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Empirical evidence shows that the order of integration of returns and dividend growth is
approximately equal to the order of integration of the first-differenced price–dividend
ratio, which is about 0.7. Yet the present-value identity implies that the three series
should be integrated of the same order. We reconcile this puzzle by showing that the
aggregation of antipersistent expected returns and expected dividends gives rise to a
price–dividend ratio with properties that mimic long memory in finite samples. In an
empirical implementation, we extend and estimate the state-space present-value model
by allowing for fractional integration in expected returns and expected dividend growth.
This extension improves the model’s forecasting power in-sample and out-of-sample. In
addition, expected returns and expected dividend growth modeled as ARFIMA processes
are more closely related to future macroeconomic variables, which makes them suitable
as leading business cycle indicators.

© 2024 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The prediction properties of the price–dividend ra-
io have strong theoretical foundations grounded in the
resent-value (PV) identity, popularized in the log-linear
orm by Campbell and Shiller (1988). As argued by
ochrane (2008a), the fact that the price–dividend ratio
s not constant means that either expected returns or
xpected dividend growth is predictable, or that there is a
ubble, so that the price–dividend ratio is non-stationary
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and not mean-reverting. In fact, the price–dividend ratio
has been shown to have strong forecasting power for
returns, especially at long horizons (see Fama & French,
1988 and Cochrane, 1999). However, many studies have
pointed out that return predictability has been overstated
due to the high persistence of the price–dividend ratio
(e.g. Mankiw & Shapiro, 1986, Stambaugh, 1999, Goyal &
Welch, 2003).

Indeed, the price–dividend ratio is highly persistent.
Although traditional unit root tests reject the null hy-
pothesis that the series is integrated of order one, I(1)
(see Table 1, Panel A; see also Campbell & Shiller, 1988),
stationarity tests also reject the I(0) hypothesis (Table 1,
Panel B). Moreover, the semiparametric estimates of the
fractional integration parameter δ (Table 1, Panel C) sug-
gest that the price–dividend ratio is integrated of order
0.7, approximately, which is a value close to that found
redictability, dividend growth, and the persistence of the price–dividend
cast.2024.03.005.
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Table 1
Unit root, I(0), and fractional difference estimates for returns, dividend
growth, and price–dividend ratio.
In Panel A we present the results of the unit-root tests: ADF, Phillips–
Perron, and fractional ADF tests. In Panel B we report the results of
the I(0) tests: KPSS and Lobato–Robinson tests. In Panel C we present
the estimates of the fractional integration parameter obtained by
the semiparametric estimators: GPH, (Robinson, 1995), and Shimotsu
(2010) with the bandwidth equal to 22 observations. The standard
errors are reported in small font. *, **, and *** denote significance at the
10%, 5%, and 1% levels, respectively. The sample period is 1934–2022.

r ∆d pd

Panel A: I(1) tests
ADF −8.7643∗∗∗

−6.6391∗∗∗
−3.6063∗∗

Phillips–Perron −8.7643∗∗∗
−8.1717∗∗∗

−3.6063∗∗

Fractional ADF −9.3648∗∗∗

Panel B: I(0) test
KPSS 0.0526 0.0880 0.5761∗∗

Lobato–Robinson 0.4549 0.5484 5.1713∗∗

Panel C: Fractional difference estimates
GPH −0.3370∗∗∗

0.1212
−0.2213

0.1212

∗ 0.6952∗∗∗

0.1212
Robinson −0.2531∗∗∗

0.0928
−0.1387

0.0928
0.6805∗∗∗

0.0928
Shimotsu −0.2320∗∗

0.0918
−0.0226

0.0918
0.7047∗∗∗

0.0918

in Chevillon and Mavroeidis (2017), about 0.8. These re-
sults could suggest that the price–dividend ratio is a long
memory process, that is, fractionally integrated of order
0 < δ < 1 (with δ ≥ 1/2 implying non-stationarity), with
low (typically hyperbolic) decay of the autocorrelation
unction at long lags and an infinite spike at frequency
ero. Such a finding on the price–dividend ratio may be
ifficult to understand from the traditional asset pricing
erspective, since it would imply bubble-like behavior.
The finding of long memory in the price–dividend

atio is nonetheless puzzling. The present-value identity,
opularized in the log-linear form by Campbell and Shiller
1988), implies that the price–dividend ratio is a linear
unction of a discounted stream of expected future div-
dend growth and stock returns. Since dividend growth
nd returns are close to being serially uncorrelated, it is
ard to think that the unobserved expectations are very
ersistent. Indeed, we estimate a fractional integration
oefficient for both returns and dividend growth of about
0.25, implying the series are antipersistent (that is δ <
). As noted by Maynard and Phillips (2001), a different
rder of integration of returns and the price–dividend
atio invalidates statistical inference in predictive regres-
ions. As such, the finding of long memory in the price–
ividend ratio poses a question that we address in this
aper.
We re-examine the hypothesis of predictability in ex-

ected returns from the perspective of the log price–
ividend ratio as aggregated expectations of future
eturns and dividend growth. We show that the apparent
ong memory in the price–dividend ratio can be generated
rom antipersistent expected returns and expected divi-
end growth. If we allow the expected dividend growth
nd expected returns to be integrated of order I(δ) < 0,
hen discounting future expectations of these series with
he discount factor given by the log-linearization constant

ives rise to a price–dividend series that exhibits a spike t

2

at frequency zero characteristic for a long memory series
process, but finite. In the limiting case, if the discount
factor were one, the price–dividend ratio would become a
true long memory process I(δ + 1). Since future expecta-
ions are discounted at a rate smaller than one, it follows
hat the rate of decay of the moving-average coefficients
f the price–dividend ratio is asymptotically the same as
hat of expected returns and expected dividend growth
assuming no cointegration between these two series) for
ny δ. However, with antipersistent expected returns and
xpected dividend growth, the price–dividend ratio can
ppear to be long memory in finite samples. In particular,
e show that the process can exhibit a slow decay of
utocorrelations and have a convex shape of the spectral
ensity close to zero frequency. In a sense, our explana-
ion of the mechanism generating spurious long memory
s similar in spirit to the rare break mechanism proposed
y Diebold and Inoue (2001).
In an empirical implementation, we specify expected

eturns and expected dividend growth as autoregressive
ractionally integrated moving-average (ARFIMA)
rocesses. This allows us to reconcile the antipersistent
xpectation series on one hand with a quasi-persistent
rice–dividend ratio on the other hand. Within the state-
pace system, we specify expected returns and expected
ividend growth as latent variables and estimate them
sing the Kalman filter with the maximum likelihood es-
imator. As such, our empirical approach is similar to Van
insbergen and Koijen (2010) and Rytchkov (2012), who,
sing an AR(1) specification, suggest that adopting the
tate-space present-value framework increases the pre-
ictability of returns beyond that from the price–dividend
atio predictive regressions.

Within the present-value framework, we find a nega-
ive and statistically significant fractional integration esti-
ate (−0.3) for expected dividend growth and expected

eturns that roughly matches the semiparametric esti-
ates (about −0.25). The forecasts from the

iltered expectations series of the fractionally integrated
odel are preferable over those obtained with the stan-
ard AR(1) model of Van Binsbergen and Koijen (2010).
he present-value model with the fractionally integrated
omponent also outperforms the classical forecasting re-
ressions with the price–dividend ratio. Several forecast-
ng exercises on the last 20 years of data confirm the
elevance of using a model which allows for fractional
ntegration in improving the forecasting ability of the
resent-value model, both in-sample and out-of-sample.
rom a macroeconomic perspective, our filtered series of
xpected returns is clearly countercyclical, which is in
ine with many other studies (for a survey, see Campbell
Diebold, 2009). Moreover, we find that the series of

xpected returns and expected dividend growth filtered
rom the ARFIMA model predict consumption growth and
ndustrial production growth better than if modeled as
R(1) processes.
The predominance of the spectral density shape that

ignifies high persistence in economic data was first noted
y Granger (1966), who referred to it as ‘the typical
pectral shape of an economic variable’. The origin of
ong memory can be plausibly explained by aggrega-

ion (Granger, 1980), learning (Chevillon & Mavroeidis,
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2017), or structural breaks (Diebold & Inoue, 2001). In
Appendix A, we provide an overview of possible origins
of long memory in time series. Our paper contributes
to this literature by showing that the long-memory-like
behavior of the price–dividend ratio can be explained by
the aggregation of antipersistent expectations of future
returns and dividend growth. Antipersistence, in turn,
occurs as a result of overdifferencing a long memory
series. Although the formal explanation of the origin of
antipersistence in returns and dividend growth is beyond
the scope of this paper, we note that it is consistent
with the evidence that investors overreact to news and
make systematic errors in their expectations (see Poterba
& Summers, 1988, Lakonishok, Shleifer, & Vishny, 1994,
and La Porta, 1996). Consequently, a slow resolution of
uncertainty (possibly combined with another aggregation
mechanism) can lead to negative and slowly decaying
autocorrelation lags.

The remainder of the paper is organized as follows.
n Section 2, we present evidence on long memory in
he price–dividend ratio and discuss its implications for
elated issues, such as log linearization and price bub-
les. In Section 3, we propose a theoretical model of the
rice–dividend ratio with antipersistent expected returns
nd expected dividend growth, and cast it in the state-
pace system. The estimation methodology and results
re presented in Section 4. In Section 5, we compare
he in-sample and out-of-sample performance of the PV-
RFIMAmodel with that of a nested model and of classical
orecasting regressions. In this section, we also show the
nalysis of the business cycle properties of expected re-
urns and dividend growth obtained from the PV-ARFIMA
odel. Section 6 concludes.

. Persistence of the price–dividend ratio

.1. Data

In our empirical investigation we use value-weighted
YSE/Amex/Nasdaq/Arca index data, including all distri-
utions,1 available from the Center for Research in Se-

curities Prices (CRSP). Similarly to Van Binsbergen and
Koijen (2010) we adopt the assumption of reinvesting the
dividends at the risk-free rate.

We construct the annual dividends and price–dividend
atio from the monthly series using the risk-free rein-
estment strategy. As the risk-free rate we use the three-
onth T-bill rate, which is available from January 1934.2

Our sample ends in 2022, which gives us 89 annual ob-
servations. Although monthly or quarterly data would be
preferable, we found a strong seasonal pattern in the
correlogram of dividend growth series at monthly and
quarterly frequencies, which, if not accounted for, invali-
dates the analysis of the time series dynamics.3 We then
obtain real returns and real dividend growth series by
using the consumer price index (CPI) from the U.S. Bureau
of Labor Statistics.

1 These include both ordinary and special dividends, but not share
repurchases.
2 The data are available at the website of the Federal Reserve Bank

of St. Louis, https://fred.stlouisfed.org.
3 See also Ang and Bekaert (2007) and Cochrane (2011), Appendix

A.1.
3

2.2. Order of integration of the price–dividend ratio

We begin the analysis with an examination of the time
series properties of the stock market data. The total stock
market log return (rt+1) and log dividend growth rate
∆dt+1) are defined as:

t+1 ≡ log
(
Pt+1 + Dt+1

Pt

)
, (1)

∆dt+1 ≡ log
(
Dt+1

Dt

)
(2)

and the price–dividend ratio (PDt ) is:

PDt ≡
Pt
Dt
.

Using pdt ≡ log(PDt ) and (2), one can re-write the
log-linearized return (1) as:

rt+1 −∆dt+1 ≃ κ + ρpdt+1 − pdt , (3)

with pd = E(pdt ), κ = log(1 + exp(pd)) − ρpd, and
ρ =

exp(pd)
1+exp(pd)

(see Campbell & Shiller, 1988). In our sample
pd = 3.448 and thus ρ = 0.968.

Fig. 1 shows the time series of the logarithm of the
price–dividend ratio. From graphical inspection it is clear
that the ratio is highly persistent. We therefore explore
the hypothesis that the price–dividend ratio may be non-
stationary.

In Table 1, Panel A, we report three unit-root tests
(the null hypothesis being that the process is I(1)): the
augmented Dickey and Fuller (1979) (hence ADF) test,
the Phillips and Perron (1988) test, and the fractional
augmented Dickey–Fuller test by Dolado, Gonzalo, and
Mayoral (2002). In Panel B we report two stationarity
tests (the null hypothesis being that the process is I(0)):
Kwiatkowski, Phillips, Schmidt, and Shin (1992) (hence
KPSS) and Lobato and Robinson (1998). Although the ADF,
Phillips–Perron, and KPSS tests are consistent under the
long-memory alternative (Sowell, 1990, Kramer, 1998),
it is well known that they have small power properties
(see e.g. Diebold & Rudebusch, 1991). The fractional ADF
and Lobato–Robinson tests are designed explicitly against
the fractional alternative and therefore are expected to
exhibit superior in-sample behavior. The number of lags
included in the ADF and fractional ADF tests is selected
based on the minimum Bayesian information criterion
(BIC), while in the other tests we use an automatic lag se-
lection procedure based on the Bartlett kernel, as in Stock
(1986). The ADF and Phillips–Perron unit-root tests of
the price–dividend ratio include an intercept and time
trend, but we exclude them from the tests of returns and
dividend growth. The fractional integration parameter in
the fractional ADF test was obtained by the (Shimotsu,
2010) estimator reported in Panel C of Table 1.

From Panel A of Table 1 we can see that the unit-root
hypothesis is strongly rejected for returns and dividend
growth. It is also rejected for the price–dividend ratio at
the 5% significance level by the ADF and Phillips–Perron
tests. The fractional ADF test, however, which is designed
to deal with the fractional alternative, rejects the null of

the unit root at the 1% significance level. At the same

https://fred.stlouisfed.org
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Fig. 1. Time series of log price–dividend ratio.
The figure plots the logarithm of the price–dividend ratio (y-axis) against the year (x-axis). The grey areas refer to the NBER recessionary periods
(only those longer than nine months).
time, as indicated in Panel B, the I(0) tests reject the null
for the price–dividend ratio but not for stock returns or
dividend growth. In summary, the results indicate that
stock returns and dividend growth are consistent with the
I(0) assumption, while the price–dividend ratio is neither
I(0) nor I(1).

We now examine the hypothesis that the price–
dividend ratio is integrated of order higher than zero
but smaller than one. Table 1, Panel C reports the es-
timates of the order of fractional integration (δ) of the
price–dividend ratio, returns, and dividend growth series
obtained using three different semiparametric estimators:
the periodogram regression proposed by Geweke and
Porter-Hudak (1983) (hence GPH), the Gaussian semipara-
metric estimator introduced by Robinson (1995), and the
two-step exact local Whittle estimator proposed by Shi-
motsu (2010). The GPH and Robinson estimators were
designed for stationary time series (δ < 1/2). There-
ore, when using these estimators we first-difference the
rice–dividend series to estimate δ − 1. The Shimotsu
stimator is valid for both stationary and non-stationary
ime series (δ ≥ 1/2) as well as in the presence of
tructural instability. If the fractional integration parame-
er is larger than zero, the series is said to exhibit long
emory, which means that it displays slowly decaying
ositive autocorrelation at long lags: ψj ∼ (Γ (δ))−1jδ−1

or j → ∞, where Γ denotes the gamma function. On
he other hand, if δ < 0, we say that the series is
ntipersistent; in this case the series has asymptotically
egative autocorrelations decaying at a hyperbolic rate.
or δ = 0 the series is a short-memory process. Moreover,
he series is stationary if δ < 1/2 and invertible if δ >
1/2.4

4 See Granger and Joyeux (1980) and Hosking (1981).
4

The semiparametric estimators do not make any as-
sumptions regarding the dynamics away from very low
frequencies. Specifically, we use bandwidth equal to T 0.75

for the GPH estimator and one-third of the sample for the
Robinson and Shimotsu (2010) estimators, which gives
bandwidth of 29 and 30 observations, respectively. We
checked that the choice of bandwidth has little effect on
the estimation results.5 The semiparametric estimates all
conclude that the estimates of the price–dividend ratio
fractional parameter (δ) are about 0.7. Table 1, Panel C
also shows that the time series of returns and dividend
growth seem to be integrated of order smaller than zero.

Using log linearization for a non-stationary variable
could be questionable, since the approximation error can
become big when the function is far from the point of
linearization. Given the evidence on the fractional in-
tegration coefficient of the price–dividend ratio being
larger than 0.5, the concern about the stationarity of the
series seems valid. However, in the next section we argue
that the non-stationarity of the price–dividend ratio is
a small-sample phenomenon that disappears asymptot-
ically. This means that the technique of log linearization
around the mean remains valid. Also, it should be noted
that, even for non-stationary series, in finite samples log
linearization could be used for approximation around
any point, such as the sample mean, although it can
invalidate asymptotic inference. Moreover, in the rational
bubbles framework with locally explosive expectations,
Engsted, Pedersen, and Tanggaard (2012) document that

5 The exceptions here are the Shimotsu (2010) estimates for the
dividend growth process; using one-quarter of the sample (22 obser-
vations) yields an estimate of the fractional integration parameter equal
to −0.1504.
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the approximation is “very accurate even in the pres-
ence of large explosive bubbles”. Some other examples
of using Campbell and Shiller (1988) log linearization
with locally non-stationary variables are Balke and Wohar
(2009), Wu (1997), and Phillips, Wu, and Yu (2011).

2.3. Non-stationarity of the price–dividend ratio and price
bubbles

Another aspect of the apparent non-stationarity of the
rice–dividend ratio is that it could point towards a price
ubble. If rational bubbles exist, then the price and divi-
end levels should not be cointegrated. Since we should
xpect prices and dividends to be unit-root processes, if
hese series are not cointegrated, then the price–dividend
atio will also be non-stationary. In the next section we
rgue that, due to the aggregation of antipersistent ex-
ectations, the non-stationarity of the price–dividend ra-
io is spurious and, in fact, the price–dividend ratio is
symptotically a stationary process.
Nonetheless, we formally examine the fractional coin-

egration hypothesis between prices and dividends by
pplying the nonparametric variance ratio test developed
y Nielsen (2010). We say that two series integrated of
rder δ are fractionally cointegrated if there exists a linear

combination of them that is integrated of order I(δ − b)
for some b > 0. As such, it could be expected that the es-
timated fractional difference parameter for the pdt series
should be smaller than that for prices and dividends.6 In
fact, since the order of integration of the price–dividend
ratio reported in Table 1 is smaller than and statistically
different from 1, it indicates that prices and dividends are
actually cointegrated.

The results of the Nielsen test are reported in Table 2.
Although the order of integration of the series is not
needed to find the value of the test, it does affect the dis-
tribution of the statistic. Therefore we simulate the critical
values for the assumed order of integration for prices and
dividends equal to 0.8, 0.9, and 1. Despite a relatively
small number of observations, as for the nonparametric
test, we reject the null hypothesis of no cointegration
when the order of integration of prices and dividends is
0.9 or higher, arguably the most economically relevant
cases.7 As such, we find that there is little evidence of a
price bubble in our data sample.

3. Present-value model with fractional integration

3.1. Aggregation of expectations in the log price–dividend
ratio

At this point, we should consider the order of inte-
gration of the series in the log-linearized return Eq. (3).
Since returns and dividend growth are stationary with
approximately the same order of integration (see Table 1),
the apparent non-stationarity of the price–dividend ratio
poses a puzzle, which we now address.

6 See also Cunado, Gil-Alana, and de Gracia (2005) and Koustas and
Serletis (2005).
7 See Nielsen (2010), n. 1.
 s

5

Table 2
Nielsen (2010) (Λ2,0(0.1)) variance ratio test for cointegration.
he test for price and dividends levels includes a non-zero mean and
inear trend. The top panel shows the results of the test for price
evels and dividends and the bottom panel for returns and dividend
rowth. The p-values for the Nielsen test were obtained from the
imulated distribution for different values of delta. The sample period
s 1934–2022.

p − d
Nielsen 3.87

δ0 0.8 0.9 1.0
p-value 0.25 0.09 0.03

r −∆d
Nielsen 5.03
δ0 −0.2 −0.1 0.0
p-value 0.92 0.48 0.07

After rearranging (3) for the price–dividend ratio, it-
erating forward and taking conditional expectations, we
obtain the PV identity:

pdt =
κ

1 − ρ
+ Et

⎡⎣ ∞∑
j=0

ρ j∆dt+1+j

⎤⎦− Et

⎡⎣ ∞∑
j=0

ρ jrt+1+j

⎤⎦(4)
=

κ

1 − ρ
+

∞∑
j=0

ρ jEt
(
gt+j − mt+j

)
,

here mt ≡ Et [rt+1] and gt ≡ Et [∆dt+1]. The PV identity
bove reveals that the log price–dividend ratio is deter-
ined by expected future dividend growth and returns
iscounted at rate ρ.
Consider the implications of the aggregation of expec-

ations in (4). Under rational expectations, if the expected
eturns and expected dividend growth are
onstant and there are no rational bubbles, then the
rice–dividend ratio should be constant, a result empha-
ized by Cochrane (2008a). On the other hand, the fact
hat the price–dividend ratio is time-varying can be inter-
reted as evidence that either expected dividend growth,
xpected returns, or both, are time-varying. Generally,
e can re-write their difference using an infinite-order
oving-average representation.

ssumption 1. The expected dividend growth and ex-
ected returns allow a linear representation

t − mt = µ+ ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + · · · , (5)

here εt ∼ i.i.d.N(0, 1) and 0 < ϕ0 < ∞.

Skipping for simplicity the constant term, the price–
ividend ratio is then:

dt = εt

∞∑
j=0

ρ jϕj + εt−1

∞∑
j=0

ρ jϕj+1 + εt−2

∞∑
j=0

ρ jϕj+2 + · · ·

= ψ0εt + ψ1εt−1 + ψ2εt−2 + · · · , (6)

here ψi =
∑

∞

j=0 ρ
jϕj+i.

Consider for a moment the counterfactual case when
he discount factor ρ is equal to unity. When expected re-
urns and expected dividend growth are ARMA processes,
uch that the decay of the moving-average terms ϕ is
j
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geometric, i.e. ϕj ∼ caj as j → ∞, where |a| < 1 and
c is a constant, then the partial sums ψj will also decay
geometrically as j becomes large. For example, assuming
that gt −mt is an AR(1) process, so that ϕj = ϕj, then ψj =

ϕj/ (1 − ϕ). On the other hand, when the moving-average
coefficients in (5) decay hyperbolically, i.e. ϕj ∼ cjδ−1 as
j → ∞ with δ < 0, where c is again a generic constant,
then, by applying Lemma D.2 from Goliński and Zaffaroni
(2016), ψj ∼ cjδ . Therefore, the order of integration of
the price–dividend ratio depends on whether the rate of
decay of ϕ′s is geometric or hyperbolic.

In the present-value context of (4), ρ < 1 by con-
struction. Thus, in the limit, the rate of decay of ψj is the
same as ϕj. However, interesting behavior of the price–
dividend ratio emerges when the order of integration of
the underlying series gt −mt is negative, i.e. when δ < 0.
We maintain this assumption throughout this section.

Assumption 2. The moving-average terms in Eq. (5)
decay hyperbolically, i.e. ϕj ∼ c0jδ−1 with δ ∈ (−1, 0) and
c0 a constant.

In the empirical part, we make a stronger assumption
about the data-generating process by assuming that ex-
pected returns and expected dividend growth follow an
ARFIMA(p, δ, q) process, which implies a similar represen-
tation for gt − mt .

Assumption 2’. The joint process of expected returns and
expected dividend growth in Eq. (5) follows an autore-
gressive fractionally integrated moving-average process
ARFIMA(p, δ, q) with δ ∈ (−1, 0).

Remark 1. There is no assumption of cointegration
between expected dividend growth and expected returns,
or lack thereof. What is required, however, is the an-
tipersistence of the joint process gt − mt . For example,
expected returns and expected dividend growth can both
be fractionally integrated processes with δg = δd, but due
to cointegration, the fractional parameter for the series
gt − mt is smaller than zero. Alternatively, the two series
can have different orders of integration, δg ̸= δd, that
satisfy δg < 0 and δd < 0; in this case the order of
integration of the joint process gt −mt will be max[δg , δd].

If the process gt − mt exhibits antipersistence as as-
umed above, then in general the sum of autocovariances
f the price–dividend ratio,

∑
∞

j=−∞
γ (j), will be finite and

different from zero. Consequently, the spectral density
function will exhibit a finite spike at zero frequency. The
behavior of the spectral density near zero frequency is
summarized in the following theorem.

Theorem 1. Let Assumptions 1 and 2 hold. Then, the
spectral density of the log-linearized price–dividend ratio has
the following properties:

(i)

lim
∂ f (λ)

= −∞. (7)

λ→0+ ∂λ

6

(ii)

0 < f (0) < ∞; (8)

(iii) Under assumptions 1 and 2’, the spectral density at
frequency zero is:

f (0) =
1
2π

ρ2ψ2
0

(1 − ρ)2
. (9)

Proof. See Appendix B.8 □

Remark 2. Theorem 1 describes the behavior of the spec-
tral density near frequency zero, which is different from
that of the typical supposition about the behavior of the
price–dividend ratio. In particular, if the price–dividend
ratio follows a short-memory autoregressive process, then
the spectral density

f (λ) =
1
2π

⎛⎝ ∞∑
j=0

ψjeiλj

⎞⎠⎛⎝ ∞∑
j=0

ψje−iλj

⎞⎠ (10)

s finite and bounded away from zero with ∂ f (λ)/∂λ = 0
t λ = 0. If the price–dividend ratio follows a long-
emory process, such as ARFIMA(p, δpd, q) with δpd >

0, then the sum of the moving-average coefficients and
the spectral density at frequency zero are unbounded. If
the price–dividend ratio follows an ARFIMA process with
negative memory, i.e. δpd < 0, then

∑
∞

j=0 ψj = 0 and
he spectral density at frequency zero is zero. Thus, the
ehavior described in Theorem 1 is distinctly different
rom any of these cases.

For the sake of exposition, assume that gt − mt in (5)
ollows an ARFIMA(0, δ, 0) process with δ = −0.2, which
s approximately the value of the fractional integration
arameter estimated for the dividend growth and return
eries in Table 1. In Fig. 2 we plot the normalized rate
f decay of ψk calculated as 1 + log(ψk+1/ψk) × k for
ifferent values of ρ. Recall that for large k, ϕk ≃ ckδ−1.
hen ρ = 1 we can see that the pdt process becomes

(0.8). On the other hand, for values of ρ < 1 the
symptote of the normalized rate of decay is the same as
or the underlying process, −0.2. The convergence to this
symptote, however, is very slow.
In Fig. 3 we plot the spectral density of the price–

ividend ratio for different values of ρ. For ρ = 1 the
hape of the spectral density becomes unbounded and
orresponds to the long-memory process with δ equal to
.8. For ρ < 1 near frequency zero, the series shows a
harp increase reminiscent of the spike displayed by a
enuine long-memory process. As such, in a finite sample,
he price–dividend ratio is likely to appear as a long-
emory series. Using the property of an ARFIMA model

hat
∑

∞

j=0 ϕj = 0 when δ < 0, we can show that the value

8 We are grateful to Karim Abadir for presenting us with the proof
of Theorem 1(ii) under the more general Assumption 2. See also Abadir,
Heijmans, and Magnus, Section A.4.1
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Fig. 2. Partial derivative plot against sample size.
The differential of log(ψk) in Eq. (5) with respect to log(k) + 1 (y-axis) is plotted against the sample size (x-axis). Different values of ρ are represented
y different colors and patterns. The asymptotes denote the order of integration of the series.
Fig. 3. Spectral density of the price–dividend ratio.
The figure shows the implied spectral density for the underlying processes in Eq. (5) following the ARFIMA(0,−0.2, 0) or AR(1) process for different
alues of ρ. The spectral densities for different values of ρ are represented by different colors and patterns.
f the spectral density at the origin is given by9:

(0) =
1
2π

⏐⏐⏐⏐⏐⏐
∞∑
j=0

ψj

⏐⏐⏐⏐⏐⏐
2

=
1
2π

⏐⏐⏐⏐⏐⏐
∞∑
i=0

∞∑
j=0

ρ jϕi+j

⏐⏐⏐⏐⏐⏐
2

=
1
2π

ρ2ψ2
0

(1 − ρ)2
,

(11)

nd, as should be expected, it is higher for larger values
f ρ. For comparison we also plot the spectral density
enerated by an AR(1) process with the autocorrelation
oefficient equal to 0.99. The spectral density of the AR(1)

9 See Appendix B.
7

series near the origin becomes flat, which is plainly dif-
ferent from a long-memory process or the model with a
finite spike at frequency zero described in Theorem 1.

It should be emphasized that long memory (or frac-
tional integration) is an asymptotic concept. In Theorem 2
we establish that when ρ < 1 and δ < 0, the rate of decay
of the moving-average coefficients of the price–dividend
ratio is hyperbolic. Yet as we saw in Theorem 1, the
spectral density at frequency zero is finite and bounded
away from zero. It follows that the price–dividend ratio
will be (asymptotically) stationary, but due to its structure
as integrated expectations, in a finite sample it can be well
described as a non-stationary long-memory process.
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Theorem 2. Let Assumptions 1 and 2 hold. Then, the
moving-average coefficients of the log-linearized price–
dividend ratio in (6), ψk, decay asymptotically at the same
rate as the moving-average coefficients of the underlying
process:

ψk ∼ c1kδ−1, (12)

where c1 < 0 is a constant.

Proof. See Appendix B. □

.2. State-space ARFIMA model of the price–dividend ratio

The analysis presented in Section 2 indicates that tak-
ng the fractional integration of returns and dividend
rowth into account should result in improved statistical
nference and better ability of the present-value model
o account for different aspects of the data. Therefore,
n this section we present a present-value model with a
ractional integration component.

Van Binsbergen and Koijen (2010) specified expected
eturns (mt ≡ Et [rt+1]) and expected dividend growth
(gt ≡ Et [∆dt+1]) as AR(1) processes. We consider in-
stead the more general ARFIMA process. In particular, we
model expected returns and expected dividend growth as
ARFIMA(1, δm, 0) and ARFIMA(1, δg , 0) processes, respec-
tively:

(1 − φmL)(1 − L)δm (mt − µm) = εm,t , (13a)

(1 − φgL)(1 − L)δg (gt − µg ) = εg,t , (13b)

where L is the lag operator, δm and δg are fractional inte-
gration coefficients, and εm,t and εg,t are zero-mean i.i.d.
series. To satisfy Assumption 1, the processes mt and gt
are assumed to be stationary, which holds when |φi| < 1
and δi < 1/2, for i ∈ {m, g}. Theorems 1 and 2, however,
require a stronger assumption regarding the rate of decay
of the moving-average terms (see Assumption 2), which
is satisfied when both δm and δg are smaller than zero
(see Assumption 2’). Whether or not these conditions are
satisfied is an empirical issue and, as such, it remains our
hypothesis of interest in the empirical implementation
of the model. Finally, we note that the moving-average
coefficients of the process gt − mt (φ in Eq. (5)) are a
um of moving-average coefficients of gt and the negative
f mt , i.e. ϕj = ϕg,j − ϕm,j. It follows that the rate of
ecay of the coefficients, and thus the order of integration
f gt − mt , is determined by the series with the higher
rder of integration, as mentioned in Remark 1. When
m = δg = 0, our model corresponds to the one in Van
insbergen and Koijen (2010).
We specify the expectation series mt and gt as:

t = µm + w′Cm,t , (14a)

gt = µg + w′Cg,t , (14b)

here w = [1, 0, 0, · · · ]′, and Cm,t and Cg,t are infinite-
imensional state vectors that can be expressed as Ck,t =

xk,t , Et (xk,t+1), Et (xk,t+2), . . .
]′, for k = {m, g}, where

(x ) =
∑

∞
ϕ ε and ϕ are functions of
t k,t+j i=j k,i k,t+j−i k,i

8

ARFIMA parameters in (13a)–(13b). The transition equa-
tions are:

Cm,t+1 = FCm,t + hmεm,t+1, (15a)

Cg,t+1 = FCg,t + hgεg,t+1, (15b)

with F, hm, and hg given by10:

=

⎡⎢⎣ 0 1 0 · · ·

0 0 1
...

. . .

⎤⎥⎦ , hm =

⎡⎢⎢⎣
1
ϕm,1
ϕm,2
...

⎤⎥⎥⎦ ,

g =

⎡⎢⎢⎣
1
ϕg,1
ϕg,2
...

⎤⎥⎥⎦ .
The vectors hm and hg contain coefficients of the moving-
average representation of the expected returns and ex-
pected dividend growth series, as in (13a) and (13b),
respectively. In particular, denote the moving-average co-
efficients of the pure fractionally integrated process of
order δ by aj, such that aj =

j+δ−1
j aj−1 (starting from

a0 = 1), and the moving average of a stationary ARMA
process by bj (in the AR(1) case which we consider, bj =

φj). Then, the moving average of ARFIMA(1, δ, 0) is ϕj =∑j
k=0 akbj−k.
The realized returns and dividend growth rate are

equal to the expectation series plus an orthogonal
shock:

rt+1 = mt + εr,t+1, (16a)

∆dt+1 = gt + εd,t+1, (16b)

where εr,t+1 and εd,t+1 are Gaussian white noise pro-
cesses. Eqs. (16a)–(16b) constitute a signal plus noise
model (see e.g. Sun & Phillips, 2003, Dalla, Giraitis, & Hi-
dalgo, 2006). The results presented in Section 2.2 suggest
that the expected series (signal) may be antipersistent.
However, since the order of integration of a series is equal
to the highest integration order of its components, the
additive Gaussian noise makes the realized series formally
an I(0) process. In consequence, when the antipersistent
signal is sufficiently strong, in small samples it could be
detected by standard estimators, but distorted and biased
towards zero by the presence of noise.

As demonstrated by (Cochrane, 2008), shocks to ei-
ther realized returns εr,t+1 or realized dividend growth
εd,t+1 can be expressed as a function of other innovations.
Thus, effectively we need only two observation equations.
Following Cochrane we substitute out the shocks to re-
alized returns (see Appendix C) and thus, we obtain the
following measurement equations:

∆dt+1 = µg + w′Cg,t + εd,t+1, (17a)

pdt = A + b′Cg,t − b′Cm,t , (17b)

where A = (κ +µg −µm)/(1−ρ) and b = [1, ρ, ρ2, . . .]′.

10 A similar state-space long-memory model was proposed
by Goliński and Zaffaroni (2016) in an application to the term
structure of interest rates.
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To complete the model we also need to specify the
ovariance matrix of the structural shocks, which we as-
ume to be homoscedastic11:

= var

([
εm,t+1
εg,t+1
εd,t+1

])
=

⎡⎣ σ 2
m σmg σmd

σmg σ 2
g σgd

σmd σgd σ 2
d

⎤⎦ .
4. Estimation results

4.1. Identification and estimation methodology

Since log linearization is based on the first-order ap-
proximation, it does not hold exactly for the observed
data. Following Cochrane (2008a) and Van Binsbergen and
Koijen (2010), in the model estimation we impose the
identity structure given in (3) by using the observed log
returns and generating the dividend growth rates from
the identity.12

In the preliminary estimation of the model, we consid-
ered different autoregressive and moving-average orders
of ARFIMA processes, as well as different orders of in-
tegration δ for expected returns and expected dividend
growth. We found the ARFIMA(1, δ, 0) model of expected
returns and expected dividend growth with δm = δg = δ

to be the most favorable specification in terms of the
Bayesian information criterion and likelihood-ratio test. In
particular, relaxing the constraint δm = δg has negligible
effect on the value of the likelihood function. As such, we
maintain this assumption in the rest of the paper. As a
benchmark, we also estimate the model with expected
returns and expected dividend growth parametrized as
AR(1). We refer to these two specifications as the PV-
ARFIMA and PV-AR models, respectively.

Following Rytchkov (2012), we parametrize the model
using correlations rather than covariances: ρmg = σmg/

(σmσg ), ρgd = σgd/(σgσd) and ρmd = σmd/(σmσd). As
pointed out by Rytchkov (2012) and Cochrane (2008),
the dimension of the covariance matrix of shocks is not
identified in a system with expected returns and ex-
pected dividend growth following an AR(1) process. For
other dynamic systems, however, the identification status
of the covariance parameters has not been clear, which
posed a gap in the literature. We examine this issue
in Appendix C (in which we use results from Abadir
and Magnus (2005), ch. 11). We show that all Σ coeffi-
cients are identified, for present-value models with richer
short-memory dynamics (e.g. AR(p) with p ≥ 2) or with
long-memory dynamics. Nonetheless, following Rytchkov
(2012) and Van Binsbergen and Koijen (2010), we decided
to use the same specification of Σ in both PV-AR and
PV-ARFIMA and set the correlation between the expected
dividend growth and the realized dividend shock to zero
(ρgd = 0) for two reasons: (a) it allows us to attribute the
difference in performance of the two models solely to the
fractional integration feature, and (b) in the preliminary

11 The present-value model with time-varying risk was analyzed
by Piatti and Trojani (2017).
12 In our sample the average approximation error amounts to 36
basis points, and the correlation between these two series amounts to
0.9989.
9

Table 3
Estimation results of the present-value models.
The models of expected returns and expected dividend growth are
specified as AR(1) for the PV-AR model and ARFIMA(1, δ, 0) for the PV-
ARFIMA model. The asymptotic standard errors are reported in small
font. *, ** and, *** denote significance at the 10%, 5%, and 1% levels,
respectively. The sample period is 1934–2022.

Model

PV-AR PV-ARFIMA

µm
std.err

0.0698∗∗∗

0.0111
0.0682∗∗∗

0.0052

φm
std.err

0.8442∗∗∗

0.0634
0.9233∗∗∗

0.0342

µg
std.err

0.0265∗∗∗

0.0099
0.0244∗∗∗

0.0044

φg
std.err

−0.1813
0.1880

0.3027∗∗

0.1405

δ
std.err

− −0.3109∗∗∗

0.1014
σg

std.err
0.0491∗∗∗

0.0095
0.0948∗∗∗

0.0071

σm
std.err

0.0287∗∗∗

0.0103
0.0460∗∗∗

0.0114

σd
std.err

0.0839∗∗∗

0.0062
0.0002
0.0094

ρmg
std.err

−0.8639∗∗∗

0.0001
−0.2324∗∗∗

0.0001

ρmd
std.err

0.5036∗∗∗

0.0001
0.9725∗∗∗

0.0001

analysis we estimated the PV-ARFIMA with all Σ param-
eters and found that ρgd is close to zero and statistically
insignificant (ρ̂gd = 0.09 with a p-value equal to 0.87).

Thus, the set of parameters to estimate is:

Θ ≡ (µm, φm, δ, µg , φg , σm, σg , σd, ρmg , ρgd, ρmd)

for the PV-ARFIMA model, and the same excluding δ for
the PV-AR model. The log-linearization parameters (κ, ρ)
are defined by the sample mean (see Section 2.2) and as
such are not subject to estimation.

The model is estimated by means of maximum likeli-
hood estimation (MLE). We assume that the error terms
have a multivariate Gaussian distribution, which, since
the measurement and transition equations consist of a
linear dynamic system, allows us to compute the like-
lihood using the Kalman filter (Hamilton, 1994).13 The
transition equations are given by (15a) and (15b) and the
measurement equations by (17a) and (17b). Despite the
fact that the state vectors are infinitely dimensional, Chan
and Palma (1998) showed that the consistent estimator
of an ARFIMA process is obtained when the state vector
is truncated at a lag l ≥

√
T . In their Monte Carlo simula-

tion, Chan and Palma (1998) showed that the approximate
MLE works well in sample sizes as small as 100 observa-
tions, which is close to our sample of 89 observations. In
the estimation we set the truncation lag at l = 40.14

4.2. Results

The estimates of the models are reported in Table 3.
Expected returns exhibit strong and positive autoregres-
sive dynamics. Allowing for fractional integration in the
model increases the autoregressive coefficient from 0.84

13 See Appendix D for details.
14 We checked that the results are robust to other choices of the
truncation lag.
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Table 4
Estimation statistics of the present-value models.
In Panel A we report: the likelihood ratio test performed relative to
the PV-AR model with associated p-values, asymptotic and bootstrap,
reported in small font; the sample standard deviation of expected
returns; the sample standard deviation of expected dividend growth;
the model-implied correlation between expected returns and expected
dividend growth, one lag for realized returns, dividend growth, ex-
pected returns, and expected dividend growth; and the R2 coefficient
of returns and dividend growth. Panel B of the table presents the
variance decomposition of the price–dividend ratio. The sample period
is 1934–2022.

Model

PV-AR PV-
ARFIMA

Panel A: Model statistics
LR
p − value(asymptotic)
p − value(bootstrap)

– 5.70
(0.0169)
[0.0638]

σ (mt ) 5.36% 6.53%
σ (gt ) 4.99% 9.64%
ĉorr(rt , rt−1) −0.05 −0.12
ĉorr(∆dt ,∆dt−1) −0.05 0.02
ĉorr(µt , µt−1) 0.84 0.70
ĉorr(gt , gt−1) −0.18 0.02
ĉorr(mt , gt ) −0.39 −0.14
R2
r 0.14 0.20

R2
∆d 0.24 0.25

Panel B: pd variance decomposition
exp. returns 41.71% 44.05%
exp. div. growth 0.87% 7.82%
covariance 57.42% 48.13%

to 0.92. High autocorrelation of expected returns is con-
sistent with the findings of others in the literature (see
Fama & French, 1988, Ferson, Sarkissian, & Simin, 2003,
and Pástor & Stambaugh, 2009). The autoregressive coef-
ficient for expected dividend growth for the PV-AR is close
to zero and not statistically significant, while for the PV-
ARFIMA model it is positive (0.30) and significant at the
5% level.

The estimate of the fractional integration parameter is
egative at −0.31 and statistically significant. The point
stimate is more negative than the semiparametric es-
imates reported in Table 1, but the difference is not
tatistically significant. The smaller semiparametric esti-
ates (in absolute terms) of the realized series are also
onsistent with the signal plus noise model, as in (16a)–
16b), since the antipersistent signal is biased towards
ero in the observed series.
The estimate of the volatility shocks to the expected

ividend growth σg in the PV-ARFIMA model is almost
wice as big as in the PV-AR model (0.09 and 0.05 for
he two models, respectively). Similarly, the estimate of
he volatility of shocks to expected returns σm is higher
for the PV-ARFIMA model, about 0.05, while the PV-AR
model it amounts to 0.03. The correlation between the
innovations of expected returns and expected dividend
growth ρmg is higher in the PV-AR model at −0.86, while
for the PV-ARFIMA it is −0.23. On the other hand, the cor-
elation between shocks to expected returns and realized
ividends ρmd is lower for the PV-AR model, 0.50, while
t amounts to 0.97 for the PV-ARFIMA model.
10
The statistics of the two estimated models are pre-
sented in Table 4. The first line shows the likelihood-ratio
(LR) test of equal fit to the data of the two models, with
PV-AR being the nested model. The LR test favors the PV-
ARFIMA model with the asymptotic and the bootstrap p-
values equal to 1.7% and 6.38%. The next two lines of
Table 4 report the sample standard deviations of filtered
expected returns and expected dividend growth. The vari-
ability of the implied time series increases when we allow
for fractional integration.

In the next two lines we report the model-implied
first-order autocorrelation of returns and dividend growth
implied by the model parameters. In our sample, the
autocorrelation of returns amounts to about −0.09 (not
reported in any table). The autocorrelation based on the
PV-ARFIMA estimates is slightly more negative, −0.12,
while the PV-AR model implies −0.05. The sample first-
order autocorrelation in the dividend growth series is
slightly positive and amounts to 0.08 (not reported in
any table). The value implied by the PV-ARFIMA model
is smaller (0.02), but closer than the autocorrelation im-
plied by the PV-AR model (−0.05). It is interesting to
compare these numbers to the figures reported in the
next two lines for expected returns and expected dividend
growth. The model-implied first-order autocorrelations
for expected returns for the PV-ARFIMA and PV-AR mod-
els are 0.70 and 0.84, respectively, and are comparable
to others reported in the literature.15 It should be noted
that the pattern of short-run positive and long-run neg-
ative autocorrelation implied by the PV-ARFIMA model
is consistent with the well-known phenomenon of long-
run reversal in stock returns (see e.g. Fama & French,
1988, and Cutler, Poterba, & Summers, 1988). The implied
autocorrelation of expected dividend growth is close to
zero for the PV-ARFIMA model and negative (−0.18) for
the PV-AR model.

In the following row of Table 4 we report the model-
implied correlation between expected returns and ex-
pected dividend growth. The correlation between the two
series amounts to about −0.39 and −0.14 for the PV-
AR and PV-ARFIMA models, respectively. The negative
correlation between the two expected series is in line
with the findings of Van Binsbergen and Koijen (2010),
but goes against the conjecture of positive correlation
made by Lettau and Ludvigson (2005).

In the last two lines of Panel A in Table 4 we report the
R2 statistics calculated as:

R2
r = 1 −

var(rt − mF
t−1)

var(rt )
, (18a)

R2
∆d = 1 −

var(∆dt − gF
t−1)

var(∆dt )
, (18b)

where mF
t−1 and gF

t−1 are filtered series of expected re-
turns and expected dividend growth rates, respectively.
As in Van Binsbergen and Koijen (2010) the filtered series

15 Van Binsbergen and Koijen (2010) found the autoregressive
parameter in the state space to range from 0.932 to 0.956,
while Rytchkov (2012) found that the autoregressive coefficient was
0.78–0.85. Cochrane (2008) simulated the persistence of expected
returns from 0.91–0.96 under an AR(1) specification.
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Table 5
Bootstrap p-values for data simulated under the null and the alternative
ypotheses.
iven the estimated parameters from Table 3, we use the stationary
ootstrap procedure proposed in Politis and Romano (1994) to generate
000 artificial samples of data of the same length as the original
ample size (89 time series observations) for both models, PV-AR
nd PV-ARFIMA. For each series we calculate the statistics reported
n Table 1. We calculate the bootstrap p-values by the frequency
with which the statistic calculated in the simulated data (M̂b) is
higher or lower (whichever is lower) than the original statistic (M̂):
min

[
Pr(M̂b > M̂), Pr(M̂b < M̂)

]
. The p-values for the data generated

nder the PV-AR model and under the PV-ARFIMA model are reported
n round brackets and square brackets, respectively.

r ∆d pd

Panel A: I(1) tests
ADF (0.4176)

[0.2832]
(0.0120)∗∗

[0.0350]∗∗

(0.1870)
[0.2104]

Phillips–Perron (0.4176)
[0.2832]

(0.0950)∗
[0.1624]

(0.1870)
[0.2104]

Fractional ADF (0.2610)
[0.1514]

Panel B: I(0) test
KPSS (0.2702)

[0.4528]
(0.3228)
[0.3060]

(0.1774)
[0.1534]

Lobato–
Robinson

(0.4130)
[0.4024]

(0.4546)
[0.4234]

(0.0664)∗
[0.0650]∗

Panel C: Fractional difference estimates
GPH (0.0746)∗

[0.2070]
(0.1020)
[0.2734]

(0.1536)
[0.2048]

Robinson (0.0878)∗
[0.3210]

(0.1680)
[0.4040]

(0.1190)
[0.1418]

Shimotsu (0.0552)∗
[0.2418]

(0.3278)
[0.4254]

(0.0670)∗
[0.1000]

are updated one step ahead and are readily obtained from
the Kalman filter. For the PV-AR model, the R2

r value
amounts to 14%. When we add the fractional integration
component, the R2

r value increases to 20%. The dividend
growth process also seems significantly predictable in-
sample. For the PV-AR model, the R2

∆d for dividend growth
is 24% and for the PV-ARFIMA model, it reaches 25%.
This is contrary to some results reported in the litera-
ture (e.g. Cochrane, 2008a) but is on the other hand in
line with, for example, Van Binsbergen and Koijen (2010)
and Koijen and Van Nieuwerburgh (2011).

Finally, in Panel B of Table 4 we report the results of
the price–dividend ratio variance decomposition. Using
the estimates of the model, we calculate the uncondi-
tional variance of the state vectors Cg,t and Cm,t using
truncation at the l = 2000 lag. The portion of the vari-
ance attributed to the discount rates (expected returns)
is thus b′ var(Cm,t )b/ var(pdt ), and the part correspond-
ing to expected dividend growth is b′ var(Cg,t )b/ var(pdt ).
The covariance part is calculated as the remainder of the
total variance. Both the PV-AR and PV-ARFIMA models
attribute a substantial part of the variation in the price–
dividend ratio to fluctuations in expected returns, about
42% and 44%, respectively, and a negligible portion to fluc-
tuations in the expected dividend growth. However, due
to significant correlation of both components, a big part
of the price–dividend ratio variance is attributed to the
covariance term, which accounts for about 57% and 48%
11
of the variation for the PV-AR and PV-ARFIMA models,
respectively.

4.3. Bootstrap comparison

In this section we address the question of how likely
it is that the observed features of the data arise under
the short-memory PV-AR generating process and whether
the proposed PV-ARFIMA model offers any improvement
in this respect. To this end, based on the parameters
reported in Table 3, we use the Politis and Romano (1994)
stationary bootstrap to simulate 5000 samples of the data
of the same length as the original sample (89 time series
observations), under both models.16 For each simulated
sample, we calculate the same statistics that we reported
in Table 1. Based on the distribution of each statistic, we
examine how likely it is to observe the original estimate.
If the simulated data are close to the true data-generating
process, we should expect that the observed statistic (de-
noted generically by M̂) is close to the center of the
distribution. On the other hand, if the assumed process
is not closely aligned with the true process, the observed
statistic would be far in one of the tails of the distribution.
Specifically, we calculate the bootstrap p-values as:

min
[
Pr
(
M̂b > M̂

)
, Pr

(
M̂b < M̂

)]
, (19)

where M̂b is the generic statistic calculated on the simu-
lated sample. In Table 5 we report the bootstrap p-values
for the simulations under the PV-AR model (round brack-
ets) and the PV-ARFIMA model (square brackets) for each
statistic.

The results suggest that in terms of the I(1) and I(0)
tests (Table 5, Panel A and Panel B, respectively), there is
not sufficient evidence to discriminate between the two
competing models, although the p-values are generally
smaller for the short memory model, at least for such a
short sample size. In particular, both models are rejected
at the 5% level for the ADF test for dividend growth; the
ACF test strongly rejects the unit-root hypothesis on the
data generated under both models, but the value of the
test is typically not smaller than the original statistic.
A similar situation occurs with the (Lobato & Robinson,
1998) test, where both models are rejected at the 10%
level. The only difference is for the (Phillips & Perron,
1988) test for dividend growth, where the PV-AR model
is rejected at the 10% level, while the p-value for the
PV-ARFIMA model amounts to 16.24%.

The discriminatory power of the bootstrap exercise,
however, is stronger for the estimates of the fractional
difference parameters (Panel C). The PV-AR model is re-
jected for all three estimators for the return series (see
Figure A–6 in Appendix E), and for the (Shimotsu, 2010)
estimator for the price–dividend ratio. In other cases, the
test does not reject either model, but the p-values are
always smaller for the PV-AR model.

The presented results allow us to conclude that al-
though the PV-AR model is able to reproduce some fea-
tures of the data, such as the in-sample values of the

16 More details on the bootstrap results are reported in Appendix E.
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I(1) and I(0) tests, it is unable to reproduce other fea-
tures of the data, such as the estimates of the fractional
integration parameter for returns. In this respect, the PV-
ARFIMA model fares much better: although it reproduces
the unit root and stationarity statistics similarly to the PV-
AR model, at the same time it delivers the estimates of
δ for each series centered around the estimates found in
the data. Thus, our results indicate that the PV-ARFIMA
model is more compelling. This is in line with the boot-
strap p-value rejecting the PV-AR model in favor of the
PV-ARFIMA model in the present-value framework, as
reported in Table 4 (see also Figure A–7 in Appendix E).17

However, the ability to fit a model to descriptive statis-
tics is not the only way to compare models. Indeed, fur-
ther evidence in favor of the PV-ARFIMA model is due to
its superior forecasting performance and its closer rela-
tion with the macro-variables. We discuss these issues in
detail in Section 5.

4.4. Model-implied persistence of the price–dividend ratio

In light of our theoretical discussion in Section 3.1,
it is interesting to check the implications of different
assumptions about the dynamics of expected returns and
expected dividend growth for the price–dividend ratio
within the present-value framework.

The kth autocovariance of the price–dividend ratio is
given by:

γ (k) =

∞∑
j=0

[σ 2
g b

′Fjhgb′Fj+|k|hg + σ 2
mb

′Fjhmb′Fj+|k|hm

− ρmgσgσm
(
b′Fjhgb′Fj+|k|hm + b′Fj+|k|hgb′Fjhm

)
],(20)

where the terms are as defined in Section 3. Since the
vectors and matrices are infinitely dimensional, we use
the approximation by truncating their dimension at 2000.

In Fig. 4(a) we plot the autocorrelation function (cal-
culated as γ (k)/γ (0)) of the price–dividend series implied
y the PV-AR and PV-ARFIMA models calibrated with the
arameter estimates from Table 3. In the same figure,
e also plot the empirical autocorrelations for the price–
ividend ratio. The difference in the decay implied by
he two models is striking. The PV-AR autocorrelations
ecrease rapidly, and at the 30-th lag they are virtu-
lly zero, while the autocorrelations implied by the PV-
RFIMA model exhibit slow, hyperbolic decay. We also
ote that although the PV-ARFIMA model does not repli-
ate some remaining seasonal patterns present in the
ata, it successfully captures high and slowly decaying
utocorrelation in the price–dividend ratio at long lags.
Furthermore, we examine the spectral density defined

s:

(λ) =
1
2π

∞∑
j=−∞

γ (j)e−ijλ. (21)

n Fig. 4(b) we plot the spectral densities of the price–
ividend series for the PV-AR and PV-ARFIMA models

17 The bootstrap p-value for the PV-ARFIMA model amounts to
4.04% (not reported in any Table).
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Table 6
Mincer and Zarnowitz (1969) regressions for returns and dividend
growth for the present-value models.
In Panel A we regress returns on a constant and the filtered values
of expected returns. In the first two lines we report the estimated
coefficients with their standard errors, and in the following two lines
the t-statistic for the null hypothesis of unbiased forecasts, that is
H0 : α = 0 and H0 : β = 1. In the next line we report the F-test
of the joint null hypothesis H0 : α = 0 and β = 1 with the p-values. In
Panel B we report the corresponding results for dividend growth. The
data sample is 1934–2022.

Model

PV-AR PV-ARFIMA

Panel A: rt+1 = α + β × mF
t + ut

α
std.err.

−0.0029
0.0422

0.0010
0.0315

β
std.err.

1.0210
0.5591

1.0188
0.3970

t − val. (H0 : α = 0) −0.0680 0.0313
t − val. (H0 : β = 1) 0.0375 0.0475
F (H0 : α = 0, β = 1)

p−value
0.0036
0.9864

0.0080
0.9921

Panel B: ∆dt+1 = α + β × gF
t + ut

α
std.err.

−0.0032
0.0104

−0.0040
0.0103

β
std.err.

1.0024
0.1903

1.0681
0.1951

t − val. (H0 : α = 0) −0.3064 −0.3893
t − val. (H0 : β = 1) 0.0129 0.3489
F (H0 : α = 0, β = 1)

p−value
0.0596
0.9422

0.0920
0.9122

calculated based on the first 1500 autocovariances. In the
figure we also superimpose a periodogram for the price–
dividend ratio. In the neighborhood of frequency zero,
the spectral density of the PV-AR model becomes flat,
while the PV-ARFIMA model exhibits a spike resembling
a long-memory series but finite. We can also observe
that although the PV-ARFIMA model does not fit the data
points perfectly, it provides a much better approximation
to real data than the PV-AR model.

Since our model of returns and dividend growth in
(16a)–(16b) is a signal plus noise model, the order of
integration of the realized series is formally I(0). Thus,
although realized returns and dividend growth are close
to serially uncorrelated, the price–dividend ratio might
appear to have long-memory features.

5. Analysis of forecasting power

5.1. Forecast diagnostics

In this section we evaluate the predictions given by
the present-value models. We estimate the (Mincer &
Zarnowitz, 1969) regressions, where the filtered series of
expected returns and expected dividend growth are used
as predictors:

rt+1 = α + β × mF
t + ut+1, (22a)

∆dt+1 = α + β × gF
t + ut+1. (22b)

Unbiased predictors should yield β = 1 and α = 0.
In Table 6 the regression results for returns are reported
in Panel A and for dividend growth in Panel B. The esti-
mates for returns for both the PV-AR and the PV-ARFIMA

models do not deviate from their hypothesized values
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Fig. 4. Autocorrelation function and spectral density of the price–dividend ratio.
The subfigures show the values of autocorrelations (a) and spectral density (b) implied by the PV-AR (black line) model and the PV-ARFIMA (red
dashed line) model together with the quantities estimated from the data (‘×’ markers). (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)
ignificantly, as evidenced by small t-test values (in ab-
solute terms) and the F-test not rejecting the joint null
hypothesis (H0 : α = 0 and β = 1) at any conventional
significance level.

In Panel B of Table 6 we report the results for the
dividend growth predictions. The β parameters for both
the PV-AR and PV-ARFIMA models are estimated at 1.002
and 1.068, respectively, and are not statistically different
from one. The intercept (α) is close to zero and not sta-
tistically significant for both models. The joint test fails to
reject the null hypothesis that the forecasts are unbiased
for both specifications. In summary, both models seem to
yield unbiased forecasts of returns and dividend growth.
13
5.2. Present-value model versus forecasting regressions

The fact that stock prices are forward-looking as in (4)
motivates the use of the price–dividend ratio in classical
forecasting regressions:

rt+1 = αr + βrpdt + ur,t+1, (23a)

∆dt+1 = αd + βdpdt + ud,t+1. (23b)

Forecasting regressions ((23a))–(23b) are not the opti-
mal method of inference for several reasons. First, despite
the fact that they are based on the present-value iden-
tity, the regressions are considered individually. As shown

by Pástor and Stambaugh (2009), there are potential gains
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Table 7
Root mean square forecasting errors for the present-value models and
predictive regressions.
In Panel A we report the RMSFEs for in-sample forecasts calculated by
using the estimates obtained from the whole sample and evaluated on
the subsample. In Panel B we estimate the models for 1934–2002 and
use these estimates to generate forecasts for the rest of the sample.
In Panel C we start by estimating the models on the sample from
1934–2002 and then make the prediction for 2003. In the next step,
we extend the estimation sample by one observation and make a
prediction for the next year, and so on. In Panel D we estimate the
models recursively, keeping the same number of observations in the
estimation sample. For example, to make the prediction in the second
step for 2004, we estimate the models on the sample from 1935–
2003 and so on. The last column reports the RMSFEs from predicting
with the sample mean calculated over the relevant estimation period.
All forecasts are evaluated on the sub-sample from 2003–2022. The
RMSFEs are reported in percentage points.

PV model Forecasting regressions Sample
PV-ARFIMA PV-AR pd ∆pd mean

Panel A: In-sample forecast
rt 16.54 17.65 17.79 18.05 17.92
∆dt 7.90 8.32 9.55 8.94 9.33

Panel B: Fixed point estimation forecast
rt 16.88 18.05 18.58 18.05 17.92
∆dt 9.16 8.84 8.93 9.33 9.58

Panel C: Recursive estimation forecast
rt 16.85 17.99 18.43 18.17 18.03
∆dt 8.65 8.78 8.91 9.25 9.50

Panel D: Rolling window estimation forecast
rt 16.94 18.07 18.36 18.02 18.01
∆dt 9.08 8.85 9.03 9.36 9.50

Table 8
Diebold and Mariano (1995) test of equal forecasting ability.
The tests are performed out-of-sample for the same evaluation meth-
ods as reported in Table 7. The two-sided test compares uses a
quadratic loss function against the benchmark forecasts from the
PV-ARFIMA model, so that a positive statistic indicates the superior
performance of the long-memory model. The test corrects for a small
sample and the autocorrelation of forecast errors by using fixed-b
asymptotics with the long-run variance estimated with the Bartlett
kernel proposed by Coroneo and Iacone (2020). * and ** denote
significance at the 10% and 5% levels, respectively.

PV-AR pd ∆pd Sample mean

Panel A: Fixed point estimation forecast
rt 2.21∗ 1.21 3.22∗∗ 3.60∗∗

∆dt −0.91 −0.17 0.31 0.35

Panel B: Recursive estimation forecast
rt 1.80 1.66 3.44∗∗ 3.70∗∗

∆dt 0.36 0.20 1.41 0.27

Panel C: Rolling window estimation forecast
rt 2.17∗ 1.38 3.62∗∗ 3.69∗∗

∆dt −0.83 −0.08 0.84 0.27

in considering jointly the system of predictive regressions.
The second drawback of the predictive regressions stems
from the fact that they ignore information in the dynamics
of the underlying time series. These issues are addressed
in our present-value model with latent variables.

We examine the predictive ability of the estimated
resent-value models and draw comparisons to the fore-
asting regressions (23a)–(23b) using the price–dividend
atio not only in levels but also in its first difference. As
n additional benchmark, we include the forecasts made
14
with a historical mean, which is known to be hard to
beat (see e.g. Goyal & Welch, 2003, and Welch & Goyal,
2008). We examine both the in-sample and out-of-sample
forecasting ability of the models on the last 20 years of
data, that is 2003–2022. In Table 7 we present the root
mean square forecasting error (RMSFE) for four forecast-
ing exercises. In bold font we highlight the lowest RMSFE
across all models.

Panel A of Table 7 reports the in-sample forecast re-
sults obtained by using the parameters estimated on the
whole sample. The model with the fractional integration
component exhibits consistent forecasting power for both
returns and dividend growth, with the lowest RMSFE
(16.5% and 7.9%, respectively). The performance of the PV-
AR model is worse for both series, but particularly worse
for returns (17.65%), yielding an RMSFE over 1% larger
than that produced by the PV-ARFIMA model. The fore-
casting regressions with the level of the price–dividend
ratio and its first difference exhibit worse in-sample fore-
casting performance than the present-value models, and
struggle to beat the sample mean, which echoes the find-
ings in Welch and Goyal (2008).

In Panels B, C, and D of Table 7 we report forecast-
ing results produced by three out-of-sample schemes.
In Panel B we report the results obtained by estimat-
ing the models only once on the sample period from
1934–2002 and then using these estimates to compute
the subsequent point forecasts. The results in Panel C
are obtained by expanding the data used in estimation
recursively by one observation each time and making the
prediction for the next year. In Panel D we use the rolling-
window method. That is, for each prediction we use the
parameters estimated on the preceding 69 observations.

Similar to the in-sample results from Panel A, in terms
of return predictability, the PV-ARFIMA model performs
much better than other models regardless of the fore-
casting strategy. For dividend growth, both present-value
models have similar performance and the ranking here
depends on the forecasting scheme. Predictive regres-
sions, with both the level and first difference of the
price–dividend ratio, perform worse than the present-
value models in terms of return forecasts. Regarding the
dividend growth forecast, there is some evidence that in
predictive regressions the level of the price–dividend ratio
can perform about as well as the present-value models.
Finally, we note that both present-value models, with one
exception for the PV-AR model, beat the forecasts made
with the sample mean.

To assess the statistical significance of the difference
in forecasting ability of different models, we perform
the Diebold and Mariano (1995) test for the out-of-sample
forecasts. We use the standard quadratic loss function
with fixed-b asymptotics, with the long-run variance es-
timated with the Bartlett kernel proposed by Coroneo
and Iacone (2020) that corrects for a small sample and
the autocorrelation of forecast errors.18,19 In Table 8 we

18 We are grateful to Laura Coroneo for providing us with the Matlab
code.
19 We note that, despite the common practice, the Diebold and
Mariano (1995) test for the recursive scheme in Panel C should be
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report the test values comparing forecasts from the PV-
ARFIMA model to all other models. The positive entry
denotes a superior performance of the PV-ARFIMA model,
and vice versa. The stars denote the level of significance
based on critical values for a two-sided test. Despite the
small sample, we find that return forecasts made with the
PV-ARFIMA model are generally statistically better than
those produced by other methods, although the test does
not reject the null hypothesis for forecasts with the level
of the price–dividend ratio. On the other hand, we do not
find any statistically significant difference in predictive
performance for the dividend growth, even against the
sample mean. This reverberates the argument for the lack
of predictability for dividend growth in Cochrane (2008a).

5.3. Expected returns and dividend growth over the business
cycle

Aggregate stock prices have long been viewed as lead-
ng indicators of the business cycle (see Mitchell & Burns,
938, Zarnowitz, 1992, and Stock & Watson, 1999). This is
onsistent with the PV model that considers stock prices
o reflect expectations of future outcomes. The risk pre-
ium does appear to be countercyclical, rising in reces-
ions and falling in expansions. Di Tella and Hall (2022)
how that a higher risk premium can lead to recessions,
ecreasing investment and employment. Lettau and Lud-
igson (2005) showed that expected dividend growth also
aries with the business cycle. This can happen because
anagers smooth dividends imperfectly over the business
ycle. Consistent with that hypothesis, Gertler and Hub-
ard (1993) found that firm dividend payouts appear to
e procyclical (lower in periods of low growth than in
conomic expansions). In this section we contribute to the
iterature by examining the relation between macroeco-
omic variables and the series of expected returns and
xpected dividend growth filtered from our model.
In Fig. 5(a) we plot the time series of realized and

xpected returns as implied by the models. The grey areas
enote the NBER recession periods. Since our data are
nnual, we plot only recessions that lasted at least nine
onths. We can see that the higher variability of expected

eturns implied by the PV-ARFIMA model in comparison
o PV-AR is prominent. The expected returns series seem
o have a strong countercyclical pattern: they fall in the
eriod prior to and at the start of economic downturns,
nd then increase as the period of expansion approaches.
onsistent with the results reported in Table 4, the vari-
bility of expected dividend growth plotted in Fig. 5(b) is
ignificantly higher for the PV-ARFIMAmodel and exhibits
clear procyclical pattern with low expected dividend
rowth at the outset of an economic slowdown.
In order to examine properties related to business

yclicality we regress a set of macro-variables on the
iltered series of expected returns and expected dividend
rowth. We proceed in the spirit of Liew and Vassa-
ou (2000), who showed that risk premium correlates
ith future GDP growth. As such, in a predictive fashion,

interpreted with caution, since it does not account for the uncertainty
of estimated parameters.
15
we regress the log growth of real personal consumption
expenditures (∆Cons) and the log growth of industrial
roduction of consumption goods (∆IP) on expected re-
urns and expected dividend growth.20 We chose these
ariables because they are meaningful indicators of the
usiness cycle. Since the time series of industrial produc-
ion growth is available only from 1940, the regressions
ith this series are therefore run on a shorter sample.21

n Table 9 we report the slope coefficients with the t-
tatistics (reported in small font) calculated using the het-
roscedasticity and autocorrelation consistent standard
rrors and the adjusted R2 coefficients. In Panel A we
eport the regressions with ∆Cons as the dependent vari-
ble. The regressions with ∆IP as the dependent variable
re reported in Panel B.
We find that the coefficient associated with expected

eturns for both present-value models is negative and
tatistically significant (consistent with theory and evi-
ence that the risk premium is countercyclical). We also
ind that the coefficient associated with expected divi-
end growth for both present-value models is positive
nd statistically significant (consistent with the hypoth-
sis of imperfect dividend-smoothing and evidence of
he procyclicality of dividend growth). The expected re-
urns and dividend growth series obtained from the PV-
RFIMA model seem to retain predictive ability even after
dding to the regressions the filtered series from the
V-AR model or the realized series.
The results allow us to make a few observations. First,

n a simple regression setting, although both expected
eturns and expected dividend growth have a cyclical
ature, the latter is a stronger predictor of the business
ycle: the R2 for regressions with the expected dividend
rowth is about two to three times higher than with
xpected returns. Second, although the t-statistics of the
redictors do not differ much between models, we can
bserve that the model with fractional integration pre-
icts the macro-variables better than the PV-AR model in
asically every regression, as can be observed from higher
djusted R2 values.
Taken together, these results suggest that implied ex-

ected returns and dividend growth series can have a
otential application as leading economic indicators—
articularly more so if the present-value model includes
fractional integration component.

. Conclusion

The present-value identity shows that the price–
ividend ratio is the sum of discounted expected returns
nd expected dividend growth. Since in the data the
rice–dividend ratio series appears to be non-stationary—
hile the return and dividend growth series are sta-

20 In the preliminary analysis we also used GDP growth but did
not find a statistically significant relation with expected returns and
expected dividend growth in our sample.
21 The macro-data were obtained from the Federal Reserve Economic
Data (FRED) freely available on the website of the Federal Reserve Bank
of St. Louis.
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Fig. 5. Realized and expected returns and dividend growth.
The subfigures show expected returns (a) and expected dividend growth (b) as implied by the PV-AR (blue dotted lines) and PV − ARFIMA (red
ashed lines) models, together with their realized values (black line). The grey areas denote the NBER identified recession periods (only those longer
han nine months). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
ionary, even antipersistent—the difference in the order
f integration of these series has been a puzzle. We
howed that through the aggregation of antipersistent
16
expectations, the price–dividend ratio can appear non-
stationary in finite samples. Despite being asymptotically
stationary, it will exhibit slowly decaying (but summable)
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Table 9
Results from the regression of macro-variables on returns, dividend growth, model-filtered expected returns, and expected dividend growth.
The macro-variables are real consumption growth (∆Cons) and growth of industrial production of consumer goods (∆IP). The intercept is omitted
from the table. The t-statistics calculated from heteroscedasticity and autocorrelation consistent standard errors are reported in small font. The implied
series are obtained from the whole sample (1934–2022) and the regressions are run on available samples of macro-variables, that is 1934–2022 for
consumption and 1940–2022 for industrial production growth.

Dependent variable: ∆Const+1
i ii iii iv v vi vii viii

mARFIMA
t −0.1932∗∗∗

−3.9997
−0.1542∗∗

−2.0959
−0.0908∗

−1.8231
mAR

t −0.2368∗∗∗

−3.4712
−0.0684

−0.6789
gARFIMA
t 0.2855∗∗∗

7.9000
0.2289∗∗

2.0322
0.2910∗∗∗

7.9309
gAR
t 0.2644∗∗∗

7.3085
0.0588
0.5432

rt 0.0555∗∗∗

4.4205
∆dt −0.0226

−1.5525

R
2

0.1406 0.1078 0.1314 0.2674 0.3065 0.2808 0.3004 0.3073

Dependent variable: ∆IPt+1
i ii iii iv v vi vii viii

mARFIMA
t −0.3029∗∗∗

−3.3893
−0.3068∗∗

−2.5440
−0.1473

−1.6377
mAR

t −0.3333∗∗

−2.1635
0.0065
0.0308

gARFIMA
t 0.4694∗∗∗

4.9608
0.3412
1.3753

0.4738∗∗∗

4.7263
gAR
t 0.4400∗∗∗

5.2366
0.1325
0.5900

rt 0.0943∗∗∗

3.3116
∆dt −0.0232

−0.3803

R
2

0.1026 0.0606 0.0914 0.1997 0.2135 0.2006 0.2062 0.2053
autocorrelations and a (finite) spike of the spectral density
at frequency zero.

We included the fractional integration feature in the
resent-value model using an ARFIMA specification. The
ractional integration parameter for expected returns and
xpected dividend growth is negative and statistically
ignificant, and close to the non-parametric estimates.
he benchmark model based on AR(1) processes is de-
isively rejected by the likelihood-ratio test. Although in
he univariate analysis, the dividend growth provides the
tronger motivation for a model with fractional integra-
ion, the economic significance of the fractional model is
ore strongly manifested in the expected return series,
s evidenced by the enhanced predictability of the re-
urn series. We also showed that the PV-ARFIMA model
iltered series of expected returns and dividend growth
re aligned with the business cycle, as they help to pre-
ict macroeconomic variables such as consumption and
ndustrial production growth. This is important, since, as
mphasized by Cochrane (2011), a correct understand-
ng of the risk premium is vital for macro-prudential
egulation and monetary policy.

We demonstrated that the fractionally integrated
odel closely replicates the apparent long memory be-
avior in the price–dividend ratio, as predicted by our
heory. To have a full understanding of the mechanism
hat generates persistent dynamics of the price–dividend
atio, however, we should understand the mechanism
hat leads to the formation of antipersistent expected
eturns and expected dividend growth. Such a mechanism
an be due to investors’ overreaction to news and biased
17
expectations, as documented by Lakonishok et al. (1994)
and La Porta (1996). However, the design of a formal
micro-founded model of this type we leave for future
research.
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