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Abstract. The adoption of more environmentally friendly and sustainable fleets 

for last-mile parcel delivery within large urban centers, such as e-cargo bikes, has 

gained the interest of the community. The logistics infrastructure network, had to 

adapt to the requirements of this new type of fleet, and micro-hubs and nano-

hubs emerged. In this paper we tackle spatiotemporal characterization of e-cargo 

bike fleet behavior, by conducting a data centered case study where we explore 

data from Yoob, a last mile delivery e-cargo bike logistics startup that operates 

in the Lisbon area and outskirts. We also address the identification of potential 

expansion locations to the establishment of new hubs. Our data was collected 

during a 4-month period (January to April 2022). By adopting state-of-the-art 

data science and machine learning techniques, and following the CRIPS-DM data 

mining method, our innovative approach discovered five clusters that are able to 

characterize the Yoob fleet, with variations in distances traveled, times, trans-

ported volumes and speeds. In the perspective of expanding Yoob's e-cargo bike 

network, three new locations in Lisbon were signaled for potential new hub in-

stallation. To the authors knowledge this is the first study of this kind carried in 

Portugal, bringing new insights in the field of last-mile logistics. 

Keywords: e-cargo bikes, micro-hub, K-Means, last-mile logistics. 

1 Introduction 

The impact of urban logistics and logistics networks in urban mobility of the large cities 

are increasingly discussed by policy makers and logistics operators [1]. These last ones, 

along with service providers are beginning to introduce more environmentally friendly 

vehicles into their fleets. E-cargo bikes are one of the most widely implemented electric 

powered vehicles for deliveries within urban centers [2]. 

This study of based on data generated by e-cargo bike urban logistic operator, allows 

us to understand and find patterns and dynamics in the functioning of E-cargo bikes in 

urban centers, taking the example of the Lisbon case study. 
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1.1 Motivation and Topic Relevance 

Performing last mile delivery with less impact on urban mobility in a sustainable and 

ecological way is the main goal of Yoob. This startup is a delivery logistics company 

operating in Lisbon's urban center, and it is the first of its kind operating in the city, and 

in Portugal.  Operations started in the fall of 2021. At the time of this article writing, 

Yoob has a fleet of ten e-cargo bikes and two e-vans supported by five logistic hubs 

spread (referred to as micro and/or nano-hubs) throughout the city, including the city 

center. With the growth of their operations in the city, the need arose to get more in-

sights on the behavior patterns of Yoob’s e-cargo bike fleet. This data centered study 

provides insights for better strategic decisions for Yoob’s future logistic operations and 

expansion of its network. 

1.2 Research Questions and Objectives 

This study aims to analyze and visualize the behavior patterns of e-cargo bike fleet 

based on anonymized real time data of a logistics company, collected in Lisbon from 

January 2022 to April 2022. It also intends, based on collected data, to evaluate the 

optimal sites for the new hubs locations to expand the e-cargo bike delivery area in 

Lisbon. Therefore, the following research questions are addressed by our research: 

RQ1: How can we characterize the spatiotemporal traffic of the last mile logistic 

distribution performed with the e-cargo bike fleet, taking into consideration open data 

of the city and data collected during the performed routes? 

RQ2: Based on the fleet behavior and the patterns detected, what are the best possible 

locations for the micro-hubs or nano-hubs expansion? 

1.3 Structure 

This paper is organized into four sections. In section 1, we introduce the topic context, 

motivation and relevance, and we raise our research questions and objectives. In section 

2, we present a literature review by using the Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses (PRISMA) methodology [3]. In section 3, we apply the 

CRoss Industry Standard Process for Data Mining (CRISP-DM) [4] methodology to 

our case study, presenting the results of each phase. Finally, in section 4, we present 

and discuss our conclusions, limitations, and future work. 

2 Literature review 

2.1 Methodology 

PRISMA [3] is a standard methodology for generating systematic and objective find-

ings from literature reviews. It is an approach that assisted us in describing literature 

findings, as well as to contribute to our goals.  

2.2 Results 

To kick start PRISMA in our systematic literature review (SLR), we run the follow-

ing logical query on academic data repositories: ("e-cargo bikes" OR "electric-assist 

cargo bicycles") OR ("micro-consolidation hubs" OR “hub location”) OR ("Last mile 



3 

logistic" OR “urban logistic”) OR ("spatial patterns" AND "data mining"). 34 articles 

met the eligible requirements. 

Analyzed literature methods applied strong emphasis on visualization, with focus on 

study and detection of transportation traffic patterns [10]–[19]. K-means [10], [11], [20] 

was used to perform clustering analysis regarding travel activity for taxis and bikes and 

to find the places that gave rise to shorter travel distances. DBSCAN was implemented 

to found travel paths made by users of public transportations [12] and to study private 

car trajectories in the city [15]. In the decision taking for hub location, the two principal 

algorithms implemented were Genetic Algorithm [2], [21] and PROMETHEE [20], 

[22]. 

Moreover, we found that the study of e-cargo bikes is still very limited and focused 

on the scope of environmental impact and benefit of cargo bike usage. Very few papers 

analyzed the behavior and performance patterns of last mile delivery of e-cargo bikes 

in urban centers. The importance of using spatiotemporal analysis in comparison to 

traditional data mining approaches that consider instances to be "distributed equally 

and independently", is due to the possibility to find existing links between the various 

instances of available data in space and time [23]. Ignoring these connections can lead 

to misinterpretation and results that are difficult to understand [18], [23]. 

We observe homogeneity in the applied spatiotemporal methods. The clustering 

technique for pattern detection was the most present in our SLR. Zeng et al. [14] char-

acterized the taxi travel patterns of Chongqing residents from two perspectives, hot 

spots and hot paths, by applying the GRIDBSCAN and ST-TCLUS (Spatial-temporal 

trajectory clustering) clustering algorithms. It allowed to conclude that depending on 

the time of day, these areas varied according to their land use. Y. Huang et al. [15] 

studied the travel patterns of private cars to identify the most frequented sites using the 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm 

and Markov chains, allowed them to identify that 59% of car trips exhibit regular spa-

tiotemporal mobility and repeated travel patterns. By applying the ST-HDBSCAN clus-

tering algorithm (combination of ST-DBSCAN and HDBSCAN clustering algorithms) 

Li et al. [18] made a spatiotemporal characterization of the hotspot characteristics, 

through the study of "Spatiotemporal Distribution", "Travel Distance Distribution" and 

"Travel Direction Distribution", concluding that the most frequented areas are the ones 

where there is a higher density of points of interest. Toro et al. [10] studied the mobility 

patterns of users of Milan's bike sharing systems and using the clustering technique 

with K-Means, allowed him to identify which stations have the same usage pattern. In 

the exploitation of the most frequent paths made in the Singapore Strait Ron, Wen et 

al. [16] applied the K-nearest neighbors’ algorithm, to perform clustering on time series 

of waterways, which allowed them to identify the most congested areas spatially and 

temporally. Atluri et al. [23] state that, in exploring problems with spatiotemporal data, 

finding the similarities or dissimilarities between instances is the key to solving most 

challenges. In the collected studies, the evaluation of the performance of cargo bikes is 

highly focused on comparing with the performance of the cargo vans in the last mile 

delivery [17], [24] to [26]. Cargo bikes showed a greater flexibility and advantage in 

the routes they made. Most of the time the chosen bike route is shorter than the route 

made by vans [24]. This difference can be up to twice as large on shorter trips [17]. 
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Also, it was found that cargo bike riders easily break traffic regulations by riding in the 

opposite direction during short trips [24]. Amaral et al. [17] identified that travel times 

were not as important for cargo bikes as for motor vehicles, because bicycles can easily 

"outrun" traffic jams. An interesting observation by Conway et al. [24], showed that the 

speed of cargo bikes on the bike paths is lower than when on the road for motor vehi-

cles, with a speed figure lower than 20% on some of the routes. The impact of street 

topography was mentioned in Amaral et al. [17] who defined a scale between the ele-

vation and the impact on cyclist performance. This scale sets as a reference, below 2%, 

with no effect, between 2% and less than 5%, already considered with impact and above 

5%, representing a substantial impact. The speed considered in the studies was not ho-

mogeneous, varying between 11.6 Km/h [24] and 24.0 Km/h [25].A literature review 

done by Büttgen et al. [7] finds an average speed of this type of vehicles between 8.0 

Km/h and 25.0 Km/h.  

Overall, all studies conclude that cargo bikes represent a more viable and advanta-

geous alternative in last mile delivery, with greater gains in more congested areas [24], 

but with some constraints. Sheth et al. [25] concluded that the distance and the number 

of deliveries, are the most impacting factors on viability and cannot exceed 3.2 Km and 

20 orders per stop. In Amaral et al. [17], the capacity of the vehicle was not considered, 

but authors concluded that beyond 3.0 Km, it was no longer efficient to deliver with 

this type of vehicle. The combination of cargo bikes and the implementation of micro 

hubs has helped the green alternatives for last mile delivery, to gain momentum [9]. 

Distribution networks with micro-hubs do promote a more organized last mile delivery 

[8] and benefit from economies of scale [27]. 

The definition of micro hub in the literature is vast, and for our paper we adopted the 

definition by Katsela et al. [8], which defined it as “logistics facilities where commer-

cial transportation providers (or "carriers") consolidate goods near the final delivery 

point and serve a limited spatial delivery area in a dense urban environment”. Finding 

and defining a location for micro-hubs is an important and complex task [2] [8]. The 

rising costs of urban land, lack of adequate infrastructure, changing demand, changing 

city characteristics [22] and regulatory requirements [8], do not ease the task of being 

able to find an optimal solution that minimizes operating costs and impact on commu-

nities. The most common characteristics addressed in the literature to study this prob-

lem were demand (e.g., residential, commercial, and/or employment density), infra-

structure (e.g., pedestrian/bicycle infrastructure provision, road classifications, pedes-

trian zones, and measures to assess traffic), and land use constraints [6], [22], [28]. 

When the deliveries are made by cargo bikes, the location of the micro-hub should be 

the closest to the delivery point [22], [29]. Assman et al. [9] recommended locating 

them in areas of higher commercial density. This need for proximity comes from the 

capacity limitation of bikes compared to a delivery van, and multiple trips to the micro-

hub may be required, so travel time and travel distances are minimized [8]. According 

to Assman et al. [9], the maximum distance between the micro-hub and the delivery 

point should not exceed 1000 meters. In Rudolph et al. [22] a distance between 500 

meters and 1200 meters is pointed out as the distance range that allows economic fea-

sibility for deliveries made by cargo bikes. In Faugère et al. [5] and Srivatsa Srinivas et 

al. [30], the implementation of this type of infrastructure in mobile units was evaluated 
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and, in both studies, they concluded that it can be a viable alternative but under very 

restricted conditions. Faugère et al. [5] indicated as a condition, the requirement to 

transport a high volume of orders and a very short maximum transit travel time. In 

Srivatsa Srinivas et al. [30] the need for a strong analytical engine that can accurately 

predict demand for a given geographic location and the dynamic optimization of the 

route and parking location of the mobile warehouse, was the only way to make this 

alternative viable. The study of stationary micro-hubs is the most widely covered in the 

literature, but the methods vary among literature papers. When the targets’ location 

points are already known [2], [7], [31], [32], only an evaluation of the performance of 

each of the locations was done to find the one that best suited the purpose. Naumov et 

al. [2] developed a mathematical model representative of the network and its behavior 

and by applying Monte Carlos simulation, evaluated which of the five pre-defined lo-

cations allowed minimizing the transportation work. In Kedia et al. [32], the Location-

Allocation model, was used to find the locations that minimized the distance that had 

to be traveled. Bütten et al. [7] uses the Two-Echelon Vehicle Routing Problem 2E-

VRP model to find an optimal solution that minimizes costs. In Leyerer et al. [31], the 

Split Delivery Vehicle Routing Problem with Multiple Products Compartments and 

Time Windows (SPVRPMPCTW) model is solved, to minimize costs throughout the 

three stages (LRP, VRP with time window and VRP considering multiple products) 

that compose model. When there is no pre-knowledge of such locations, other ap-

proaches are needed, and possible solutions can be found based on the knowledge of 

the demand or the geographical characteristics of the cities. Rudolph et al. [22] uses a 

multi-criteria method to find the most suitable locations and employs the Analytical 

Hierarchical Process AHP and PROMETHEE algorithms, defining that the main crite-

ria to use are demand, road type and land use. The optimal locations should minimize 

travel times and travel distances. Song et al. [19], use the LCRS (Longest Common 

Route Subsequence) algorithm, complemented with a voting system, to find the paths 

most traveled and where there is a higher concentration of deliveries. This approach 

allows them to calculate which locations can minimize the time and distance traveled. 

In the literature we found that, in the approach to this problem, the computational ca-

pacity and the time required to explore all possible options, limit the calculation of the 

optimal points [19], [21], [33], [34]. The implementation costs of micro-hubs and ve-

hicle capacity are often not considered. We can argue that minimizing distances, travel 

times, and costs are among the most relevant objectives in hubs location. 

3 Data Analysis and Modeling 

The CRISP-DM methodology, applied in our research, attempts to reduce the cost and 

increase reliability, repeatability, manageability, and speed of big data mining opera-

tions. According to this methodology the life cycle of data mining projects is divided 

into six parts: business understanding, data understanding, data preparation, modeling, 

evaluation, and deployment. 
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3.1 Business Understanding 

The data explored was provided by the e-cargo bike urban logistics startup Yoob [35]. 

As mentioned, the purpose of the study is two-fold: the first, to provide a spatiotemporal 

characterization of the Yoob e-cargo bike fleet in the parcel collection and delivery 

processes in Lisbon as well in its outskirts; the second, to propose locations for the new 

hubs and adjustments to the existing logistics network, in order to strengthen and ex-

pand the fleet operations. The company has two types of hubs, the micro-hub, with an 

area of 36 m², a relatively smaller option compared to the values found in SLR, which 

range between 92 m² to 920 m² [36]. The functional definition is in line with that found 

at SLR, with various services being done at the micro hub, namely, consolidation of 

goods, storage, and recharging of e-cargo bikes. The nano-hubs, which is an innovative 

concept developed by Yoob, emerged from the adaptation of the pick-up/drop-off con-

cept to last mile delivery logistics, characterized by having relatively small areas rang-

ing between 3 m² and 120 m², exclusively dedicated as a temporary transition point 

where the goods remain no longer than 48 hours. The type of associated physical infra-

structure varies depending on where it is implemented, given it only requires temporary 

storage capacity for goods [37]. 

3.2 Data Understanding 

The data was extracted from Yoob's database and covered the period of January 1st to 

April 30th 2022, encompassing 9,175 records and 34 variables. The data does not pro-

vide the routes (trajectories) done by the fleet. The geographic information on the route 

is characterized by latitude and longitude of origin and destination. There are some 

variables that generated based on mobile devices used by the employees during the 

entire logistics operation. 

In our approach, each record in the data represents a “story”, which is geographically 

composed of two points, one for pickup and the other for delivery. Within each story 

there are two “sub-stories”, where each “sub-story” refers to a geographical location 

(pickup or delivery) and is always associated to a “route”, where the “routes” can be 

composed of one or more “stories”. 

3.3 Data Preparation 

The first data preparation step was the individual evaluation of all variables. Sec-

ondly, the unnecessary variables, outliers and incomplete stories were removed result-

ing in a dataset with 8,381 records (91,3% of the raw dataset) each one with 26 varia-

bles. The third step was to convert our dataset to have a sub-story granularity, by cre-

ating two datasets, one referring to the pick-up information and the other referring to 

drop-off information. These two datasets were merged. 

To enrich our dataset, we added extra features: 

• ['Elevation_point'] - Elevation of the sub-story geographic location, was ob-

tained by consulting a DEM (Digital Elevation Map) [41] 

• ['order route']: Number indicating the order in which the location is visited 

within the route sequence. 

• [‘time_enRoute_sec]: Time period in seconds between the [‘history.enRoute’] 

and [‘history. arrived’]. 
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• [‘time_points_sec’]: Time period in seconds between two consecutive points 

on the same route. 

This dataset processing with sub-story granularity resulted in 15,828 records and 27 

variables. 

To perform the spatial analysis two geographic data frames were generated with the 

geopandas Python library [42]. In the first the granularity was the route level, and sec-

ond the granularity was the sub-story level. To be considered valid, a route must have 

two or more associated sub-stories. Routes that do not meet this requirement were re-

moved. With this procedure we were able to reconstruct 664 routes, representing 95% 

of the total routes in the original dataset (699 routes), at sub-story level. We have re-

moved 20 records (<0.002%), ending up with a dataset with 15,808 records. 

3.4 Modeling 

In the modeling phase, we applied machine learning techniques, namely K-means, to 

developed three models to answer our research questions. In the first model we created 

clusters to identify the behavior of 

routes in certain geographical areas. 

In the second model we clustered the 

routes and evaluated their character-

istics, providing answers to our first 

research question. In the last model 

we performed a gravity center analy-

sis, with the goal to explore new loca-

tions for the implementation of new 

hubs, answering our second research 

question. To build the models we 

used the sklearn [43] library, for pre-

processing we used MinMaxScaler 

[44] and LabelEnconder [45] and to 

perform cluster and the center of 

gravity analysis, we used K-Means 

algorithm [46]. To evaluate the opti-

mal K value in the two first models, 

we adopted the Knee Elbow method with the knee library [47] and Davies-Bouldin 

index [48]. 

First Model – Clustering the Sub-stories with K-Means 

In the first model, we identified the behavior of routes in certain geographical areas 

with cluster analysis. The feature selection was made from the geodataframe data struc-

ture with sub-story granularity. 

The selected features were [‘latitude’], [‘longitude’], [‘elevation_point’], 

[‘time_points_sec’] and [‘distance_to_prev’]. Before running the clustering model in 

our data, we had to scale the data, as it had different measurement units, with 

MinMaxScaler. When evaluating the Knee Elbow method and the Davies-Bouldin in-

dex through a range from 1 to 30 clusters, we found that the optimal value for K was 5 

in knee elbow method, and 4 in the David-Bouldin technique. After testing the model 

Fig. 1. Clustering the sub-stories with K-Means 
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with both values, the knee elbow value was selected as it gave us more information 

(later confirmed in YOOB briefings). Then we applied the K-Means algorithm with a 

K value of 5 to our data, and the output is depicted in Fig. 1. Four main clusters (C0 to 

C3) outstand in the visualization, and a fifth cluster (C4) with dissipated grey dots 

among the four other main clusters. In this model we can observe the e-cargo bikes’ 

performance according to the geographical area. In Fig. 1, we can see the four well 

defined clusters and a more disperse cluster (C4) where the e-cargo bikes have a higher 

average speed of 18.64 Km/h, indicating that these are acceleration areas. In the other 

clusters the average speed is significantly lower. The zones with the second highest 

average speed were the ones in cluster C2 where e-cargo bikes achieved average speeds 

of 6.84 Km/h, followed by the zones covered by cluster C1 with average speeds of 5.01 

Km/h. The areas covered by clusters C0 and C3 have a more homogeneous perfor-

mance. However, in the areas covered by cluster C3 the e-cargo bikes tend to be slower, 

with average speeds of 4.20 Km/h vs 4.43 Km/h of the speeds practiced in the C0 areas. 

Second Model – Clustering the Routes with K-Means 

In the second model the selected features were based on the geodataframe with granu-

larity of the route: [‘distancia_total’] and [‘distancia_maxima_do_ini’]; and were 

scaled with MinMaxScaler. Much like in the first model, we evaluated the Knee Elbow 

value and the Davies-Bouldin value in a range from 1 to 30 clusters and selected the 

optimal value for K (5) provided by the Knee Elbow method, since the optimal value 

in the David-Bouldin method was far bigger. Applying to our data K-Means with a K 

value of 5, the output results in five clusters (see Fig. 2 to 9).

 
Fig. 2. Routes per cluster 

 
Fig. 3. Average total distance per cluster 

 
Fig. 4. Average maximum distance from 

initial location per cluster 

 
Fig. 5. Average visited locations per clus-

ter 



 
Fig. 6. Average speed per cluster 

 
Fig. 7. Average total time in route per 

cluster 

 
Fig. 8. Average total time between loca-

tions per cluster 

 
Fig. 9. Average operation time per cluster 

In Fig. 9, the operation time metric was calculated by subtracting the average total 

en route time from the total time spent between two locations and dividing the result by 

twice the number of locations visited, representing the operation time spent at each 

location. in the presentation of results below, all figures are average numbers 

The most common performance is the one observed in cluster C0, accounting for 

41.2% of the total trips (see Fig. 2). This cluster features a speed of 6.84 Km/h, which 

is the lowest speed of the five clusters, corresponding to a total traveled distance of 

11.16 Km. Yoob ´s e-cargo bikes travel at a maximum distance of 3.64 Km, from their 

starting location. The total duration of cluster 0 trips is 3 hours and 54 minutes, and the 

e-cargo bikes are only in motion for a period of 1h48m. Seventeen different locations 

are visited, and 3m40s is the shortest operating time per location visited, during trips of 

cluster C0. The second largest type of performance is observed in cluster C3, which 

includes 32.4% of the total trips (see Fig. 2). It is characterized by a total distance trav-

eled of 4.31 Km, at a speed of 7.96 Km/h. In cluster C3, e-cargo bikes travel a maximum 

distance of 2.22 Km from their starting location. These trips have the shortest and clos-

est travel distances. They have a total duration of 2h42m, and bikes are only in motion 

for 42m. With six different locations, cluster C3 has the fewest number of locations 

visited from all five performances, but has the longest operation time per location vis-

ited, requiring 8m25s. This may be associated with the high waiting time for customers 

according to Yoob partners feedback. The third most predominant type of performance 

is the one observed in cluster C2, with 31.6% of total trips (see Fig. 2). The total dis-

tance traveled is 14.15 Km at a speed of 9.75 Km/h. The e-cargo bikes travel at a max-

imum distance of 6.23 Km from the starting location.  The total travel time is 4h6m, 
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with the e-cargo bikes being in motion for 1h36m. Thirteen different locations are vis-

ited, and bikers spend 5m43s for each location. The fourth most observed performance 

type is the one of cluster 4, with 24.8% of the total trips (see Fig. 2). It is characterized 

by a total traveled distance of 28.01 Km, at a speed of 9.41 Km/h. The e-cargo bikes 

travel at a maximum distance of 6.38 Km from their starting location, with a total du-

ration of the route, of 6h42m. Bikes are in motion for an average period of 3h24m. 

These are the trips with the longest travel time and with the largest number of places 

visited, with a figure of twenty-two different places. At each location visited bikers 

spend 4m31s in operation time. The least observed type of performance is the one cor-

responding to cluster 1 (see Fig. 2), with only 2.8% of the total trips. These are the 

longest trips with the wider range, but also the fastest ones, with a total distance traveled 

of 35.58 Km, at a speed of 11.20 Km/h. In this cluster, the e-cargo bikes travel at a 

maximum distance of 14.16 Km, from their starting location. The total travel time of a 

trip is 5h12m, with the e- bikes being in motion for a period of 2h54m. Twelve different 

locations are visited, and bikers spend 5m47s in each location. 

Third Model– Center of Gravity Analysis with K-Means 

In the third model, we analyzed the cen-

ters of gravity of the sub-stories of our 

data. This model analysis was requested 

in one of the meetings held with Yoob. 

Although in our initial SLR there were 

no direct references to this specific topic, 

by doing some additional research, we 

found that Wen et al. [49] and Cai et al. 

[50], both approached this problem by 

applying K-means techniques with a 

weighted featured to find the best hub 

locations. In our approach, we adopted a 

similar method with a weighted K-

Means algorithm. 

Our model applied the number of lo-

cations intended to simulate, and a new 

variable was considered in the weighting 

of the cluster. In our model, the number of 

parcels was considered, as the effort 

needed to carry out the delivery. As most 

of the time the pickup parcels were in the 

hubs or at the collect/delivery locations, 

we added a penalty value in the delivery 

parcels, considering these last ones three 

times bigger in effort than the pickup ones.  

This forced the algorithm to locate the cen-

troids of the cluster in places where dis-

tance and effort would be reduced. The data applied in this model was based on the 

variables [‘latitude’], [‘longitude’] and [‘parcels’] from the geodataframe with sub-

Fig. 10. Center of gravity analysis for eight 

hubs, using K-Means. Dark lines represent 

the distances from the hub center to the de-

livery points 

Fig. 10. Volume parcels per proposed 

new cluster centroid 
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story granularity. A new variable was created designated [‘calc_ajusto_de_custo_se_hou-

ver’], to include the penalty value. We simulated the center of gravity for 8 hubs, the 

result is shown in Fig. 10 and the volume associated for each location is depicted in 

Fig. 11.  

3.5 Deployment 

The models created were not applied in a real production environment. Software devel-

opment was developed on a personal computer equipped with Windows 10 (64bits) 

operating system, Intel(R) Core (TM) i7-11370H 3.30GHz, with 40Gb of memory ram. 

We adopted the Python programming language (v3.10.4) [38], compiled with Visual 

Studio Code (v1.69.1) [39] on Jupyter Notebooks extension [40]. The developed soft-

ware material and data sets are available for use by the Yoob company and for further 

academic research purposes. 

4 End-user Evaluation 

The end-user evaluation verifies that the findings are consistent with the proposed re-

search objectives and the accuracy of the business requirements.  
Table 1. Method assessment questionnaire 

Criteria Objective statement Eval #1 Eval #2 

Utility 
It can help business decisions regarding 

the behavior of the fleet and hub expansion 
FA FA 

Understandability Provides understandable results FA FA 

Accessibility Can be used without training LA LA 

Level of detail 

Provides knowledge regarding the mobil-

ity of the fleet and detailed location for ex-

pansion. 

FA FA 

Consistency Gives consistent results. LA LA 

Robustness 
Has enough detail to be used in other cases 

of e-cargo bikes and hub expansion 
FA FA 

In the end of the study a questionnaire was sent to the two YOOB partners, with the 

questions and answers indicated in Table 1. The development of the questionnaire fol-

lows the standards defined by the ISO/IEC TS 330611 [51], primarily used to assess 

software development processes. Four levels of the NLPF were employed for evalua-

tion: Not Achieved (NA) - [0-15%]; Partially Achieved (PA) - ]15-50%]; Largely 

Achieved (LA) - ]50-85%]; Fully Achieved (FA) - ]85-100%]. In this evaluation, we 

obtained a rating of FA, in the criteria of usefulness, understanding, level of detail and 

robustness, and LA rating in the criteria of accessibility and consistency. Overall, this 

indicates that the work done represents an added value for the company, providing use-

ful, detailed, and clear information, appropriate to support decision making, in the con-

text of the e-cargo bike fleet as well as for the expansion of new hubs. The YOOB 

 
1 “ISO - ISO/IEC TS 33061:2021 - Information technology — Process assessment model for software life cycle processes.” 

https://www.iso.org/standard/80362.html 
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evaluators consider that this study can be replicated to other case studies with potential 

for improvement, and implementation readiness. Moreover, the outcomes are aligned 

with the objectives and requirements proposed for the research presented in this paper. 

5 Discussion and Conclusions 

We have presented an innovative data science-based study, the first regarding last mile 

delivery using e-cargo bikes operating in Lisbon, Portugal, as far as the authors are 

aware. To tackle our research questions, we developed and evaluated three intelligent 

computing models. Our second model (Clustering the routes with K-Means) in partic-

ular, allowed us to answer the first research question, and to characterize the behavior 

of the e-cargo bike fleet through the traveled distance, time, speed and number of visited 

locations. Overall, the average of total traveled distance ranges between 4.31 Km and 

35.50 Km, distancing from their start location, between 2.20 Km and 14.10 Km. 63% 

of the routes show distance ranges very close or even lower than the values reported by 

Sheth et al. [25], which considered cargo bikes to have an efficient performance under 

3.20 Km. The average number of different locations visited per route ranges between 6 

and 22. The average observed speed varies between 6.84 Km/h and 11.20 Km/h, a value 

close to the study by Bütten et al. [7], where these authors looked at several cargo bike 

projects, and calculated average speeds between 8.00 Km/h and 25.00 Km/h. The tem-

poral characteristics revealed a time in movement per route from 42m minutes up to 

3h24m, and a total route duration time, ranging between 2h42m and 6h42m. Required 

transaction time within each route ranged from 3m40s to 8m25s. This higher time may 

be due to the particularities of certain customers requiring more waiting time. Exclud-

ing this last observation, the time metric ranges between 3m40s and 5m43s. This set of 

characteristics gave us an overview of the needs of each route and the respective per-

formance of the e-cargo bikes in their operation conditions. As for the second research 

question, the third model (K-Means center gravity analysis), was used as our basis for 

analysis. The choice of new hubs locations, in the context of an expansion of the e-

cargo bikes network, is a complex process due to the high number of constraints that 

are to be considered in the site search [2], [19], [21], [33], [34]. In the search for new 

locations the factors considered for the cost function of our model were the distance 

and the cost associated with each location visited. Then for evaluation of the hub type, 

the volume associated with each hub of this new structure was analyzed. When simu-

lating an expansion of three more hubs beyond the five that are currently part of 

YOOB's network, our model suggests that the implementation of these new hubs should 

be located in the boroughs of Alvalade, Benfica and Algés (Fig. 10). When confronted 

with the results of this model, the YOOB partners considered that these three new pro-

posed locations are valid options that required further analysis in terms of economic 

viability. Regarding the 3 remaining computed locations, in the case of C2 (Fig. 10), 

the choice of the current location of the hub (nr 1), which is within the radius of this 

cluster, was due to the geographical characteristics of the area, which is on top of a hill, 

causing the trips to have a downward direction, facilitating the effort required by the 

biker. In the case of C7 (Fig. 10), the divergence between the location of the hub (nr 4) 
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and the location proposed by our model, raises additional challenges of further changes 

of location due to the high price of real estate in the area where the centroid calculated 

by our model is located. Considering the remaining proposed hub locations, the YOOB 

partners showed complete agreement. By analyzing the volume of parcels associated 

with each hub in Fig. 11, we can discuss what type of hub is the most adequate for 

micro-hub or nano-hub requirements. In our study all three new locations are more 

suitable for nano-hubs. In the already existing nano-hub located in the Saldanha, we 

observed that due to the high associated volume of parcels it could shift to a micro-hub, 

and this observation was positively validated by YOOB partners.  

Research Limitations 

The most significant limitations of our study are related to the dimension, granular-

ity, and structure of the data. The information on the routes was limited to the visited 

geographical points, lacking information about the order of each visited location, and 

lacking complete information about the route trajectory (its 3D coordinates) taken from 

pickup to delivery as well city traffic. Having trajectory and traffic data would allow a 

deeper and more rigorous analysis of the e-cargo bike fleet route patterns, namely the 

real trajectories in which route was performed and the actual distances traveled. We 

collected data in the period from January to April of 2022, corresponding to the first 

four months of the company’s registered activity (YOOB started operations in Lisbon 

in the fall of 2021). After data pre-processing, we came up with a dataset comprising 

15 828 records and 27 variables, which was considered sufficient for our analysis, but 

that nevertheless can be limited for long-term trend analysis. The proposed hub loca-

tions can be considered the best possible locations with limitations, as many factors 

were not considered, such as street elevations and, specially, socio-economic factors 

that need to be taken into account, to tackle costs for the customer and the municipality. 

Future Work  

The following suggestions are made for upcoming research work: 

• Expand the number of observations analyzed to detect long-term trends and produce 

more insightful results, given that YOOB has the possibility to collect stories and route 

data on a regular basis. 

• Study the shortest and flattest path 

• Perform more detailed cluster analysis, with an increased number of clusters when 

analyzing route typologies. 
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