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Abstract: We obtain an analytical solution for the time-optimal control problem in the induction
phase of anesthesia. Our solution is shown to align numerically with the results obtained from
the conventional shooting method. The induction phase of anesthesia relies on a pharmacoki-
netic/pharmacodynamic (PK/PD) model proposed by Bailey and Haddad in 2005 to regulate the
infusion of propofol. In order to evaluate our approach and compare it with existing results in the
literature, we examine a minimum-time problem for anesthetizing a patient. By applying the Pontrya-
gin minimum principle, we introduce the shooting method as a means to solve the problem at hand.
Additionally, we conducted numerical simulations using the MATLAB computing environment. We
solve the time-optimal control problem using our newly proposed analytical method and discover
that the optimal continuous infusion rate of the anesthetic and the minimum required time for
transition from the awake state to an anesthetized state exhibit similarity between the two methods.
However, the advantage of our new analytic method lies in its independence from unknown initial
conditions for the adjoint variables.

Keywords: pharmacokinetic/pharmacodynamic model; optimal control theory; time-optimal control
of the induction phase of anesthesia; shooting method; analytical method; numerical simulations
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1. Introduction

Based on Guedel’s classification, the first stage of anesthesia is the induction phase, which
begins with the initial administration of anesthesia and ends with loss of consciousness [1].
Millions of people safely receive several types of anesthesia while undergoing medical
procedures: local anesthesia, regional anesthesia, general anesthesia, and sedation [2].
However, there may be some potential complications of anesthesia including anesthetic
awareness, collapsed lung, malignant hyperthermia, nerve damage, and postoperative
delirium. Certain factors make it riskier to receive anesthesia, including advanced age,
diabetes, kidney disease, heart disease, high blood pressure, and smoking [3]. To avoid
the risk, administering anesthesia should be carried out on a scientific basis, based on
modern pharmacotherapy, which relies on both pharmacokinetic (PK) and pharmaco-
dynamic (PD) information [4]. Pharmacokinetics is used to describe the absorption and
distribution of anesthesia in body fluids, resulting from the administration of a certain
anesthesia dose. Pharmacodynamics is the study of the effect resulting from anesthesia [5].
Multiple mathematical models were already presented to predict the dynamics of the
pharmacokinetics/pharmacodynamics (PK/PD) models [6–9]. Some of these models were
implemented following different methods [2,10,11].
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The parameters of PK/PD models were fitted by Schnider et al. in [12]. In [6], the authors
study pharmacokinetic models for propofol, comparing Schnider et al. and Marsh et al.
models [13]. The authors of [6] conclude that Schnider’s model should always be used in
effect-site targeting mode, in which larger initial doses are administered but smaller than those
obtained from Marsh’s model. However, users of the Schnider model should be aware that
in the morbidly obese, the lean body mass (LBM) equation can generate paradoxical values,
resulting in excessive increases in maintenance infusion rates [12]. In [14], a new strategy is
presented to develop a robust control of anesthesia for the maintenance phase, taking into
account the saturation of the actuator. The authors of [15] address the problem of optimal
control of the induction phase. For other related works, see [8,16] and references therein.

Here, we consider the problem proposed in [15], to transfer a patient from a state
consciousness to unconsciousness. We apply the shooting method [17] using the Pontryagin
minimum principle [18], correcting some inconsistencies found in [15] related with the stop
criteria of the algorithm and the numerical computation of the equilibrium point. Secondly,
we provide a new different analytical method to the time-optimal control problem for the
induction phase of anesthesia. While the shooting method, popularized by Zabi et al. [15], is
widely employed for solving such control problems and determining the minimum time, its
reliance on Newton’s method makes it sensitive to initial conditions. The shooting method’s
convergence is heavily dependent on the careful selection of initial values, particularly for
the adjoint vectors. To overcome this limitation, we propose an alternative approach, which
eliminates the need for initial value selection and convergence analysis. Our method offers
a solution to the time-optimal control problem for the induction phase of anesthesia, free
from the drawbacks associated with the shooting method. Furthermore, we propose that
our method can be extended to other PK/PD models to determine optimal timings for drug
administration. To compare the methods, we perform numerical simulations to compute
the minimum time to anesthetize a man of 53 years, 77 kg, and 177 cm, as considered in [15].
We find the optimal continuous infusion rate of the anesthetic and the minimum time that
needs to be chosen for treatment, showing that both the shooting method of [15] and the
one proposed here coincide.

This paper is organized as follows. In Section 2, we recall the pharmacokinetic and
pharmacodynamic model of Bailey and Haddad [19], the Schnider model [12], the bispectral
index (BIS), and the equilibrium point [14]. Then, in Section 3, a time-optimal control
problem for the induction phase of anesthesia is posed and solved both by the shooting and
analytical methods. Finally, in Section 4, we compute the parameters of the model using
the Schnider model [12], and we illustrate the results of the time-optimal control problem
through numerical simulations. We conclude that the optimal continuous infusion rate for
anesthesia and the minimum time that should be chosen for this treatment can be found by
both shooting and analytical methods. The advantage of the new method proposed here
is that it does not depend on the concrete initial conditions, while the shooting method is
very sensitive to the choice of the initial conditions of the state and adjoint variables. We
end with Section 5 of conclusions, pointing also some directions for future research.

2. The PK/PD Model

The pharmacokinetic/pharmacodynamic (PK/PD) model consists of four compart-
ments: intravascular blood (x1(t)), muscle (x2(t)), fat (x3(t)), and effect site (x4(t)). The
effect site compartment (brain) is introduced to account for the finite equilibration time
between central compartment and central nervous system concentrations [19]. This model
is used to describe the circulation of drugs in a patient’s body, being expressed by a
four-dimensional dynamical system as follows:

ẋ1(t) = −(a1 0 + a1 2 + a1 3) x1(t) + a2 1 x2(t) + a3 1 x3(t) + u(t),
ẋ2(t) = a1 2 x1(t)− a2 1 x2(t),
ẋ3(t) = a1 3 x1(t)− a3 1 x3(t),
ẋ4(t) =

ae 0
v1

x1(t)− ae 0 x4(t).

(1)
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The state variables for system (1) are subject to the following initial conditions:

x(0) = (x1(0), x2(0), x3(0), x4(0)) = (0, 0, 0, 0), (2)

where x1(t), x2(t), x3(t), and x4(t) represent, respectively, the masses of the propofol in the
compartments of blood, muscle, fat, and effect site at time t. The control u(t) is the continu-
ous infusion rate of the anesthetic. The parameters a1 0 and ae 0 represent, respectively, the
rate of clearance from the central compartment and the effect site. The parameters a1 2, a1 3,
a2 1, a3 1, and ae 0/v1 are the transfer rates of the drug between compartments. A schematic
diagram of the dynamical control system (1) is given in Figure 1.

Effect site

Central compartment
Intravascular blood

FatMuscle

Elimination (Liver, Kidney)

Elimination

Continuous infusion

u(t)u(t)

a12

a31a21

a13

ae0/v1

ae0

a10

Pharmacokinetic Model (PK)

Pharmacodynamic Model (PD)

Figure 1. Schematic diagram of the PK/PD model with the effect site compartment of Bailey and
Haddad [19].

2.1. Schnider’s Model

Following Schnider et al. [12], the lean body mass (LBM) is calculated using the James
formula, which performs satisfactorily in normal and moderately obese patients, but not so
well for severely obese cases [20]. The James formula calculates LBM as follows:

for Male, LBM = 1.1×weight− 128×
(

weight
height

)2
, (3)

for Female, LBM = 1.07×weight− 148×
(

weight
height

)2
. (4)

The parameters of the PK/PD model (1) are then estimated according to Table 1.

Table 1. Parameter values for model (1) according to Schnider’s model [12].

Parameter Estimation

a10 (min−1) 0.443 + 0.0107 (weight− 77)− 0.0159 (LBM− 59) + 0.0062 (height− 177)

a12 (min−1) 0.302− 0.0056 (age− 53)

a13 (min−1) 0.196

a21 (min−1) (1.29− 0.024 (age− 53))/(18.9− 0.391 (age− 53))

a31 (min−1) 0.0035

ae0 (min−1) 0.456

v1 (L) 4.27
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2.2. The Bispectral Index (BIS)

The BIS is the depth of anesthesia indicator, which is a signal derived from the EEG
analysis and directly related to the effect site concentration of x4(t). It quantifies the level
of consciousness of a patient from 0 (no cerebral activity) to 100 (fully awake patient), and
can be described empirically by a decreasing sigmoid function [19]:

BIS(x4(t)) = BIS0

(
1− x4(t)γ

x4(t)γ + ECγ
50

)
, (5)

where BIS0 is the BIS value of an awake patient typically set to 100, EC50 corresponds to
the drug concentration associated with 50% of the maximum effect, and γ is a parameter
modeling the degree of nonlinearity. According to [21], typical values for these parameters
are EC50 = 3.4 mg/L and γ = 3.

2.3. The Equilibrium Point

Following [14], the equilibrium point is obtained by equating the right-hand side of (1)
to zero, 

0 = −(a1 0 + a1 2 + a1 3) x1 + a2 1 x2 + a3 1 x3 + u,
0 = a1 2 x1 − a2 1 x2,
0 = a1 3 x1 − a3 1 x3,
0 = ae 0

v1
x1 − ae 0 x4,

(6)

with the condition
x4 = EC50. (7)

It results that the equilibrium point xe = (xe 1, xe 2, xe 3, xe 4) is given by

xe 1 = v1 EC50, xe 2 =
a1 2 v1 EC50

a2 1
, xe 3 =

a1 3 v1 EC50

a3 1
, xe 4 = EC50, (8)

and the value of the continuous infusion rate for this equilibrium is

ue = a1 0 v1 EC50. (9)

The fast state is defined by

xeF(t) = (x1(t), x4(t)). (10)

The control of the fast dynamics is crucial because the BIS is a direct function of the
concentration at the effect site.

3. Time-Optimal Control Problem

Let x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ R4. We can write the dynamical system (1) in a
matrix form as follows:

ẋ(t) = A x(t) + B u(t), (11)

where

A =


−(a1 0 + a1 2 + a1 3) a2 1 a3 1 0

a1 2 −a2 1 0 0
a1 3 0 −a3 1 0
ae 0
v1

0 0 −ae 0

 and B =


1
0
0
0

. (12)



Axioms 2023, 12, 867 5 of 15

Here, the continuous infusion rate u(t) is to be chosen so as to transfer the system (1) from
the initial state (wake state) to the fast final state (anesthetized state) in the shortest possible
time. Mathematically, we have the following time-optimal control problem [15]:

min
t f

J =
t f∫
0

dt,

ẋ(t) = A x(t) + B u(t), x(0) = (0, 0, 0, 0),
C xeF(t f ) = xeF,
0 ≤ u(t) ≤ Umax, t ∈ [0, t f ], t f is free,

(13)

where t f is the first instant of time that the desired state is reached, and C and xeF are
given by

C =

(
1 0
0 1

)
, xeF = (xe1, xe4), (14)

with
xeF(t f ) = (x1(t f ), x2(t f )). (15)

3.1. Pontryagin Minimum Principle

According to the Pontryagin minimum principle (PMP) [18], if ũ ∈ L1 is optimal
for Problem (13) and the final time t f is free, then there exists ψ(t) = (ψ1(t), . . . , ψ4(t)),
t ∈ [0, t f ], ψ ∈ AC([0, t f ];R4), called the adjoint vector, such that

ẋ =
∂H
∂ψ

,

ψ̇ = −∂H
∂x

,
(16)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = 1 + ψT (A x + B u). (17)

Moreover, the minimality condition

H(t, x̃(t), ũ(t), ψ̃(t)) = min
0≤u≤Umax

H(t, x̃(t), u, ψ̃(t)) (18)

holds almost everywhere on t ∈ [0, t f ].
Since the final time t f is free, according to the transversality condition of PMP,

we obtain:
H(t f , x(t f ), u(t f ), ψ(t f )) = 0. (19)

Solving the minimality condition (18) on the interior of the set of admissible controls
gives the necessary condition

ũ(t) =

{
0 if ψ̃1(t) > 0,
Umax if ψ̃1(t) < 0,

(20)

where ψ̃1(t) is obtained from the adjoint system (16), that is, ψ̃′(t) = −ATψ̃(t), and the
transversality condition (19). This is discussed in Sections 3.2 and 3.3.

3.2. Shooting Method

The shooting method is a numerical technique used to solve boundary value problems,
specifically in the realm of differential equations and optimal control. It transforms the
problem into an initial value problem by estimating the unknown boundary conditions.
Through iterative adjustments to these estimates, the boundary conditions are gradually
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satisfied. In [17], the authors propose an algorithm that addresses numerical solutions for
parameterized optimal control problems. This algorithm incorporates multiple shooting
and recursive quadratic programming, introducing a condensing algorithm for linearly
constrained quadratic subproblems and high-rank update procedures. The algorithm’s
implementation leads to significant improvements in convergence behavior, computing
time, and storage requirements. For more on numerical approaches to solve optimal control
problems, we refer the reader to [22] and references therein.

Using (16), (17), (19), and (20), we consider the following problem:
ẋ(t) = A x(t) + B ×max (0,−Umax sign(ψ1(t))),
ψ̇(t) = −AT ψ(t),
x(0) = (0, 0, 0, 0), x1(t f ) = xe1, x4(t f ) = xe4,
ψ(0) is free, H(t f , x(t f ), max (0,−Umax sign(ψ1(t f ))), ψ(t f )) = 0.

(21)

Let z(t) = (x(t), ψ(t)). Then, we obtain the following two points’ boundary value
problem: {

ż(t) = A∗z(t) + B∗,
R(z(0), z(t f )) = 0,

(22)

where A∗ ∈ M8×8(R) is the matrix given by

A∗ =
(

A 04×4
04×4 −AT

)
, (23)

B∗ ∈ R8 is the vector given by

B∗ =

{
(0, 0, 0, 0, 0, 0, 0, 0) if ψ1(t) > 0,
(Umax, 0, 0, 0, 0, 0, 0, 0) if ψ1(t) < 0,

(24)

and R(z(0), z(t f )) is given by (2), (15), and (19). We consider the following Cauchy problem:{
ż(t) = A∗z(t) + B∗,
z(0) = z0.

(25)

If we define the shooting function S : R4 −→ R3 by

S(z0) = R(t f , z(t f , z0)), (26)

where z(t, z0) is the solution of the Cauchy problem (25), then the two points’ boundary
value problem (21) is equivalent to

S(z0) = 0. (27)

To solve (27), we use Newton’s method [23].

3.3. Analytical Method

We now propose a different method to choose the optimal control. If the pair (A, B)
satisfies the Kalman condition and all eigenvalues of matrix A ∈ n× n are real, then any
extremal control has at most n− 1 commutations on R+ (at most n− 1 switching times).
We consider the following eight possible strategies:

Strategy 1 (zero switching times):

u(t) = Umax, ∀t ∈ [0, t f ]. (28)
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Strategy 2 (zero switching times):

u(t) = 0, ∀t ∈ [0, t f ]. (29)

Strategy 3 (one switching time):

u(t) =

{
Umax if 0 ≤ t < tc,
0 if tc < t ≤ t f ,

(30)

where tc is a switching time.

Strategy 4 (one switching time):

u(t) =

{
0 if 0 ≤ t < tc,
Umax if tc < t ≤ t f .

(31)

Strategy 5 (two switching times):

u(t) =


Umax if 0 < t < tc1,
0 if tc1 < t < tc2.
Umax if tc2 < t ≤ t f ,

(32)

where tc1 and tc2 represent two switching times.

Strategy 6 (two switching times):

u(t) =


0 if 0 < t < tc1,
Umax if tc1 < t < tc2.
0 if tc2 < t ≤ t f .

(33)

Strategy 7 (three switching times):

u(t) =


Umax if 0 < t < tc1,
0 if tc1 < t < tc2.
Umax if tc2 < t ≤ tc3.
0 if tc3 < t < t f ,

(34)

where tc1, tc2, and tc3 represent three switching times.

Strategy 8 (three switching times):

u(t) =


0 if 0 < t < tc1,
Umax if tc1 < t < tc2.
0 if tc2 < t ≤ tc3.
Umax if tc3 < t < t f .

(35)

Let x(t) be the trajectory associated with the control u(t), given by the relation

x(t) = exp(A t) x(0) +
t∫

0

exp(A(t− s))Bu(t)ds, (36)

where exp(A) is the exponential matrix of A.
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To calculate the switching times tc, tc1, tc2 and the final time t f , we have to solve the
following nonlinear equation:

x̃eF(t f ) = (xe1, xe4). (37)

We also solve (37) using the Newton method [23].

4. Numerical Example

In this section, we use the shooting and analytical methods to calculate the minimum
time t f to anesthetize a man of 53 years, 77 kg, and 177 cm.

The equilibrium point and the flow rate corresponding to a BIS of 50 are:

xe = (14.518 mg, 64.2371 mg, 813.008 mg, 3.4 mg), ue = 6.0907 mg/min. (38)

Following the Schnider model, the matrix A of the dynamic system (11) is given by:

A =


−0.9175 0.0683 0.0035 0
0.3020 −0.0683 0 0
0.1960 0 −0.0035 0
0.1068 0 0 −0.4560

 and B =


1
0
0
0

. (39)

We are interested to solve the following minimum-time control problem:
min

t f
J =

t f∫
0

dt,

ẋ(t) = A x(t) + B u(t), x(0) = (0, 0, 0, 0),
xe1(t f ) = 14.518 mg, xe4(t f ) = 3.4 mg,
0 ≤ u(t) ≤ 106.0907, t ∈ [0, t f ], t f is free.

(40)

4.1. Numerical Resolution by the Shooting Method

Let z(t) = (x(t), ψ(t)). We consider the following Cauchy problem:{
ż(t) = A∗z(t) + B∗,
z(0) = z0 = (0, 0, 0, 0, ψ01, ψ02, ψ03, ψ04),

(41)

where

A∗ = 10−4



−9175 683 35 0 0 0 0 0
3020 −683 0 0 0 0 0 0
196 0 −35 0 0 0 0 0
1068 0 0 −456 0 0 0 0

0 0 0 0 9175 −3020 −196 −1068
0 0 0 0 −683 683 0 0
0 0 0 0 −35 0 35 0
0 0 0 0 0 0 0 456


, (42)

B∗ =



max (0,−106.0907 sign(ψ1(t)))
0
0
0
0
0
0
0


. (43)
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The shooting function S is given by

S(z0) = (S1(z0), S2(z0), S3(z0)), (44)

where

S1(z0) = xe1(t f )− 14.518,

S2(z0) = xe4(t f )− 3.4,

S3(z0) = 1 + ψT(t f )
(

Ax(t f ) + B max (0,−106.0907 sing ψ1(t f ))
)

.

All computations were performed with the MATLAB numeric computing environ-
ment, version R2020b, using the medium-order method and the function ode45 (Runge–
Kutta method) in order to solve the nonstiff differential system (22). We have used the
variable order method and the function ode113 (Adams–Bashforth–Moulton method) in
order to solve the nonstiff differential system (25), and the function fsolve in order to solve
equation S(z0) = 0. Thus, we obtain that the minimum time is equal to

t f = 1.8397 min, (45)

with
ψT(0) = (−0.0076, 0.0031, −0.0393, −0.0374). (46)

4.2. Numerical Resolution by the Analytical Method

The pair (A, B) satisfies the Kalman condition, and the matrix A has four real eigen-
values. Then, the extremal control u(t) has at most three commutations on R+. Therefore,
let us test the eight strategies provided in Section 3.3.

Note that the anesthesiologist begins with a bolus injection to transfer the patient state
from the consciousness state x(0) to the unconsciousness state

xeF = (14.518, 3.4),

that is,
u(0) = Umax = 106.0907 mg/min. (47)

Thus, Strategies 2, 4, 6, and 8 are not feasible here. Therefore, in the sequel, we investigate
Strategies 1, 3, 5, and 7 only.

Strategy 1: Let u(t) = 106.0907 mg/min for all t ∈ [0, t f ]. The trajectory x(t), associated
with this control u(t), is given by the following relation:

x(t) =
t∫

0

exp(A(t− s))BUmaxds, ∀t ∈ [0, t f ], (48)

where

exp(A (t− s)) = V D(t− s)V−1 (49)

with

V =


0 0.9085 0.0720 −0.0058
0 −0.3141 0.9377 −0.0266
0 −0.1898 −0.3395 −0.9996
1 −0.1997 0.0187 −0.0014

 (50)
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and

D(τ) =


exp−0.4560 τ 0 0 0

0 exp−0.9419 τ 0 0
0 0 exp−0.0451 τ 0
0 0 0 exp−0.0024 τ

. (51)

System (37) takes the form {
x1(t f ) = 14.518,
x4(t f ) = 3.4,

(52)

and has no solutions. Thus, Strategy 1 is not feasible.

Strategy 3: Let u(t), t ∈ [0, t f ], be the control defined by

u(t) =

{
106.0907 mg/min if 0 ≤ t < tc,
0 if tc < t ≤ t f .

(53)

The trajectory x(t) associated with this control u(t) is given by

x(t) =


t∫

0
exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc,

exp(A (t− tc)) x(tc) if tc < t ≤ t f ,
(54)

where

exp(A (t− tc)) = V D(t− tc)V−1. (55)

To calculate the switching time tc and the final time t f , we have to solve the nonlinear
system (52) with the new condition

tc < t f . (56)

Similarly to Section 4.1, all numerical computations were performed with MATLAB R2020b
using the command solve to solve Equation (52). The obtained minimum time is equal to

t f = 1.8397 min, (57)

with the switching time
tc = 0.5467 min. (58)

Strategy 5: Let u(t), t ∈ [0, t f ], be the control defined by the relation

u(t) =


106.0907 mg/min if 0 ≤ t < tc1,
0 if tc1 < t < tc2.
106.0907 mg/min if tc2 < t ≤ t f ,

(59)

where tc1 and tc2 are the two switching times. The trajectory x(t) associated with control (59)
is given by

x(t) =



t∫
0

exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t− tc1)) x(tc1) if tc1 < t ≤ tc2,

exp(A (t− tc2)) x(tc2) +
t∫

tc2

exp(A(t− s))BUmaxds if tc2 < t ≤ t f .

(60)
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To compute the two switching times tc1 and tc2 and the final time t f , we have to solve the
nonlinear system (52) with

0 ≤ tc1 ≤ tc2 ≤ t f . (61)

It turns out that System (52) subject to Condition (61) has no solution. Thus, Strategy 5 is
also not feasible.

Strategy 7: Let u(t), t ∈ [0, t f ], be the control defined by the relation

u(t) =


106.0907 mg/min if 0 ≤ t < tc1,
0 if tc1 < t < tc2.
106.0907 mg/min if tc2 < t ≤ tc3,
0 mg/min if tc3 < t ≤ t f ,

(62)

where tc1, tc2, and tc3 are the three switching times. The trajectory x(t) associated with
Control (62) is given by

x(t) =



t∫
0

exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t− tc1)) x(tc1) if tc1 < t ≤ tc2,

exp(A (t− tc2)) x(tc2) +
t∫

tc2

exp(A(t− s))BUmaxds if tc2 < t ≤ tc3,

exp(A (t− tc3)) x(tc3) if tc3 < t ≤ t f .

(63)

To compute the three switching times tc1, tc2, and tc3 and the final time t f , we have to solve
the nonlinear system (52) with

0 ≤ tc1 ≤ tc2 ≤ tc3 ≤ t f . (64)

It turns out that System (52) subject to Condition (64) has no solution. Thus, Strategy 7 is
also not feasible.

In Figures 2 and 3, we present the solutions of the linear system of differential
Equation (40) under the optimal control u(t) illustrated in Figure 4, where the black curve
corresponds to the one obtained by the shooting method, as explained in Section 3.2, while
the blue curve corresponds to our analytical method, in the sense of Section 3.3. In addition,
for both figures, we show the controlled BIS Index, the trajectory of fast states correspond-
ing to the optimal continuous infusion rate of the anesthetic u(t), and the minimum time t f
required to transition System (40) from the initial (wake) state

x0 = (0, 0, 0, 0)

to the fast final (anesthetized) state

xeF = (14.518, 3.4)

in the shortest possible time. The minimum time t f is equal to t f = 1.8397 min by the
shooting method (black curve in Figure 2), and it is equal to t f = 1.8397 min by the
analytical method (blue curve in Figure 3).

By using the shooting method, the black curve in Figure 4 shows that the optimal con-
tinuous infusion rate of the induction phase of anesthesia u(t) is equal to 106.0907 mg/min
until the switching time

tc = 0.5467 min.

Then, it is equal to 0 mg/min (stop-infusion) until the final time

t f = 1.8397 min,



Axioms 2023, 12, 867 12 of 15

Figure 2. The state trajectory, controlled BIS index, and trajectory of the fast states corresponding to
the optimal control u(t) of Figure 4, using the shooting method.

Figure 3. The state trajectory, controlled BIS index, and trajectory of the fast states corresponding to
the optimal control u(t) of Figure 4, using the analytical method.
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Figure 4. The optimal continuous infusion rate u(t) of the induction phase of anesthesia, as obtained
by the shooting and analytical methods.
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By using the analytical method, the blue curve in Figure 4 shows that the optimal con-
tinuous infusion rate of the induction phase of anesthesia u(t) is equal to 106.0907 mg/min
until the switching time

tc = 0.5467 min.

Then, it is equal to 0 mg/min (stop-infusion) until the final time

t f = 1.8397 min.

We conclude that both methods work well and give similar results. However, in general,
the shooting method does not always converge, depending on the initial conditions (46).
To obtain such initial values is not an easy task since no theory is available to find them.
For this reason, the proposed analytical method is logical, practical, and more suitable for
real applications.

5. Conclusions

The approach proposed by the theory of optimal control is very effective. The shooting
method was proposed by Zabi et al. [15], which is used to solve the time-optimal control
problem and calculate the minimum time. However, this approach is based on Newton’s
method. The convergence of Newton’s method depends on the initial conditions, being
necessary to select an appropriate initial value so that the function is differentiable and the
derivative does not vanish. This implies that the convergence of the shooting method is
attached to the choice of the initial values. Therefore, the difficulty of the shooting method
is to find the initial conditions of the adjoint vectors. Here, the aim was to propose a
different approach, which we call “the analytical method”, that allows to solve the time-
optimal control problem for the induction phase of anesthesia without such drawbacks.
Our method is guided by the selection of the optimal strategy, without the need to choose
initial values and study the convergence. We claim that our method can also be applied to
other PK/PD models, in order to find the optimal time for the drug administration.

In the context of PK/PD modeling, the challenges associated with uncertainties in
plant model parameters and controller gains for achieving robust stability and controller
non-fragility are significant [24]. These challenges arise from factors like inter-individual
variability, measurement errors, and the dynamic nature of patient characteristics and drug
response. Further investigation is needed to understand and develop effective strategies
to mitigate the impact of these uncertainties in anesthesia-related PK/PD models. This
research can lead to the development of robust and non-fragile control techniques that
enhance the stability and performance of anesthesia delivery systems. By addressing
these challenges, we can improve the precision and safety of drug administration during
anesthesia procedures, ultimately benefiting patient outcomes and healthcare practices. In
this direction, the recent results of [25] may be useful. Moreover, we plan to investigate
PK/PD fractional-order models, which is a subject under strong current research [26]. This
is under investigation and will be addressed elsewhere.
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