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A BRIDGE BETWEEN QUATERNIONIC AND COMPLEX

NUMERICAL RANGES

LUÍS CARVALHO, CRISTINA DIOGO, AND SÉRGIO MENDES

Abstract. We obtain a sufficient condition for the convexity of quater-
nionic numerical range for complex matrices in terms of its complex nu-
merical range. It is also shown that the Bild coincides with complex
numerical range for real matrices. From this result we derive that all
real matrices have convex quaternionic numerical range. As an exam-
ple we fully characterize the quaternionic numerical range of 2 × 2 real
matrices.

1. Introduction

The quaternionic numerical range [Ki, R, STZ, To, Ye1, Ye2, Zh], the
natural counterpart to the complex numerical range1[GR], is the image of
a quadratic operator over the unit sphere. A striking difference between
the quaternionic and complex numerical ranges is convexity. Contrary to
what happens in the complex case, the quaternionic numerical range is not
convex in general (see, for instance, [R, Ye1, K]). Moreover, for a given
finite operator it is very difficult to characterize its numerical range whose
shape is, for the most part, unknown. A noticeable exception regarding the
study of convexity and shape of the numerical range is the case of normal
matrices (see [Ye1, Ye2, STZ]).

The numerical range is a subset of a 4-dimensional space and so it is hard
to figure out its geometry. However we can still get a visualization of the
numerical range through the Bild, its two dimensional equivalent, introduced
by Kippenhahn [Ki]. Although tremendously useful to study the convexity
and to represent the numerical range, to compute the Bild one needs first
to compute the numerical range, which is algebraically very difficult. Even
for 2 × 2 matrices the full characterization of the numerical range is still
unknown.

In this paper we obtain a sufficient condition for complex matrices to have
convex quaternionic numerical range. It turns out that this condition only
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1From now on whenever a concept has no adjective it is because we are considering it
over the quaternions.
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2 L. CARVALHO, CRISTINA DIOGO, AND S. MENDES

involves properties of the complex numerical range of the same matrix (see
theorem 3.4). That is, to figure out if a quaternionic numerical range is con-
vex we only need to compute the complex numerical range. We emphasize
that the condition is not necessary, as a simple example shows, see remark
3.5. For the class of real matrices, or their unitary equivalent, we conclude
that the quaternionic numerical range is always convex (see theorem 3.6).
Specifically, we establish that the Bild and the complex numerical range
are equal. This result is not true in general as Thompson has shown in
[To]. Another consequence of this result is that we can now transport what
happens in the complex case to the Bild and, by similarity, to the quater-
nionic numerical range (see theorem 3.7). The strength of these results is
that it breaks off the usual difficulties to calculate and understand what is
the numerical range. Using these results we fully characterize the numerical
range of the 2 × 2 real matrices (see example 4.1). In examples 4.2 and
4.3 we characterize the shape of certain classes of 3× 3 and n× n complex
matrices. The number of examples we could add is as big as the number of
results that we have for real matrices in the complex case. It should also
be noted that results on some other features of the numerical range, as the
numerical radius or the Crawford number, may also be fully transposed to
the quaternionic case.

2. Preliminaries

In this section we present some well known facts about quaternions and
fix some notation. The quaternionic skew-field H is an algebra of rank 4
over R with basis {1, i, j, k}. The product in H is given by i2 = j2 = k2 =
ijk = −1. Denote the pure quaternions by P = spanR {i, j, k}. For any
q = a0 + a1i+ a2j+ a3k ∈ H let Re(q) = a0 and Im(q) = a1i+ a2j+ a3k be
the real and imaginary parts of q, respectively. The conjugate of q is given by
q∗ = Re(q)− Im(q) and the norm is defined by |q|2 = qq∗. Two quaternions
q1, q2 ∈ H are called similar if there exists a unitary quaternion s such that
s∗q2s = q1. Similarity is an equivalence relation and we denote by [q] the
equivalence class containing q. A necessary and sufficient condition for the
similarity of q1 and q2 is that Re(q1) = Re(q2) and |Im(q1)| = |Im(q2)|.

Let F denote R, C or H. Let Fn be the n-dimensional F-space. The
disk with centre a ∈ Fn and radius r > 0 is the set DFn(a, r) = {x ∈ Fn :
|x− a| ≤ r} and its boundary is the sphere SFn(a, r). In particular, if a = 0
and r = 1, we simply write DFn and SFn . With this notation, the group of
unitary quaternions is denoted by SH.

Let Mn(F) be the set of all n × n matrices with entries over F. For
A ∈ Mn(F) , Ā and A∗ denote the conjugate and the conjugate transpose
of A, respectively. The set

WF(A) = {x∗Ax : x ∈ SFn}
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is called the numerical range of A in F. It is well known that the numerical
range is invariant under unitary equivalence, i.e., WF(A) = WF(U∗AU), for
every unitary U ∈Mn(F).

Let F = H. It is well known that if q ∈ WH(A) then [q] ⊆ WH(A).
Therefore, it is enough to study the subset of complex elements in each
similarity class. This set is known as B(A), the Bild of A

B(A) = WH(A) ∩ C

Although the Bild may not be convex, the upper bild B+(A) = WH(A)∩C+

is always convex, see [Zh].
Taking into account that F can be seen as a real subspace of H, we denote

the projection of H over F by πF : H→ F. The projection of WH(A) over F
is

πF(WH(A)) = {πF(w) : w ∈WH(A)}.
Given A ∈Mn(H) there exists an associated complex matrix

χ(A) =

[
A1 A2

−Ā2 Ā1

]
∈M2n(C),

where A1, A2 ∈Mn(C) and A = A1 +A2j.
Au-Yeung found [Ye1] necessary and sufficient conditions for the convexity

of WH(A). One of these conditions is an equality between the Bild and the
projection over C of the numerical range. In [Ye2], he proved that the
projection over C of the numerical range is the complex numerical range of
χ(A).

Theorem 2.1. [Ye1, Ye2] Let A ∈ Mn(H). Then WH(A) is convex if and
only if one the following statements hold:

(i) WH(A) ∩ C = πC(WH(A)) = WC(χA);
(ii) WH(A) ∩ R = πR(WH(A)).

3. On the convexity of the numerical range

Firstly, it should be noted that the complex numerical range is invari-
ant under the transpose operator. This is a trivial conclusion of x∗Ax =(
x∗Ax

)t
= xtAtx, for x ∈ SCn . We have:

Lemma 3.1. Let A ∈Mn(C). Then WC(A) = WC(At).

The next proposition is the stepping stone of further results in the paper.
It provides a more intuitive formulation of WC(χA) when A is a complex
matrix. As usual, conv(E) denotes the convex hull of E ⊆ C.

Proposition 3.2. Let A ∈Mn(C). ThenWC(χA) = conv{WC(A),WC(A∗)}.

Proof. Since A is complex,

χA =

(
A 0
0 Ā

)
.
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Then, denoting x = βxzx, y = βyzy with zx, zy ∈ SCn and βx = |x|, βy = |y|,
we have

WC(χA) =
{

(x∗y∗)χA

(
x
y

)
: (x y) ∈ SC2n

}
=
{
x∗Ax+ y∗Āy : (x y) ∈ SC2n

}
=
{
β2xz

∗
xAzx + β2yz

∗
yĀzy : zx, zy ∈ SCn , (βx, βy) ∈ DR2

}
=
{
αz∗xAzx + (1− α)z∗yĀzy : zx, zy ∈ SCn , α ∈ [0, 1]

}
=
{
αωx + (1− α)ωy : ωx ∈WC(A), ωy ∈WC(Ā), α ∈ [0, 1]

}
= conv{WC(A),WC(A∗)}

where the last equality is a consequence of convexity of the complex nume-
rical range, lemma 3.1 and the following equality{

αωx + (1− α)ωy : ωx ∈WC(A), ωy ∈WC(Ā), α ∈ [0, 1]
}

=
{
αωx + (1− α)ωy : ωx, ωy ∈WC(A) ∪WC(A), α ∈ [0, 1]

}
.

�

By theorem 2.1, we have thatWH(A) is convex if, and only if, WH(A)∩C =
WC(χA). From Proposition 3.2 it follows:

Corollary 3.3. Let A ∈Mn(C). WH(A) is convex if, and only if, WH(A)∩
C = conv{WC(A),WC(A∗)}.

Next theorem gives a sufficient condition for the convexity of quaternionic
numerical range of a complex matrix in terms of the complex numerical
range. This condition is a complex analogue of the well known result which
states that WH(A) is convex if and only if πR(WH(A)) = WH(A) ∩ R (see
(ii) in theorem 2.1).

Theorem 3.4. Let A ∈ Mn(C). If πR(WC(A)) = WC(A) ∩ R then WH(A)
is convex.

Proof. We begin by proving the following result:

(∗) If B ⊂ C is convex then B∪B is convex if, and only if, πR(B) = B∩R.

Suppose B ∪B is convex. Then, given λ = a+ ib ∈ B,

1

2
λ+

1

2
λ = a = πR(λ)

and so πR(λ) ∈ B ∩ R.
For the converse, suppose B∪B is non convex and consider ω = αλ1+(1−

α)λ2 /∈ B ∪ B, with 0 ≤ α ≤ 1 and λ1, λ2 ∈ B. We claim that πR(ω) /∈ B.
In fact, if πR(ω) ∈ B, there is a point ω̃ in the segment [λ1, λ2] ⊂ B with
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πR(ω) = πR(ω̃) such that ω = βπR(ω) + (1− β)ω̃, for some β ∈]0, 1[, which
is impossible since B is convex. Since

πR(ω) = απR(λ1) + (1− α)πR(λ2)

we conclude that either πR(λ1) /∈ B or πR(λ2) /∈ B for if πR(λ1), πR(λ2) ∈ B
we would have πR(ω) ∈ B.

Now, suppose πR(WC(A)) = WC(A)∩R. From (∗), since WC(A) is convex,

WC(A) ∪WC(A∗) = WC(A) ∪WC(A) is convex and so

conv{WC(A),WC(A∗)} = WC(A) ∪WC(A∗).

On the other hand, by corollary 3.3, WH(A) is convex if, and only if, WH(A)∩
C = WC(A) ∪ WC(A∗). Since C ⊂ H, we may identify WC(A) with a

subset of WH(A). On the other hand, WC(A∗) = WC(A) and, by similarity,
WC(A∗) ⊂WH(A). Hence, WC(A) ∪WC(A∗) ⊆WH(A) ∩ C.

The converse inclusion comes from

WC(A) ∪WC(A∗) = conv{WC(A),WC(A∗)}
= WC(χA)

= πC(WH(A))

⊇WH(A) ∩ C.
�

Remark 3.5. The previous sufficient condition is not necessary as a simple
example clarifies. Take A = diag(i, 2i) ∈ M2(C). We claim that the nu-
merical range is the disk over the pure quaternions of radius 2 centered at
zero, WH(A) = DP(0, 2).

Let w = x∗Ax ∈WH(A), where x ∈ (x1, x2) ∈ SH2 . We may write

(3.1) w = β21z
∗
1iz1 + 2β22z

∗
2iz2

where z1, z2 ∈ SH and β1 = |x1|, β2 = |x2|. Since Re(ab) = Re(ba), clearly,
Re(w) = 0 and, by the triangle inequality,

|w| ≤ β21 + 2β22 = β21 + 2(1− β21) = 2− β21 ≤ 2.

Hence, w ∈ DP(0, 2). Conversely, by similarity, it is enough to show that

DP(0, 2) ∩ C+ ⊆WH(A) ∩ C+.

The set DP(0, 2) ∩ C+ is the segment [0, 2i] and, since the upper Bild is
convex [Zh], we only need to prove that 0, 2i ∈ WH(A) ∩ C+. Taking β1 =
0, z1 = 1, β2 = 1 and z2 = 1 in (3.1) we have that 2i ∈ WH(A) ∩ C+. To

show that 0 ∈ WH(A) ∩ C+ simply take β1 =
√

2
3 , z1 = 1, β2 =

√
1
3 and

z2 = j in (3.1).
From the previous discussion we conclude that WH(A) is convex. On the

other hand, the complex numerical range is the segment joining i and 2i,
WC(A) = [i, 2i], and

πR(WC(A)) = {0} 6= ∅ = WC(A) ∩ R.
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When the matrix is real we can improve further our previous results since
in this case WC(A) = WC(A∗). From theorem 2.1 and proposition 3.2 we
have

πC(WH(A)) = WC(χA) = WC(A).

Therefore,

(3.2) WC(A) ⊆WH(A) ∩ C ⊆ πC(WH(A)) = WC(A).

From the above we see that the Bild coincides with the complex numerical
range. Using theorem 2.1, we conclude the following:

Theorem 3.6. If A ∈Mn(R) then WH(A) is convex.

This result is not true in general since Thompson [To] proved the existence
of a quaternionic matrix whose upper Bild does not coincide with the upper
part of the complex numerical range for any complex matrix. We can even
find a way to compute WH(A) out of the complex numerical range of A. In
fact, since WH(A) is given by the equivalence classes of the Bild WH(A)∩C,
from (3.2) we conclude:

Theorem 3.7. Let A ∈Mn(R). Then, WH(A) =
[
WC(A)

]
.

The above result essentially says that the quaternionic numerical range
of a real matrix A corresponds to the rotation in H, over the reals, of the
complex numerical range of A.

4. Examples and applications

There is a vast class of complex matrices to which we can apply the
previous results, namely theorem 3.4 and theorem 3.7, to conclude about
convexity and shape of quaternionic numerical range. In this section we give
some examples that show how we can transport some results from complex
numerical range to the quaternionic setting. However, we would like to stress
that there are as many examples as the known results for complex numerical
range.

The first example provides a full characterization of the numerical range
of real 2 × 2 matrices. Naturally, as in the complex case, we have three
possible and distinct cases: the numerical range is a line segment, a disk or
an ellipsoid.

Example 4.1. Let A ∈ M2(R). By the Elliptical Range Theorem [GR], the
complex numerical range of A is an elliptical disc with foci λ1, λ2, at the
eigenvalues of A. Notice that the numerical range of A can be a line segment
or a disk, which can be viewed as a degenerated ellipse. Since the matrix A
is real, its eigenvalues are real or a pair of complex conjugate.

If A is normal, then A is unitarily similar to a diagonal matrix D =
diag(λ1, λ2). Then WH(A) = WC(A) = [λ1, λ2], if λ1, λ2 ∈ R or WH(A) =[
WC(A)

]
=
[
[λ1, λ1]

]
= DP(Re(λ1), |Im(λ1)|), if λ2 = λ1, by theorem 3.7.
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If A is not normal, then A is unitarily equivalent to an upper triangular
matrix

B =

(
λ1 ω
0 λ2

)
, with ω 6= 0.

If λ2 = λ1, then WH(B) =
[
WC(B)

]
=
[
DC

(
λ1,

|ω|
2

) ]
= DH

(
λ1,

|ω|
2

)
. If

λ2 6= λ1, WC(B) is the elliptical disk

WC(B) =

{
x+ iy ∈ C :

(x− c)2

a2
+
y2

b2
≤ 1

}
,

where c = λ1+λ2
2 and a, b are the semiaxes. Let q = z1 + z2i+ z3j+ z4k ∈ H.

From theorem 3.7 we have WH(B) =
[
WC(B)

]
, so

WH(B) = {[x+ iy] : x+ iy ∈WC(B)}
= {q ∈ H : Re(q) = x, |Im(q)|2 = y2, for x+ iy ∈WC(B)}

=
{
q ∈ H :

(Re(q)− c)2

a2
+
|Im(q)|2

b2
≤ 1
}

=
{
q ∈ H :

(z1 − c)2

a2
+
z22
b2

+
z23
b2

+
z24
b2
≤ 1
}

Therefore, WH(A) is a line segment, a disk or a 4-dimensional ellipsoid.

Example 4.2. Let A ∈M3(C) be the matrix

(4.1) A =

 p x y
0 p z
0 0 p

 ,

with p ∈ R and xyz = 0. From [KRS, Theorem 4.1], WC(A) is a disk with

centre p and radius r = 1
2

√
|x|2 + |y|2 + |z|2. In this case πR(WC(A)) =

WC(A) ∩ R so, from theorem 3.4, we have that WH(A) is convex.
When, in addition, we have x, y, z ∈ R, i.e., A is a real matrix with

xyz = 0, we can characterize the shape of the quaternionic numerical range

of A. Since
[
DC(p, r)

]
= DH(p, r), it follows from theorem 3.7 that

WH(A) = DH(p, r).

Example 4.3. According to [BS, Corollary 2.3], if A ∈ Mn(C) is unitarily
equivalent to a matrix of the form

(4.2) A =

(
a1In1 X
kX∗ a2In2

)
,

then WC(A) is an ellipse (see formulas of foci in [BS, Corollary 2.3]). If the
foci of the ellipse are real or a pair of complex conjugate, the centre of the
ellipse is real and πR(WC(A)) = WC(A)∩R. By theorem 3.4 we have WH(A)
is convex.

We can say more about the shape of the numerical range when A is a
real matrix. From theorem 3.7 and using the same reasoning of example
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4.1 it follows that the quaternionic numerical range of A is a 4-dimensional
ellipsoid centered at the real line.
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