Chapter 9 )
Data and Modelling for the Territorial Shethie
Impact Assessment (TTA) of Policies

Eduardo Medeiros

Abstract Territorial Impact Assessment (TIA) is still a ‘new kid on the block’ on
the panorama of policy evaluation methodologies. In synthesis, TIA methodologies
are thematically holistic and multi-dimensional and require the analysis of a
wide pool of data, not only of economic character but also related with social,
environmental, governance and planning processes, in all territorial scales. For that,
TIA requires a wealth of comparable and updated territorialised data. Here, data
availability is often scarce in many of the selected analytic dimensions and respec-
tive components, to assess territorial impacts in a given territory, in particular in
the domains of governance, planning and environment. In this context, this chapter
presents a list of non-traditional potential indicators which can be used in existing
TIA methodologies. Moreover, the analysis was able to show how important can
be the use of non-traditional data, to complement mainstream statistical indicators
associated with socioeconomic development trends. However, for the interested
scientist, the dispersal of existing non-traditional data per a multitude of sources
can pose a huge challenge. Hence the need of an online platform which centralises
and updates non-traditional data for the use of all interested in implementing TIA
methodologies.

9.1 Introduction

Academia and public and private entities are being flooded with ‘tsunamis’ of
traditional and non-traditional data for their research. This data is collected via
multichannel business environments (Baesens, 2014) and via, for instance, ‘sensors,
smartphones, internet, social media, and administrative systems’.1 The central
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question for this chapter is how and which available non-traditional data can
increase the effectiveness of the Territorial Impact Assessment (TIA) (see Medeiros,
2020b, 2020d) of projects, programmes and policies, via existing or novel TIA
methodologies. This chapter is written in a necessary condensed and focused
way and is guided by the following three policy questions raised by European
Commission (EC) Joint Research Centre (JRC) (Bertoni et al., 2022):

1. How can CSS help evaluate the measure and its territorial impacts, either in an
ex ante way (using simulation methods) or in an ex post one (using data science
ones)?

2. Which sources of data could be used to better consider EU territorial heterogene-
ity?

3. What are the challenges of this approach, for example, how can we establish
the correct level of spatial granularity, trading off the optimality of the targeted
policy measure with the costs/timeliness of the decision?

All these questions are, in our view, relevant and reflect emerging axioms on
the importance of considering the territorial dimension in analysing and assessing
the implementation of policies, at different policy phases (ex ante, mid-term, and
ex post), that have begun to permeate the policy evaluation discourse over the past
decades. The first question provides an insightful emphasis to debate the potential
positive and complementary contribution of non-traditional data to analyse all policy
phases of TIA, in order to improve its effectiveness. The second aims to identify con-
crete sources of non-traditional data which can complement mainstream traditional
data when implementing a TTA methodology. This is particularly relevant for TIAs
since they should consider a broad and comprehensive set of indicators covering all
dimensions and components of territorial development (Medeiros, 2014a). Finally,
the third question touches a critical foundation of the implementation of TIAs: how
to identify the appropriate territorial level for the TIA analysis and the dimensions
and components for the analysed policy, in order to increase the efficiency and
effectiveness of TIA evaluations. All these questions will be further scrutinised
in Sect. 9.3. In this regard, and based on past TIA evaluations (Medeiros, 2014b,
2016a, 2017b), non-traditional data can provide crucial inputs on components
related to the territorial governance and spatial planning dimensions of territorial
development, which are difficult to obtain via traditional data sources.

9.2 TIA: A Literature Review

What is and why TIAs? These fundamental questions are answered in existing
literature in various manners, from the first known report which unveiled the first
TIA model (TEQUILA—see ESPON 3.2, 2006), through to a recent book which
explains each one of the existing TIA methodologies (Medeiros, 2020d). From the
first to the last, no more than 15 years have passed. This formally makes TIA
methodologies ‘new kids on the block’ of policy evaluation (Medeiros, 2020c).
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Table 9.1 TIA methodologies and main pros and cons
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Name Pros Cons

TEQUILA First TIA. Robust from a Does not apply counterfactual
methodological standpoint evaluation analysis

STEMA Very complete set of indicators | Relatively simplistic and

difficult to spatialise

EATIA Goes beyond the use of Weak from a methodological
negative/positive impacts rationale—pain free

TARGET_TIA Flexible, robust, sound and Is not to be used quickly if
applies counterfactual analysis robust impact scores are needed

QUICK_TIA Presents online attractive Does not really produce reliable
cartography at several spatial and sound impact scores
scales

TERRITORIAL Based on a wide participatory Largely dependent on the

FORESIGHT engagement—future trends knowledge of participants

LUISA Produce various scenarios of Largely dependent on the

TERRITORIAL regional development statistical data

MODELING

Source: Own elaboration

Mostly driven by the ESPON programme, the TIAs are now entering a more mature
phase, which is testified by several methodological upgrades from some of the
ESPON TIA methodologies (TEQUILA, STEMA, etc.—see Tables 9.1 and 9.2).
Even so, current ESPON TIAs are profoundly preconditioned by their erroneous
rationale which means it is possible to obtain a valid and sound TIA score in a quick
manner (Medeiros, 2016c¢).

Inevitably, any state-of-the-art literature review of TIA methodologies must start
with the first one: the pioneering quantitative TIA model known as TEQUILA.
This multi-criteria model is supported by a quantitative database on EU NUTS
3, to assess ex ante impacts of EU directives. According to the authors of this
methodology, the criteria to select the TEQULA data refers to the main dimensions
of territorial cohesion, territorial efficiency, territorial quality and territorial identity,
and their sub-dimensions, measurable by multiple indicators (Camagni, 2020),
particularly economic-related ones (Table 9.2). Also devised within the first ESPON
programme, the STEMA TIA model is based on an original qualitative-quantitative
methodological approach, returning ex ante and ex post impact scores. Just like the
TEQUILA model, the STEMA uses traditional sources of data, mostly related to
the economic dimension of development (Prezioso, 2020). The same goes for the
ESPON EATIA (Marot et al., 2020) and the simplified QUICK_TIA (Ferreira &
Verschelde, 2020). Crucially, all these four ESPON TIA models are supported by
existing sources of quantitative databases at the EU level (mostly NUTS 2 and 3),
collected from several sources and organised in the ESPON database, which has data
related to agriculture and fisheries, economy, education, environment and energy,
governance, health and safety, information society, labour market, population
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and living conditions, science and technology, territorial structure, transport and
accessibility.

Soon after the creation of the first ESPON TIAs, other TIAs or similar policy
assessment methodologies were designed to assess territorial impacts. The first
was the TARGET_TIA which, unlike the ESPON TIAs, was specifically designed
to assess the ex post impacts of EU Cohesion Policy. Just like the TEQUILA,
however, the TARGET_TIA selected the quantitative indicators based on the con-
cept of Territorial Cohesion, but with different analytic dimensions (socioeconomic
cohesion, territorial governance and cooperation, polycentricity and environmen-
tal sustainability). It uses mainly traditional sources of data for socioeconomic
and environmental dimensions. This data is complemented with non-traditional
statistical sources of data collected for the dimensions of cooperation/governance
and polycentrism, in databases like the INTERACT KEEP database and other
sources available in different national and EU entities. In the meantime, the TAR-
GET_TIA was already tested in specific EU programmes like the EU INTERREG-A
(Medeiros, 2017a). For this case, the selected quantitative data referred to the two
main dimensions of cross-border cooperation (territorial development and reduction
of border barriers) and respective components. In this regard, it goes without saying
that the collection of data on persisting border barriers required the access to non-
mainstream sources of data, which are available in distinct regional and national
entities.

Finally, the two remaining types of TIA methodologies mentioned in this chapter
are designed for specific policy evaluation contexts. The first, known as Territorial
Foresight, is used when the analysis of long-term developments is required. For this,
qualitative data is collected via questionnaires, comprising three elements: content,
geography and time (Bohme et al., 2020). Conversely the LUISA model ‘is based on
the concept of ‘land function’ for cross-sector integration and for the representation
of complex system dynamics’ (Lavalle et al., 2020). It is fundamentally supported
by territorial indicators collected from several external models and presented via
an online tool: the Urban Data Platform. This means that it explores higher spatial
granularities than other TIA tools, since it provides information at the urban level.

9.3 Computational Guidelines on TIA

9.3.1 The Main Contribution of Computational Social Science
Jor Territorial Impact Assessment

As seen in the previous section, existing TIA methodologies are supported by
traditional sources of quantitative data. These are retrieved from EU national
and sometimes regional statistical entities such as the Eurostat, ESPON and JRC
databases. In some cases, specific data is obtained directly from non-mainstream
data sources, especially for measuring components associated with governance and
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spatial planning dimensions of territorial development. In this context, there is a
wide scope for incorporating non-traditional sources of data (see McQueen, 2017)
in the implementation of TIA methodologies, in the following domains.

9.3.1.1 Complementarity

Territorial impact assessment analysis is generally related to analysing policy
impacts on territorial development or territorial cohesion trends. It can, of course,
also tackle other policy arenas, such as territorial cooperation or territorial inte-
gration (on territoriality, see Medeiros, 2020a). The problem here is that, as a
holistic concept, territory encompasses basically all aspects related to the concept
of development (Potter, 2008). This scenario implies a constant struggle to find,
in traditional sources of data, a balanced set of indicators for all the analytical
dimensions of, for instance, territorial development (Medeiros, 2019), hence, the
potential benefits of usage of non-traditional data (e.g. digital footprint, digital
tracking data, etc.) to complement largely incomplete traditional sources of data
in implementing a TIA methodology. Here, besides the economic-related pool of
statistics, which are normally relatively abundant at several territorial levels, the
remaining policy dimensions of development can be enriched by non-traditional
sources of data. These include social statistics, like ‘quality of life’ indicators, which
often depend on an individual perception, which can be acquired via enquiries made
with mobile phones. Furthermore, environmental-related data, such as the potential
‘carbon footprint’ of each individual in a given territory, can be acquired by means
of online questionnaires via mobile phones or even by data on road congestion and
public transport data. In the latter case, online applications such as the Flightradar24
(flightradar24.com) or the UCL Energy Institute portal to visualise the world’s
shipping routes can be used to estimate a carbon footprint impact score for each
intended territorial scale. These are just a few examples that can also be applied in
other dimensions of territorial development, such as territorial governance (e.g. to
identify social engagement and participation in a given domain via the analysis of
social network geo-tagged information) and spatial planning (e.g. to determine the
compacity of urban areas via the visualisation of Google Maps).

9.3.1.2 Real-Time Information

One of the main advantages of non-traditional sources of data is the possibility
to analyse territorial flows of data in real time. One aforementioned example is
Flightradar24, which presents the current location of all commercial airplanes at
any given time. The same goes for data which can be collected from some public
transport operators and mobile phone companies tracking the exact location of
individuals in a real-time context. This data, once aggregated and anonymised,
can be particularly useful, for instance, to assess cross-border flows, which are a
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crucial element to understanding the territorial impacts of cross-border cooperation
(Medeiros, 2018), or urban mobility processes (Pucci et al., 2015).

9.3.1.3 Spatial Accuracy

Another advantage related to digital tracking is the collection of highly accurate
spatial data (Christl & Spiekermann, 2016) which is normally absent in traditional
sources of data. However, this data collection should comply with the right of
citizens to minimise their digital footprint (Bronskill & McKie, 2016). One domain
in which spatial accuracy for TIA is particularly relevant is the analysis of all
sorts of flows, especially in urban areas. As Cao (2018) puts it: ‘data science can
also fundamentally change the way political policies are made, evaluated, reviewed
and adjusted by providing evidence-based informed policy making, evaluation, and
governance’.

9.3.2 Sources of Data Towards an Analysis of EU Territorial
Heterogeneity

I still remember the wise words of a former university professor on research
methodologies stating that ‘before you think you will not find the data you need,
try hard and you will be amazed on what data is out there’. Indeed, data of all kinds
and sources is waiting to be found in a myriad of places, to be treated and used
in various studies. In the case of TIAs, it would appear reasonable to surmise how
important it is to have access to a wide pool of updated and georeferenced data at
several territorial levels and at several policy domains. In this regard, the writing
of this particular chapter confirmed the premise that it is possible to access a wider
pool of data to be used in TIA methodologies, to complement the ones commonly
available in traditional data sources (regional, national and EU statistical entities
and databases).

What is more striking, as seen in Table 9.3, is that it was possible to find
alternative non-traditional sources of data that have already been explored and
presented in scientific literature. These data covers basically all dimensions and
respective components of a central concept for elaborating TIA analysis: territorial
cohesion. Here, the economic-related indicators were basically the exception as
regards the availability of relevant non-traditional data which can be used to assess
territorial cohesion trends in a given territory. Also, it goes without saying that
what this research found does not necessarily equate precisely to all potential non-
traditional indicators which can eventually be found and applied in assessing each of
the territorial cohesion analytic components. Moreover, many other non-traditional
data sources can be found and used to analyse other topics which can be assessed
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via TIA methodologies, such as cross-border cooperation programmes, and urban,
rural or regional development policies, among several other policy domains.

The selection of the territorial cohesion concept (Medeiros, 2016b) serves as a
concrete and optimal example to explain the potential selection of sources of non-
traditional data towards an analysis of EU territorial heterogeneity. Firstly, territorial
cohesion is a multi-dimensional concept which encompasses a wide array of policy
arenas, which can, in its own right, be also subject to a stand-alone TIA analysis,
as is the case of environmental sustainability-related policies. Secondly, territorial
cohesion can be analysed at different territorial levels, and some of them, especially
at the urban and local levels, can greatly benefit from the new spatial granularity
provided by some of the already available non-traditional sources of data.

In detail, Table 9.3 provides at least one example of a potential indicator and
respective data source which can be used to assess most of the identified territorial
cohesion components. This is particularly valid for analysing social cohesion,
environmental sustainability, territorial governance and cooperation and trends in
morphological polycentricity. A large part of these novel and non-traditional data,
which can be used as complementary to existing traditional data, is linked to mobile
technologies (i.e. phones). Due to the large amount of presented examples, a more
detailed explanation of each one of these sources of alternative data can be found
on the presented literature references. One can, however, highlight the tremendous
possibilities provided by mobile technologies to study commuter flows using public
transport in a given territory, which can deliver a very precise location at different
times of the day, and even real-time information. Another example is the collection
of data from certain operators on the production and use of renewable sources
of energy at any given time, in different locations. This data can be particularly
useful since traditional sources of statistics do not yet provide detailed information,
per territorial sub-national unit, on the production and use of renewable energy.
Most instructive in the polycentricity analytic domain of territorial cohesion is the
possibility to use geospatial data sources to assess the degree of urban compactness,
which is otherwise difficult to analyse by means of traditional sources of data.
Finally, it is interesting to see the number of digital sources of information which
can be used to analyse and measure governance and cooperation-related analytic
components such as social participation and interaction. How far and how this data
is spatially detailed and how it can be updated is, however, a discussion topic for
subsequent analysis.

9.3.3 Main Challenges on Using Non-traditional Sources
of Data on Implementing TIA Methodologies

The previous topic unveiled a wealth of non-traditional sources of information to
implement TIA methodologies, mostly based on the use of territorial cohesion
as a central concept for the TIA analysis, as would be the case in assessing the
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territorial impacts of EU Cohesion Policy in a given territory. In almost every way,
however, the use of these ‘novel and digital’ sources of data comes with known
challenges, mainly related to the goal of establishing the necessary correct level of
spatial granularity provided by spatial analysis, as is the case of a TIA. Alike and
complementary challenges can be exposed when trying to find and use such sources
of data.

9.3.3.1 The Relevance of the Sample

Collected data for TIA studies must be sound, reliable, comparable and georefer-
enced. As such, it is crucial that non-traditional data selected for TIA methodologies
represent a relevant number (or sample) of the population (individuals, entities) on
several territorial levels (from local to national if possible). Furthermore, existing
data should be regularly updated, at least each year. For that, individuals and entities
which are asked to provide their positions via mobile or non-mobile technological
platforms should be convinced of the common benefits to change policies from
transmitting the requested information on a regular basis.

9.3.3.2 Precise Location and Low Cost of Collected Data

Entities which use digital technological means to gather data should provide the
produced data at distinct spatial granularities preferably via a free or low-cost
online framework. This is, of course, challenging, particularly in establishing the
correct level of spatial granularity and optimality of the targeted policy measure
and costs/timeliness of the decision. These challenges depend on what policy is
being assessed via a TIA methodology. In the case of assessing EU cross-border
cooperation programmes, for instance, the level of spatial granularity would require
the use of EU NUTS 3-related data. In this case, the cost and time associated with
the acquisition of non-traditional data on cross-border commuting for each border
NUTS 3, for instance, could be financially and timely viable in view of the analytic
added value it would provide to the overall TIA analysis, based on our experience
(Medeiros, 2017a). Indeed, one of the potential advantages of using data collected
via the activation of the GPS location of mobile devices, or via digital questionnaires
requesting the exact location of the individual, is the possibility to produce precise
spatial analysis, which is vital for analysing certain territorial processes, such as
metropolitan and cross-border commuting patterns.

9.3.3.3 Easy Access and Real-Time Data

One of the tantalising challenges associated with accessing non-traditional data
sources is its dispersion by a myriad of different sources. In this regard, already
existing statistical entities such as Eurostat and national statistic entities could
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centralise non-traditional data sources in their existing online platforms for data
consulting. This would facilitate the access to data to all interested. Another possi-
bility is to have an internet platform with links available to non-traditional sources
of data divided by policy domains. Some of these sources are already provided
on internet sites and a few demonstrate quite interesting real-time spatialised data
(e.g. Flightradar24). To have a platform with the collection of all available real-
time spatialised data sites would significantly reduce the time and, inevitably, costs
associated with the search for non-traditional data to elaborate a TIA.

9.4 The Way Forward

In the context of policy evaluation, TIAs are relatively new. A cursory glance
across existing TIAs also confirms their continuous modification and perfection
process towards improved effectiveness in assessing the main ex ante (mostly) and
ex post territorial impacts of projects, programmes and policies. In this evolving
methodological context, the scientific relevance of using non-traditional data is par-
ticularly important for TIA, for several reasons. Firstly, by covering all dimensions
of territorial development, TIAs require a wide set of comparable territorialised
data which are often difficult to get via traditional data sources (regional, national
and European statistic entities). In this regard, it is routinely contended that some
dimensions and respective components of territorial development, such as territorial
governance and spatial planning, have limited comparable and spatialised data,
which can complement abundant data from socioeconomic development-related
components. Secondly, non-traditional sets of data do not embrace real-time and
spatial accuracy qualities, which can be of great value when assessing territorial
impacts of certain policy areas, such as cross-border cooperation processes.

When contemplating the potential advantages of using non-traditional data in
TIAs, which include their complementarity with traditional sources of data and the
possibility of using real-time information and more detailed spatial accuracy, it is
easy to demonstrate the potential advantages for existing TIA methods to not only
provide more comprehensive and coherent TIA impact policy scores but to also
improve overall policy forecast accuracy, both at ex ante and ex post evaluation
phases. There are several open avenues for research on how to conciliate the use of
traditional and non-traditional data to be used in TIA methodologies, which is still
very much absent in current TIA related literature. There is a wealth of academic
literature on the potential use of non-traditional data in many aspects of territorial
development.

Amid this ever-growing body of literature discussing the potential use of non-
traditional data for policy evaluation in specific policy areas, this chapter compiled,
for the first time, a collection of potential non-traditional indicators, proposed in
academic literature, which can be used in all existing TIA methodologies. There
are, for sure, far more such indicators of this kind which can complement and
complete the use of traditional datasets to be used in TIA analysis. What is
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striking are the tremendous possibilities to obtain non-traditional indicators for
analysing the dimensions and components of territorial development as normally
there are fewer options available with traditional data. It was indeed, a great surprise
that it was possible to find a myriad of potential non-traditional indicators in
components related to the analysis of, for instance, territorial governance, which
imply wider possibilities to better understand social participation and involvement
related processes. The same goes for increasing possibilities to better understand
spatial planning trends via the analysis of specific components such as commuting
flows, detailed analysis of demographic density and urban compactness. Likewise,
the analysis of environmental sustainability trends on related components can be
greatly improved using novel non-traditional data in areas such as renewable energy,
environmental quality and sustainability. But even domains which are normally
relatively robust in terms of data availability, such as the economic and social
indicators, can be complemented by existing non-traditional sources of data in
certain domains such as innovation, entrepreneurship, education, health, culture and
security.

I have to admit that, prior to writing this chapter, I was not fully aware of the
sea of possibilities offered by the potential use of non-traditional data indicators
which can be used by TIA methodologies. Hence, what this chapter offers to the
interested readers is a necessarily short and simplified introduction to the potential
advantages of using non-traditional data when implementing TIA methodologies,
as well as a wide number of potential non-traditional indicators and respective
literature. Future analysis can detail even more the availability of such types of
data to be used in assessing the territorial impacts of policies. Given the speed in
which science evolves nowadays, I would not be surprised if 10 years from now, the
number of non-traditional indicators that could potentially be used for TIA analysis
has grown exponentially. But more importantly, in our opinion, existing and future
sources of non-traditional data should be compiled on a regular basis and formatted
in a sound, reliable, comparable and georeferenced manner, to be used in TIAs. By
implication, these novel data should be easily accessible in online platforms and
preferably free of charge, so they can be easily collected and used by all interested.
In this regard, the EC can play a vital role in defining norms and regulations similar
to the ones used for traditional data and use entities such as Eurostat and the JRC, as
platforms to make it available to the general public in an organised manner, not only
in datasets but also via Web Geographical Information Systems presenting real-time
information.

To some extent, data science and technology are at the heart of an ongoing
scientific and technological revolution and globalisation transformation. Even more
starkly, the past decades saw a drastic change in data availability for policy evalua-
tion. Indeed, around 30 years ago, the implementation of a TIA would be almost
impossible since comparable spatialised data only existed for certain social and
economic indicators. This means that it was only possible to assess socioeconomic
impacts of a given policy. Instead, territorial impact analysis implies a balanced
collection of not only socioeconomic but also environmental, governance and spatial
planning related indicators. This context explains why TIA analyses are relatively
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recent. They gravely depend on data availability in several policy domains. For all
involved in territorial analysis and specifically in implementing TIA methodologies,
data availability is still a major challenge. This is particularly evident for ex post
TIA analysis which require a crucial use of comparable quantitative data to verify
territorial trends of the analysed territory using a wide set of indicators.

By proposing at least one potential non-traditional data indicator for almost all
the components of territorial cohesion, to be used on TIA analysis, this chapter
underlines a rosier foresight for TIA evaluations, no matter which methodology
and selected time framework (ex ante, mid-term or ex post). This crucial positive
implication of using non-traditional sources of data to implement TIAs in a more
effective manner remains, however, to be seen in a practical manner, since there
are still several challenges ahead to make them usable in scientific research, as
previously mentioned. These challenges are also rooted in pre-conceptions related
to the potential unreliability and incomparability of certain non-traditional data
sources. Even so, the potential gains from using them for territorial analysis are
evident. The idea, for instance, of using data from mobile phones and related
mobile sources, to analyse metropolitan and cross-border commuting patterns is
widely appealing for policy makers and evaluators. Similarly, data obtained from
satellites can provide a very detailed spatial granularity, often absent from traditional
sources of data. Hence, the use of programmes or software to automate the analysis
of territorial impacts (programmatic scope), with a complementary use of non-
traditional sources, heralds a battery of choices which are widely promising, but
that are yet to be fully understood and tested. This is an appealing testing ground
for future research for all involved in TIA implementation.
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