
DevOps Metrics and KPIs: A Multivocal Literature Review

RICARDO AMARO, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

RÚBEN PEREIRA, INOV INESC Inovação, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal

MIGUEL MIRA DA SILVA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Context: Information Technology organizations are aiming to implement DevOps capabilities to fulfill mar-
ket, customer, and internal needs. While many are successful with DevOps implementation, others still have
difficulty measuring DevOps success in their organization. As a result, the effectiveness of assessing DevOps
remains erratic. This emphasizes the need to withstand management in measuring the implementation pro-
cess with suitable DevOps Metrics. But what are these metrics?

Objective: This research seeks to provide relevant DevOps Metrics to facilitate the efficiency of DevOps
adoption and better analyze DevOps performance in enterprises.

Method: A Multivocal Literature Review (MLR) is conducted, with 139 documents gathered and thor-
oughly examined from throughout the community, including books, scientific articles, white papers, confer-
ences, among others.

Results: This article conducts an extensive and rigorous MLR, contributing with a definition of DevOps
Metrics, 22 main metrics, their definitions, importance, and categorization in sets of Key Performance Indica-
tors, as well as exposing clear indicators on how to improve them. It is also discussed how metrics could be
put into practice and what constitutes a change in the context of DevOps Metrics. The study’s outcomes will
assist researchers and practitioners understand DevOps Metrics and how to better implement them.

CCS Concepts: • Software and its engineering → Software creation and management; Software development

process management; Programming teams; Software post-development issues;

Additional Key Words and Phrases: DevOps, metrics, performance, adoption, software development life cycle,
information system

ACM Reference Format:

Ricardo Amaro, Rúben Pereira, and Miguel Mira da Silva. 2024. DevOps Metrics and KPIs: A Multivocal
Literature Review. ACM Comput. Surv. 56, 9, Article 231 (April 2024), 41 pages. https://doi.org/10.1145/3652508

1 INTRODUCTION

Information technology (IT) organizations are constantly impacted by ever-changing consumer
expectations, industry regulations, competitors, and advanced external threats [58, 155]. Conse-
quently, in those organizations where software development is part of the core business, they seek
a competitive advantage [101], such as improving the user experience, increasing productivity, and
team collaboration [80, 93].

Authors’ addresses: R. Amaro and R. Pereira, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal; e-mails:
ricardo_amaro@iscte-iul.pt, ruben.filipe.pereira@iscte-iul.pt; M. Mira da Silva, Instituto Superior Técnico, Universidade
de Lisboa, Portugal; e-mail: mms@tecnico.ulisboa.pt.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 0360-0300/2024/04-ART231
https://doi.org/10.1145/3652508

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://orcid.org/0000-0003-2649-8102
https://orcid.org/0000-0002-3001-5911
https://orcid.org/0000-0002-0489-4465
https://doi.org/10.1145/3652508
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3652508
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652508&domain=pdf&date_stamp=2024-04-25


231:2 R. Amaro et al.

However, because of the silos that exist between development and operations [212], this ap-
proach produces complexity and inefficiency. The request for more frequent software delivery, in
the absence of sustained builds, adequate testing, and release automation [56], causes burnout and
toil in the engineers doing operations, deteriorating software delivery performance and reliability.

As a result of these challenges, we observe the rise of DevOps, an organizational model that
emphasizes empathy and fosters more cooperation among technical teams involved in software
delivery [80], to improve key performance indicators like development time, deployment rate, reli-
ability, mean time to recover and the overall cost of product implementation and deployment [146].
Furthermore, research has been specifically focusing on Mean Time To Recover (MTTR), Mean

Lead-time for Changes (MLT), Deployment Frequency (DF), and Change Failure Rate

(CFR), four key metrics [53].
But it is still common to observe inconsistent results in the adoption of DevOps practices and

capabilities [6, 172, 177], confirming the need to have a consensual improvement on expanding
the metrics being gathered and used to improve those results. It is agreed that DevOps, with the
right metrics, can help applications and teams perform at their best [84] and should also present
relevant data, clearly and understandably, showing where improvements can be made in the
deployment and change process [118].

Moreover, it is a pertinent approach to regulate and evaluate the level of success of DevOps
adoption by using precise DevOps Metrics that assess the success of DevOps capabilities adoption,
indicating, for instance, if a certain software delivery process within the pipeline [155] is at optimal
levels or might need enhancements. This information will support management’s decision-making
process to have a clear vision of the steps to take ahead based on information systems and metrics
to increase efficiency [101].

Therefore, it would be valuable to comprehend the DevOps Metrics that comprise the DevOps
assessment process, as well as the main key metrics required to carry out the adoption of DevOps
capabilities[5, 6]. From previous related work, it is understood that DevOps Metrics help drive out-
comes [38], generated by DevOps capabilities and controlled by the usage of a periodic DevOps
assessment [35]. Some authors already imply a few key concepts for arranging the DevOps Met-
rics like Organizational Culture [53, 84, 103, 118, 152], Operational Performance [23, 84, 109, 165],
Business Focus [73, 85, 87, 114, 135] and Incremental Change [76, 186, 217]. This study also proposes
discussing these concepts to categorize DevOps metrics in Section 5. This may be useful for prac-
titioners and organizations, since it will improve comprehension and subsequently improve the
success of DevOps implementation tightly connected with Outcomes [71, 93, 109, 148]. Especially
if it would be possible to extract the Key Performance Indicators out of all the discussed DevOps
Metrics in literature, that can help define the organization’s DevOps strategy and clear focus.

Hence, the success of DevOps could be improved if the main DevOps Metrics are known, target-
ing a successful implementation and operationalization of the complex [92] process of DevOps. Not
just during the implementation phase but also later in controlling the execution, since it demands a
rigorous systematization for self-assessment. This, in turn, should lead to increased performance
levels, according to Ravichandran et al. [155]. Unfortunately, there is a lack of a broader study,
joining practitioners and researchers knowledge, proposing an extended list of metrics, their clear
categorization, and relating them to outcomes for the effective use of DevOps in organizations.

Consequently, the research problem is the following: While there is important research done in
DevOps over the years around a few measures, the assessment of the desired success of DevOps
adoption is still unpredictable, because, despite the fact that metrics are being discussed in the
industry, there is still a need for more consensus regarding definitions and benefits, due to the lack
of a broader study that synthesizes and clarifies the main key metrics from both practitioners and
researchers.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:3

This article proposes to understand and synthesize the main DevOps Metrics that are mentioned
in publications and how they relate to each other. Because this subject has received more attention
and scrutiny from the industry than from the scientific community, with major technological or-
ganizations issuing frequent reports, this article suggests undertaking a MLR [63], to expand the
few academic papers and include voices from the industry, to research and elicit the main DevOps
Metrics that are mentioned in publications from both the practitioners and researchers communi-
ties. It is also intended to gather the definition and categorization of each of these DevOps Metrics.
Based on the primary objective of this research, a MLR is undertaken to look for scientific and
“gray” literature that discusses or examines the subject of DevOps Metrics, which may then be
translated into the following research questions:

— RQ1. What are the main DevOps Metrics, and where are they referenced?
— RQ2. What is the precise definition and importance of each main DevOps Metric?

This article also provides business leaders with a concise DevOps metrics definition in Sec-
tion 5.1, a categorization in Section 6 and a discussion of findings of the research, aiming to improve
the adoption of DevOps, facilitating an alignment strategy with business goals. Thus, helping on
data-driven decisions[5, 92], for enhancing change[76, 186, 217], operations [23, 84, 109, 165], and
promoting a culture of continuous improvement.

The remainder of this article is organized as follows: Section 2 presents a review of the core con-
cepts of DevOps, its collaborative culture, practices, and the importance of measuring its impact
on software delivery performance. Section 3 discusses MLR methodology to investigate DevOps
metrics from the academic and gray literature and analyze them. Section 4 outlines the steps in
the literature review process to identify and analyze relevant studies on DevOps Metrics and Key

Performance Indicators (KPIs), culminating in 139 publications for data extraction. Section 5
addresses the research questions and provides a detailed analysis of key DevOps metrics and KPIs,
their relevance, expected trends, and improvement strategies. Finally, the discussion of our find-
ings is located in Section 6, where we also provide a categorization of DevOps metrics, impact on
software delivery, and their practical implementation challenges. The article ends with the conclu-
sion, future work, and limitations in Section 7.

2 DEVOPS

This section provides a theoretical foundation for the study area of this research, namely, DevOps.
DevOps is an abbreviation for the Developer (Dev) and Operations (Ops) teams, which col-

laborate to eliminate the so-called engineering silos [162, 217]. There is no universal definition
of DevOps. Blog articles on the subject are widespread, although they usually vary on a specific
definition of the phrase. DevOps emerged as an evolution of the agile paradigm for IT service
management [32], which focused on developing new processes for the continuous deployment of
rapidly changing software. According to Jabbari et al. [85], DevOps is a development approach that
emphasizes communication and cooperation, continuous integration, quality assurance, and deliv-
ery with automated deployment through the use of a set of development techniques. It can also
be seen as a conceptual framework that is based on certain capabilities, focused on the acronym
CAMS (Culture, Automation, Measurement, and Sharing) [81]. Later, Jez Humble added to these
four pillars, the Lean (L) pillar, becoming the acronym Culture, Automation, Lean principles,

Measuring and Sharing (CALMS) [215].
DevOps uses a combination of cultural changes and technology-enabled strategies to achieve

higher levels of throughput and stability, even in the face of high unpredictability [81, 213]. Sousa
et al. [182], in his article on DevOps foundations and views, emphasizes the new approach to
software delivery that happens through cooperation between development teams and operations,

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:4 R. Amaro et al.

Fig. 1. The Three Ways: The principles underpinning DevOps (adapted) [65].

as demonstrated in Figure 1, rather than the conventional method that is isolated in organizational
silos. This trait of effective interaction between IT Development and IT Operations teams is critical
for ensuring successful IT system deployment and operation [193].

DevOps is also a culture, movement, or practice that stresses cooperation and communication
[13] with the objective of speeding up the software release cycle to production and automating the
creation of new software components while maintaining high quality, as mentioned by Lwakatare
et al. [110], where a literature review on the term DevOps indicates that DevOps is a mentality
shift backed by a set of automated procedures.

For Riungu-Kalliosaari et al. [159], DevOps is a collection of techniques aimed at reducing the
time it takes for a change made to a system to move into regular production, while guarantee-
ing high quality and the least friction and blame between teams rather than trust and empathy.
A comprehensive DevOps performance research book, “Accelerate” [53], investigates how most
modern organizations are using DevOps principles and practices, using statistical methods to as-
sess software delivery performance and providing a new understanding of software delivery and
organizational performance.

Finally, as mentioned by Forsgren et al. [56], There are two approaches for collecting met-
rics about DevOps performance: Survey data and System data. Both have advantages and dis-
advantages, but knowing what metrics to collect first has been described by several authors
[48, 53, 58, 141, 192] as a primary goal for determining the effectiveness of DevOps implemen-
tation within organizations [150, 155]. However, there has been minimal academic research on
measuring DevOps capabilities and practices [6, 103].

3 MULTIVOCAL LITERATURE REVIEW

A MLR is a type of Systematic Literature Review (SLR) [62], designed to include gray litera-
ture such as blogs, videos and websites, as well as white papers constantly produced by SE prac-
ticing professionals outside academic forums, despite publishing (peer-reviewed) writings such as
journals and conference papers. MLRs are therefore useful for research extension by integrating
material that would ordinarily not be collected because of its “gray” character [63], as shown in
the Figure 2.

While examining the specific subject of DevOps, a number of academics have already noticed
that “enlarging the scope” and including Gray Literature (GL) will add value and advantage to
the review study. There are already some successful MLR-based DevOps research examples in
the same area [59, 141]. Therefore, it confirms the practical application of this approach in the
research presented and increases the diversity of accessible sources in many ways, including the
representation of various goals and viewpoints [129].

The MLR has a few objectives for this study, including a thorough mapping of the main DevOps
Metrics from scientific and gray literature, as well as a summary of the definitions and references
of each metric.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:5

Fig. 2. Relationship of SLR, GLR, and MLR [63].

Fig. 3. MLR steps based on Garousi et al. [63].

There are several guidelines in the scientific literature for doing SLR research in Software En-
gineering [11, 95, 96]. MLRs, however, has multiple stages that are distinct from regular SLRs.
Specifically, the process of investigating and evaluating the source’s quality. Therefore, SLR guide-
lines are only partially useful for conducting MLR studies as seen in Figure Figure 3. This process
shows the planning, conducting, and reporting as proposed by Garousi et al. [63].

While this strategy is predicted to generate substantial information in some areas of DevOps
research, using such data will surely pose challenges, as the evidence provided is typically based on
experience and opinion. For that reason, systematic guidelines [62] will be used for performing
this MLR.

3.1 Planning

3.1.1 Motivation. Management in software development businesses that wish to adopt De-
vOps internally must have access to appropriate supporting information and metrics regard-
ing this implementation to assess the success and enhance the efficiency [101] of applying De-
vOps [13, 87, 109, 114, 135, 141, 155, 159].

To achieve targets and goals, organizations adopting DevOps can then quickly measure and
demonstrate the effectiveness of new DevOps processes like software development and contin-
uous delivery, align cross-functional teams around business value creation and continuous im-
provement [76], pinpoint capability gaps and initiate remediation strategies. It is hard to improve
DevOps without metrics [56, 141, 179]. An organization must constantly qualify its DevOps pro-
cesses, and achieving excellence requires measurement to remove subjectivity.

However, there exists a lack of systematization of the main DevOps Metrics being debated in
the DevOps community of scholars and practitioners. To provide systematization and clarity to the
current DevOps Metrics, a broader range of sources, including practitioners and industry perspec-
tives, must be collected. With the inclusion of gray literature to review, a comprehensive survey on

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:6 R. Amaro et al.

Fig. 4. Review protocol performed in this research.

not only what the scientific literature specifies about Metrics but also what the industry produces
dynamically and utilizes internally, can be undertaken. Combining both points of view will help
to improve the research topics given in Section 1.

3.1.2 Review Protocol. The first batch of papers has been procured as seen in Figure 4 following
the completion of the search and snowballing, inclusion and exclusion criteria will be used to refine
the search results in the first phase.

The review protocol used the workflow shown in Figure 4.
In January 2022, a publication search using various keywords was conducted, in an attempt to

locate further studies relevant to this research that may provide answers to the indicated research
questions. This section lists the search string used to get the most studies and datasets.

— Search String: (devops AND (metrics OR measures OR kpi OR indicator)).
— Datasets: The search engines used were, Google search, Scopus, Web of Science, IEEE, ACM

and EBSCO.

To make finding and gathering large amounts of gray literature easier, some code was written,
as shown in the source code in Appendix A (Python code for fetching Google search results), to
parse the data into CSV files [120]. This way, it is ensured that clean results are not specific to
the researcher, but rather reproducible for peer review. Thus, addresses the issue of consistency
in the returned results, since Google delivers customized results that are tailored differently for
different users based on their previous search history and preferences. Finally, it simplifies the job
of converting the results into spreadsheet files that are used in the MLR process.

In this MLR inclusion and exclusion criteria focused on both gray literature and quality peer
reviewed work reporting work found on DevOps Metrics. For this focus, it is developed the fol-
lowing inclusion criteria present in Table 1. Criteria 1 and 2 have the goal of ensuring focus
on relevant quality publications. Criteria 3 and 4 were also used to assess evidence of quality and
report on the area of this study. Exclusion criteria also reflect on the transparency of quality rel-
evant work that contributes to DevOps Metrics discussion. We excluded papers with the following
features. Criteria 1–3 exclude non-relevant work for this study. Criteria 4–8 exclude incomplete
publications, out of boundaries, are lacking identification or not written in English. The inclusion
and exclusion criteria used in Table 1 has been adapted from authors who already approached the
use of similar methods [62, 63, 126, 129, 161, 170].

Within this scope, abstracts are screened to determine their relevance to the investigation. After
which, the relevant articles are reviewed to arrive at the final study selection for the coding review.

4 CONDUCTING THE MLR

4.1 Selection of Studies

For reference, the complete summary of the review process is shown in the diagram in Figure 5
with a visual representation of the applied MLR selection process. This reflects all the selection
work done through the methodical process of MLR.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

appendix:SourceCode


DevOps Metrics and KPIs: A Multivocal Literature Review 231:7

Table 1. Inclusion and Exclusion Criteria Applied in This Research

Inclusion Criteria Exclusion Criteria

1. Full publications from databases and snowballing:
(a) Including full books, webpages, or papers.
(b) Related research (qualitative and quantitative).
(c) Practitioners or industry-relevant contributions.

2. Publications matching the search string and date:
(a) Title and abstract of peer-reviewed work.
(b) Full content of gray literature.
(c) Date between 2010 and January 2022.

3. Explicitly stated and described DevOps Metrics sub-
ject.

4. Clearly described Metrics related to DevOps perfor-
mance.

1. Does not contribute to answering any research ques-
tions:

(a) Does not elicit, discuss and list DevOps Metrics.
(b) Not focused on DevOps.
(c) Only focused on Agile.
(d) Focused on IoT systems, not DevOps Metrics.
(e) Focused on monitoring systems, not DevOps Met-

rics.
(f) Focused on microservices, not DevOps Metrics.
(g) Focused on Quality Assurance, not DevOps Met-

rics.
2. Advertisement, Product promotion or Job Post.
3. Conference Announcement, Review or Summary.
4. Full-text not accessible.
5. Published before 2010.
6. No publication date.
7. Unidentified author.
8. Not Written in English.

Fig. 5. Followed multivocal literature review process (adapted) [63].

In the first phase of the search, filter 1 (All fields; All documents) was combined with the search
term, both of which were found in Table 2. The difference between filter 1 and filter 2 is justified
by the fact that previously, keywords could be found throughout the retrieved material, and some
search engines return more literature than academic articles, such as newspapers or reports. In
the case of the Google search engine, however, this is not the case. Thus, the results stay the
same. In the second iteration of search results, filter 2 (Abstracts, All papers) was utilized and
therefore the number of articles that include an abstract mentioning the keywords was reduced to
539 publications in total. For gray literature, it is always considered the entire text, since there is
no abstract. The resulting articles were added to Zotero1 reference manager.

1https://www.zotero.org

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://www.zotero.org


231:8 R. Amaro et al.

Table 2. Filters Used in the MLR Protocol

Database Filter 1 Filter 2 Snowballing Filter 3 Filter 4 Filter 5 Filter 6

Google 206 206

+19

170 165 132 127

Scopus 764 140 87 69 11 2

Web Of Science 67 61 46 38 9 2

IEEE 49 38 35 25 8 3

ACM 782 28 19 17 7 3

EBSCO 101 66 21 19 8 2

Total 1,969 539 558 377 333 175 139
Filter 1 = Query All fields, All documents.
Filter 2 = Query Abstracts, All documents.
Snowballing = Applied over starting literature search [63].
Filter 3 = Relevant (inclusion/exclusion criteria).
Filter 4 = Remove duplicates.
Filter 5 = After Abstracts Screened.
Filter 6 = Full-text Document Assess.

In the following stage, forward and backwards snowballing [216] is performed, taking as seed all
relevant conference papers, scientific articles, and the 2019 State of DevOps Report, which appears
in Google search when using the search string. The motivation for snowballing was to increase
the number of relevant quality papers. This process resulted in an increase in the overall quantity
and quality of articles to 19 more relevant publications identified. These papers were added to the
first row in Table 2.

We remain with 377 publications after applying inclusion and exclusion criteria filter 3, present
in Table 1. This leads to filter 4, which is defined to eliminate duplicates from the list of results. Since
Zotero already detects duplicate documents, while keeping the tags of where the document came
from, the effort of counting the duplicates done from filter 3 to 4 is reduced due to this capability.
Nevertheless, during manual scanning, a few duplicates were still found, therefore the total number
of publications with no duplicates is only accounted for in filter 4 as a consolidated number in the
process. In filter 5 after abstracts are screened, 175 documents remain. Because there is no abstract
for instances pertaining to gray literature, the entire text was skimmed, allowing a better assertion
of the quality of the publications. After screening all full-text documents, 139 publications are left
for the extraction phase of the MLR.

4.2 Data Extraction Analysis

Following the selection of the final collection of publications, this section analyzes the various
components of the search results in connection to the final set of articles based on the source
data. This study is based on an evaluation of the whole text of 139 articles that are appropriate for
extracting significant data for this research. Additionally, a summary of the years and genres of
articles selected for thorough reading is included.

4.2.1 Gray and White Literature Number of Contributions. The relationship of the final docu-
ment set by database shows that 127 results originated from Google, with 91,37 percent of gray
literature. Six publications are contributed by Web of Science, Scopus, and EBSCO databases. ACM
and IEEE each provided three items, leading to a total of six publications of relevant research peer-
reviewed articles. This validates the expectation that the practitioner community will produce a
wider range of findings when contrasted with the scientific literature.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:9

Fig. 6. Distribution of publications per type over the years.

4.2.2 Distribution of Publications Over the Years. In Figure 6 it is reflected how publications
have been evolving over the years with the biggest amount of generated literature appearing in
webpages in the year 2020, where three of which include relevant video content. The rising num-
ber in 2020 and 2021 reflects the fact that this topic has been gaining more relevance. Another
interesting aspect to note is the early appearance in 2010 of the book “Continuous Delivery” [80]
mentions that metrics help improvements and efficiency in the continuous integration and deliv-
ery processes. According to Jezz Humble, a well-implemented deployment pipeline should make
determining the Cycle Time simple. It should also display how long it takes from check-in to each
stage of the procedure. This is an effective method for identifying bottlenecks in operations.

Since 2013, the same author has been consistently contributing to the topic, including in nu-
merous State of DevOps reports [35, 144–149, 151] and in other relevant books. These important
contributions to DevOps Metrics are also shared with Joanne Molesky and Barry O’Reilly in “Lean
enterprise : continuous delivery, DevOps, and lean startup at scale” [82] Gene Kim, Patrick De-
bois and John Willis in the “The DevOps Handbook” [93] and congregating efforts with Nicole
Forsgren in “Accelerate: The science of lean software and DevOps” [53] where important metrics
are discussed based on the investigation done in yearly State of DevOps Reports [144–148], which
have been consistent since 2013. In Figure 6 it is also observed an increasing interest in the sec-
tor in the last years, despite a relatively low amount of research work done on studying metrics,
demonstrating the potential appeal and utility of this research in the field.

The Tech reports from 2013 and 2014 had a special importance in ramping up the interest on
DevOps Metrics topic and raising awareness for the fact that measurements are visible and action-
able [144, 145], while only focusing on four top key metrics as seen in Section 5.1.1. Thus, mak-
ing this MLR research important to expand the main metrics to a list that is still useful, broader
and manageable. Finally, the number of gray literature articles increased considerably in 2020,
as demonstrated by the massive increase in web pages related content in that year, showing that
practitioner writings grew far faster than academic research. Later in 2021, we see a growth in con-
ference publications that address the DevOps Metrics and KPIs topic. The research in this survey
tries to contribute to this growth by congregating different voices in a MLR.

5 REPORTING THE MLR

The reporting is taken out from qualitative coding done with the selected publications using Qual-
coder2 OpenSource tool. Qualitative coding [167] is a process of organizing and categorizing data

2https://qualcoder.wordpress.com/

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://qualcoder.wordpress.com/


231:10 R. Amaro et al.

Table 3. Definition of DevOps Metric from Literature

A DevOps Metric is here defined as a quantifiable, business-relevant, trustworthy,
actionable and traceable [42, 49, 107, 118, 202] indicator that aids organizations in
making data-driven decisions to continuously improve their DevOps and software
delivery process [16, 33, 55, 72, 78, 89, 97, 98, 106, 119, 173, 180, 194].

collected in qualitative research. For this study, emerging codes were applied using repeating ideas
and metrics found from all selected publication texts to organize the data into meaningful cate-
gories. After that, the data was analyzed manually within Qualcoder. Using the resulting coded
data, and also taking into account the conceptual framework proposed in Section 1, patterns and
relationships were identified. In conclusion, qualitative coding, characterized by deep data scrutiny
and pattern recognition, is crucial in revealing the presented findings, all stemming from the anal-
ysis of qualitative data.

From the extensive Multivocal Literature Review done, it is understood that the main DevOps
Metrics should aim to quantify the right elements to understand if a DevOps process is work-
ing [72, 140, 204]. It was also seen in Section 5.2 that authors distinguish five qualities of good
DevOps key performance indicators to clearly define their usefulness. This is important to know
so that DevOps adoption can be measured toward success. While metrics and KPIs are frequently
used by authors interchangeably, the distinction is clear: In the context of DevOps [84], KPIs are
a set of the measures or indicators that have the greatest impact on an organization’s DevOps
progress [115, 116], thus the reason this study uses this concept. They articulate and provide in-
sight into the metrics and outcomes that the organization must track and achieve to accomplish
long-term goals. Key Performance Indicators (KPIs) are metrics that help understand how an en-
tity is doing against its objectives [46, 84, 118]. These kinds of metrics are fundamental to leverage
the rigor of measurement, not only in DevOps but also in Software Engineering and Information
Systems [101]. This MLR benefited from the fact that more than half the publications (88) mention
metrics and try to organize and explain each stated metric, as seen in Table 6. There are 49 pub-
lications that also try to define what are DevOps Metrics. Following those dispersed definitions,
this MLR can now propose a unified definition of DevOps Metrics in Table 3.

5.1 RQ1—What Are the Main DevOps Metrics and Where Are They Referenced?

5.1.1 Main Metrics Found Over the Years. In this study, 22 main DevOps Metrics seen in Fig-
ure 7 are set for discussion. These metrics are listed from M01 to M22, within the following figure,
in descending order, by the total number of references, from the publications accounted for in Sec-
tion 4.1.

It can also be observed in Figure 7 how the various metrics have grown in the literature over
the years.

Since this MLR found 10 years with relevant publications out of the 12 years, it was chosen
accordingly to use the metrics that are cited 10 or more times as the main DevOps metrics for this
research, present in Figure 7. Therefore, in Figure 7 are shown the top 22 metrics, from M01 to
M22. In this figure, a significant jump in 2020 can be perceived, namely, in MTTR, MLT, DF, and
CFR. These four metrics were the most frequently stated, indicating that practitioners have agreed
on their higher importance based on the articles reviewed. If we compare MTTR (114 mentions)
with CFR (82 mentions), there is only and a difference of 32 mentions, while if we compare MTTR
with Service Availability and Uptime (42 mentions), there is a notable difference of 72 mentions.
Therefore, while each of these 22 metrics have 10 or more mentions, there is a clear tendency
of increased interest in M01, M02, M03, and M04, widespread and driven largely by the research

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:11

Fig. 7. Top main metrics mentioned in publications over the years.

conducted in the various State of DevOps Reports over the years [1, 35, 144–151] and the work
published by Forsgren et al. [51, 52, 54, 55, 57, 58].

Looking at the reasons pointed out during the 2020’s jump in gray literature, it is found that
Mean Time To Recover (MTTR) (M01) is one of four most distinguished key metrics for DevOps
teams [67, 107, 178]. The average cost of downtime for companies rises year after year [189]. MTTR
emphasizes critical business outcomes that are directly related to customer experience, acquisition,
and retention [3]. Mean Lead-time for Changes (MLT) (M02) is fundamental, because it measures
the time it takes for a code change to reach production. It gives insight into the DevOps process’s
efficiency, complexity, and the team’s ability to meet customer needs [29, 50]. Short lead times sug-
gest immediate feedback, while long lead times indicate inefficiency. Deployment Frequency (DF)
(M03) approaches infinite in just-in-time manufacturing as batch size approaches zero, therefore
deployment frequency of software is a KPI for software delivery teams [7, 57, 64, 128, 130, 143]. A

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:12 R. Amaro et al.

team that deploys more than once per week can fix outages in production faster and deliver value
to customers more frequently [60, 91, 156]. Change Failure Rate (M04) represents changes in pro-
duction that require an immediate fix to resolve, thus a more complex metric [178]. An increasing
failure rate reveals processes problems in the delivery pipeline [70, 102, 154]. From the relation of
these and the other metrics over the years, it is shown that practitioners are championing these
metrics in their publications. Given that we are reporting the MLR in Section 5, the main metrics
will be further discussed and defined as part of that reporting.

5.1.2 Purpose and References for Each Main DevOps Metric. Following the research, there are
22 main DevOps Metrics found in this Multivocal Literature Review, gathered from all the publi-
cations, selected for review. It is observed that, alongside the pure academic work, there has been
a growing impact from the State of DevOps Reports, DORA, and the work of Forsgren et al. on
the data being collected over the years [53], which shows the importance of the primary sources
collected. The MLR intends to give voice to all, including academia, practitioners, and the DevOps
community in general.

In Section 4 the found list of the main DevOps Metrics is shown, along with their purpose,
mentions, and the total of references. A summarized description mentioning their purpose is also
listed, taken out from the qualitative coding already described. This list is a subset with the most
important metrics from all the metrics collected in Section 5.1.1, where we saw that most tend to
be “business as usual” measures that would still add value to the organization but are not a critical
measure needed to focus on. As a result, every KPI listed here is a metric, but not every metric that
has been found is a KPI.

For these 22 selected main DevOps Metrics, it was considered that they were referenced ten or
more times in relation to the others shown in Appendix B, and always keeping in mind how De-
vOps focuses on the impact of things such as profitability [22, 155], productivity [37, 59], quality
[13, 118], product or service improvements [103, 172], operational efficiency [6, 48], customer feed-
back [5, 191], and achievement of organizational goals [82, 158]. Therefore, this last stage in the
refinement process is based on organizing the metrics by the number of references, which gives
the reading in Section 4 based on the number of times the selected publications mention them.

5.2 RQ2—What Is the Precise Definition and Importance of Each Main DevOps Metric?

After having identified the main DevOps Metrics, some questions may remain as to their usefulness
and applicability for increasing DevOps performance. This research question intends to answer to
what is the precise definition of each key metric, why it matters, and discuss how a team can
improve the metrics and the expectations without confusion or ambiguity. To clarify these ques-
tions, the following definitions gathered from qualitative research aim to provide details about the
practicality of each metric, as well as its relevance to organizations. Table 4 shows the purpose
and references for each main DevOps Metric and Table 5 shows a summary of definitions for each
main DevOps Metric and their optimal trend.

M01. Mean Time To Recover (MTTR). Definition: How quickly can teams restore service in
case of a production outage? MTTR is an essential metric that indicates the ability to recover
appropriately from identified issues. It is measured as the time from when impairment occurs
until the time it is resolved, then the averaging of all those values [7, 26, 58, 74, 144, 145, 183].

Why it matters: For organizations and individuals, time is money, and wasting time on false
positives or difficult issues frustrates development teams and slows down the automation. MTTR
is a good way for a manager to assess the capabilities of their teams [4, 50, 199, 206]. This is
a good indicator of how well the team handles change and responds to problems. Failures are
unavoidable, but how we respond is a far more important indicator of our team’s agility. MTTR

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

appendix:metricsdocuments


DevOps Metrics and KPIs: A Multivocal Literature Review 231:13

Table 4. Purpose and References for Each Main DevOps Metric

ID Metric Purpose References Total

M01 Mean Time To

Recover (MTTR)

Measures the mean of the time required to
recover or restore service from a failure in
production.

[1–4, 7–10, 12, 14, 16, 19, 21, 24, 26–28, 30, 33–
36, 40–43, 45, 47, 49–55, 57, 58, 61, 66, 67, 70, 72,
74, 75, 77–80, 82, 86, 88–90, 93, 97, 98, 102, 106–
108, 117–119, 123, 124, 127, 128, 130, 132, 133,
137–140, 143–149, 151, 154, 156–158, 160, 163,
166, 168, 169, 171, 173, 175, 176, 178, 183–185,
187, 190, 194, 196, 198–202, 204–206, 208, 209]

114

M02 Mean Lead-time

for

Changes (MLT)

Indicates how long it takes for a change to
go from code committed to code
successfully running in production.

[1, 2, 4, 7, 8, 10, 12, 14, 16, 19–21, 24, 26–28, 30,
33–36, 39–43, 46, 47, 49–54, 57, 58, 64, 66–68,
70, 72, 74, 75, 77–80, 82, 83, 86, 88, 89, 91, 93,
97, 98, 100, 102, 106–108, 115, 117, 119, 123–
125, 127, 128, 130, 131, 137–139, 142, 144–149,
151, 154, 156–158, 160, 163, 166, 168, 169, 173,
176, 178, 183–185, 188, 190, 194, 198, 199, 201,
203–205, 207–210]

112

M03 Deployment

Frequency (DF)

Checks how often changes are deployed
to production.

[1, 2, 4, 7–10, 12, 14, 16, 19–21, 24, 26–28, 30,
33–36, 40–43, 45, 47, 49, 50, 52–54, 57, 58, 60, 61,
67, 70, 72, 74, 75, 78–80, 82, 83, 86, 88–90, 93, 97,
98, 100, 102, 106–108, 115, 117–119, 123, 125,
127, 128, 130, 132, 137, 139, 143–149, 151, 154,
156, 158, 160, 163, 166, 168, 169, 173, 175, 176,
178, 183, 184, 190, 196, 198, 200, 201, 203–209]

106

M04 Change Failure

Rate (CFR)

Informs how often a change in production
fails and must be immediately remedied.

[1, 4, 7, 9, 12, 16, 19, 21, 26–28, 30, 34–36, 40–
43, 45, 47, 50, 52–54, 58, 64, 67, 70, 72, 74, 75,
78, 79, 83, 86, 89, 93, 97, 98, 102, 106–108, 115,
117, 119, 123, 125, 127, 128, 130, 132, 137, 139,
143–149, 151, 154, 156, 158, 160, 163, 168, 169,
173, 175, 178, 183, 188, 190, 198–201, 206–210]

86

M05 Service
Availability and
Uptime

Shows the percentage a service is
available during a period of time.

[1, 4, 8, 19, 24, 30, 33–35, 40, 42, 49, 51, 53, 54,
60, 61, 77, 80, 82, 93, 116, 118, 122, 124, 125,
128, 138, 142, 150, 156, 157, 169, 173, 175, 176,
180, 185, 200, 201, 205, 207]

42

M06 Deployment
Duration Time

Informs on how long it takes to deploy a
set of changes.

[9, 14, 20, 28, 33, 40, 42, 45, 49, 51, 52, 66, 79,
83, 100, 115, 119, 123, 124, 128, 132, 134, 138,
142, 154, 156, 169, 175, 176, 183, 196, 198, 200,
201, 205, 206]

36

M07 Mean Time To

Detection

(MTTD)

Measures the mean of the time required to
detect a failure in production.

[3, 4, 19, 30, 33, 34, 40, 42, 49, 51, 61, 78, 88–90,
93, 115, 119, 123, 128, 143, 156, 157, 160, 166,
176, 200, 201, 205, 210]

30

M08 Application
Response Time

How an application responds to increases
or decreases in user traffic and activity.

[4, 24, 26, 30, 33, 40, 49, 53, 61, 93, 119, 123,
128, 133, 138, 142, 151, 157, 160, 173, 176, 185,
190, 194, 196, 200, 203–205, 207]

30

M09 Defect Escape
Rate

Indicates the number of defects discovered
in production versus the number of
defects found during development.

[7, 9, 10, 33, 40, 42, 46, 49, 78, 119, 128, 132,
154, 156, 160, 163, 166, 171, 175, 176, 188, 196,
200, 203, 205]

26

M10 Cycle Time

Value (CTV)

Provides information on the full Cycle
Time Value, beginning with deciding to
make a change and finishing with
delivering to the end user.

[10, 14, 28, 39, 42, 53, 66, 74, 80, 82, 91, 93, 108,
118, 121, 132, 143, 144, 171, 175, 187, 201, 202,
204, 208, 209]

26

M11 Service Level

Agreements

(SLAs) and
Objectives (SLOs)

Sets customer expectations for service
availability with SLA and internal teams
with SLO.

[1, 4, 8, 19, 30, 33, 35, 42, 49, 51, 53, 80, 82, 83,
93, 100, 121, 150, 156, 157, 176, 201, 203, 205]

24

M12 Deployment Size Shows the number of changes
incorporated in each production release.

[7, 26, 33, 40, 42, 46, 49, 115, 119, 123, 124, 128,
131, 154, 168, 173, 175, 176, 201, 204, 205, 207]

22

(Continued)

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:14 R. Amaro et al.

Table 4. Continued

ID Metric Purpose References Total

M13 Production Error
and Incident Rate

Measures the frequency of faults and
incidents in production following a
deployment.

[10, 19, 33, 49, 77, 88, 90, 100, 107, 124, 128,
154, 157, 171, 175, 176, 194, 196, 200, 205, 210]

21

M14 Customer Tickets
Volume and
Feedback

Indicates the level of satisfaction of
customers using their feedback.

[7, 10, 33, 42, 46, 49, 78, 83, 89, 100, 117, 119,
124, 125, 128, 156, 173, 176, 201, 205]

21

M15 Mean time to

Failure (MTTF)

Exposes the average time a flawed
deployment into a system will manage to
run until it fails.

[2–4, 19, 33, 34, 42, 49, 60, 80, 88, 90, 117, 119,
123, 156, 176, 200, 201, 205]

20

M16 Customer Usage
and Traffic

Measures usage and traffic of
customer-facing applications when there
are defined business goals to increase.

[29, 33, 49, 66, 93, 132, 138, 142, 150, 156, 157,
160, 166, 173, 176, 190, 194, 205, 207]

19

M17 Pipeline
Automated Tests
Success Rate

Shows the rate of successful pipeline
automated test jobs.

[10, 14, 24, 33, 53, 66, 82, 93, 119, 128, 131, 138,
140, 154, 175, 176, 205, 207]

18

M18 Westrum
Organizational
Culture Measures

Result of the Westrum cultural
assessment [211]

[1, 11, 35, 51–55, 82, 93, 108, 116, 124, 125, 147,
150, 206, 208]

18

M19 Automated Test
Code Coverage

Measures how many lines, statements, or
blocks of code are tested using the suite of
automated tests.

[9, 14, 24, 49, 51, 60, 66, 80, 93, 131, 132, 156,
175, 180, 202]

15

M20 Work In

Progress (WIP)

/Load

Presents the number of open issues of
each type (story, defect, task).

[20, 29, 39, 51, 53, 60, 64, 66, 82, 91, 93, 125, 157] 13

M21 Unplanned

Work

Rate (UWR)

Indicates the amount of time spent on
tasks that were not in the initial plan.

[19, 42, 53, 82, 107, 117, 119, 125, 146, 148, 150,
210]

12

M22 Wait Time Measures the amount of time spent
waiting for the next step to add value.

[29, 39, 51, 64, 82, 91, 93, 117, 123, 125, 202] 11

should always be a focus for DevOps KPI monitoring, as improving MTTR contributes to better
customer satisfaction, faster application delivery, and better cost control [33, 35, 50, 57, 118, 151].

Metric expectations: This metric should trend down or remain stable over time [42, 77, 196].
How to improve: To reduce MTTR, it is imperative to use good alerting and monitoring tools to

identify an issue on time and promptly fix it. An effective collaboration between operations and
developers is needed, which can help teams find root causes and deploy solutions quickly [14, 140,
206].

M02. Mean Lead-time for Changes (MLT). Definition: The time it takes to go from code com-
mitted to code successfully running in production. MLT in DevOps, can be seen as CTV including
beginning development and time for delivering the finished product. Measuring MLT requires
starting the clock when there is code committed and stopping it when said code enters produc-
tion [30, 35, 75, 131, 144, 145, 149–151]. The book “Accelerate” attempts to clarify the confusion
around CTV and MLT terms, frequently used interchangeably, even though they measure different
things. “Lead Time” (time between code commit and deployable code) and “Cycle Time” (which
some define as the time from code starting to be worked on by development to code in a deployable
state) are two examples [53].

Why it matters: MLT offers valuable insight into the efficiency of the entire development process.
Projects that have not successfully implemented agile will frequently have lengthy lead times.
Tracking Mean Lead Time for Changes and the process’ subsequent components can assist the
team in identifying areas for improvement. Keeping track of the total time it takes from source
code commit to production release can help indicate the speed with which software is delivered [67,
70, 102, 106, 173, 183].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:15

Table 5. Summarized Definition for Each Main DevOps Metric and Their Optimal Trend

ID Metric Definition Trend

M01 Mean Time To

Recover (MTTR)

The time to recover appropriately from identified
issues in production.

down ↓

M02 Mean Lead-time for

Changes (MLT)

Average time for the code committed to be running
in production.

down ↓

M03 Deployment

Frequency (DF)

The number of software deployments to production
over a period of time.

up ↑

M04 Change Failure

Rate (CFR)

Percentage of deployments that result in impairment
or outage in production.

down ↓

M05 Service Availability and
Uptime

The percentage of continuous availability of service
over a period of time.

up ↑

M06 Deployment Duration Time Duration of deploying a previously built artifact into
environments and production.

down ↓

M07 Mean Time To

Detection (MTTD)

Time between the start of an issue and the detection
of the issue in production.

down ↓

M08 Application Response Time The duration for an application to respond to a user’s
request or input.

down ↓

M09 Defect Escape Rate The number of defects or issues discovered after
releasing to production.

down ↓

M10 Cycle Time Value (CTV) The time it takes from the decision to make a change
to having it in production.

down ↓

M11 Service Level

Agreements (SLAs) and
Objectives (SLOs)

Customer service quality agreements, and internal
performance objectives.

up ↑

M12 Deployment Size The number of changes incorporated in each
production release.

down ↓

M13 Production Error and
Incident Rate

The frequency at which errors or incidents occur in a
live production environment.

down ↓

M14 Customer Tickets Volume
and Feedback

The number of customer support tickets and
feedback to be addressed.

down ↓

M15 Mean time to

Failure (MTTF)

The average time a flawed, non-recoverable asset
will manage to run until it fails.

up ↑

M16 Customer Usage and Traffic The amount of traffic from active users in the system. up ↑

M17 Pipeline Automated Tests
Success Rate

The success rate of pipeline automated test jobs. up ↑

M18 Westrum Organizational
Culture Measures

Categorize organizations into three types:
Pathological, Bureaucratic, or Generative [211]

→ дenerative

M19 Automated Test Code
Coverage

The percentage of the relevant codebase that is tested
by automated test cases.

up ↑

M20 Work In Progress (WIP)

/Load
The number of tasks, projects, or items that have
been initiated but are not yet completed.

down ↓

M21 Unplanned Work

Rate (UWR)

The time spent on addressing unexpected tasks and
incidents.

down ↓

M22 Wait Time The delay experienced before work items progress
through the value stream.

down ↓

Metric expectations: This metric should trend down or remain stable over time. To calculate the
Lead Time, the time of the request and respective delivery need to be known [74, 144, 151, 158]. Elite
performers have a lead time for changes of less than 1 hour and Low performers have a lead time
for changes that is between 1 and 6 months according to various State of DevOps [1, 35, 149, 151].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:16 R. Amaro et al.

How to improve: Lower lead times indicate that the team is adaptable, responsive, and can re-
spond quickly to feedback. Version control and automated testing are highly correlated with lead
time. Working in small batches improves process efficiency, but to measure MLT the team needs
a clear start and end of work defined [106, 147, 148, 173, 205]. Shorter lead times indicate a team’s
agility, responsiveness, and ability to adapt to feedback.

M03. Deployment Frequency (DF). Definition: The number of software deployments to pro-
duction over a period of time. The number of times a piece of code/software is pushed (released)
to production [41, 74, 143]. It can be measured using various methods, such as automated de-
ployment pipelines and API calls. How often does the team deploy a new version of a specific
product or service? In other words, DF shows how often the organization deploys code into pro-
duction [16, 35, 58, 75, 147, 154, 180, 202].

Why it matters: The frequency with which a team deploys changes is critical to the success of
DevOps. Increasing the frequency of deployments has been a powerful motivator for changes in
development practices [30, 140, 166]. Frequent deployments can help resolve production outages
faster, because they have the automation to quickly and easily deploy changes. The quicker teams
can deploy, the sooner they can provide value to end users. [66, 150, 183, 194, 198, 205, 205].

Metric expectations: Every time a deployment occurs, a counter will increase. The frequency
can be measured daily or weekly. One approach to quantify DevOps value is to track deployment
frequency over time. It could be measured via an automated deployment pipeline, API requests, or
manual scripts. Many organizations choose daily tracking to increase productivity [16, 35, 39, 46,
67, 72, 89, 106, 107, 147, 173, 199].

How to improve: A well-designed CI/CD pipeline enhances deployment frequency. Engineer-
ing teams may deliver products and minor enhancements faster by segmenting deployments.
We want to perform as many smaller deployments as feasible. Smaller deployments make
testing and releasing easier. These pipelines assist remove errors and increase product confi-
dence [9, 16, 28, 34, 35, 70, 100, 117, 127, 150, 202].

M04. Change Failure Rate (CFR). Definition: The percentage of deployments that result in
service impairment or an outage in production. If KPIs show an increasing rate of failure as de-
ployments increase, then it is time to slow down and investigate problems in the development
and deployment pipeline. The change fail percentage is the ratio of failed to successful changes.
How frequently we fail over time can measure both production failures and failures in our testing,
deployment, or the DevOps pipeline [27, 41, 47, 51, 53, 132, 133, 176, 180].

Why it matters: This metric should reveal the flaws in the deployment strategy and not the
outside world. Failed deployments can take services down, resulting in lost revenue and frustrated
customers. Well-implemented DevOps capabilities can make a big difference in failure rate. A high
change failure rate suggests poor application stability, which can lead to negative end-user out-
comes. Failed deployments cause revenue losses and unsatisfied customers [19, 21, 27, 61, 74, 82,
147, 176].

Metric expectations: This metric should be as low as possible or remain stable over time. The
Change Failure Rate is a measure of the quality of the release process. It is calculated by dividing
the total number of failed deployments and the number of deployments that resulted in production
failures [30, 42, 106].

How to improve: If we want to reduce deployment failures, then we need to add more automated
tests. If the change failure rate is increasing, then teams should consider reducing the deployment
frequency. Automation should be used for security testing, unit testing, and integration testing. A
low failure rate for changes indicates rapid and frequent deployment, whereas a high failure rate
indicates an unstable DevOps practice and process [36, 102, 127, 130, 183]. While a failure rate of

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:17

0 would be ideal, a failure rate of less than 5% is considered workable by most authors [88, 128].
Fixing five issues in 100 deployments is far easier than fixing 50 issues in 1,000 deployments in the
same amount of time [67, 190].

M05. Service Availability and Uptime. Definition: Uptime (or Availability) is the percentage
of continuous availability of service over a period of time. The uptime percentage is straightfor-
ward to quantify and track. It can be calculated from the data center or cloud service downtime
and availability data [61, 175]. The amount of downtime the service experiences, as well as the
level of service availability for end users, demonstrates the dependability of the applications and
infrastructure [30, 54, 61, 77, 156, 205].

Why it matters: As DevOps capabilities are adopted, availability should increase and downtime
should reduce. This is a critical component to monitor for software as a service businesses. The
availability of a service is critical for sustaining customer satisfaction [61, 207]. It also serves as
a significant statistic for determining the success of changes, the reacting speed on infrastructure
issues and the overall success of projects [30, 33, 49, 77, 118, 128, 156].

Metric expectations: This metric should trend upward or remain stable over time. A team calcu-
lates availability by adding up all reported outages by our primary production monitor for each ser-
vice, subtracting them from the total time, and then dividing by the total time [34, 169, 175, 176, 207].
A Hundred percent availability is unlikely, as scheduled maintenance would require planned down-
time. The team calculates availability by adding up all reported outages and dividing them by the
total downtime. [33, 51, 80, 82, 93, 128, 173, 180].

How to improve: DevOps delivery value can be tracked by measuring downtime and availabil-
ity as KPIs, which are somewhat related to the total number of incidents. With less downtime
and greater availability, DevOps organizations can likely promise more enticing Service-level

Agreements (SLAs), Service-level Indicators (SLIs), and Service-level Objectives (SLOs) to
customers [77, 123, 201].

M06. Deployment Duration Time. Definition: The total time it takes to deploy a previously
built artifact in infrastructure environments and production [45, 119, 206]. This metric quantifies
the time required to promote an application or service from one environment to another [57, 100,
128, 196]. Specifically, after the change is approved or automated deployment of the artifact starts.

Why it matters: Given that the goal of DevOps is to accelerate software delivery, tracking the
time to deploy that software is a useful metric. Monitoring deployment time can reveal delivery
challenges. Increasing error rates may indicate badly planned releases [49, 100, 156]. It can help
identify potential problems and allow a dramatic increase in revenue by using that extra time to
develop more value-added services [123, 205, 206].

Metric expectations: This metric should trend down or remain stable over time. When measuring
this metric, it is vital to pay attention to any sudden and dramatic rise in deployment time [52, 58,
80, 83, 119, 124, 205, 206].

How to improve: Measure the time taken to roll out deployments after they are approved. Track
how long it takes to do an actual deployment and investigate bottlenecks [80]. Dramatic increases
in deployment time warrant further investigation, especially if they are accompanied by reduced
deployment volume [42, 49, 128, 183].

M07. Mean Time To Detection (MTTD). Definition: The amount of time between the start of
an issue and the detection of the issue in a production environment, ideally at which point some
action is taken [61, 90, 166]. It’s an indication of how effective are incident management tools and
processes [30, 34, 34, 42, 88, 88, 176].

Why it matters: While the ideal solution is to minimize or even eradicate failed changes, it’s
essential to catch failures quickly if they do occur [30, 166]. Time to detection can determine

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:18 R. Amaro et al.

whether current response efforts are adequate. A High MTTD could raise bottlenecks capable of
interrupting the entire workflow [42, 51, 93].

Metric expectations: This metric should trend down or remain stable over time. Teams should
work to keep their MTTD as short as possible. With proper instrumentation, alerting, and notifi-
cation channels, teams will be able to more quickly respond to any error detection [42, 49, 78].

How to improve: In addition to MTTR, the team needs to track how long their average incident
response is. At what stage of the incident lifecycle is the most time spent [77]? Having robust
application monitoring and good coverage will help detect issues quickly. Once a team detects
them, they also have to fix them quickly [119, 128, 205]. In contrast, a more mature team that has
monitoring implemented can detect issues faster through the data that team members capture,
such as logs or performance data [90, 90, 128, 143, 156].

M08. Application Response Time. Definition: The response time and performance of an ap-
plication in production. It is a good practice to look for performance issues before deploying an
application [123, 203, 207]. However, it is equally important to track application performance dur-
ing and after deployment. This is crucial for DevOps success, since the performance of parameters
such as web service calls, queries, and other dependencies can change after application deploy-
ment [119, 205].

Why it matters: It is vital to maintain a good user experience. Before deploying, the team should
run a tool to check for performance and hidden errors [26, 203]. The functionality of an application
is examined more frequently. Optimizing services benefits customers and the organization as a
whole [49, 61, 207]. Application performance may be included in a SLA [133, 203].

Metric expectations: This metric should trend down or remain stable over time. Time to first byte,
error rates, and response time are common performance metrics for web applications [40, 119, 151].
The user experience that a service or application provides can be easily quantified. It shows that
the software/application is working properly within the defined parameters [33, 196].

How to improve: It is difficult to simulate all the different network paths and hardware configura-
tions that a client might use during a session. Therefore, techniques like blackbox monitoring [203]
can be effective in helping get a good measurement, since it has no knowledge of the interior met-
rics or design. Before performing the deployment, a team should check for performance faults,
unknown bugs, and other problems [119, 201].

M09. Defect Escape Rate. Definition: The percentage of defects that are not caught during
testing and are discovered in production. This can be reviewed by time period or as a ratio to the
number of deployments. Less than one percent of customers or users find defects in production,
while QA finds most bugs in pre-production [166, 203]. Bug tickets or support tickets are typically
used to track these defects [78, 157, 205].

Why it matters: It shows how many defects were found in production, during, and after de-
ployment. Preventing a bug from reaching production is easier if it is discovered during pipeline
development or testing. They may, however, not be detected and pass tests so deployments can
still introduce bug fixes [42, 113, 113, 171].

Metric expectations: This metric should trend down or remain stable over time. Trying to achieve
a defect-free operation can lead to DevOps anti-patterns like change reluctance or feature upgrade
delays. Make SLAs sane error budgets. Abnormally high defect rates could be the first sign of
problems in testing, qualification, or in team performance [33, 156, 176].

How to improve: The Defect Escape Rate is a useful DevOps Metric that counts software bugs
found in production during and after deployment. This indicates when the quality process needs
to be improved. To ship code quickly, a team must be confident in its software defect detection
ability [7, 49, 119, 128, 175].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:19

M10. Cycle Time Value (CTV). Definition: The time it takes from deciding to make a change
to have it in production [10, 28, 171]. How long does it take to deploy a change that only involves
one line of code? In software development, typically it is the time from code starting to be worked
to code in a delivered state [35, 53]. The CTV metric provides a broad overview of application
deployment.

Why it matters: In many organizations, Cycle Time is measured in weeks or months, and the
release process is manual. Teams must be able to achieve a Cycle Time of hours or even minutes
for any critical fix. This is possible using a fully automated, repeatable, reliable process for taking
changes through the various stages of the build, deploy, test, and release process [26, 42, 201]. It is
manual and often requires a team of people to deploy the software even into a testing or staging
environment, let alone into production [80].

Metric expectations: This metric should trend down or remain stable over time. This process
should be managed using a single ticketing system that everybody can log into and that generates
useful metrics such as average cycle time per change [80, 131, 171].

How to improve: The end-of-cycle security testing and assessments frustrate developers and
business owners. The earlier automated testing is the better. Avoid manual security testing of new
code and builds to reduce CTV [91, 143, 175]. Cycle Time is a key process efficiency indicator. Value
stream mapping aids in identifying waste removal and automation requirements. Defect detection
and SLA adherence are prioritized over Cycle Time reduction [42, 171].

M11. Service Level Agreements (SLAs) and Objectives (SLOs). Definition: SLOs are specific
measurable characteristics of the SLA such as response time, throughput, availability, frequency,
or quality indicators. The SLA is the entire agreement that specifies a provided service, how it
is supported, times, locations, costs, performance, and responsibilities of the parties involved [49,
80, 157]. There are two types of SLAs: soft (ideal goal) and legal (contractual obligation) [203].
Based on technical reality, a SLO target should reflect what the team or organization actually can
support [100].

Why it matters: To increase transparency, most companies operate according to SLAs and SLOs.
Often, teams have customer facing service-level metrics, based on SLIs [15, 18, 35, 42, 121, 201],
they are accountable for, thus aligning expectations between providers, clients or internally[15, 18,
42, 157]. This is a fundamental aspect, since it enables DevOps teams to release and experiment
improvements [35, 53] within defined boundaries and without fear, contributing to a culture of
psychological safety [98, 158, 211].

Metric expectations: These metrics are defined to set stakeholders expectations and should re-
main within boundaries. Service levels can change over time. For example, if a system is immature,
then initial modest SLOs [157] can be increased over time [42, 201, 203, 205].

How to improve: Ensure to be compliant with SLOs and SLAs [146, 149, 201]. Any disagreement
with SLAs causes issues at a later stage, hampering the workflow. It is important to operate within
defined service levels, therefore keeping track of Service Level Indicators (SLIs) and error bud-
gets [15, 18] is key. A good starting point for SLOs is using an open specification like OpenSLO.3

M12. Deployment Size. Definition: Total new user stories and new lines of code that are shipped
in each deployment in production. Volume of code changes focus on the new lines of code deployed
per build. Change Volume refers to the lines of code are pushed to production per deployment [119,
207]. Measuring this is crucial to measuring the success of deployment in terms of value, time and
frequency. This DevOps Metric is critically comparing the static code and ratio changes within the
organization [7, 119, 175].

3OpenSLO uses YAML to define reliability and performance targets. https://openslo.com/

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://openslo.com/


231:20 R. Amaro et al.

Why it matters: This DevOps KPI determines the extent to which code is changed versus remain-
ing static. Improvements in deployment frequency should not have a significant impact on change
volume [7, 42, 119]. Tracking how many stories, feature requests, and bug fixes are being deployed
is another good DevOps Metric. A team could also track how many story points or days’ worth
of development work is being deployed. Some companies use this metric to find out the total new
stories and new lines of code they ship for each deployment [123, 173, 201, 205].

Metric expectations: This metric should trend down or remain stable over time. The end goal
shouldn’t be a constant stream of minor but insubstantial changes; instead, focus on impactful up-
dates that provide a better experience with less disruption [49, 173]. Tracking the amount of change
with each deployment allows for a more accurate representation of progress [42, 123, 201, 205].

How to improve: In DevOps, changes should come often and be in small batches. But the sizes of
those pieces can vary. For each deployment, monitoring the volume of change makes for a more
precise depiction of development. Finding a good average of frequent and impactful changes leads
to success rates [42, 119, 207]. Keep track of the number of bug fixes and feature requests delivered
in each release’s deployment artifacts [42, 49, 176].

M13. Production Error and Incident Rate. Definition: Rate percentage of production inci-
dents and errors. The error rate tells the team how often new problems appear in running applica-
tions [90, 205]. Bugs after a new release, database connection issues, query timeouts, other issues all
contribute to the uptime and system performance metrics of operations [77, 90, 128, 130, 133, 196].

Why it matters: It is vital to track application error rates. They indicate not only quality issues
but also performance and uptime issues. Less time between deployments means more production
incidents [49, 100, 205]. Constant testing policies, release management processes, and monitoring
and alerting improvements are all common. The goal is to keep production incidents below the
value delivered to customers [77, 88]. Not all errors are equally impactful for customer’s trust [33,
90, 194].

Metric expectations: This metric should trend down or remain stable over time. The error rate
is calculated as a function of the transactions that result in an error during a particular time win-
dow [88, 128]. A few intermittent errors throughout the application life cycle is a normal occur-
rence, but any unusual spikes that occur need to be looked out for [90, 205].

How to improve: Errors are common in most applications. Apply good exception handling. Errors
are part of a busy system’s noise [205]. Keep an eye on the error rates and look for spikes via log
analysis [88, 90]. Error rate spikes must be captured, because they can indicate a problem. The raw
incident count can also help compare the team’s incident load to the organization’s average [130,
133, 196].

M14. Customer Tickets Volume and Feedback. Definition: Amount of customer support tick-
ets and feedback on how many problems are filed as support tickets. This metric is a measure of
end user satisfaction and a good indicator of production problems [100, 113, 173, 205]. Bugs and
errors can frequently pass through the testing phase and only be detected by the end user. As a
result, the number of customer tickets labeled as problems or bugs is a key indicator of application
reliability [49, 78, 119, 128].

Why it matters: This reflects how many problems users find and how they are solved, which
surfaces quality and performance issues. Ideally, customers should not be finding problems [26, 49,
78]. Most companies track user ticket generation to assess performance, since customer satisfaction
is vital to product survival. Satisfied clients increase sales. So, customer support tickets reflect
DevOps improvements needed [78, 100, 119, 128].

Metric expectations: This metric should trend down or remain stable over time. It is important
to note that not all defects are disastrous, but they should be caught early. Customer satisfaction
leads to a competitive advantage [33, 49, 78, 172].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:21

How to improve: Keep track of customers happiness and prioritize improvements. Happy cus-
tomers translate into business growth and fewer expenses on addressing issues [78]. Use a produc-
tion debugger to prevent issues from getting to production, and fix them as quickly as possible if
they do. While organizations should qualify which customer tickets to include in this metric, it
can be a good overall measure of DevOps success [7, 42, 113].

M15. Mean time to Failure (MTTF). Definition: MTTF is the average time a flawed, non-
recoverable asset will manage to run until it fails. The duration starts when a major flaw occurs in
the system and ends when the mechanism fails [90, 119]. This may reveal how often system com-
ponents generate flaws leading to failures, which may imply routine maintenance. This metric
relates to improving system uptime [34, 49]. Since this failure is non-recoverable, the asset or com-
ponent needs to be replaced. Examples are a hard disk, a microservice Kubernetes pod or a flawed
virtual machine. MTTF is associated with costs, capacity planning and risk management [15, 84,
195, 197]

Why it matters: MTTF is used to monitor non-repairable, disposable system assets or compo-
nents and determine their lifespan, allowing a team to monitor the health of mission-critical
components [60, 119] and forecast automated replacement. A high MTTF rate can also indicate
software quality issues. For example, tests may not be covering all possible scenarios [90, 201].
Reliability is a function of MTTF and MTTR [15].

Metric expectations: This metric should trend upward or remain stable over time. It is an indica-
tion of how long on average the system or a component can run before failing [34, 88, 90, 205].

How to improve: Based on the available data, forecast the eventual failure of the asset or com-
ponent. Compare different versions and perform a preventive maintenance [34]. Improve the time
elapsed between installation and the first failure [49] and aim for continuous service availability
and correct system behavior even if a failure of some kind occurs [42, 49].

M16. Customer Usage and Traffic. Definition: The amount of traffic from active users in the
system. Following a deployment, teams should check to see if the number of transactions or users
accessing the system appears to be normal [205]. Something could be wrong if teams suddenly see
a massive spike or no traffic [49, 194, 201, 207].

Why it matters: A good way to ensure the deployments are successful in the eyes of users and cus-
tomers is to track changes in usage across services. If usage drops after a change, then something
is wrong or the changes are not working for customers [49, 205]. Teams should constantly monitor
usage and traffic to identify general trends and sudden deviations that may be controlled [173, 207].

Metric expectations: This metric should trend upward or remain stable over time. Increase
usage metrics, for customer-facing applications, when there are defined business goals for
it [49, 176, 205].

How to improve: Teams want to see normal service usage after a new version is released. This
measure affects system uptime. It is important to get new or improved features into production
quickly, but that does not mean customers will use them [46, 166]. After we announce a feature’s
availability, teams can compare its actual popularity to previous predictions. Use hypothesis-driven
development [82, 94, 181, 194] to influence feature prioritization via experimentation.

M17. Pipeline Automated Tests Success Rate. Definition: The percentage of successful tests
per build. Test pass rate will combine the percent success of the unit tests, functional tests, per-
formance tests, and security tests [128, 207]. This entails effectively utilizing unit and functional
testing to determine how frequently changes in code result in test failures [175].

Why it matters: To maximize velocity, it is advised that the team make effective use of unit and
other automated testing. Because DevOps is heavily reliant on automation, measuring how well
automated tests perform is a useful DevOps Metric [201]. It is useful to know how many code

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:22 R. Amaro et al.

changes cause the tests to fail. Because DevOps is a highly automated process, keeping track of
the automated test pass percentage is critical for maintaining an upward trend in deployment
velocity [82, 128, 207].

Metric expectations: The success viewpoint of this metric should trend upward or remain stable
over time. A team can get this data from an orchestration tool such as Jenkins or the respective
test tool such as Selenium, JMeter, JUnit, and others [33, 175, 176, 205].

How to improve: Automation is an important DevOps practice that should be used extensively
to avoid repetitive tasks. Controlling automated test performance indicators helps focus on key
results. Measuring the results of automation tests can also help ensure that ongoing efforts are
paying off. Automated test cases must be fully utilized to achieve superior performance in DevOps.
Keep an eye on code changes that affect test cases [119, 128, 207].

M18. Westrum Organizational Culture Measures. Definition: Measures the performance in-
dicators of the organization. In contrast to other broad measures of culture, such as national culture,
an organization’s culture can be seen and observed in both its formal and informal states, such as
mission statements, goals, shared values, and social norms. Westrum et al. [211] proposed a model
of organizational culture evaluation that emphasized the importance of information flow in com-
plex, high-risk work environments. For this reason, the State of DevOps related studies selected
this framework for inclusion in their research, and adapted it for use in research to assess DevOps
capabilities [51, 54, 98].

Why it matters: Culture measurements must be an integral part of any DevOps process. It
shows that elite performers are more likely to meet or exceed their goals for organizational perfor-
mance [35]. These outcomes are measured by many factors, including productivity, profitability,
and market share as well as non-commercial measures such as effectiveness (value addition), effi-
ciency (faster cadence), and customer satisfaction [54, 91]. To thrive within a DevOps ecosystem,
the team must be encouraged in innovation and focuses on integrating lean principles and shorter
implementation cycles [98, 166, 206].

Metric expectations: This metric can position the organization in one of three types—pathological,
bureaucratic, and generative. The output should trend toward generative type over time. These
measurements are of particular interest to software developers, operations engineers, project man-
agers, and engineering leadership in DevOps [54, 147, 206].

How to improve: Leaders can help their teams gain a culture of high mutual trust with autonomy
in their work by establishing and communicating goals, but letting the team decide how the work
will be done. Allowing the team to remove obstacles for achieving the goals and letting the team
prioritize good outcomes for customers [82]. Research finds that more autonomy fosters trust
in the leader—that is, the team believes its leader is fair, honest, and trustworthy. This trust in
transformational leadership contributes to a stronger organizational culture [53, 54, 150]. Other
key improvements are the culture of psychological safety, dependability, sense of meaningful work,
impact and climate of learning in the company[18, 35, 53].

M19. Automated Test Code Coverage. Definition: The percentage of code associated with au-
tomated test scripts. Code Coverage indicates the number of lines of code that are executed while
the automated tests are running [9]. It can be further broken down into Unit Test Coverage or
Automated Test Coverage. The faster the automation, the more tests that can be incorporated as
continuous testing in the CI/CD pipeline [131, 166, 205].

Why it matters: To increase velocity, it is highly recommended that a team makes extensive
usage of unit and functional testing [205]. Since DevOps relies heavily on automation, tracking
how well the automated tests work is a good DevOps Metrics, and it is good to know how often
code changes are causing tests to break [9, 175].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:23

Metric expectations: This metric should trend upward or remain stable over time. The higher
the percentage, the lower the risk of performing refactoring exercises. Three metrics also worth
tracking are the number of test cases that have been developed, the percent of these that are
automated, and the duration it takes to run different tests [49, 175].

How to improve: It is critical to track the Code Coverage percentage while transitioning from
time-consuming peer review processes to automated ones [9]. Every new batch of code should
be tested against the automated unit and integrity tests, and the percent of coverage should be
tracked [49, 131].

M20. Work In Progress (WIP) /Load. Definition: The amount of work that has been started
but not yet completed. A similar number of incoming and outgoing work requests allows teams
to balance their workloads [60, 64, 91].

Why it matters: The team can simply count the number of open issues of each type with the
work-in-progress metric added to a dashboard (story, defect, task). When the number exceeds a
certain threshold, it is time to stop taking on new projects and concentrate on those that have
already begun. This improves the team’s overall velocity [51, 82, 91, 93].

Metric expectations: This metric should have a ceiling and remain within normal levels over time.
The load is the number of active or waiting work items in a value stream at any given time. Load
is a metric that measures the utilization capabilities of value streams in relation to productivity in
the process flow. This increases total velocity [29, 60, 64].

How to improve: The Toyota Production System of Lean Manufacturing [164] taught us that
limiting work in progress (batch sizes) helps teams improve overall throughput. In other words, it
is preferable to complete one project today rather than to work on ten projects and not complete
any of them [20, 53, 60, 91, 93].

M21. Unplanned Work Rate (UWR). Definition: The unplanned work rate tracks unexpected
efforts in relation to time spent on planned work. This exposes how much time is dedicated to
unexpected efforts. Ideally, the unplanned work rate (UWR) should not exceed 25 percent [42,
119, 201].

Why it matters: A high UWR may reveal wasted efforts on unexpected errors that were likely
not detected early in the workfloow. The UWR is sometimes examined alongside the rework rate

(RWR), which relates to the effort to address issues brought up in tickets [53, 119, 150, 201].
Metric expectations: This metric should trend down or remain stable over time. This is another

crucial DevOps Metric that speaks the effective utilization of efforts. This calculates tracks the time
spent on an unplanned work to that spent on a planned one. Most authors see it as the difference
between acting on warning signs or having an unexpected outage [42, 146].

How to improve: This is the amount of time spent on tasks that were not originally planned.
The UWR in standard projects should not exceed one-quarter of the work. A high UWR could
reveal efforts that were squandered on unanticipated errors that were obviously missed early in
the workflow. In addition to the RWR, which refers to the attempt to resolve issues raised in tickets,
the UWR is an important indicator [42, 82, 107, 119, 146].

M22. Wait Time. Definition: Wait Time is a “non-value-adding” process time, wherein the pro-
cess is idle and waits for the next step. Also mentioned as queuing or waste, it is an estimate of the
time that the work item spends idle in a non-productive state during its processing by the value
stream. Wait time is in opposition to touch time when value is created [64, 91, 93, 123].

Why it matters: The goal is increasing efficiency, equivalent to touch time and opposed to wait
time. These two metrics are related to time to develop a feature and time waiting until deploying
it in production [25, 82, 93, 181]. It usually occurs when one stakeholder is waiting for another
stakeholder to perform an action or hand over an artifact [174].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:24 R. Amaro et al.

Metric expectations: This metric should trend down or remain stable over time. Code reviews,
QA testing, security testing, and release cycles are examples of waiting time that value stream
managers must reduce or eliminate to maximize customer and product value.[39, 82, 93, 123, 202]

How to improve: The wait time spent in “review” or “ready for release” delays delivery, because
the development team might be unable to obtain feedback on the waiting stories [25]. There is a
need to improve by using non-bottleneck resources, processing, triaging and limiting rework [15,
53, 82].

Finally, while answering this research question, it was found that some authors mention a set of
important characteristics, in which the above listed main DevOps Metrics are considered useful [34,
49, 113], namely: (1) Measurable—metrics must have consistent and standardized values over time.
(2) Relevant—should measure aspects that are important to the business. (3) Actionable—analysis
should provide data for possible improvements. (4) Reliable—should be free of the influence of
teams and team members. (5) Traceable—should point to a root cause rather than a general issue.

By further cross-checking these five qualities of good DevOps key performance indicators, it
was found that they are based on the concepts of SMART [17], which technically provides some in-
creased validity and guidelines to metrics for DevOps adoption success. But, organizations should
also consider time, context, and resources when tracking these metrics. As well as using them
per service and team to identify strengths and weaknesses [72]. Last, using a broader set of met-
rics allows organizations to quickly assess the effectiveness of DevOps capabilities. Focusing on
business value creation via continuous improvement, identifying capability gaps toward achieving
goals and objectives, and eliminating existing practices that undermine a strong DevOps culture
and impede value flow to businesses and customers [204].

6 DISCUSSION AND FINDINGS

This article presents survey results, highlighting the need for DevOps metrics to enhance software
delivery performance. It discusses aspects of metrics like categorization and competition, and in-
troduces new topics on implementing these metrics and understanding changes in the context of
DevOps metrics.

6.1 DevOps Metrics Categorization

It was found that DevOps Metrics categorization is still dispersed and only a few authors try to
categorize metrics (39), represented in Table 6, therefore our categorization proposal shown in Sec-
tion 1 could help achieve consensus. The same is observed while trying to understand what metrics
are associated with each practice, capability, or principles of DevOps (25). This other missing piece
of structured knowledge is intriguing and a possible source of investigation in forthcoming studies.

In Table 6 it is also shown a few highly relevant properties that this MLR has identified from
the publications. The most important factor is that almost all authors state DevOps Metrics help
improvements and efficiency (124) and a high number (93) associate the need for metrics with
having pipeline automation in place. Like in the case of “value stream mapping” [74, 105], orga-
nizations have begun to adopt measurement techniques that will help identify areas that need
improvement [80] and ensure produced software offers continuous improvements to the customer
experience. To assess if DevOps efforts are successful, managers need consumable information
based on a clear list of DevOps Metrics comparing similar value streams across a common set of
KPIs [64, 82, 206].

Authors mention that selecting a categorization for DevOps Metrics is challenging [117, 166,
175, 206]. A fundamental issue with DevOps Metrics is that their significance is relative to a stake-
holder’s perspective. What the senior manager considers critical is likely to be somewhat different
from what the software engineer producing the code considers important. Indeed, occasionally, the

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:25

Table 6. Six Publication Properties Identified from the MLR

Property Publications Total

Mentions that metrics help improvements
and efficiency

[1–4, 7–11, 16, 19–21, 24, 26, 27, 29–31, 33–
36, 39–43, 45–47, 49–55, 57, 58, 60, 61, 64,
67, 68, 70, 72, 74, 77, 79, 80, 82, 83, 88–91, 93,
97, 98, 100, 106–108, 113, 115, 116, 118, 119,
121–125, 128, 130, 132, 133, 137–140, 142–
151, 154, 156–158, 160, 166, 168, 169, 171,
173, 175, 176, 178, 180, 183, 184, 190, 194,
196, 198–201, 204–210]

124

Relates Pipeline Automation to Metrics [1–3, 9, 12, 14, 16, 29, 34–36, 39, 40, 42, 43,
46, 47, 49–51, 53–55, 57, 58, 60, 61, 64, 66–68,
70, 72, 74, 75, 77–80, 82, 83, 86, 88, 90, 93, 97,
100, 102, 107, 108, 113, 116, 118, 121, 123, 125,
127, 128, 131–133, 137, 139, 140, 144–151,
154, 158, 166, 168, 169, 171, 173, 175, 176, 178,
180, 183, 190, 196, 198, 201–204, 207, 208]

93

Organizes and Explains each Metric [1, 2, 4, 7–10, 16, 21, 26–28, 30, 31, 33–36, 40,
42, 43, 45, 46, 49, 53, 54, 57, 58, 61, 64, 70, 72,
74, 75, 77, 78, 83, 86, 88–91, 98, 100, 102, 106,
107, 113, 119, 123, 128, 131, 132, 138–140, 142,
144–149, 151, 156, 157, 160, 163, 166, 173, 175,
180, 183–185, 188, 190, 198–200, 204–210]

87

Defines what are DevOps Metrics [1, 3, 12, 14, 16, 24, 33, 35, 42, 46, 49, 51–55,
58, 67, 72, 74, 77, 78, 82, 89–91, 93, 97, 98,
100, 102, 106, 107, 118, 119, 123, 132, 139,
143, 145–149, 151, 171, 173, 176, 178, 180,
184, 194, 199, 200, 202, 208]

56

Mentions or Groups KPIs in DevOps
context

[2, 3, 7, 10, 19, 24, 26, 29, 30, 34, 42, 45, 46,
49, 57, 77–79, 89, 90, 98, 100, 108, 113, 115,
116, 119, 121–124, 128, 132, 143, 156, 160,
163, 166, 173, 184, 187, 188, 196, 198, 200–
203, 206–208, 210]

52

Tries to categorize metrics [1, 8, 21, 24, 31, 33–36, 49, 51, 53, 54, 57, 98,
115–118, 125, 128, 132, 144–149, 151, 156,
157, 163, 166, 168, 175, 187, 188, 206, 210]

39

Mentions associated Practice, Capability or
Principles

[1, 4, 11, 24, 35, 42, 51, 53, 54, 58, 72, 74, 77,
115, 121, 125, 144–149, 151, 166, 168]

25

importance of one measure is contingent on the values of other metrics: The metrics that matter
are relevant to the observer’s orientation and even to the values of other metrics.

Gathering metrics effectively is also another debated problem. Forsgren et al. [55] mention that
it is best to start by capturing a system baseline with survey measures while continuing to build
out system-based metrics, which should normally use data that comes from the various systems
of record in the software delivery value stream. Both metrics have their limitations, but if used
in complement, organizations can gain a superior view of their software delivery value chain and
DevOps transformation work. In the various State of DevOps Reports [35, 144–149, 151] a few

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:26 R. Amaro et al.

grouped important metrics have already been used over the years, namely, some IT performance
metrics. DevOps metrics typically measure throughput, stability, or quality [107], while quanti-
fying a faster cadence (efficiency) and value addition (effectiveness) [51, 91]. Metrics also enable
DevOps teams to monitor and analyze collaborative workflows, as well as track progress toward
high-level goals such as higher quality, quicker release cycles, and improved application perfor-
mance [74]. Specifically, in the State of DevOps 2019 report[35], metrics are mentioned to mirror
the effectiveness of the development and delivery process, and they can be grouped in terms of
throughput and stability. The throughput of the software delivery process is measured using lead

time for code changes from check-in to release, along with deployment frequency. As for stability, it
can be measured using mean time to restore a system and change fail rate, a measure of the quality
of the release process. They provide a solid basis for an organization’s metrics activities [67].

However, these high-level metrics can be drilled down into a more refined state or expanded
to include others like Service Availability and Uptime—the time an application is available, Defect

Escape Rate—the number of defects that are found during a given unit of time, or Mean Time To

Detection—the average time between when a problem arises in production and when it is detected.
As part of this research, the main metrics are being expanded, listed, and defined in Sections 5.1
and 5.2, as mentioned in the objectives.

As seen in Section 1 there are a few organizational concepts in literature structuring DevOps
Metrics into the categories of Organizational Culture [38, 53, 84, 103, 118, 152], Operational Perfor-

mance [23, 84, 109, 165], Business Focus [73, 85, 87, 114, 135], and Incremental Change [76, 186, 217].
In the literature review’s coding done over the found publications, shown in Table 6 it was ob-
served that each of the main DevOps metrics found in Section 5.1 are being mentioned or grouped
into key indicators matching the category proposal.

Nevertheless, it is known that structuring key indicators is an art to determine which are most
relevant for the organization with DevOps objectives [24, 121, 166] in mind. Therefore, in Figure 8
this study summarizes and organizes DevOps Metrics into the four KPIs categories: (1) Business

KPIs, that have a direct impact on business goals. (2) Change KPIs, that reflect engineering’s
capacity to improve applications, infrastructure, or services. (3) Operational KPIs, that reflect a
team’s operational excellence. (4) Cultural KPIs, which are used to assess an organization based
on Westrum’s Organizational Culture Measures.

As a result, there are ten Change KPIs focused on measuring the different aspects of development
and delivery, while there are nine Operational KPIs focused on reliability, stability, and supporting
applications running in production. These dimensions seek to collect data about service delivery
and operationality [24, 166]. Some of these indications may be high level for new DevOps initia-
tives. This could be due to the extra time required to adopt and implement new processes, as well
as exposing and resolving current technological debt and waste [53, 204]. The Business KPIs are fo-
cused on providing customers the created value, getting feedback and making sure there is traffic
and users for the system. These measurements help quantify the impact of DevOps on business
objectives like increased customer loyalty and time to market [48, 115, 186, 206].

DevOps Cultural KPIs measures the cultural impact of DevOps implementation to address the
cultural gaps that have traditionally existed between developers, operational administrators, and
other engineers. This can be measured using employee surveys and other employee engagement
metrics. Team happiness, meeting efficiency, and learning opportunities are examples of enablers
for this category aiming to capture the organizational culture and its impacts [146, 195, 204]. Au-
thors largely agree that culture is an important ingredient of DevOps. The challenge for most IT
leaders is defining and communicating a vision of beneficial culture for their organizations, and
then facilitating the changes needed to achieve that.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:27

Fig. 8. DevOps metrics categorization and relation of concepts.

The State of DevOps report 2015, an annual survey based on the responses from more than
20,000 technical professionals, mentions that many companies claim to be data-driven, in the sense
of gathering a lot of data, but relatively few can really use that data to make educated choices [146].
Thus, posing the questions if DevOps analytics is being done correctly and regularly and if any
action is being taken on them. This MLR proposes to improve performance clarity by linking mea-
surements to systematic actionable goals and to turn measurement data into meaningful, visible
information that provides feedback to leadership and teams on important quality, performance,
and productivity criteria.

6.2 Competition and Vanity Metrics

Following the reporting process in Section 5.1, it is noticed that metrics among the not strongly
mentioned, therefore not included in the final list of 22 metrics, are those that could lead to inter-
nal competition. Because if the top performers are the “winners” and everyone else “loses,” then
communication or collaboration within and between teams is difficult to expect, which should be
a top DevOps capability [51, 53, 80, 82, 118, 145, 148, 149]. Metrics that are based on competition
among team members or between teams go against DevOps values [13, 217]. Teams will become
obsessed with improving metrics rather than identifying and resolving real problems. Examples
are builds per day, number of code commits, or features released per quarter seen in Appendix B.

Finally, there could also be some vanity metrics [34, 46, 49, 53, 82, 113, 146, 156, 204]. These
metrics may even indicate some ability, but they do not accurately reflect business effectiveness.
For example, the number of lines of code written each week is meaningless, because code can
vanish completely during refactoring, and less code is sometimes better for the organization. The
number of builds per day is irrelevant unless each build adds value to the end-user experience
[34, 49, 113].

6.3 Implementing DevOps Metrics in Organizations

A more involved, emerging question not yet fully answered by the literature is how an organiza-
tion could put these DevOps metrics into practice. It seems the results are incomplete and even

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

appendix:metricsdocuments


231:28 R. Amaro et al.

Fig. 9. DevOps metrics in practice infinity loop.

dispersed on this matter. However, it can be discussed within the scope of a few related studies
that have already touched on this topic. Forsgren et al. [56] states that measurement is the most im-
portant part of making a software value stream that works, while Snyder et al. [179] recommends
eliminating measurement silos and aligning analytics from all enterprise tools, to have a complete
picture of ongoing transformation. Therefore, in measuring and improving software delivery per-
formance, both the measurement method and the results are important to be exposed [53]. Sallin
et al. [168] analyzed how DevOps metrics could be used to measure software delivery by having
the metrics automatically calculated and shown to a team of practitioners in production.

Given this context, it is intended in Figure 9 to contribute more to the discussion by suggesting
a practical process based on the DevOps infinity loop [80]. This is a conceptual representation
of the continuous feedback and improvement process that is central to the DevOps philosophy
[6, 118, 125]. It is proposed that the steps for putting the main DevOps metrics into practice can
be represented as a series of nodes or stages, with each stage connected to the next, forming a
feedback loop.

The proposed steps to put DevOps metrics into practice are described as follows:
1. Establish a baseline: Organizations should start by setting a baseline for each metric by

collecting data over a period of time to gain a clear understanding of current performance and
identify areas for improvement [19, 80, 140]. Set a starting point by measuring the current state
of processes and systems, providing a basis for comparison and progress tracking [41, 75, 178].
Identify which metrics are most important and establish a baseline for future improvements [57,
140]. This step is the first in the DevOps infinity loop, establishing the current state of the system.

2. Set targets and goals: Governance should set clear goals and targets for each DevOps metric
based on their desired outcomes, such as reducing downtime, increasing efficiency, or improving
customer satisfaction [2, 35, 56]. These goals should align with the organization’s business objec-
tives and be focused on improving business outcomes [80, 92, 168]. This aligns with the second
step in the loop, where the goals for improvement are set.

3. Automate data collection: The data collection process should be automated by using tools
such as monitoring, logging, observability platforms, and online surveys to ensure accurate and up-
to-date data [44, 55, 144]. Automating the data collection, analysis, and monitoring process saves
time, reduces human error, and improves the accuracy of metrics [14, 57]. Survey data can show
important cultural, perceptual and whole-person information that cannot be collected through
system measurement[56, 186]. This step aligns with the third step in the DevOps infinity loop,
where automation is prepared to collect data and gather feedback.

4. Release: The release stage of the DevOps infinity loop involves making new code or up-
dates available to customers and stakeholders [50, 51, 115, 116]. For this specific process, the
data collected is used to improve and release new features, updates, and improvements to sys-
tems and processes to maintain continuous feedback [11, 118, 121]. The book “Continuous Deliv-
ery: Reliable Software Releases through Build, Test, and Deployment Automation” [80] highlights

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:29

the importance of frequent software releases and how it can be done in a reliable and efficient
manner.

5. Use dashboards and reports: Utilize dashboards and reports to visualize DevOps metrics,
identify trends and patterns, track progress toward targets and goals, and assess performance
[106, 196, 197, 208]. The book “Continuous Delivery and DevOps: A Quickstart guide” [186] ex-
plains how dashboards and reports can be used to track and improve the performance of a DevOps
organization. There are also academic experiments on using visual aids such as dashboards and
reports [24] and authors [13, 69, 112] recommend using visualizations to communicate metrics to
team members and stakeholders [52]. This step aligns with the fifth step in the DevOps infinity
loop, where data visualization is used to make sense of the data and identify areas for improvement.

6. Take action: Leverage the insights from the metrics to pinpoint opportunities for improve-
ment and take action [53, 58, 149], such as process changes, tooling changes, or adding team mem-
bers [179]. Use data to make informed decisions about process and technology improvements for
systems, processes, and customer experience [44, 80]. In the book “The Phoenix Project,” Kim et al.
[92] provide a view of how an organization can take action to improve its IT performance through
the implementation of DevOps capabilities. This step aligns with the sixth step in the DevOps
infinity loop, where you act based on the insights gained from the data.

7. Continuously monitor: Continuously monitor metrics and make adjustments to improve
DevOps processes, practices, and collaboration [18]. Regular monitoring helps identify potential
issues and track progress against established objectives [10, 44]. Use insights from metrics to im-
prove systems, processes, and customer experience by continuously monitoring customer feed-
back [74, 104, 109, 151]. This step aligns with the seventh step in the DevOps infinity loop, where
you continuously monitor the system to ensure that improvements are sustained.

8. Feedback and Communicate: Share metric data and insights with all involved to promote
transparency and collaboration toward common goals [14, 78, 94]. Encourage feedback and com-
munication between teams, stakeholders, and customers to identify new improvement opportuni-
ties and foster a data-driven, continuous improvement culture [69, 88]. Share results with relevant
stakeholders to use data to drive continuous improvement [80]. This aligns with the eighth step
in the loop, where feedback is gathered and results are communicated to stakeholders.

These guidelines propose a structured and comprehensive approach to DevOps metrics imple-
mentation. The stages in Figure 9 are in a specific order to ensure that each step builds upon the
previous one and provides the necessary foundation for the next step.

6.4 Change in the Context of DevOps Metrics

Change is a concept that has a few different interpretations depending on the DevOps metric
being evaluated and the context being observed. During this research, it was noticed that what
constitutes change can vary for some metrics like M02. MLT is a metric that shows how much time
is needed to implement a change in the full development cycle process [198]. But it can also be
how long it takes to go from code committed to code running successfully in production [98, 198].
Which also raises the discussion: does the variation of change across different contexts matter?

Expanding from the current study to a wider state of the art, there are a few papers that, despite
not explicitly, address the question of what constitutes a change in the context of DevOps metrics.
They provide some relevant information. Gupta et al. 2017 refers to Continuous Delivery as the
ability of the system to release changes or fixes to the production environment, also suggesting
that a framework can be used to assess this and other aspects of DevOps implementation [71].
Lwakatare et al. 2015 suggests that measurement in DevOps is achieved by measuring the effort of
the software process beyond QA using real-time performance [111]. Forsgren et al. 2017 implies
that it is challenging for teams to understand the wider dynamic context in which they operate

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:30 R. Amaro et al.

Fig. 10. DevOps metrics and incremental changes in the DevOps context.

due to their inability to measure change over time in relation to changes in the rest of the industry
[58].

To better organize this discussion, it is proposed that changes in DevOps, gathered from litera-
ture, can be broadly divided into these categories: (1) Code changes: These are modifications to the
source code of a software application [18, 80, 92, 99, 103, 174]. (2) Configuration changes: These
are modifications to the configuration files, settings, or environment variables that govern how a
software application operates [18, 41, 82, 84, 92, 149]. (3) Infrastructure changes: These are mod-
ifications to the underlying infrastructure that supports a software application, including servers,
databases, and network components [13, 82, 99, 104, 186]. (4) Process changes: These are modifi-
cations to the development and delivery processes that support a software application, including
changes to continuous integration, testing, and deployment workflows [53, 82, 84, 151, 155, 197].
(5) Data changes: These are modifications to the data that is stored, processed, or used by a soft-
ware application, including changes to database schema and data structures [1, 80, 121, 174, 186].
(6) Security changes: These are modifications to the security measures that protect a software
application and its underlying infrastructure, including changes to access controls, encryption al-
gorithms, and network security settings [53, 93, 149, 150, 174].

Each of these types of changes can impact the stability, reliability, and security of a software ap-
plication, and it is important to manage them carefully to ensure a high-quality software delivery
process [18, 93]. In DevOps, the emphasis is on automating and streamlining changes to minimize
the risk of errors and improve the speed and efficiency of software delivery [35, 53, 168]. To contex-
tualize change from multiple perspectives, Petersen et al. proposed a checklist, given that context
is critical in software engineering [136]. The context of incremental change seen in Figure 10 is also
not often discussed or considered when approaching DevOps metrics. For instance, in the change
category items mentioned in Section 6.1, does the variation of change across different contexts
matter?

DevOps performance includes measuring incremental change, introduced in Section 1, which
can be placed within context facets [136]. Namely, product, processes, practices and techniques,
people, organization, and market facets. The product context considers the size and complexity
of changes and requirements for integration [15, 84]. The process context involves the DevOps
pipeline and procedures in place for measurement [80, 174]. The practices and techniques context
covers tools and methodologies used in DevOps [103, 118]. The people context refers to team mem-
bers’ roles, responsibilities, and skills [115, 214]. The organizational context covers the company’s
structure and culture [153, 177, 186], and the market context refers to competitive pressures and
customer demands [101, 155]. These domains impact the efficiency of a pipeline, use of automa-
tion, quality of collaboration and communication, availability of resources, level of organizational
support, and ability to respond to market conditions and customer requirements.

Therefore, variation of change across different contexts matters, since the success of organiza-
tional change depends on the specific change context or the environment in which it is imple-
mented. Assessing internal and external factors can help identify DevOps enablers and challenges,

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



DevOps Metrics and KPIs: A Multivocal Literature Review 231:31

leading to specific actions [111, 114]. Analysis of change context involves gathering diverse per-
spectives and acting on the findings [118]. The context of change in DevOps is related to the
change management capability and to how well an organization handles these contexts to success-
fully manage change [13, 151]. Every time the business wants a change, there is an investment
in the development process to deliver that change [186, 199]. Therefore, for the example of Mean
Lead-time for Changes it is indeed dependent on what the context is and to what we are changing,
code, configurations, and infrastructure.

Furthermore, in the context of the organizational process, MLT will be influenced by the need to
respond quickly to changing market conditions and customer requirements. Leading to measure
the throughput of the software delivery process using lead time of code changes from check-in to
release, along with deployment frequency [1, 35]. Last, in the context of DevOps metrics, change
refers to the modifications made to systems, processes, or practices based on the data and insights
gained from the metrics [111]. These changes aim to improve the performance, efficiency, and
customer satisfaction of the systems and processes being monitored. Change may involve fixing
issues, implementing new tools, or making process changes to address any challenges or areas for
improvement identified through the metrics. The goal of these changes is to continuously improve
the overall DevOps process and capabilities [116].

7 CONCLUSION

This study has brought important contributions to both academia and industry on the DevOps
topic. In summary, an MLR was run on DevOps Metrics. To find literature, Google search, Scopus,
Web of Science, IEEE, ACM, and EBSCO were utilized, and 139 publications were recognized as
relevant to this research area: (1) In this literature review, a definition of DevOps Metric is proposed.
(2) Moreover, 22 main DevOps Metrics were identified and categorized. (3) DevOps Metrics were
discussed and categorized into Business, Change, Operational, and Cultural KPIs. (4) It is discussed
why, how to improve, and expectations for each metric. (5) Benefit characteristics of main DevOps
Metrics are exposed. (6) Identified four top metrics MTTR, MLT, DF and CFR. (7) It was found
that the community agrees on the top four metrics and is focusing on them. (8) Discussed how
organizations could put the main DevOps metrics into practice. (9) Discussed what constitutes a
change in the context of DevOps Metrics.

It has been researched that these top four key metrics have expected improvement outcomes
from DevOps adoption. MTTR determines the mean of the time required to recover or restore
service from a failure in production. MLT indicates how long it takes for a change to go from
code committed to code successfully running in production. DF ascertains how often changes
are deployed to production. CFR measures how often a change in production fails and must
be immediately remedied. According to this MLR, academic studies still demonstrate limited
research in this area. However, the industry shows a rising interest in the usage of DevOps
Metrics. As a result, the employment of DevOps Metrics should be thoroughly explored due to
the possible influence on businesses. In this regard, it would be worthwhile to perform a study
not only on DevOps Metrics but also on their relationship to DevOps capabilities, practices, and
outcomes.

For some of the most referenced metrics, M02, M03, M04, M06, and M12, there appears to be
a relation to the continuous delivery DevOps capability in References [35, 72, 80, 108, 118, 154],
which could be of interest to conduct more investigation in future research toward exploring the
relations to delivery practices. As research synthesis, the goal was to look into DevOps Metrics,
their definition, importance and categorization, without debating in depth how they are imple-
mented. However, as it can be seen, there are obvious indicators that more study may be done
from here on than take advantage of eliciting measurements into an organized format.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.



231:32 R. Amaro et al.

7.1 Future Work

What was discovered will help further research so that future studies can determine if these met-
rics remain the most prevalent and may be researched further. An example of this are the following
questions: How do DevOps practices and capabilities relate to metrics? When these metrics are
put into action, how will the results vary? Which ones will have the most impact in which kind
of organizations? Attempts to understand what metrics are associated with each practice, capabil-
ity, or principles of DevOps were identified in 26 publications seen in Table 6, but this relation is
still unclear, and no consensual link was found, leading to an opening of upcoming work in this
area. There is space for exploring the practical aspects of implementing the identified metrics and
their impact on DevOps capabilities. Also, on the organizational front, we still miss knowing what
metrics are already used by which industries? What organizational aspects have more effect on
each of the main key metrics? Can we control these aspects? How? Would it be possible to expose
the metrics, capabilities, and their influencing factors in information systems to support manage-
ment decisions [101]? However, there is still debate going on [29, 47, 50, 151] regarding: Should all
of these metrics be measured proactively? Which metrics can be measured automatically? What
metrics may only be measured using surveys? Which are valuable questions to explore. Finally,
improving measuring the software delivery process is relevant and pursued as seen in Section 5.
DevOps Metrics should aim to quantify the right elements to understand if DevOps is working.

7.2 Limitations

Regarding Limitations, this study is based on multivocal literature, and the majority of the mate-
rial has not been subjected to the rigorous peer-review process that academic research is normally
subjected to. Instead, the literature has included blogs, white papers, and reports. To mitigate the
impact of this danger, it was chosen to design the review procedure using the recommendations
given by Garousi et al. [63] and to conduct each step using this method. It is also acknowledged
that sources can change, which is why, during the peer-review process, any inaccessible sources
were replaced with alternative URLs for the same content. Over time, industry reports influence
other sources. But, even in academic literature, multiple voices risk influence. The MLR aims to rep-
resent academia, practitioners, and the DevOps community. To mitigate validity threats of sources
published in software companies’ blogs, metrics with less than 10 references were excluded, and
information is cross-verified with independent sources, as shown in Figure 7 and Section 4, as
elaborated upon in later sections. Similarly, to address limitations of basic metrics information,
a more in-depth analysis, using peer-reviewed sources, was done for a more comprehensive un-
derstanding of the metrics. Search keywords and search engines used might lead to an incomplete
selection of primary sources. Formal searching utilizing specific keywords was carried out and spe-
cific source code was used to reduce the risk of not discovering all relevant studies and increasing
the reliability of replicating this research. Last, also a restriction was the inclusion of English-only
articles, which may exclude significant studies in other languages.

REFERENCES

[1] Google Accelerate. 2021. 2021 State of DevOps Report. Technical Report GC2021. Google Cloud. Retrieved from https:
//services.google.com/fh/files/misc/state-of-devops-2021.pdf

[2] Khalil Ahmad. 2020. DevOps KPIs and “Design for Failure.” Retrieved from https://www.linkedin.com/pulse/devops-
kpis-design-failure-khalil-ahmad. Accessed on 2022-01-22.

[3] AlertOps. 2018. MTTD vs MTTF vs MTBF vs MTTR - Resolve Major IT Incidents Quickly. (2018). Retrieved from
https://alertops.com/mttd-vs-mttf-vs-mtbf-vs-mttr/. Accessed on 2022-01-22.

[4] Altexsoft. 2021. DevOps Metrics: Mean Time to Failure, Server Uptime, Mean Time Between Failures, Mean Time to
Recovery, and More. Retrieved from https://www.altexsoft.com/blog/devops-metrics/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://services.google.com/fh/files/misc/state-of-devops-2021.pdf
https://www.linkedin.com/pulse/devops-kpis-design-failure-khalil-ahmad
https://alertops.com/mttd-vs-mttf-vs-mtbf-vs-mttr/
https://www.altexsoft.com/blog/devops-metrics/


DevOps Metrics and KPIs: A Multivocal Literature Review 231:33

[5] Ricardo Amaro. 2021. DevOps Capabilities and Metrics. Ph.D. Dissertation. IST - Information and Enterprise Systems
(MISE). Retrieved from https://fenix.tecnico.ulisboa.pt/cursos/mise/dissertacao/283828618790759

[6] Ricardo Amaro, Ruben Pereira, and Miguel Mira da Silva. 2022. Capabilities and practices in DevOps: A multivocal
literature review. IEEE Trans. Softw. Eng. 1 (2022), 20. https://doi.org/10.1109/TSE.2022.3166626

[7] Appdynamics. 2020. DevOps Metrics and KPIs: How To Measure DevOps? Retrieved from https://www.appdynamics.
com/topics/devops-metrics-and-kpis. Accessed on 2022-01-22.

[8] Emily Arnott. 2021. DevOps Metrics | How to Measure What Matters. Retrieved from https://www.blameless.com/
devops/devops-metrics. Accessed on 2022-01-22.

[9] Prashant Arora. 2015. Measuring the Success of DevOps—Prashant Arora’s Blog. Retrieved from https://
aroraprashant.wordpress.com/2015/04/14/measuring-the-success-of-devops/. Accessed on 2022-01-22.

[10] Rashed Azzam. 2021. 8 Proven DevOps Metrics: Effectively Measure and Optimize Your DevOps Success. Retrieved
from https://www.vardot.com/en-us/ideas/blog/8-proven-devops-metrics-effectively-measure-and-optimize-your-
devops-success. Accessed on 2022-01-22.

[11] Sher Badshah, Arif Ali Khan, and Bilal Khan. 2020. Towards process improvement in DevOps: A systematic literature
review. In Proceedings of the 24th Evaluation and Assessment in Software Engineering Conference (EASE’20). ACM,
427–433. https://doi.org/10.1145/3383219.3383280

[12] Michael Baldani. 2019. DORA Metrics—Getting on the Bandwagon. Retrieved from https://www.cloudbees.com/blog/
dora-metrics-getting-bandwagon. Accessed on 2022-01-22.

[13] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s Perspective. Addison-Wesley, New York.
Retrieved from http://my.safaribooksonline.com/9780134049847

[14] Mary “Lisa” Williams Bates and Enrique I. Oviedo. 2021. Software reliability in a DevOps continuous integration
environment. In Proceedings of the Annual Reliability and Maintainability Symposium (RAMS’21). IEEE, 4. https://doi.
org/10.1109/RAMS48097.2021.9605768

[15] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site Reliability Engineering: How Google

Runs Production Systems. O’Reilly Media, Inc., Google. Retrieved from https://landing.google.com/sre/sre-book/toc/
[16] Marco Bizzantino. 2019. 4 Fundamental Metrics to Measure DevOps Performances. (2019). Retrieved from https:

//www.kiratech.it/en/blog/4-fundamental-metrics-to-measure-devops-performances. Accessed on 2022-01-22.
[17] May Britt Bjerke and Ralph Renger. 2017. Being smart about writing SMART objectives. Eval. Program Plan. 61 (Apr.

2017), 125–127. https://doi.org/10.1016/j.evalprogplan.2016.12.009
[18] David N . Blank-Edelman. 2018. Seeking SRE: Conversations About Running Production Systems at Scale. O’Reilly

Media, Inc..
[19] Robert Bobbett. 2018. DevOps Value: How to Measure the Success of DevOps. Retrieved from https://www.

fpcomplete.com/blog/devops-value-how-to-measure-the-success-of-devops/. Accessed on 2022-01-22.
[20] Kasper de Boer. 2016. 2 Most Important DevOps Metrics Tools. Retrieved from https://labs.sogeti.com/the-two-most-

important-metrics-for-devops/. Accessed on 2022-01-22.
[21] Dnyaneshwar Borase. 2021. What You Need to Know About DevOps Metrics in Jira? | Addteq Blog. Retrieved from

https://web.archive.org/web/20220401230729/https://addteq.co.in/blog/what-you-need-to-know-about-devops-
metrics-in-jira/. Accessed on 2022-01-22.

[22] Charles Border. 2019. Development of a configuration management course for operations students. In Proceedings of

the 20th Annual SIG Conference on Information Technology Education. ACM, New York, NY, 41–41. https://doi.org/10.
1145/3349266.3351360

[23] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Hasselbring, Christoph Heger,
Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim von Kistowski, Anne Koziolek, Johannes Kroß, Simon Spin-
ner, Christian Vögele, Jürgen Walter, and Alexander Wert. 2015. Performance-oriented DevOps: A research agenda.
Retrieved from https://arxiv.org/abs/1508.04752. https://doi.org/10.48550/ARXIV.1508.04752

[24] Francisco João Lúcio Bruno. 2021. DevOps Dashboard. Ph.D. Dissertation. ISCTE-IUL. Retrieved from https://
repositorio.iscte-iul.pt/handle/10071/24112

[25] Lianping Chen. 2017. Continuous delivery: Overcoming adoption challenges. J. Syst. Softw. 128 (June 2017), 72–86.
https://doi.org/10.1016/j.jss.2017.02.013

[26] Cigniti. 2016. Top 6 DevOps Metrics That Enterprise Dashboards Should Capture. (2016). Retrieved from https://
www.cigniti.com/blog/6-devops-metrics-for-enterprise-dashboards/. Accessed on 2022-01-22.

[27] Lauma Cīrule. 2019. Analyze DevOps Metrics With eazyBI. Retrieved from https://eazybi.com/blog/analyze-devops-
metrics-with-eazybi. Accessed on 2022-01-22.

[28] CloudNative. 2021. DevOps Metrics: How to Monitor Performances Optimally. Retrieved from https://blog.mia-
platform.eu/en/devops-metrics-how-to-monitor-performances-optimally. Accessed on 2022-01-22.

[29] Cprime. 2021. DevOps Metrics to Monitor Software Development—Cprime. Retrieved from https://www.cprime.com/
resources/blog/devops-metrics-to-monitor-software-development/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://fenix.tecnico.ulisboa.pt/cursos/mise/dissertacao/283828618790759
https://doi.org/10.1109/TSE.2022.3166626
https://www.appdynamics.com/topics/devops-metrics-and-kpis
https://www.blameless.com/devops/devops-metrics
https://aroraprashant.wordpress.com/2015/04/14/measuring-the-success-of-devops/
https://www.vardot.com/en-us/ideas/blog/8-proven-devops-metrics-effectively-measure-and-optimize-your-devops-success
https://doi.org/10.1145/3383219.3383280
https://www.cloudbees.com/blog/dora-metrics-getting-bandwagon
http://my.safaribooksonline.com/9780134049847
https://doi.org/10.1109/RAMS48097.2021.9605768
https://landing.google.com/sre/sre-book/toc/
https://www.kiratech.it/en/blog/4-fundamental-metrics-to-measure-devops-performances
https://doi.org/10.1016/j.evalprogplan.2016.12.009
https://www.fpcomplete.com/blog/devops-value-how-to-measure-the-success-of-devops/
https://labs.sogeti.com/the-two-most-important-metrics-for-devops/
https://web.archive.org/web/20220401230729/https://addteq.co.in/blog/what-you-need-to-know-about-devops-metrics-in-jira/
https://doi.org/10.1145/3349266.3351360
https://arxiv.org/abs/1508.04752
https://doi.org/10.48550/ARXIV.1508.04752
https://repositorio.iscte-iul.pt/handle/10071/24112
https://doi.org/10.1016/j.jss.2017.02.013
https://www.cigniti.com/blog/6-devops-metrics-for-enterprise-dashboards/
https://eazybi.com/blog/analyze-devops-metrics-with-eazybi
https://blog.mia-platform.eu/en/devops-metrics-how-to-monitor-performances-optimally
https://www.cprime.com/resources/blog/devops-metrics-to-monitor-software-development/


231:34 R. Amaro et al.

[30] Royal Cyber. 2019. DevOps KPIs to Measure Success. Retrieved from https://www.royalcyber.com/blog/devops/
devops-kpis-to-measure-success/. Accessed on 2022-01-22.

[31] Matthew David. 2021. DevOps Metrics: How to Measure Metrics for Your Devops Team. Retrieved from https://www.
simplilearn.com/devops-metrics-used-to-measure-devops-team-article. Accessed on 2022-01-22.

[32] Patrick Debois. 2011. DevOps from a sysadmin perspective. Login—Usenix Mag. 36, 6 (2011), 3.
[33] Tiempo Development. 2020. A Guide To Measuring DevOps Success and Proving ROI. Retrieved from https://www.

tiempodev.com/blog/measuring-devops/. Accessed on 2022-01-22.
[34] Devopedia. 2019. DevOps Metrics. Retrieved from https://devopedia.org/devops-metrics. Accessed on 2022-01-22.
[35] DevOps Research and Assessment (DORA). 2019. State of DevOps 2019—DORA. Technical Report DORA2019. DORA.

Retrieved from https://services.google.com/fh/files/misc/state-of-devops-2019.pdf.
[36] DevOpsEnterpriseSummit. 2017. Featured Resource: Metrics for DevOps Initiatives—IT Revolution. Retrieved from

https://itrevolution.com/devops-resource-metrics/. Accessed on 2022-01-22.
[37] Jessica Díaz, Rubén Almaraz, Jennifer Pérez, and Juan Garbajosa. 2018. DevOps in practice—An exploratory case

study. In Proceedings of the 19th International Conference on Agile Software Development. 3. https://doi.org/10.1145/
3234152.3234199

[38] Jessica Díaz, Daniel López-Fernández, Jorge Pérez, and Ángel González-Prieto. 2021. Why are many businesses in-
stalling a DevOps culture into their organization? Empir. Softw. Eng. 26, 2 (2021), 50. https://doi.org/10.1007/s10664-
020-09919-3

[39] Digital.ai. 2019. 4 DevOps Metrics to Improve Delivery Performance on Vimeo. Retrieved from https://vimeo.com/
331032185. Accessed on 2022-01-22.

[40] digital.ai. 2021. 10 DevOps Metrics You Should Know. Retrieved from https://digital.ai/resources/infographic/10-
devops-metrics-you-should-know. Accessed on 2022-01-22.

[41] Damian Dingley. 2019. 4 Key Metrics for DevOps Success Video. Retrieved from https://www.veracitysolutions.com/
4-key-metrics-for-devops-success. Accessed on 2022-01-22.

[42] Bojana Dobran. 2019. 15 DevOps Metrics and Key Performance Indicators (KPIs) To Track. Retrieved from https:
//phoenixnap.com/blog/devops-metrics-kpis. Accessed on 2022-01-22.

[43] Paul Duvall. 2018. Measuring DevOps Success with Four Key Metrics | Stelligent. Retrieved from https://stelligent.
com/2018/12/21/measuring-devops-success-with-four-key-metrics/. Accessed on 2022-01-22.

[44] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration: Improving Software Quality and

Reducing Risk (1st ed.). Addison-Wesley Professional, Upper Saddle River, NJ.
[45] Aliza Earnshaw and Puppet. 2013. 5 KPIs That Make the Case for DevOps. Retrieved from https://puppet.com/blog/5-

kpis-make-case-for-devops/. Accessed on 2022-01-22.
[46] Mark Edwards. 2019. Measuring for Success—Change or Hold—DevOps. Retrieved from https://web.archive.

org/web/20210415075956/https://www.tesm.com/resources-blog-measuring-for-success-should-you-change-or-
should-you-hold-devops-pt-5/. Accessed on 2022-01-22.

[47] Roy Edwards. 2021. Research Highlights Challenges of Salesforce DevOps in 2020. Retrieved from https://www.
enterprisetimes.co.uk/2021/02/16/research-highlights-challenges-of-salesforce-devops-in-2020/. Accessed on 2022-
01-22.

[48] João Faustino, Daniel Adriano, Ricardo Amaro, Rubén Pereira, and Miguel Mira da Silva. 2022. DevOps Benefits: A
systematic literature review. Softw.: Pract. Exper. 52, 9 (2022), 1905–1926. https://doi.org/10.1002/spe.3096

[49] Vladimir Fedak. 2020. DevOps Metrics: What to Track, How and Why Do It. Retrieved from https://medium.com/
@FedakV/devops-metrics-what-to-track-how-and-why-do-it-e08dc6864eab. Accessed on 2022-01-22.

[50] Flosum. 2021. Keys to Improve Salesforce DevOps Efficiency - Flosum - Continuous Integration, Release Management.
Retrieved from https://flosum.com/keys-to-improve-salesforce-devops-efficiency/. Accessed on 2022-01-22.

[51] Nicole Forsgren. 2015. Metrics for DevOps Initiatives. Retrieved from https://itrevolution.com/articles/devops-
resource-metrics/. Accessed on 2022-01-22.

[52] Nicole Forsgren. 2017. How to Use Metrics, Measurement to Drive DevOps. Retrieved from https://techbeacon.com/
devops/how-use-metrics-measurement-drive-devops. Accessed on 2022-01-22.

[53] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of Lean Software and Devops: Building and

Scaling High Performing Technology Organizations. IT Revolution. Retrieved from https://itrevolution.com/accelerate-
book/.

[54] Nicole Forsgren, Jez Humble, Gene Kim, A Brown, and N Kersten. 2018. Accelerate state of DevOps 2018 strategies
for a new economy. Report. DevOps Res. Assess. (DORA) 1 (2018), 78.

[55] Nicole Forsgren and Mik Kersten. 2017. DevOps Metrics: Your Biggest Mistake Might Be Collecting the Wrong Data.
Queue 15, 6 (Dec. 2017), 19–34. https://doi.org/10.1145/3178368.3182626

[56] Nicole Forsgren and Mik Kersten. 2018. DevOps Metrics. Commun. ACM 61, 4 (Dec. 2018), 44–48. https://doi.org/10.
1145/3159169

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://www.royalcyber.com/blog/devops/devops-kpis-to-measure-success/
https://www.simplilearn.com/devops-metrics-used-to-measure-devops-team-ar ticle
https://www.tiempodev.com/blog/measuring-devops/
https://devopedia.org/devops-metrics
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf.
https://itrevolution.com/devops-resource-metrics/
https://doi.org/10.1145/3234152.3234199
https://doi.org/10.1007/s10664-020-09919-3
https://vimeo.com/331032185
https://digital.ai/resources/infographic/10-devops-metrics-you-should-know
https://www.veracitysolutions.com/4-key-metrics-for-devops-success
https://phoenixnap.com/blog/devops-metrics-kpis
https://stelligent.com/2018/12/21/measuring-devops-success-with-four-key-metrics/
https://puppet.com/blog/5-kpis-make-case-for-devops/
https://web.archive.org/web/20210415075956/https://www.tesm.com/resources-blog-measuring-for-success-should-you-change-or-should-you-hold-devops-pt-5/
https://www.enterprisetimes.co.uk/2021/02/16/research-highlights-challenges-of-salesforce-devops-in-2020/
https://doi.org/10.1002/spe.3096
https://medium.com/@FedakV/devops-metrics-what-to-track-how-and-why-do-it-e08dc6864eab
https://flosum.com/keys-to-improve-salesforce-devops-efficiency/
https://itrevolution.com/articles/devops-resource-metrics/
https://techbeacon.com/devops/how-use-metrics-measurement-drive-devops
https://itrevolution.com/accelerate-book/.
https://doi.org/10.1145/3178368.3182626
https://doi.org/10.1145/3159169


DevOps Metrics and KPIs: A Multivocal Literature Review 231:35

[57] Nicole Forsgren, Marcus Rothenberger, Jez Humble, Jason Thatcher, and Dustin Smith. 2020. A taxonomy of soft-
ware delivery performance profiles: Investigating the effects of devops practices. In Proceedings of the 26th Americas

Conference on Information Systems (AMCIS’20). 5.
[58] Nicole Forsgren, Monica Chiarini Tremblay, Debra VanderMeer, and Jez Humble. 2017. DORA Platform: DevOps

assessment and benchmarking. In Designing the Digital Transformation, Alexander Maedche, Jan vom Brocke, and
Alan Hevner (Eds.). Springer International Publishing, Cham, 436–440. https://doi.org/10.1007/978-3-319-59144-5_
27

[59] Breno B Nicolau de França, Helvio Jeronimo, Guilherme Horta Travassos, Breno B. Nicolau de França, Helvio Jeron-
imo, and Guilherme Horta Travassos. 2016. Characterizing DevOps by hearing multiple voices. In Proceedings of

the 30th Brazilian Symposium on Software Engineering, E. S. DeAlmeida (Ed.). Unicesumar; Colivre; Espweb; Tasa
Eventos, New York, NY, 53–62. https://doi.org/10.1145/2973839.2973845

[60] Ann Marie Fred and Craig Cook. 2021. 6 Proven Metrics for DevOps Success | TechBeacon. Retrieved from https:
//techbeacon.com/devops/6-proven-metrics-devops-success. Accessed on 2022-01-22.

[61] Philip Gallagher. 2020. Tracking Success in DevOps Pipelines. Retrieved from https://blog.goodelearning.com/
subject-areas/devops/how-to-measure-success-in-devops/. Accessed on 2022-01-22.

[62] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2016. The need for multivocal literature reviews in software
engineering. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering

(EASE’16). ACM Press, New York, NY, 6. https://doi.org/10.1145/2915970.2916008
[63] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for including grey literature and conducting

multivocal literature reviews in software engineering. Info. Softw. Technol. 106 (Feb. 2019), 101–121. https://doi.org/
10.1016/j.infsof.2018.09.006

[64] John Gelo. 2020. DevOps Metrics Matter: Why, Which Ones, and How - HCL SW Blogs. Retrieved from https://blog.
hcltechsw.com/accelerate/devops-metrics-matter-why-which-ones-and-how-2/. Accessed on 2022-01-22.

[65] Gene Kim and IT Revolution. 2012. The Three Ways: The Principles Underpinning DevOps. Retrieved from https:
//itrevolution.com/the-three-ways-principles-underpinning-devops/. Accessed on 2022-01-22.

[66] Tom Gilmore. 2018. DevOps Metrics—ADAPT Model Community. Retrieved from http://www.adapttransformation.
com/devops-toolchain/monitor/devops-metrics/. Accessed on 2022-01-22.

[67] Gitlab. 2020. Getting Started with Agile/DevOps Metrics | GitLab. Retrieved from https://web.archive.org/web/
20211016034045/https://about.gitlab.com/handbook/marketing/strategic-marketing/devops-metrics/. Accessed on
2022-01-22.

[68] Brian Gracely. 2017. The Most Important DevOps Metric to Measure. Retrieved from https://www.openshift.com/
blog/important-devops-metric-measure. Accessed on 2022-01-22.

[69] Gary Gruver, Tommy Mouser, and Gene Kim. 2015. Leading the Transformation: Applying Agile and DevOps Principles

at Scale. IT Revolution Press, Portland, OR.
[70] George Guimarães. 2020. On the Four Key DevOps Metrics, and Why I Measure Them Differently—SourceLevel. Re-

trieved from https://sourcelevel.io/blog/on-the-four-key-devops-metrics-and-why-i-measure-them-differently. Ac-
cessed on 2022-01-22.

[71] Viral Gupta, P. K. Kapur, and Deepak Kumar. 2017. Modeling and measuring attributes influencing devops im-
plementation in an enterprise using structural equation modeling. Info. Softw. Technol. 92, 1 (2017), 75–91. https:
//doi.org/10.1016/j.infsof.2017.07.010

[72] Omed Habib. 2019. DevOps Accelerate Metrics | Harness Platform-as-a-Service. Retrieved from https://www.harness.
io/blog/dora-metrics. Accessed on 2022-01-22.

[73] Philipp Haindl and Reinhold Plosch. 2020. Focus areas, themes, and objectives of non-functional requirements in
DevOps: A systematic mapping study. In Proceedings of the 46th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA’20), Martini A., Wimmer M., and Skavhaug A. (Eds.). Institute of Electrical and Elec-
tronics Engineers Inc., Johannes Kepler University Linz, Institute of Business Informatics–Software Engineering,
Linz, Austria, 394–403. https://doi.org/10.1109/SEAA51224.2020.00071

[74] Tom Hall. 2016. DevOps Metrics | Atlassian. Retrieved from https://www.atlassian.com/devops/frameworks/devops-
metrics. Accessed on 2022-01-22.

[75] Adam Hawkins. 2019. Measuring DevOps Success: What, Where, and How - Cloud Academy. Retrieved from https:
//cloudacademy.com/blog/measuring-devops-success-what-where-and-how/. Accessed on 2022-01-22.

[76] Aymeric Hemon-Hildgen, Frantz Rowe, and Laetitia Monnier-Senicourt. 2020. Orchestrating automation and sharing
in DevOps teams: A revelatory case of job satisfaction factors, risk and work conditions. Eur. J. Info. Syst. 29, 5 (Sept.
2020), 474–499. https://doi.org/10.1080/0960085X.2020.1782276

[77] Dan Holloran. 2019. Top Metrics for Measuring DevOps Delivery Value. Retrieved from https://web.archive.org/web/
20210928103412/https://victorops.com/blog/top-metrics-for-measuring-devops-delivery-value. Accessed on 2022-
01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://doi.org/10.1007/978-3-319-59144-5_27
https://doi.org/10.1145/2973839.2973845
https://techbeacon.com/devops/6-proven-metrics-devops-success
https://blog.goodelearning.com/subject-areas/devops/how-to-measure-success-in-devops/
https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1016/j.infsof.2018.09.006
https://blog.hcltechsw.com/accelerate/devops-metrics-matter-why-which-ones-and-how-2/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/
http://www.adapttransformation.com/devops-toolchain/monitor/devops-metrics/
https://web.archive.org/web/20211016034045/https://about.gitlab.com/handbook/marketing/strategic-marketing/devops-metrics/
https://www.openshift.com/blog/important-devops-metric-measure
https://sourcelevel.io/blog/on-the-four-key-devops-metrics-and-why-i-measure-them-differently
https://doi.org/10.1016/j.infsof.2017.07.010
https://www.harness.io/blog/dora-metrics
https://doi.org/10.1109/SEAA51224.2020.00071
https://www.atlassian.com/devops/frameworks/devops-metrics
https://cloudacademy.com/blog/measuring-devops-success-what-where-and-how/
https://doi.org/10.1080/0960085X.2020.1782276
https://web.archive.org/web/20210928103412/https://victorops.com/blog/top-metrics-for-measuring-devops-delivery-value


231:36 R. Amaro et al.

[78] Rami Honig. 2020. Bridge the DevOps Development Chasm to Boost DevOps KPIs—Ozcode. Retrieved from https://
oz-code.com/blog/devops/bridging-the-devops-development-observability-chasm-to-boost-devops-kpis. Accessed
on 2022-01-22.

[79] Maruf Hossain. 2020. What Key Performance Indicators (KPIs) Are Used to Measure DevOps? Retrieved from https:
//www.quora.com/What-key-performance-indicators-KPIs-are-used-to-measure-DevOps. Accessed on 2022-01-22.

[80] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Releases Through Build, Test, and Deploy-

ment Automation. Addison-Wesley Professional.
[81] Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt devops to enable continuous delivery. Cutter IT

J. 24, 8 (2011), 6–12.
[82] Jez Humble and Barry O’Reilly. 2014. Lean Enterprise: How High Performance Organizations Innovate at Scale. O’Reilly

Media, Inc.
[83] Henn Idan. 2018. The Must Have Metrics Any DevOps and SRE Manager Should Measure. Retrieved from https://

www.overops.com/blog/the-must-have-metrics-any-devops-and-sre-manager-should-measure/. Accessed on 2022-
01-22.

[84] IEEE. 2021. IEEE standard for DevOps: Building reliable and secure systems including application build, Package, and
Deployment: IEEE Standard 2675-2021. IEEE Std 2675-2021 1, 16 (Apr. 2021), 91. https://doi.org/10.1109/IEEESTD.2021.
9415476

[85] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2018. Towards a benefits dependency network
for DevOps based on a systematic literature review. J. Softw.: Evol. Process 30, 11 (Nov. 2018), 26. https://doi.org/10.
1002/smr.1957

[86] Jellyfish. 2021. Jellyfish Adds DevOps Metrics to Its Engineering Management Platform. Retrieved from
https://www.prnewswire.com/news-releases/jellyfish-adds-devops-metrics-to-its-engineering-management-
platform-301404849.html. Accessed on 2022-01-22.

[87] Stephen Jones, Joost Noppen, and Fiona Lettice. 2016. Management challenges for DevOps adoption within UK
SMEs. In Proceedings of the 2nd International Workshop on Quality-Aware DevOps. ACM, Saarbrücken Germany, 7–
11. https://doi.org/10.1145/2945408.2945410

[88] Vinati Kamani. 2019. 7 Crucial DevOps Metrics That You Need to Track. Retrieved from https://hub.packtpub.com/7-
crucial-devops-metrics-that-you-need-to-track/. Accessed on 2022-01-22.

[89] Lea Karam. 2017. DevOps Metrics You Must Take into Account. Retrieved from https://apiumhub.com/tech-blog-
barcelona/devops-metrics/. Accessed on 2022-01-22.

[90] Jane Kernel. 2020. DevOps Metrics: 7 KPIs to Evaluate Your Team’s Maturity. Retrieved from https://www.xplg.com/
devops-metrics-7-kpis/. Accessed on 2022-01-22.

[91] Aditya Khanduri. 2020. DevOps Metrics: Measuring What Matters. Retrieved from https://blog.sonatype.com/
devops-metrics-measuring-what-matters. Accessed on 2022-01-22.

[92] Gene Kim, Kevin Behr, Kim Spafford, and George Spafford. 2014. The Phoenix Project: A Novel about IT, DevOps, and

Helping Your Business Win. IT Revolution. Retrieved from https://books.google.pt/books?id=H6x-DwAAQBA.
[93] Gene Kim, Jez Humble, Patrick Debois, and John Willis. 2016. The DevOps Handbook : How to Create World-Class

Agility, Reliability, and Security in Technology Organizations. IT Revolution Press. Retrieved from https://www.
amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002.

[94] Gene Kim, Jez Humble, Patrick Debois, John Willis, and Nicole Forsgren. 2021. The DevOps Handbook: How to Create

World-Class Agility, Reliability, & Security in Technology Organizations, 2nd ed. IT Revolution.
[95] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Sys-

tematic literature reviews in software engineering—A systematic literature review. Info. Softw. Technol. 51, 1 (2009),
7–15. https://doi.org/10.1016/j.infsof.2008.09.009

[96] Barbara A. Kitchenham. 2012. Systematic review in software engineering. In Proceedings of the 2nd International

Workshop on Evidential Assessment of Software Technologies (EAST’12). ACM Press, New York, NY, 1. https://doi.org/
10.1145/2372233.2372235

[97] KnowledgeHut. 2017. What Are the Metrics and Why Do They Matter for DevOps Success? Retrieved from https:
//www.knowledgehut.com/blog/agile/metrics-matters-devops-success. Accessed on 2022-01-22.

[98] Dilyana Kodjamanova. 2020. 4 DevOps Metrics To Maximize Success—MentorMate. Retrieved from https://
mentormate.com/blog/how-devops-metrics-pave-the-way-to-better-performance/. Accessed on 2022-01-22.

[99] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba, Damian Andrew Tamburri,
and Willem-Jan van den Heuvel. 2021. The do’s and don’ts of infrastructure code: A systematic gray literature review.
Info. Softw. Technol. 137 (Sept. 2021), 106593. https://doi.org/10.1016/j.infsof.2021.106593

[100] Performance Lab. 2021. Metrics for Successful DevOps? Retrieved from https://performancelabus.com/successful-
devops-metrics/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://oz-code.com/blog/devops/bridging-the-devops-development-observability-chasm-to-boost-devops-kpis
https://www.quora.com/What-key-performance-indicators-KPIs-are-used-to-measure-DevOps
https://www.overops.com/blog/the-must-have-metrics-any-devops-and-sre-manager-should-measure/
https://doi.org/10.1109/IEEESTD.2021.9415476
https://doi.org/10.1002/smr.1957
https://www.prnewswire.com/news-releases/jellyfish-adds-devops-metrics-to-its-engineering-management-platform-301404849.html
https://doi.org/10.1145/2945408.2945410
https://hub.packtpub.com/7-crucial-devops-metrics-that-you-need-to-track/
https://apiumhub.com/tech-blog-barcelona/devops-metrics/
https://www.xplg.com/devops-metrics-7-kpis/
https://blog.sonatype.com/devops-metrics-measuring-what-matters
https://books.google.pt/books?id=H6x-DwAAQBA.
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002.
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1145/2372233.2372235
https://www.knowledgehut.com/blog/agile/metrics-matters-devops-success
https://mentormate.com/blog/how-devops-metrics-pave-the-way-to-better-performance/
https://doi.org/10.1016/j.infsof.2021.106593
https://performancelabus.com/successful-devops-metrics/


DevOps Metrics and KPIs: A Multivocal Literature Review 231:37

[101] Jane P. Laudon & Kenneth C. Laudon. 2017. Management Information Systems: Managing the Digital Firm, Global

Edition. Pearson Education, USA.
[102] Cate Lawrence. 2020. The Four Key Metrics of DevOps. Retrieved from https://humanitec.com/blog/devops-key-

metrics. Accessed on 2022-01-22.
[103] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. 2019. A survey of DevOps concepts

and challenges. Comput. Surveys 52, 6 (Nov. 2019), 35. https://doi.org/10.1145/3359981
[104] L.-N. Lévy, J. Bosom, G. Guerard, S. B. Amor, M. Bui, and H. Tran. 2022. DevOps model appproach for monitoring

smart energy systems. Energies 15, 15 (2022), 27. https://doi.org/10.3390/en15155516
[105] Alex Lichtenberger and Impactmatters. 2019. Blog: Agile: Dead End? Taking the next Step by Applying DevOps Prac-

tices Effectively—Impact Matters Blog. Retrieved from https://www.impactmatters.ch/blog/agiledevops-deadend/.
Accessed on 2022-01-22.

[106] Elysia Lock. 2020. Measure DevOps Metrics That Matter. Retrieved from https://www.devopsdigest.com/measure-
devops-metrics-that-matter. Accessed on 2022-01-22.

[107] Gorilla Logic. 2020. DevOps Success: What to Measure and Why—Gorilla Logic. Retrieved from https://gorillalogic.
com/blog/devops-success-what-to-measure-and-why/. Accessed on 2022-01-22.

[108] JAX London. 2017. Measuring DevOps: The Key Metrics That Matter—JAX London. Retrieved from https://jaxlondon.
com/blog/devops-continuous-delivery/measuring-devops-key-metrics-matter/. Accessed on 2022-01-22.

[109] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2019. Adopting DevOps in the real world: A theory, a
model, and a case study. J. Syst. Softw. 157, July (Nov. 2019), 110384. https://doi.org/10.1016/j.jss.2019.07.083

[110] Lucy Ellen Lwakatare, Terhi Kilamo, Teemu Karvonen, Tanja Sauvola, Ville Heikkilä, Juha Itkonen, Pasi Kuvaja,
Tommi Mikkonen, Markku Oivo, and Casper Lassenius. 2019. DevOps in practice: A multiple case study of five
companies. Info. Softw. Technol. 114 (2019), 217–230. https://doi.org/10.1016/j.infsof.2019.06.010

[111] Lucy Ellen Lwakatare, Pasi Kuvaja, Markku Oivo, C. Lassenius, T. Dingsoyr, and M. Paasivaara. 2015. Dimensions
of DevOps. In Agile Processes in Software Engineering and Extreme Programming, Vol. 212. Springer International
Publishing, Cham, 212–217. https://doi.org/10.1007/978-3-319-18612-2_19

[112] Lucy Ellen Lwakature. 2017. Devops Adoption and Implementation in Software Development Practice: Concept, Practices,

Benefits and Challenges. University of Oulu, Finland.
[113] Gilad David Maayan. 2021. 6 Great DevOps Metrics—And How to Choose the Right Metrics. Retrieved from https:

//www.codemotion.com/magazine/dev-hub/devops-engineer/best-devops-metrics/. Accessed on 2022-01-22.
[114] C. Marnewick and J. Langerman. 2020. DevOps and Organizational Performance: The Fallacy of Chasing Maturity.

IEEE Softw. 38, 5 (2020), 48–55. https://doi.org/10.1109/MS.2020.3023298
[115] Krikor Maroukian and Stephen R. Gulliver. 2021. Synthesis of a leadership model for DevOps adoption. In Proceedings

of the 2nd European Symposium on Software Engineering (ESSE’21). ACM, New York, NY, 58–66. https://doi.org/10.
1145/3501774.3501783

[116] Lilianny Marrero and Hernán Astudillo. 2021. DevOps-RAF: An assessment framework to measure DevOps readiness
in software organizations. In Proceedings of the 40th International Conference of the Chilean Computer Science Society

(SCCC’21). IEEE, Chile, 8. https://doi.org/10.1109/SCCC54552.2021.9650363
[117] Mark Michaelis. 2015. DevOps Metrics—IntelliTect. Retrieved from https://intellitect.com/devops-metrics/. Accessed

on 2022-01-22.
[118] Alok Mishra and Ziadoon Otaiwi. 2020. Devops and software quality: A systematic mapping. Comput. Sci. Rev. 38,

1 (Nov. 2020), 14. https://doi.org/10.1016/j.cosrev.2020.100308
[119] Sara Miteva. 2020. 13 DevOps Metrics for Increased Productivity. Retrieved from https://dev.to/microtica/13-devops-

metrics-for-increased-productivity-5084. Accessed on 2022-01-22.
[120] Johann Mitlohner, Sebastian Neumaier, Jurgen Umbrich, and Axel Polleres. 2016. Characteristics of open data CSV

files. In Proceedings of the 2nd International Conference on Open and Big Data (OBD’16). IEEE, 72–79. https://doi.org/
10.1109/OBD.2016.18

[121] Samer I. Mohamed. 2016. DevOps maturity calculator DOMC -Value Oriented Approach. Int. J. Eng. Res. Sci. 2,
2 (2016), 2395–6992.

[122] Luciano de Aguiar Monteiro. 2021. A proposal to systematize introducing devops into the software development
process. In Proceedings of the International Conference on Software Engineering. IEEE, 269–271. https://doi.org/10.
1109/ICSE-Companion52605.2021.00124

[123] Fabio Jose Moraes. 2018. DevOps KPI in Practice — Chapter 1 — Deployment Speed, Frequency and Failure.
Retrieved from https://medium.com/@fabiojose/devops-kpi-in-practice-chapter-1-deployment-speed-frequency-
and-failure-2fd0a9303249. Accessed on 2022-01-22.

[124] Gabriela Motroc. 2018. Key DevOps Metrics That Matter: How Well Does Your Team Sleep? Retrieved fromhttps://
web.archive.org/web/20220119200950/https://jaxenter.com/devops-influencers-interview-series-4-142312.html. Ac-
cessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://humanitec.com/blog/devops-key-metrics
https://doi.org/10.1145/3359981
https://doi.org/10.3390/en15155516
https://www.impactmatters.ch/blog/agiledevops-deadend/
https://www.devopsdigest.com/measure-devops-metrics-that-matter
https://gorillalogic.com/blog/devops-success-what-to-measure-and-why/
https://jaxlondon.com/blog/devops-continuous-delivery/measuring-devops-ke y-metrics-matter/
https://doi.org/10.1016/j.jss.2019.07.083
https://doi.org/10.1016/j.infsof.2019.06.010
https://doi.org/10.1007/978-3-319-18612-2_19
https://www.codemotion.com/magazine/dev-hub/devops-engineer/best-devops-metrics/
https://doi.org/10.1109/MS.2020.3023298
https://doi.org/10.1145/3501774.3501783
https://doi.org/10.1109/SCCC54552.2021.9650363
https://intellitect.com/devops-metrics/
https://doi.org/10.1016/j.cosrev.2020.100308
https://dev.to/microtica/13-devops-metrics-for-increased-productivity-5084
https://doi.org/10.1109/OBD.2016.18
https://doi.org/10.1109/ICSE-Companion52605.2021.00124
https://medium.com/@fabiojose/devops-kpi-in-practice-chapter-1-deployment-speed-frequency-and-failure-2fd0a9303249
 https://web.archive.org/web/20220119200950/https://jaxenter.com/devops-influencers-interview-series-4-142312.html


231:38 R. Amaro et al.

[125] Mirna Muñoz and Mario Negrete Rodríguez. 2021. A guidance to implement or reinforce a DevOps approach in
organizations: A case study. J. Softw.: Evol. Process 1 (2021), 21. https://doi.org/10.1002/smr.2342

[126] Håvard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: A multivocal literature review. Commun. Com-

put. Info. Sci. 770, 1 (2017), 17–29. https://doi.org/10.1007/978-3-319-67383-7_2
[127] Omar Nasser. 2020. What Metrics Should DevOps Teams Be Tracking? Retrieved from https://cto.ai/blog/what-

metrics-should-devops-teams-be-tracking/. Accessed on 2022-01-22.
[128] Terence Nero. 2021. DevOps Metrics : 15 KPIs That Boost Results and RoI—Cuelogic Technologies Pvt. Ltd. Retrieved

from https://www.cuelogic.com/blog/devops-metrics. Accessed on 2022-01-22.
[129] Rodney T. Ogawa and Betty Malen. 1991. Towards rigor in reviews of multivocal literatures: Applying the exploratory

case study method. Rev. Edu. Res. 61, 3 (Sept. 1991), 265–286. https://doi.org/10.3102/00346543061003265
[130] Opsgenie. 2021. DevOps Metrics. Retrieved from https://docs.opsgenie.com/docs/devops-metrics-global. Accessed

on 2022-01-22.
[131] Roy Osherove. 2018. Ten Devops an Agility Metrics to Check at the Team Level—Pipeline Driven. Re-

trieved from https://pipelinedriven.org/article/ten-ideas-for-things-you-can-measure-as-a-team-on-your-devops-
journey. Accessed on 2022-01-22.

[132] Hewlett Packard. 2016. Measuring DevOps Success. Retrieved from http://www.baldrover.com/wp-content/uploads/
Measuring-DevOps-Success.pdf. Accessed on 2022-01-22.

[133] Pagerduty. 2015. The Best Metrics for Driving Cultural Change in DevOps Teams. Retrieved from https://www.
pagerduty.com/blog/best-metrics-devops-culture/. Accessed on 2022-01-22.

[134] Tim Palko. 2015. The Missing Metrics of DevOps. Retrieved from https://insights.sei.cmu.edu/devops/2015/05/the-
missing-metrics-of-devops.html. Accessed on 2022-01-22.

[135] Pulasthi Perera, Roshali Silva, and Indika Perera. 2017. Improve software quality through practicing DevOps. In
Proceedings of the 17th International Conference on Advances in ICT for Emerging Regions (ICTer’17). IEEE, 13–18.
https://doi.org/10.1109/ICTER.2017.8257807

[136] Kai Petersen and Claes Wohlin. 2009. Context in industrial software engineering research. In Proceedings of the 3rd

International Symposium on Empirical Software Engineering and Measurement. IEEE, 401–404. https://doi.org/10.1109/
ESEM.2009.5316010

[137] Plutora. 2020. DORA DevOps Metrics—Accelerate Your Value Stream—Plutora.Com. Retrieved from https://www.
plutora.com/resources/videos/devops-dora-metrics. Accessed on 2022-01-22.

[138] Plutora. 2021. The 10 Essential DevOps Metrics That Really Matter. Retrieved from https://www.plutora.com/blog/10-
essential-devops-metrics-that-really-matter. Accessed on 2022-01-22.

[139] Dina Graves Portman. 2020. Using the Four Keys to Measure Your DevOps Performance. Retrieved from https://
cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance. Accessed
on 2022-01-22.

[140] Ron Powell. 2020. How to Measure DevOps Success: 4 Key Metrics. Retrieved from https://circleci.com/blog/how-
to-measure-devops-success-4-key-metrics/. Accessed on 2022-01-22.

[141] Luís Prates, João Faustino, Miguel Silva, and Rúben Pereira. 2019. DevSecOps metrics. In Lecture Notes in Business In-

formation Processing, Maslankowski J. Wrycza S. (Ed.). Vol. 359. ISCTE-IUL, Instituto Universitário de Lisboa (ISCTE-
IUL), Lisbon, Portugal, 77–90. https://doi.org/10.1007/978-3-030-29608-7_7

[142] Alix Pressley. 2021. The Top 10 DevOps Metrics You Should Know About. Retrieved from https://www.intelligentcio.
com/eu/2021/04/16/the-top-10-devops-metrics-you-should-know-about/. Accessed on 2022-01-22.

[143] Rebecca Pruess. 2020. DevOps Best Practices: 5 Key Performance Indicators. Retrieved from https://flexagon.com/
devops-best-practices-5-key-performance-indicators/. Accessed on 2022-01-22.

[144] Puppet Labs. 2013. 2013 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2013-devops-
report.

[145] Puppet Labs. 2014. 2014 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2014-devops-
report.

[146] Puppet Labs. 2015. 2015 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2015-devops-
report.

[147] Puppet Labs. 2016. 2016 State of DevOps Report. Technical Report. Retrieved from https://puppetlabs.com/solutions/
devops/.

[148] Puppet Labs. 2017. 2017 State of DevOps Report. Technical Report. Retrieved from https://puppetlabs.com/solutions/
devops/.

[149] Puppet Labs. 2018. 2018 State of DevOps Report. Technical Report. Retrieved from https://media.webteam.puppet.
com/uploads/2019/11/Puppet-State-of-DevOps-Report-2018_update.pdf.

[150] Puppet Labs. 2019. 2019 State of DevOps Report. Technical Report. Retrieved from https://puppet.com/resources/
report/2019-state-of-devops-report.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://doi.org/10.1002/smr.2342
https://doi.org/10.1007/978-3-319-67383-7_2
https://cto.ai/blog/what-metrics-should-devops-teams-be-tracking/
https://www.cuelogic.com/blog/devops-metrics
https://doi.org/10.3102/00346543061003265
https://docs.opsgenie.com/docs/devops-metrics-global
https://pipelinedriven.org/article/ten-ideas-for-things-you-can-measure-as-a-team-on-your-devops-journey
http://www.baldrover.com/wp-content/uploads/Measuring-DevOps-Success.pdf
https://www.pagerduty.com/blog/best-metrics-devops-culture/
https://insights.sei.cmu.edu/devops/2015/05/the-missing-metrics-of-devops.html
https://doi.org/10.1109/ICTER.2017.8257807
https://doi.org/10.1109/ESEM.2009.5316010
https://www.plutora.com/resources/videos/devops-dora-metrics
https://www.plutora.com/blog/10-essential-devops-metrics-that-really-matter
https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance
https://circleci.com/blog/how-to-measure-devops-success-4-key-metrics/
https://doi.org/10.1007/978-3-030-29608-7_7
https://www.intelligentcio.com/eu/2021/04/16/the-top-10-devops-metrics-you-should-know-about/
https://flexagon.com/devops-best-practices-5-key-performance-indicators/
http://puppetlabs.com/2013-devops-report.
http://puppetlabs.com/2014-devops-report.
http://puppetlabs.com/2015-devops-report.
https://puppetlabs.com/solutions/devops/.
https://puppetlabs.com/solutions/devops/.
https://media.webteam.puppet.com/uploads/2019/11/Puppet-State-of-DevOps-Report-2018_update.pdf.
https://puppet.com/resources/report/2019-state-of-devops-report.


DevOps Metrics and KPIs: A Multivocal Literature Review 231:39

[151] Puppet Labs. 2020. 2020 State of DevOps Report. Technical Report. Retrieved from https://puppet.com/resources/
report/2020-state-of-devops-report/.

[152] Asif Qumer Gill, Abhishek Loumish, Isha Riyat, and Sungyoup Han. 2018. DevOps for information management
systems. VINE J. Info. Knowl. Manage. Syst. 48, 1 (Jan. 2018), 122–139. https://doi.org/10.1108/VJIKMS-02-2017-0007

[153] S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei. 2020. Prioritization-based taxonomy of DevOps security
challenges using PROMETHEE. IEEE Access 8 (2020), 105426–105446. https://doi.org/10.1109/ACCESS.2020.2998819

[154] Anjana Ramesh. 2020. Ten Key DevOps Metrics to Accelerate Your Continuous Delivery Pipeline. Retrieved
from https://web.archive.org/web/20211205080155/https://www.go2group.com/resources/blog/devops-metrics-to-
accelerate-ci-cd/. Accessed on 2022-01-22.

[155] Aruna Ravichandran, Kieran Taylor, and Peter Waterhouse. 2016. DevOps for Digital Leaders: Reignite Business with

a Modern DevOps-Enabled Software Factory. Springer Nature. https://doi.org/10.1007/978-1-4842-1842-6
[156] ReleaseTEAM. 2021. DevOps Metrics Measure Your DevOps Results. Retrieved from https://www.releaseteam.com/

measure-your-devops-results/. Accessed on 2022-01-22.
[157] New Relic. 2018. Measuring DevOps. Retrieved from https://newrelic.com/devops/measuring-devops. Accessed on

2022-01-22.
[158] Jennifer Riggins. 2020. Google’s Formula for Elite DevOps Performance—The New Stack. Retrieved from https://

thenewstack.io/googles-formula-for-elite-devops-performance/. Accessed on 2022-01-22.
[159] Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha Tiihonen, and Tomi Männistö. 2016. De-

vOps adoption benefits and challenges in practice: A case study. In Product-Focused Software Process Improvement,
Vol. 10027 LNCS. Springer International Publishing, Department of Computer Science, University of Helsinki, Fin-
land, 590–597. https://doi.org/10.1007/978-3-319-49094-6_44

[160] Stephen Roddewig. 2021. 8 DevOps Metrics to Measure Team Activity & Progress. Retrieved from https://blog.
hubspot.com/website/devops-metrics. Accessed on 2022-01-22.

[161] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola, Tanja Suomalainen, Juho Eskeli,
Teemu Karvonen, Pasi Kuvaja, June M. Verner, and Markku Oivo. 2017. Continuous deployment of software intensive
products and services: A systematic mapping study. J. Syst. Softw. 123 (2017), 263–291. https://doi.org/10.1016/j.jss.
2015.12.015

[162] Pilar Rodríguez, Mika Mäntylä, Markku Oivo, Lucy Ellen Lwakatare, Pertti Seppänen, and Pasi Kuvaja. 2019. Ad-
vances in using agile and lean processes for software development. In Advances in Computers, Memon A. M. (Ed.).
Vol. 113. Academic Press Inc., Faculty of Information Technology and Electrical Engineering, University of Oulu,
Finland, 135–224. https://doi.org/10.1016/bs.adcom.2018.03.014

[163] Wiebe de Roos. 2021. Dealing with DevOps Metrics and KPIs. Retrieved from https://web.archive.org/web/
20210925173812/https://amazicworld.com/dealing-with-devops-metrics-and-kpis/. Accessed on 2022-01-22.

[164] Mike Rother. 2019. Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results. MGH, New
York.

[165] Martin Rütz. 2019. DEVOPS: A systematic literature review. Info. Softw. Technol. 86 (Aug. 2019), 87–100. https://www.
researchgate.net/publication/335243102

[166] Isaac Sacolick. 2018. 15 KPIs to Track Devops Transformation. Retrieved from https://www.infoworld.com/article/
3297041/15-kpis-to-track-devops-transformation.html. Accessed on 2022-01-22.

[167] Johnny Saldana. 2015. The Coding Manual for Qualitative Researchers Third Edition (3rd ed.). SAGE Publications Ltd,
Los Angeles, CA.

[168] Marc Sallin, Martin Kropp, Craig Anslow, James W. Quilty, and Andreas Meier. 2021. Measuring software deliv-
ery performance using the Four Key Metrics of DevOps. In Lecture Notes in Business Information Processing, Peggy
Gregory, Casper Lassenius, Xiaofeng Wang, and Philippe Kruchten (Eds.), Vol. 419 LNBIP. Springer International
Publishing, Cham, 103–119. https://doi.org/10.1007/978-3-030-78098-2_7

[169] Meshach Samuel. 2019. How to Successfully Scale Agile and DevOps – Part 3: Driving Success with Technology. Re-
trieved from https://web.archive.org/web/20211204052511/https://www.hcltech.com/blogs/how-successfully-scale-
agile-and-devops-part-3-driving-success-technology. Accessed on 2022-01-22.

[170] Mary Sánchez-Gordón, Ricardo Colomo-Palacios, Alex Sánchez, and Sandra Sanchez-Gordon. 2020. Integrating ap-
proaches in software development: A case analysis in a small software company. In Systems, Software and Services Pro-

cess Improvement (Communications in Computer and Information Science), Murat Yilmaz, Jörg Niemann, Paul Clarke,
and Richard Messnarz (Eds.). Springer International Publishing, Cham, 95–106. https://doi.org/10.1007/978-3-030-
56441-4_7

[171] Amy Schurr. 2019. Mobile App DevOps Metrics That Matter—NowSecure. Retrieved from https://www.nowsecure.
com/blog/2019/02/27/mobile-app-devops-metrics-that-matter/. Accessed on 2022-01-22.

[172] Mali Senapathi, Jim Buchan, and Hady Osman. 2018. DevOps capabilities, practices, and challenges: Insights from a
case study. In Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering

(EASE’18). ACM, New York, NY, 57–67. https://doi.org/10.1145/3210459.3210465

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://puppet.com/resources/report/2020-state-of-devops-report/.
https://doi.org/10.1108/VJIKMS-02-2017-0007
https://doi.org/10.1109/ACCESS.2020.2998819
https://web.archive.org/web/20211205080155/https://www.go2group.com/resources/blog/devops-metrics-to-accelerate-ci-cd/
https://doi.org/10.1007/978-1-4842-1842-6
https://www.releaseteam.com/measure-your-devops-results/
https://newrelic.com/devops/measuring-devops
https://thenewstack.io/googles-formula-for-elite-devops-performance/
https://doi.org/10.1007/978-3-319-49094-6_44
https://blog.hubspot.com/website/devops-metrics
https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1016/bs.adcom.2018.03.014
https://web.archive.org/web/20210925173812/https://amazicworld.com/dealing-with-devops-metrics-and-kpis/
https://www.researchgate.net/publication/335243102
https://www.infoworld.com/article/3297041/15-kpis-to-track-devops-transformation.html
https://doi.org/10.1007/978-3-030-78098-2_7
https://web.archive.org/web/20211204052511/https://www.hcltech.com/blogs/how-successfully-scale-agile-and-devops-part-3-driving-success-technology
https://doi.org/10.1007/978-3-030-56441-4_7
https://www.nowsecure.com/blog/2019/02/27/mobile-app-devops-metrics-that-matter/
https://doi.org/10.1145/3210459.3210465


231:40 R. Amaro et al.

[173] Charlie Shabe. 2017. Understanding DevOps Metrics. Retrieved from https://betanews.com/2017/08/24/devops-
metrics/. Accessed on 2022-01-22.

[174] Sanjeev Sharma. 2017. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a Multi-Speed IT Enterprise.
John Wiley & Sons, Inc., Indianapolis, Indiana. https://doi.org/10.1002/9781119310778

[175] Reshma Shinde. 2019. Is Your DevOps Successful? Retrieved from https://web.archive.org/web/20210729003128/
https://www.accenture.com/us-en/blogs/software-engineering-blog/reshma-shinde-devops-success-metrics.
Accessed on 2022-01-22.

[176] Gursimran Singh. 2019. Measuring DevOps Success with DevOps Metrics. Retrieved from https://www.xenonstack.
com/blog/devops-metrics/. Accessed on 2022-01-22.

[177] Jens Smeds, Kristian Nybom, and Ivan Porres. 2015. DevOps: A definition and perceived adoption impediments.
In Lecture Notes in Business Information Processing. Vol. 212. Springer, 166–177. https://doi.org/10.1007/978-3-319-
18612-2_14

[178] Sam Smith. 2020. High Performing DevOps Metrics. Retrieved from https://samlearnsazure.blog/2020/04/30/high-
performing-devops-metrics/. Accessed on 2022-01-22.

[179] Barry Snyder and Bill Curtis. 2017. Using analytics to guide improvement during an agile-DevOps transformation.
IEEE Softw. 35, 1 (Jan. 2017), 78–83. https://doi.org/10.1109/MS.2017.4541032

[180] Indium Software. 2017. 6 Metrics to Measure DevOps Test Automation. Retrieved from https://www.indiumsoftware.
com/blog/devops-test-automation-metrics/. Accessed on 2022-01-22.

[181] Damir Solajić and Anamarija Petrović. 2019. Devops and modern software delivery. In Proceedings of the International

Scientific Conference (Sinteza’19). Singidunum University, Novi Sad, Serbia, 360–368. https://doi.org/10.15308/Sinteza-
2019-360-368

[182] Leandro Sousa, António Trigo, and João Varajão. 2019. Devops—Foundations and perspectives. In Proceedings of

the 19th Portuguese Association of Information Systems Conference (CAPSI’19). Associacao Portuguesa de Sistemas de
Informacao, Instituto Politécnico de Coimbra, ISCAC, Quinta Agrícola, Bencanta, Coimbra, 3040-316, Portugal, 8.
Retrieved from https://aisel.aisnet.org/capsi2019/8/.

[183] Coveros Staff. 2016. Essential Quantitative DevOps Metrics—Coveros. Retrieved from https://www.coveros.com/
essential-quantitative-devops-metrics/. Accessed on 2022-01-22.

[184] Jonny Steiner. 2021. These Are the DevOps Metrics That Will Boost Your VSM. Retrieved from https://digital.ai/
catalyst-blog/these-are-the-devops-metrics-that-will-boost-your-vsm. Accessed on 2022-01-22.

[185] Sean Sullivan. 2021. Four Key DevOps Metrics for Success. Retrieved from https://www.dragonspears.com/blog/four-
key-devops-metrics-for-success. Accessed on 2022-01-22.

[186] Paul Swartout. 2014. Continuous Delivery and DevOps: A Quickstart Guide, 2nd ed. Packt Publishing Ltd, UK.
[187] Dave Swersky. 2017. What Key Performance Indicators (KPIs) Are Used to Measure DevOps? Retrieved from https:

//devops.stackexchange.com/questions/738/what-key-performance-indicators-kpis-are-used-to-measure-devops.
Accessed on 2022-01-22.

[188] Lalith Boovaragavan Marketing Manager at Aspire Systems. 2021. 7 Ways to Measure DevOps Success - Aspire
Systems. Retrieved from https://blog.aspiresys.com/infrastructure-managed-services/7-ways-to-measure-devops-
success/. Accessed on 2022-01-22.

[189] Information Technology and Intelligence Consulting. 2019. 2019 Global Server Hardware, Server OS Reliability Report.
Technical Report March. Information Technology Intelligence Consulting (ITIC) Corp.

[190] Riverbed Technology. 2017. Seven Metrics That Matter When Measuring DevOps Success. Retrieved from
https://web.archive.org/web/20210623152132/https://www.aternity.com/blogs/seven-metrics-matter-measuring-
devops-success/. Accessed on 2022-01-22.

[191] Daniel Teixeira, Rúben Pereira, Telmo Henriques, Miguel Mira Da Silva, and João Faustino. 2020. A maturity model
for DevOps. Int. J. Agile Syst. Manage. 13, 4 (2020), 464. https://doi.org/10.1504/IJASM.2020.112343

[192] Daniel Teixeira, Ruben Pereira, and Miguel Mira. 2019. A Maturity Model to Support DevOps Implementation A Ma-

turity Model to Support DevOps Implementation. Technical Report. Instituto Universitario de Lisboa (ISCTE-IUL).
Retrieved from http://hdl.handle.net/10071/20297.

[193] Bjørnar Tessem and Jon Iden. 2008. Cooperation between developers and operations in software engineering projects.
Proceedings of the International Conference on Software Engineering. 105–108. https://doi.org/10.1145/1370114.1370141

[194] TestEnvironmentManagement.com. 2019. Top 5 DevOps Metrics – Test Environment Management. Retrieved from
https://www.testenvironmentmanagement.com/top-5-devops-metrics/. Accessed on 2022-01-22.

[195] Nora Tomas, Jingyue Li, and Huang Huang. 2019. An empirical study on culture, automation, measurement, and
sharing of DevSecOps. In Proceedings of the 5th International Conference on Cyber Security and Protection of Digital

Services (Cyber Security’19). Institute of Electrical and Electronics Engineers Inc., Department of Computer Science,
Norwegian University of Science and Technology, Trondheim, Norway, 8. https://doi.org/10.1109/CyberSecPODS.
2019.8884935

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

https://betanews.com/2017/08/24/devops-metrics/
https://doi.org/10.1002/9781119310778
https://web.archive.org/web/20210729003128/https://www.accenture.com/us-en/blogs/software-engineering-blog/reshma-shinde-devops-success-metrics
https://www.xenonstack.com/blog/devops-metrics/
https://doi.org/10.1007/978-3-319-18612-2_14
https://samlearnsazure.blog/2020/04/30/high-performing-devops-metrics/
https://doi.org/10.1109/MS.2017.4541032
https://www.indiumsoftware.com/blog/devops-test-automation-metrics/
https://doi.org/10.15308/Sinteza-2019-360-368
https://aisel.aisnet.org/capsi2019/8/.
https://www.coveros.com/essential-quantitative-devops-metrics/
https://digital.ai/catalyst-blog/these-are-the-devops-metrics-that-will-boost-your-vsm
https://www.dragonspears.com/blog/four-key-devops-metrics-for-success
https://devops.stackexchange.com/questions/738/what-key-performance-indicators-kpis-are-used-to-measure-devops
https://blog.aspiresys.com/infrastructure-managed-services/7-ways-to-measure-devops-success/
https://web.archive.org/web/20210623152132/https://www.aternity.com/blogs/seven-metrics-matter-measuring-devops-success/
https://doi.org/10.1504/IJASM.2020.112343
http://hdl.handle.net/10071/20297.
https://doi.org/10.1145/1370114.1370141
https://www.testenvironmentmanagement.com/top-5-devops-metrics/
https://doi.org/10.1109/CyberSecPODS.2019.8884935


DevOps Metrics and KPIs: A Multivocal Literature Review 231:41

[196] Ubiq. 2020. Top DevOps Metrics and KPIs To Monitor Regularly—Ubiq BI Blog. Retrieved from http://ubiq.co/
analytics-blog/top-devops-metrics-kpis-to-monitor-regularly/. Accessed on 2022-01-22.

[197] Sricharan Vadapalli. 2018. DevOps: Continuous Delivery, Integration, and Deployment with DevOps Dive into the Core

DevOps Strategies. Packt Publishing Ltd, UK.
[198] Alfonso Valdes. 2020. 5 DevOps Metrics and KPIs That CTOs Must Monitor. Retrieved from https://www.clickittech.

com/devops/devops-metrics-and-kpis/. Accessed on 2022-01-22.
[199] Valtech. 2015. 4 Metrics for Measuring DevOps Success. Retrieved from https://www.valtech.com/insights/4-metrics-

for-measuring-devops-success/. Accessed on 2022-01-22.
[200] Dmytro Vavilkin. 2021. DevOps Metrics and KPIs to Improve Your Team Efficiency. Retrieved from https://u-tor.

com/topic/devops-metrics-and-kpis. Accessed on 2022-01-22.
[201] Veritis. 2020. Measuring DevOps: Key ‘Metrics’ and ‘KPIs’ That Drive Success! Retrieved from https://www.veritis.

com/blog/measuring-devops-key-metrics-and-kpis-that-drive-success/. Accessed on 2022-01-22.
[202] Harshal Vora. 2018. Software Quality Metrics for Agile and DevOps Success—QMetry. Retrieved from https://www.

qmetry.com/blog/software-quality-metrics-for-agile-and-devops-success/. Accessed on 2022-01-22.
[203] Kentaro Wakayama. 2020. How to Ensure the Success of DevOps in Your Organization. Retrieved from https:

//codersociety.com/blog/articles/devops-success-in-organization. Accessed on 2022-01-22.
[204] Peter Waterhouse. 2015. DevOps Practitioner Series—Metrics That Matter. Retrieved from https://docs.broadcom.

com/doc/devops-practitioner-series-metrics-that-matter-developing-and-tracking-key-indicators. Accessed on
2022-01-22.

[205] Matt Watson. 2017. 15 Metrics for DevOps Success. Retrieved from https://stackify.com/15-metrics-for-devops-
success/. Accessed on 2022-01-22.

[206] Stephen Watts. 2017. DevOps: Metrics and Key Performance Indicators (KPIs). Retrieved from https://itchronicles.
com/devops/devops-metrics-kpis/. Accessed on 2022-01-22.

[207] Stephen Watts. 2019. DevOps Metrics and KPIs – BMC Blogs. Retrieved from https://www.bmc.com/blogs/devops-
kpi-metrics/. Accessed on 2022-01-22.

[208] Waydev. 2021. DORA Metrics: The 4 Key Metrics For Efficient DevOps Performance Tracking. Retrieved from https:
//waydev.co/dora-metrics/. Accessed on 2022-01-22.

[209] Jonathan Weinberg. 2021. Four Key DevOps Metrics and How To Measure Them. Retrieved from https://www.wwt.
com/article/four-key-devops-metrics-and-how-to-measure-them. Accessed on 2022-01-22.

[210] Anton Weiss. 2016. Measuring DevOps Flow by Otomato. Retrieved from https://devopsflowmetrics.org/. Accessed
on 2022-01-22.

[211] R. Westrum. 2004. A typology of organisational cultures. Qual. Safe. Health Care 13, 2 (2004), 22–27. https://doi.org/
10.1136/qshc.2003.009522

[212] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. 2014. DevOpSlang—Bridging the gap between devel-
opment and operations. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics). Vol. 8745 LNCS. IFIP, Stuttgart, 108–122. https://doi.org/10.1007/978-3-
662-44879-3_8

[213] Anna Wiedemann, Nicole Forsgren, Manuel Wiesche, Heiko Gewald, and Helmut Krcmar. 2019. Research for practice:
The devops phenomenon. Commun. ACM 62, 8 (2019), 44–49. https://doi.org/10.1145/3331138

[214] Anna Wiedemann, Manuel Wiesche, Heiko Gewald, and Helmut Krcmar. 2020. Understanding how DevOps aligns
development and operations: A tripartite model of intra-IT alignment. Eur. J. Info. Syst. 29, 5 (Oct. 2020), 458–473.
https://doi.org/10.1080/0960085X.2020.1782277

[215] John Willis and Itrevolution. 2012. DevOps Culture (Part 1) - IT Revolution. Retrieved from https://itrevolution.com/
devops-culture-part-1/. Accessed on 2022-01-22.

[216] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engi-
neering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering

(EASE’14). ACM, New York, NY, 10. https://doi.org/10.1145/2601248.2601268
[217] Liming Zhu, Len Bass, and George Champlin-Scharff. 2016. DevOps and its practices. IEEE Softw. 33, 3 (May 2016),

32–34. https://doi.org/10.1109/MS.2016.81

Received 11 April 2022; revised 31 January 2024; accepted 7 March 2024

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

http://ubiq.co/analytics-blog/top-devops-metrics-kpis-to-monitor-regularly/
https://www.clickittech.com/devops/devops-metrics-and-kpis/
https://www.valtech.com/insights/4-metrics-for-measuring-devops-success/
https://u-tor.com/topic/devops-metrics-and-kpis
https://www.veritis.com/blog/measuring-devops-key-metrics-and-kpis-that-drive-success/
https://www.qmetry.com/blog/software-quality-metrics-for-agile-and-devops-success/
https://codersociety.com/blog/articles/devops-success-in-organization
https://docs.broadcom.com/doc/devops-practitioner-series-metrics-that-matter-developing-and-tracking-key-indicators
https://stackify.com/15-metrics-for-devops-success/
https://itchronicles.com/devops/devops-metrics-kpis/
https://www.bmc.com/blogs/devops-kpi-metrics/
https://waydev.co/dora-metrics/
https://www.wwt.com/article/four-key-devops-metrics-and-how-to-measure-them
https://devopsflowmetrics.org/
https://doi.org/10.1136/qshc.2003.009522
https://doi.org/10.1007/978-3-662-44879-3_8
https://doi.org/10.1145/3331138
https://doi.org/10.1080/0960085X.2020.1782277
https://itrevolution.com/devops-culture-part-1/
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/MS.2016.81

