 0.0, meaning that whatever the cut-
off value, TPR is always 100%, and FPR is always 0%.
An AUC close to 1 reveals a very good ability to distinguish
between classes, being a very important metric to evaluate.

The detail for the ROC curves displayed in Fig. 6 show
that Xception, MobileNetV2, and DenseNet all have a very
high degree of discriminative ability between classes, as these
can achieve high TPR values without compromising the FPR.
In addition, the previously identified higher Recall scores
for Xception and DenseNet in particular, match the observed
curves, as both models can surpass 0.995 TPR while keeping
the FPR below 0.05.

Analysis of evaluation metrics and subsequent selection
of the best model is subjective to the use case and the
specific needs for the problem. In the case of wildfire
detection, it can be argued that the importance of the target
label requires a higher degree of conservatism in selecting
a model that can achieve high recall levels, in order to
prioritize the identification of true alarms, and compromising
on slightly lower Precision and higher number of false alarms.
in this sense, DenseNet can be considered the most qualified
model as it consistently showed better balance between these
stances, having outputted the highest accuracy, recall and F1
scores, as well as displaying very good class discrimination
as evidenced by the AUC score.

B. SCAM-SCNN
While the advantages of transfer learning have been
previously explored, a key aspect of this method is the
implementation of tendentiously generic pre-trained filter
kernels that identify a broad range of common visual features,
resulting in models that generalize well when applied to
diverse image sets in production. On the contrary, training
models from scratch implies the training of all network
parameters without a pre-trained default base, producing
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filters that identify more specific features of the target label
used during the training process. A potential benefit of this
strategy is the use of simpler lightweight networks which
can often be more suitable than complex architectures, as the
problem scope is reduced.

In this section, a selective CNN architecture is presented,
implementing spatial and channel attention modules, trained
exclusively over bin-bbox. The goal of this network is
to capture more selective features tailored to the target
label, so to identify informative feature maps of wildfire
smoke objects and improve upon the previously trained
DenseNet model by enriching the generic feature extractors
with additional selective feature maps.

1) NETWORK ARCHITECTURE
The Spatial and Channel Attention Modularized Selective
CNN (SCAM-SCNN) was inspired by the architecture of
SBNN [9], and the Convolutional Block Attention Module
(CBAM) proposed in [12]. The network architecture consists
of 4 blocks of 2 convolutional layers followed by a Channel
Attention Module (CAM), a Spatial Attention Module
(SAM), and a max-pooling layer, where in the final block the
pooling layer is replaced with a batch normalization layer,
followed by the final output layer, as depicted in Table 6.
The convolution operation is a widely used image trans-

formation process, where a filter kernel is passed through an
input image, also denoted as the input tensor, and consists of
the matrix multiplication of the kernel with sub-regions of the
input matrix of the same size, generating a new output feature
map. This process can be generally defined as:

Bm,n = (A ∗ k) =

Wk−1∑
i=0

Hk−1∑
j=0

Am−i,n−j × ki,j (9)

where A and B represent the input and output matrices,
respectively, and k is the filter kernel. In order to obtain output
matrices with same size as the input ones, SCAM-SCNN uses
padding on each convolutional layer.

Another feature of SCAM-SCNN is the use of strides in
the first convolutional layer after a max-pooling layer. With
a stride of 2 × 2 the filter kernel shifts 2 pixels as it passes
through the input tensor, resulting in the same dimensionality
reduction as pooling layers. While pooling is a fixed
operation, introducing longer strides in the convolutional
layer can be seen as learning the pooling operation [29].
As the outputs of the final layer before the classification
layer are intended to be concatenated with the last feature
maps of DenseNet, with dimensions of 7 × 7, these need to
match in size. Strided convolutions revealed better results in
achieving this downsampling goal while keeping the network
architecture compact. With this change, the dimensions of
output tensor can be defined as:

nB =
nA − nk + 2p

s− 1
, (10)

where s represents the size of the stride. To improve
the training process and accelerate convergence, a batch

FIGURE 7. CBAM architecture.

normalization layer is introduced before the classification
layer, providing a regularization effect, and reducing internal
covariate shift [30]. This normalization step is defined as:

x̂ = Sf ·
x − E(x)

√
var(x) + ϵ

+ Of , (11)

where x̂ represents the new value of a single component, E(x)
is its mean within a batch, var(x) is its variance within a batch,
Sf is a learned scaling factor, ϵ is a small constant, and Of is
a learned offset factor.

2) SPATIAL AND CHANNEL ATTENTION MODULES
Attention mechanisms have been increasingly studied to
improve the performance of CNNs, attempting to approxi-
mate the role of attention in human perception. For example,
in the case of identifying wildfire smoke objects, this can
be noted where humans might pay attention to certain colors
and locations in the picture frame that are most informative,
focusing on the features within channels and regions to make
the decision.

The Spatial and Channel Attention Modules utilized in
SCAM-SCNN apply the design from the CBAM proposed
in [12], composed of CAM and SAM sequentially, as shown
in Fig. 7.

CAM aims at extracting the most informative feature
maps from an input F, denoted as channels, and works by
compressing the spatial dimension into two vectors Fcmax
and Fcavg of dimensionality f ×1×1 using max-pooling and
global average-pooling. These vectors are then passed to a
shared multi-layer perceptron (MLP) with 3 layers, where the
number of neurons in the input and output layers is defined
by the number of channels f , while in the hidden layer these
are set by a parameter ratio as ⌊

f
ratio⌋, where in the case of

SCAM-SCNN ratio = 8. The resulting outputs are summed
and fed through a sigmoid function that will generate a final
f×1×1 channel attention mapping vector with values between
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TABLE 6. Structure and layer’s parameters of SCAM-SCNN.

0 and 1, that is subsequently multiplied over F , generating
a refined feature block where the most informative channels
are highlighted. CAM is characterized in Fig. 7b, and can be
described as:

MC = S(MLP(MaxPool(F)) + MLP(AvgPool(F))), (12)

where S(·) represents the sigmoid function.
For the case of SAM, a similar but opposite operation

is performed, where the channel dimension of the input
F is compressed into two feature maps F smax and F savg of
dimensionality 1×hF ×wF using max-pooling and average-
pooling, respectively, where hF and wF represent the height
and width of F . The resulting feature maps are concatenated
and forwarded through a convolutional layer with a 7×7 filter,
using sigmoid as the activation function, generating a final
1×hF×wF feature map with values between 0 and 1, which
is then multiplied over input F , similarly highlighting the
most informative regions of the feature block. This module
is characterized in Fig. 7c, and can be defined as:

MS = S (Conv7×7 ([MaxPool(F);AvgPool(F)])) , (13)

where Conv7×7(·) represents the outcome of the convolu-
tional layer.

3) PERFORMANCE ASSESSMENT
In this section the performance of SCAM-SCNN is analyzed
with the results obtained from training and testing on dataset
bin-bbox, evaluating the impact of the application of
spatial and channel attention modules.

The training and testing procedures were similar to
those presented during the initial transfer learning approach
described in sec. IV-A2, applying the pipeline presented in
algorithm 1 to pre-process, train and test each model.

Table 7 represents the evaluation metrics outputted from
the classification report of SCNN and SCAM-SCNN, dis-
playing a noticeable improvement in model performance

TABLE 7. SCNN vs. SCAM-SCNN performance.

to SCNN when employing spatial and channel attention
modules. While Recall is slightly decreased from 98.8%
to 98.4%, accuracy rate improved from 98.4% to 98.9%,
Precision improved expressively from 98.4% to 99.6%,
F1-Score increased from 98.6% to 99.0%, while False Alarm
Rate decreased from 1.57% to 0.40%. The improvement of
the AUC score from .9951 to .9993 also shows an increased
discriminative ability when using SCAM layers, indicating
that the effects of spatial and channel activations add to the
model’s ability to make decisions using the most informative
spatial and channel features, resulting in a better performing
model.

In order to visualize network activations, GradCAM
(Gradient-weighted Class Activation Mapping) [31] is
employed as a visualization tool, which provides a visual
explanation to model decision, highlighting the importance
of spatial locations as it pertains to target label detection.
Fig. 8 shows the outputs of the different activation mappings
obtained using GradCAMwhere the mappings obtained from
SCAM-SCNN visibly display better target coverage when
compared to the base SCNNmodel, where the latter reveals a
higher importance over the edge regions of smoke columns,
while for SCAM-SCNN the attention modules improve the
highlighting of informative features, displaying a higher
spatial importance across the entire smoke column object.

Overall, the application of spatial and channel attention
modules positively affects model performance and discrim-
inative ability, as experiments revealed improved detection
ability whilst reducing the number of false alarms.
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FIGURE 8. Comparison of SCNN vs. SCAM-SCNN network activations:
original images (left column), SCNN activations (central column), and
SCAM-SCNN activations (right column).

Additionally, visual explainers show a more robust feature
detection ability, which demonstrates that the proposed
implementation of SCAM layers is an effective mechanism
in the scope of this use case of wildfire smoke detection.

Taking into consideration the observed results, the follow-
ing section will present the implementation of dual-channel
networks by combining SCAM-SCNN with the previously
trained DenseNet model. As SCAM-SCNN is a novel
architecture trained from scratch, the expectation is that
the features extracted in the convolution layers of the
network will reveal selective characteristics optimized for
the task of wildfire smoke detection portrayed by the

FIGURE 9. Simplified structure of the dual-channel CNN.

image set utilized during training. Through concatenating the
resulting feature maps of each model, an attempt is made at
enhancing DenseNet by introducing feature diversification,
combining selective and generic features, increasing the
information passed to the classification layer, aiming to
improve performance.

C. PROPOSED DUAL-CHANNEL CNN
The proposed Dual-Channel CNN combines the previously
described DenseNet and SCAM-SCNN models as branches
of a common network, fusing the outputs of the last
layer of each network before the classification layer, where
DenseNetF and SCAM-SCNNF represent the feature extrac-
tion parts for each network (i.e., the original CNN models
without the last fully-connected layers). The concatenated
features are then subject to a new classification layer as
represented in Fig. 9.

As each branch network was previously trained indepen-
dently, the generated feature maps contain all the information
used by each model alone for the identification of the target
label where both models revealed satisfactory performance.
Training both models simultaneously within the dual-channel
architecture would lead to complimentary feature extractions
and diminish the benefit of the diversification introduced
with the combination of features extracted from individually
trained models.

As previously detailed, DenseNet with transfer learn-
ing extracts more comprehensive generic features, while
SCAM-SCNN focuses on selective detailed features of
wildfire smoke. This diversity of features can be visually
interpreted by observing the outputs of the first convolution
layer of each model and comparing the feature map
activations. An example is depicted in Fig. 10.
As the outputs of the first convolutional layer still

maintain a noticeable resemblance to the original input image
shown in Fig. 10a, a comparison between each convoluted
image is easily traced back to its original features. The
more wide-ranging and varied features of DenseNet are
observable as the resulting feature maps highlight different
spatial elements, identifying distinct features of the same
input image, while SCAM-SCNNmore consistently displays
features that explicitly target the smoke column object, thus
being perceptible how each model is behaving differently and
employing opposing feature extracting strategies.

This visualization illustrates the back works of each
model, and clearly portrays the different features obtained
from each model, and how combining them can enrich the
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FIGURE 10. Feature map visualization of an example image (a) for the
first convolutional layer of DenseNet (b) and SCAM-SCNN (c).

information base used in the classification layer to produce
better predictions.

1) PERFORMANCE ASSESSMENT
The performance of the Dual-Channel CNN was analyzed
and compared to that of its branch networks, using the
bin-bbox dataset configuration for training the classifi-
cation layer portion of the network, evaluating the results
obtained and effectiveness of the dual-channel strategy.

Table 9 displays the performance metrics attained from the
classification report and demonstrate the superiority of the
proposed Dual-Channel CNNmodel, having achieved signif-
icant improvements from the branch models. By combining

TABLE 8. Performance comparison between the proposed dual-channel
CNN and each of its CNN components.

DenseNet with SCAM-SCNN, the dual-channel model
improved the highest accuracy rate of DenseNet from
99.3% to 99.7%, while having a substantial decrease in
FAR to only 0.20%. Precision, recall, and F1-scores also
improved from both branch models to 99.8%, 99.6%, and
99.7% respectively, while AUC matches the highest score of
0.9999 obtained with DenseNet.

While DenseNet showed particularly good coverage of true
alarm samples, with a Recall score of 99.6%, it also showed
a higher False Alarm Rate of 1.01%. SCAM-SCNN on the
contrary revealed lower sensitivity, with a Recall score of
98.4%, but greater specificity and prediction quality, with a
Precision score of 99.6%. The proposed Dual-Channel CNN
not only achieves a good compromise between sensitivity and
specificity, but also retains or improves the score for each
individual metric, indicating that the combination of the two
models increases overall robustness and reliability for true
alarm recall and false alarm rates.

The achieved results clearly show a strong benefit
in employing a dual-channel strategy, particularly when
combining a robust transfer learning-based model, such as
DenseNet, with an effective detail selective model such as
SCAM-SCNN, as the combination of features improves upon
each singular branch model by harnessing the advantages
of both strategies, and further bolstering generalization and
detection abilities.

2) TIME-OF-DAY-BASED DECISION ADJUSTMENT
As previously evidenced in Fig. 4, false alarms occur within
the early morning hours of the day with higher frequency,
predominantly between 08:00 and 11:00. In contrast, true
alarms are much more common between 10:00 and 17:00.
As stated in sec. III-A, this can be explained with the
understanding of the two types of false alarms reported
having a strong association to morning hour climatic events,
when fogs and lower clouds are common due to the
temperature change. Shadowing effects from the presence of
hills and vegetation are caused by a lower altitude of the sun.

In order to take advantage of this knowledge, a very
simple strategy was experimented: to increase the classifier’s
decision boundary during the early day hours, i.e., the
decision threshold for True Alarms is increased for the early
morning since a higher frequency of false alarms is expected
to occur during such time of the day.

D(t) =

{
0.6 if t < 10 :00AM
0.5 if t ≥ 10 :00AM

(14)

Applying a time-based condition to the decision functionD
can improve model robustness as an exogenous variable that
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TABLE 9. Performance comparison using and not using a
time-of-day-based decision (TD) threshold.

FIGURE 11. Accuracy vs FAR on smoke detection, for each tested model.

is not contemplated by the network is introduced, with the
possibility of further refinement with more in-depth studies
of time and climatic factors across a larger sample size, with
no overhead to the model itself.

Table 9 also compares the performance of the proposed
Dual-Channel CNN with and without the decision boundary
adjusted as function of time. Despite representing the correct
re-classification of only one previously misclassified true
alarm, the potential impact of improving prediction quality
with time-based conditions is apparent, as the accuracy rate
was further improved to 99.8%, while false alarms did not
occur on the test set.

Fig. 11 depicts a plot representing the accuracy and False
Alarm Rate for all tested models, using the bin-bbox
dataset. A remarkable increase in model performance is noted
between the dual-channel based architectures (DC-CNN)
and the remaining models, especially for the Time-adjusted
DC-CNN architecture using the decision function in (14).

V. CONCLUSION
The work developed in this paper answers the initially
posed research question – ‘‘Is it possible to improve the
overall accuracy and to reduce the false alarm rate of
an automatic wildfire detection system by applying Deep
Learning methods?’’ – and demonstrates that there are
significant benefits to the application of Deep Learning
methods to achieve improved performance, as evidenced by
the results obtained and detailed in the previous section: with-
out time-based decision function adjustments, the proposed
solution achieved an accuracy of 99.7% while keeping a low
false alarm rate of 0.20%.

Experimentation with several data preparation strategies
extracted valuable insights on the effects of binary and
multi-class labeling, full image and bounding box image
inputs, as well as data augmentation techniques, highlighting

important considerations on its impact in model performance.
Finally, on the perspective of modeling strategies, the com-
parisons between several Deep Learning-based classification
models demonstrated the advantages and drawbacks of each
implementation, primarily on its impact in feature extractions
and performance implications.

One key aspect of this solution is the integration of
a rule-based detection algorithm with a posterior Deep
Learning model. The literature review identified several
implementations of similar rule-based processes to extract
suspect smoke regions to improve model performance,
showcasing that this combination resulted in a higher
reliability and overall performance for wildfire detection
than fully Deep Learning-based systems. Considering the
main issue of low specificity identified in the CICLOPE
detection system, it was shown that the application of Deep
Learning-based models over the universe of fire alarms can
act as a secondary filtering stage to significantly reduce the
number of false alarms without compromising the true alarms
recall rate inherent to the primary rule-based decision system.

As for future directions, it may be worth to further optimize
the existing architecture by tuning up its hyperparameters,
experimenting with different network combinations and to
investigate the use of attention mechanisms specifically
designed for the detection of smoke. These adjustments may
potentially improve accuracy and reduce false alarms further.

An important step to perform in the near future is to
conduct large-scale field tests and evaluate the proposed
solution within the actual CICLOPE system. Additional
work may be required to ensure real-time operation of the
proposed model, namely possible adjustments oriented to
the existing computational resources and the implementation
of an integration strategy between the existing rule-based
system and the deep learning model that ensures smooth data
flow and efficient operation.

It can also be worth to evaluate the generalization of
the proposed approach to other domains. While the initial
deployment was applied to the specific context of the
CICLOPE project, the inherent flexibility of the proposed
solution can be easily applied to potentially enhance other
rule-based anomaly detection tasks in different contexts. Its
adaptability not only accelerates the integration process but
also maximizes the solution’s potential to contribute value
across different domains.
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