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Abstract
Much of the work on the valuation of levered (and unlevered) warrants assumes that 
the volatility of the underlying state variable is constant. This paper extends the lit-
erature on warrant pricing to a more general assumption for the state variable pro-
cess, the so-called constant elasticity of variance (CEV) process. The CEV model is 
well-known for its ability to capture some empirical observations found in the finan-
cial economics literature, namely the asymmetry between equity returns and volatil-
ity and the implied volatility skew. Using the CEV process, we are able to reduce 
pricing bias as the volatility becomes a function of the underlying state variable. We 
price European-style call warrants without restrictions on the debt maturity. When 
warrants have the same maturity as debt, it is possible to obtain closed-form solu-
tions for warrants prices. When the maturity of warrants is different from the matu-
rity of debt, prices can be computed numerically through very efficient and simple 
to implement valuation methodologies.

Keywords  CEV model · Warrants · Dilution · Debt · Volatility

JEL Classification  C63 · G13 · G32

1  Introduction

As mentioned by Ingersoll (1987), warrants are similar to call options. Both give 
the holder the right, but not the obligation, to buy at or before (in case of American-
style) or at (in case of European-style) a given set date, shares of stock of a particu-
lar company at an agreed price (the strike price). In general, there are two types of 
warrants: covered warrants (also known as bank-issued options) and equity warrants 
(also known as corporate warrants). The covered warrants are issued by a third party 
(usually a financial institution) and have no dilution effect. Conversely, the exercise 
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of equity warrants leads to a dilution of the equity of the company, being this one 
of the biggest differences between this type of warrants and options. In a nutshell, 
equity warrants are only issued by companies.

Given their particular features, warrants have been greatly used recently. For 
example, Chuang et al. (2021) document that, by the end of 2015, there were 10,542 
covered warrants on the Taiwan Stock Exchange. There is evidence of usage of war-
rants as part of underwriter’s compensation—see Dunbar (1995), Garner and Mar-
shall (2014) and Khurshed et  al. (2016), among others—, as stand alone capital 
raising instruments—e.g., Suchard (2005)—, in unit offerings—see, for instance, 
Schultz (1993), Byoun and Moore (2003), Gajewski et  al. (2007) and Howe and 
Olsen (2009)—, etc.1 Given the burgeoning interest on this type of financial instru-
ments, the existence of a model able to price them accurately, taking the observed 
stylized facts into account becomes essential. Since covered warrants share, in 
essence, their characteristics with options, by the law of one price their prices should 
coincide with the prices of the options. The major difficulty arises in pricing corpo-
rate warrants. The creation of a model to price these last has been one the biggest 
challenges in the warrant valuation process.

In some cases, both academics and practitioners adopt the Black and Scholes 
(1973) stock option formula in order to value corporate warrants. As we will discuss 
later, this model ignores several stylized facts found in the financial literature and, as 
a result, its prices are, usually, very inaccurate. For instance, Chang et al. (2013) find 
that the market prices of warrants are generally much higher systematically than the 
Black–Scholes prices in Chinese warrant market.

In other cases, practitioners adopt somewhat obscure and unreasonable meth-
ods to value warrants, which gives rise to prices very far from reality. An interest-
ing recent example is the case of the bankrupt rental-car company Hertz that has 
received much attention in the financial social media—e.g., March 2, 2021, and May 
13, 2021, in Bloomberg and Financial Times news articles, respectively. The Finan-
cial Times article states that “The private equity consortium that will acquire Hertz 
says the company’s current public stockholders will get a package worth $7.36 for 
each share. About $2 of that figure is in cash as well as direct new shares in the reor-
ganised Hertz. The balance comes in the form of warrants, offering the option to buy 
into the new Hertz at a given price. These are a derivative security whose valuation 
comes from the famed Black–Scholes equation, which contains a variety of inputs. 
With Hertz shares trading at $6 a piece, Wall Street does not seem to agree with the 
maths involved." The issue here is that private equity bidders and Hertz have used 
a stock price volatility input of 57.5% in the Black–Scholes equation to determine 
the $5.47 value of warrants, which is very close to the underlying stock price of $6. 
Clearly, this calculation has not convinced everyone. This example highlights the 
need of more realistic models to value warrants. Hence, the novel pricing solutions 
for levered (and unlevered) warrants proposed in this paper should be of interest not 
only for academics but also for practitioners in the banking and finance industry.

From a theoretical standpoint, Black and Scholes (1973) propose the valuation 
of a warrant as a call option on shares of firm’s equity rather than a call option on 

1  Units are bundles of common stock and warrants sold together as a package.
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shares of common stock at half stated exercise price (they assume a dilution factor, 
i.e. the ratio of the number of outstanding warrants to outstanding shares of com-
mon stock prior to exercise, equal to one). However, the derivation of a formula tak-
ing the dilution effect correctly into account is done by Galai and Schneller (1978). 
Despite their great contribution to the warrant valuation process, the models pro-
posed by Black and Scholes (1973) and Galai and Schneller (1978) have the short-
coming of using unobservable variables, namely the firm’s value (the sum of all 
warrants outstanding and common stock outstanding) and volatility. To overcome 
this issue, Schulz and Trautmann (1994) and Ukhov (2004) propose to solve a sys-
tem of nonlinear equations in order to obtain the value of these variables and then 
use them to compute the warrant value.

Even though much of this early work assumes an equity-based approach (equity 
as the underlying state variable) and takes the dilution effect into account, there have 
been empirical investigations supporting the valuation of warrants as plain-vanilla 
call options on common stock ignoring the dilution effect (known as option-like 
valuation)—e.g., Schulz and Trautmann (1994), Sidenius (1996) and Bajo and Barbi 
(2010). For instance, Schulz and Trautmann (1994) find that option-like valuation pro-
vides correct prices for in-the-money and at-the-money warrants and, therefore, claim 
that in these cases there is no need to use the correct warrant valuation approach. Hand-
ley (2002) advocates that this framework is correct and consistent with the Efficient 
Market Hypothesis, where the stock price of the underlying firm is already incorporat-
ing dilution and, hence, there is no need to correction. Notwithstanding the practical 
usability of this model, it has the inconvenience that the stock cannot follow a lognor-
mal distribution, even when the value of firm’s assets follows such distribution—see, 
for instance, Galai and Schneller (1978) and Crouhy and Galai (1994).

Although the models proposed by Black and Scholes (1973) and Galai and Schneller 
(1978) shed light on the valuation of warrants, they are not realistic since they do not 
consider debt into the firm’s value. The first model taking debt correctly into account is 
derived by Crouhy and Galai (1994), where the firm’s value is a sum of equity (aggre-
gate of stock and warrants) and debt. They assume that warrants have a maturity shorter 
than debt’s expiration date and that firms reinvest the proceeds from warrants exercise. 
This model is extended by Abínzano and Navas (2013) to the cases where warrants 
have longer and the same maturity as debt. Like many other authors on warrant pricing, 
Crouhy and Galai (1994) and Abínzano and Navas (2013) develop their model under 
the assumption that the underlying state variable (firm’s value) follows a geometric 
Brownian motion (henceforth, GBM) with constant drift and variance parameters.

Nevertheless, Lauterbach and Schultz (1990) and Hauser and Lauterbach (1997) 
show, through an extensive empirical investigation, that the constant elasticity 
of variance (henceforth, CEV) model of Cox (1975) outperforms the Black and 
Scholes (1973) model when predicting warrant prices.2 According to these authors, 
despite the analytical tractability of the Black–Scholes model, the assumption of a 
GBM with constant drift and volatility can lead investors to mispricing, since, apart 
from the problems with stochastic interest rates, early exercise prior to dividend 

2  See Veld (2003) for a general overview of the literature on empirical research under alternative sto-
chastic processes.
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payments, among others, it is well-known that equity volatility is far from being 
constant.3

Bajo and Barbi (2010) find that even the stock-based approach can be more accu-
rate if one incorporates the risk-shifting effect into the valuation by using the CEV 
model. According to the authors, the option-like valuation proposed by Schulz and 
Trautmann (1994) and Sidenius (1996) under the GBM assumption ignores the vola-
tility spillover which is verified when the firm issues warrants. Since warrants are 
similar to call options, a negative (resp., positive) shock on the equity value leads to 
a stronger depreciation (resp., appreciation) of the warrant than of the stock price. 
To put it in another way, part of the risk assumed by the shareholders is shifted to 
the warrant holders which causes a lower stock price variability relative to an identi-
cal firm with no outstanding warrants.

Moreover, it is well documented—e.g., Jackwerth and Rubinstein (1996)—that 
after the crash of 1987, the empirical asset returns distributions are more left-skewed 
and changed from platykurtic to leptokurtic and, thus, the lognormal assumption is 
unable to consider these features. Therefore, the use of alternative stochastic pro-
cesses can reduce pricing bias and help investors improving their decision-making 
process.

Overall, there are several advantages in applying the CEV model to price finan-
cial derivatives. It is consistent with two facts empirically supported in the literature, 
namely: the inverse relation between the implied volatility and the strike price of an 
option contract (implied volatility skew or implied volatility smile) documented, for 
example, by Dennis and Mayhew (2002), and the asymmetry between equity return 
and volatility, explained by a combination of financial leverage, volatility feedback 
and operating leverage, as showed, for instance, in Beckers (1980), Christie (1982), 
Bekaert and Wu (2000) and Choi and Richardson (2016). The CEV model allows 
analytical tractability and volatility is modeled without the need of introducing an 
additional stochastic process as in the case of Heston (1993) stochastic volatility 
model. It is, synchronously, a local volatility and a “complete-market” model and, 
therefore, allows the construction of synthetic portfolios.

Since the lognormal assumption with constant volatility in the Black and Scholes 
(1973) model is unable to accommodate the aforementioned stylized facts, the main 
aim of this paper is to generalize the models in the literature under GBM to the CEV 
framework where the volatility is no longer constant, but rather becomes a function 
of the underlying state variable. To accomplish this purpose, we use the closed-form 
solutions proposed by Schroder (1989) for the elasticity parameter 𝛽 < 2 and Hes-
ton et al. (2007) for 𝛽 > 2 . We price warrants with no restriction of debt maturity, 
i.e., warrants can have the same, shorter or longer maturity than debt. When war-
rants have the same maturity as debt, it is possible to obtain analytical solutions 

3  A similar conclusion was drawn by Gemmill and Thomas (1997) for warrants on the London Stock 
Exchange.
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for warrants prices. When warrants and debt have different maturities, prices can be 
computed via numerical procedures.4

The present paper contributes to the literature in different ways. First, we pro-
pose analytical solutions, under the CEV process, for pricing warrants with the same 
maturity as debt. For this purpose, we follow Abínzano and Navas (2013) whose 
solution was derived under a lognormal assumption. We also follow Schroder (1989) 
and Heston et al. (2007) to compute the prices under the CEV model. Although not 
trivial, our framework is flexible enough and can be extended or modified in order to 
analyze the existence of dark matter in corporate warrants—see, for instance, Bak-
shi et al. (2022). Second, we propose numerical solutions for pricing warrants with 
longer or shorter maturity than debt under the CEV diffusion. In this case, to com-
pute the warrant prices with the Abínzano and Navas (2013) model, we use Monte 
Carlo simulation and solve the system of nonlinear equations, simultaneously. Third, 
we demonstrate, through an extensive numerical analysis, the implication of an 
incorrect specification of the underlying state variable process for the valuation of 
warrants. Our results show that, in general, the investors are subject to a very signifi-
cative pricing bias assuming the GBM for the state variable. For comparative pur-
poses, we also extend the several models available in the literature such as Ukhov 
(2004) model, classical warrant valuation, among others, to the CEV process.

The remainder of this paper is organized as follows. Section 2 shortly overviews 
the general setup of the CEV model and addresses the problem of simulating asset 
prices under the CEV process. Section 3 derives the warrant pricing models under 
the CEV model. Section  4 presents some numerical examples and compares the 
results under the CEV framework against those of GBM setup. Finally, Sect. 5 con-
cludes the paper. All the accessory results are relegated to the appendixes collected 
in the supplementary file.

2 � The CEV diffusion model

This section briefly reviews the building blocks of the CEV model and describes the 
Euler-Maruyama scheme that is required to approximate the path of the asset values 
for the cases where no closed-form warrant pricing solutions are available.

2.1 � Setup of the model

Taking the equivalent martingale measure ℚ as given, we assume that the asset 
price {Vt, t ≥ 0} (under ℚ that takes as numeraire the money market account) is a 
time-homogeneous nonnegative diffusion process solving the following stochastic 
differential equation:

4  It is important to point out that, even in the cases of analytical solutions (warrants with the same matu-
rity as debt), we need numerical procedures to obtain the value of unobservable variables. Also note that 
unlike Lauterbach and Schultz (1990), who consider a firm financed only by equity, in this paper we 
incorporate debt correctly into the valuation process.
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with the local volatility function given by

for � ∈ ℝ+ , � ∈ ℝ and where r represents the constant risk-free interest rate, �(Vt) 
represents the local volatility function (i.e., the instantaneous volatility per unit of 
time of asset returns), which is assumed to be continuous and strictly positive for all 
V ∈ (0,∞) , dWℚ

t
∈ ℝ is a standard Brownian motion under ℚ , initialized at zero and 

generating the augmented, right continuous and complete filtration � = {Ft ∶ t ≥ 0}

.
We recall that the CEV specification given by Eqs. (1) and (2) nests the log-

normal assumption of Black and Scholes (1973) and Merton (1973) ( � = 2 ) 
as well as the absolute diffusion ( � = 0 ) and the square-root diffusion ( � = 1 ) 
processes of Cox and Ross (1976) as special cases. We further note that when-
ever 𝛽 < 2 (resp., 𝛽 > 2 ), the local volatility function (2) is a decreasing (resp., 
increasing) function of the asset price, thus being able to generate downward-
sloping (resp., upward-sloping) volatility skews that are observed in the market. 
The elasticity of return variance with respect to price is equal to � − 2 given that 
dv(Vt)∕v(Vt) = (� − 2)dVt∕Vt , where v(Vt) = �2V

�−2
t  is the instantaneous variance 

of asset returns. The model parameter � is a positive constant that can be inter-
preted as the scale parameter fixing the initial instantaneous volatility at time 
t = 0 , �V = �(V0) = �V

�∕2−1

0
 . This calibration procedure is standard in the litera-

ture and it ensures that CEV models with different values of � have the same 
variance at the beginning of the simulation period, which allows us to make valid 
comparisons between different CEV models. Additional background on the CEV 
diffusion process can be consulted, for instance, in Davydov and Linetsky (2001), 
Dias and Nunes (2011), Larguinho et al. (2013), Dias et al. (2015) and Dias et al. 
(2020).

2.2 � Simulation of asset values

Unlike the GBM process, where the asset value (V �
T
) can be written analytically (thus 

yielding an exact solution), in the case of the CEV process such simple representa-
tion is not available. Nevertheless, it is still possible to use Monte Carlo simulation 
by discretizing the time interval and simulating the state process dynamic on this 
discrete-time grid—see, for example, Broadie and Kaya (2006). The straightforward 
Euler-Maruyama discretization scheme, described in Kloeden and Platen (1992), 
can be used to approximate the path of the asset value on a discrete-time grid.

Let 0 = t0 < t1 < ... < tn = T  be a partition of n evenly-spaced time points 
ti ∶= t0 + iΔt , for i = 0, 1, ... , and with Δt ∶=

(
T − t0

)
∕n . The discretization of the 

asset value under the CEV model is written as:

(1)dVt = rVtdt + �(Vt)VtdW
ℚ

t
,

(2)�(Vt) = �V
�

2
−1

t ,
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We recall that the scale parameter � is readjusted so that the initial instantaneous 
volatility is the same across different models. Thus, we can rewrite the last expres-
sion as

It is well-known that Eq. (1) applies only up to the stopping time

Following the insights of Lindsay and Brecher (2012), the treatment of the process 
after the stopping time depends on the underlying financial problem. In this case, 
the stopping time (5) indicates the time of bankruptcy of the company. The prob-
ability that V ′

t
 hits the boundary point 0 for markets exhibiting forward skew pat-

terns (𝛽 > 2) is zero and, thus, V ′
t
 will never go to negative values in this particular 

case. However, when 𝛽 < 2 , V ′
t
 hits zero with positive probability. Therefore, when 

negative values are encountered during the simulation, V ′
t
 is simply set to 0 from that 

time-step onward.

3 � Pricing levered warrants

This section is concerned with the extension of the warrant pricing models available 
in the literature under the lognormal framework to the more general CEV process. 
In particular, the following models are considered: the classical warrant valuation 
model, the Schulz and Trautmann (1994) and Ukhov (2004) model, the Crouhy and 
Galai (1994) model and the levered warrant models for the cases of warrants with 
different maturities relative to debt.

3.1 � Classical warrant valuation

After Black and Scholes (1973) proposed the valuation of warrants as a call option 
on equity, adjusted by the dilution factor, this method became standard on the war-
rant valuation process. As recalled by Abínzano and Navas (2013), this model is 
usually known as the “correct warrant valuation”. In this model, it is assumed that 
the underlying state variable is the firm value. The goal now is to extend the classi-
cal warrant valuation model to the CEV process. Since this model does not consider 
debt, the value of the firm in this case is equal to its equity value.

Assume a firm is financed by N shares of common stock and M European-style 
call warrants. Each warrant entitles the owner to receive k shares of stock at time 
t = T  upon payment of X dollars. The company is financed only by these two sources 
of funding. Assume also that Vt and �V are the firm value and firm returns volatility 

(3)V �
t
= V �

t−1
+ rV �

t−1
Δt + �V �

�

2

t−1
ΔWℚ

t
.

(4)V �
t
= V �

t−1
+ rV �

t−1
Δt + �V �V

1−
�

2

0
V �

�

2

t−1
ΔWℚ

t
.

(5)𝜏0 = inf{t > 0 ∶ V �
t
= 0}.
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at time t, and St and �S denote the stock price and stock volatility, respectively, at 
time t.5 Let wt denote the price of each warrant at time t.

In what follows, we show the insights behind the classical warrant valuation 
model described in Ingersoll (1987). If the M warrants are exercised at time t = T  , 
the firm receives an amount of money of MX and issues Mk new shares of stock. 
Thus, if it is known that the warrants will be exercised at the maturity date T, then 
each share of stock will be worth ST = (VT +MX)∕(N + kM) . At the point where 
the warrants holders are indifferent about exercising (kVT = NX) each k shares are 
worth X, so the warrants are exercised only if kST ≥ X , just as with plain-vanilla 
call options. If the warrants owners strictly prefer exercising (kVT > NX) , then the 
common stock is worth less than the value of the firm’s assets. Note that this short-
fall simply measures the value of the warrants. The same is generally true prior the 
maturity of the warrants. Therefore, the value of each warrant at maturity, T, is given 
by

The time-T payoff (6) implies that the time-t warrant value is equal to 1∕(N + kM) 
call option on kV, with strike price NX and maturity at time T (≥ t) , i.e.

where ct(At,K, T) is the time-t value of a plain-vanilla call option on the asset price 
At , with strike K and maturity at time T (≥ t) given by

as shown by Schroder (1989) and Heston et al. (2007) for 𝛽 < 2 and 𝛽 > 2 , respec-
tively, with Γ(a, z) and Γ(a) being, respectively, the upper incomplete gamma 
function and the Euler gamma function given in  Abramowitz and Stegun (1972, 
Eqs. 6.5.3 and 6.1.1), Q(�;v, �) representing the complementary distribution function 
of a non-central chi-square law with v(≥ 0 ) degrees of freedom and non-centrality 
parameter �(≥ 0 ), and6 

(6)
wT =

{
k

N + kM
(VT +MX) − X ⇐ kVT > NX

0 ⇐ kVT ≤ NX

=
1

N + kM
max(kVT − NX, 0).

(7)wt =
1

N + kM
ct(kVt,NX, T),

(8)

ct(At,K, T)

=

⎧
⎪⎨⎪⎩

AtQ(2y;2 − 2v, 2x) − Ke−r(T−t)[1 − Q(2x; − 2v, 2y)] ⇐ 𝛽 < 2

At

�
Q(2x;2v, 2y) −

Γ(v, x)

Γ(v)

�
− Ke−r(T−t)[1 − Q(2y;2 + 2v, 2x)] ⇐ 𝛽 > 2

,

6  We recall that Eq. (8) corrects the misprint error of (2007, Page 367) highlighted in Veestraeten (2017) 
and Dias et al. (2020). Note also that Γ(v, x)∕Γ(v) can be alternatively written as Q(2y; 2v, 0)—see, for 
instance,  Dias et  al. (2020, Footnote 5). As in Larguinho et  al. (2013), Ruas et  al. (2013), Dias et  al. 

5  Note that since we are valuing the warrants at the current time t, the scale parameter � is selected so 
that �

V
= �(V

t
).
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and

Therefore, the warrant price can be expressed as

Unless the investor is able to obtain a good estimate of Vt and �V , the classical war-
rant valuation model is difficult to use, since these variables are unobservable.

3.2 � Schulz and Trautmann (1994) and Ukhov (2004) model

To overcome the problem of unobservable variables in the classical warrant valu-
ation model, Schulz and Trautmann (1994) and Ukhov (2004) follow a different 
approach allowing the use of observable variables (�S and St) when computing the 
value of the warrant. Even though the stock volatility is not observable, it can be 
easily estimated from historical stock prices or determined as the implied volatility 
in the options prices quoted in the market.

Assume a firm is financed only by equity, where warrants and stocks are contin-
gent claims on firm value. In this sense, the firm volatility is a weighted average of 
volatilities of the two claims. Since a warrant is similar to an option, it is riskier than 
the stock. Hence, the volatility of the stock is less than the volatility of the entire 

(9)k̃ =
2r

𝛿2(2 − 𝛽)[er(T−t)(2−𝛽) − 1]
,

(10)x(At) ∶= x = k̃A
2−𝛽
t er(T−t)(2−𝛽),

(11)y(K) ∶= y = k̃K2−𝛽 ,

(12)�(At) ∶= � = �At
A
1−�∕2
t

(13)v =
1

� − 2
.

(14)

wt =
1

N + kM

×

⎧
⎪⎨⎪⎩

�
kVtQ(2y;2 − 2v, 2x) − NXe−r(T−t)[1 − Q(2x; − 2v, 2y)]

�
⇐ 𝛽 < 2�

kVt

�
Q(2x;2v, 2y) −

Γ(v, x)

Γ(v)

�
− NXe−r(T−t)[1 − Q(2y;2 + 2v, 2x)]

�
⇐ 𝛽 > 2

.

(2015), Nunes et  al. (2015) and Dias et  al. (2020), we adopt the Benton and Krishnamoorthy (2003) 
algorithm for computing the required non-central chi-square distributions.

Footnote 6 (continued)
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firm. Define �S ≡ ΔSVt∕St as the elasticity of the stock price with respect to the firm 

value, where ΔS is the hedge ratio for the stock given by ΔS =
�St

�Vt

.

We can relate Vt and �V to St and �S through the following equation7 

where � = �VV
1−

�

2

t  . To compute ΔS , we need to calculate Δw = �wt∕�Vt given that 
Vt = NSt +Mwt , where wt is given by Eq. (14). It is straightforward to notice that Δw 
is similar to the hedge ratio of a call option derived by Larguinho et al. (2013, Eq. 
A7) and Dias et al. (2020, Corollary 1). Thus, Δw is given by

where p(�;v, �) is the probability density function of a non-central chi-square dis-
tribution as given by Johnson et al. (1995, Eq. 29.4). Using the fact that a share of 
stock is also a contingent claim on the firm (there exists a hedge ratio that meas-
ures stock price changes when firm value, V, changes 1 dollar), then we can write 
NΔS +MΔw = ΔV = 1 . Hence, ΔS can be obtained by substituting Δw into the fol-
lowing expression

To compute the warrant price (under the CEV process) using only observable vari-
ables (St and �S) , we need to:

1. Solve (numerically) the following system of nonlinear equations for (V∗
t
, �∗

V
),

where wt is given by Eq. (14).
2. The warrant price, wt , is calculated as

(15)�S = �S�(Vt) = ΔS

Vt

St
�V

�

2
−1

t = ΔS

Vt

St
�V ,

(16)

Δw =
1

N + kM

×

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
kQ(2y;2 − 2v, 2x) +

2x(2 − 𝛽)

V
[kVp(2y;4 − 2v, 2x)

−NXe−r(T−t)p(2x; − 2v, 2y)]
�
⇐ 𝛽 < 2�

kQ(2x;2v, 2y) −
2x(2 − 𝛽)

V

�
kVp(2x;2v, 2y)

−NXe−r(T−t)p(2y;4 + 2v, 2x)
�
− k

Γ(v, x)

Γ(v)
− ke−x

xv

Γ(v + 1)

�
⇐ 𝛽 > 2

,

(17)ΔS =
1 −MΔw

N
.

(18)

⎧⎪⎨⎪⎩

NSt = Vt −Mwt

�S = ΔS

Vt

St
�V

,

7  Appendix A of the supplementary file contains further details on the derivation of this relation under 
the CEV model.
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3.3 � Crouhy and Galai (1994) model

Even though the previous model overcomes the problem of unobservable variables, 
it still has the inconvenience of not considering debt into the valuation process. 
To solve this, Crouhy and Galai (1994) propose a model which incorporates debt 
correctly albeit based on unobservable variables. To this end, they assume a firm 
financed by N shares of stock, M European-style call warrants and debt D. The debt 
is a zero-coupon bond with face value F and maturity at time TD . The proceeds from 
exercising the warrants are assumed to be reinvested in the company, thus increasing 
its size. They also assume a perfect market condition and that there are no econo-
mies of scale and, thus, the distribution of returns for one unit of investment is sta-
tionary and independent of the firm size. Furthermore, it is assumed that r is known 
and constant.

To derive their formula, they also consider that there is a benchmark firm with 
the same investment policy as the underlying firm, but financed entirely by common 
stock.8 Crouhy and Galai (1994) study only the case where warrants have shorter 
maturity than debt, i.e. T < TD . At t = 0 , the benchmark firm issues N′ shares of 
stock at a price V �

0
∕N� = S�

0
 , whereas the underlying firm issues N shares of stock, M 

warrants and a zero-coupon bond. Then, for 0 ≤ t < T  we can write

where St,wt and Dt are, respectively, the values of a share of stock, warrant and debt 
of the levered firm.

In the extension of this model to the CEV process, all the assumptions of Crouhy 
and Galai (1994) are assumed to hold, except that the underlying state variable follows 
now a CEV process. If the warrants are not exercised at t = T , the value of the levered 
firm, VTD

 , will be equal to the value of the unlevered firm, V ′
TD

 , at t = TD . On the other 
hand, if the warrants are exercised at t = T , the amount MX received from the exercise 
of the warrants will be reinvested and the value of the levered firm at t = TD becomes 
VTD

= V �
TD
(1 +MX∕V �

T
) , while the value of unlevered firm remains V ′

TD
 . The ratio 

MX∕V �
T
 measures the scale expansion of the firm’s assets at time T.

The traditional procedure in the financial economics literature is to exercise the war-
rants if the stock price immediately prior to the warrants’ expiration date is greater than 
the strike price. Crouhy and Galai (1994) show that this approach can be misleading 
if the share price prior to expiration differs from the price after this date. They argue 
that such discontinuity in price stems from the fact that the exercise of warrants, which 
results in a scale of expansion of the firm, may reduce the probability of default and, 
consequently, increase the value of debt which causes a reduction in the share price. 

(19)wt =
V∗
t
− NSt

M
.

(20)Vt = NSt +Mwt + Dt, with Vt = V �
t
,

8  This is consistent with the well-known capital structure irrelevance of Modigliani and Miller (1958) 
under the assumption of perfect capital markets.
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Therefore, the warrants should be exercised if the post-expiration value of the k diluted 
shares is greater than X.

No matter whether warrants are exercised or not, after time T the firm’s value is 
composed only of common stock and debt. Thus, the post-expiration value of a share of 
stock, ST , can be written as follows:

where DW
T

 , DNW
T

 , SW
T

 and SNW
T

 , represent the value of debt and a share of stock at time 
T if warrants are exercised and if warrants are not exercised, respectively. Given that 
SW
T

 is an increasing function of V ′
T
 , the exercise criteria can be determined finding a 

threshold value of the firm, V̄ ′
T
 , such that kSW

T
(V̄ �

T
) ≡ X.

Since it is assumed that the proceeds from the exercise of the warrants are rein-
vested, the last expression of ST can be easily determined if we look at the equity of the 
levered firm as a call option on the firm value immediately after warrants’ expiration, 
with strike F, and maturity at time TD , that is

where ct(At,K, T) is a call option on the asset price At , with strike K and maturity at 
time T. We recall that under the CEV diffusion, the volatility of the reference firm at 
time T becomes �(V �

T
) = �V �

T

�

2
−1 , where � = �V �V �

t

1−
�

2 . Thus, under the assumption 
that V ′

t
 follows the CEV process described by Eq. (1), we can write St at any time t 

(< T) as

where 𝔼ℚ[R|Ft] denotes the (time-t) expected value of the random variable R, con-
ditional on Ft and computed under the equivalent martingale measure ℚ , 1{B} is an 
indicator function of the event B and f (V �

T
, T;V �

t
, t) is the probability density function 

of V ′
T
 conditional on V ′

t
 at time t < T  presented in Schroder (1989, Eq. 1) and Ema-

nuel and MacBeth (1982, Eq. 7) for 𝛽 < 2 and 𝛽 > 2 , respectively, and written as

(21)ST =

⎧
⎪⎨⎪⎩

V �
T
−DNW

T

N
≡ SNW

T
if warrants are not exercised at t = T

V �
T
+MX−DW

T

N+kM
≡ SW

T
if warrants are exercised at t = T

,

(22)ST =

⎧⎪⎨⎪⎩

cT (V
�
T
,F, TD)

N
⇐ V �

T
≤ V̄ �

T

cT (V
�
T
+MX,F, TD)

N + kM
⇐ V �

T
> V̄ �

T

,

(23)

St =e
−r(T−t)

𝔼ℚ

[cT (V �
T
,F, TD)

N
1{V �

T
≤V̄ �

T
} +

cT (V
�
T
+MX,F, TD)

N + kM
1{V �

T
>V̄ �

T
}
|||Ft

]

=e−r(T−t)
(
�

V̄ �
T

0

cT (V
�
T
,F, TD)

N
f (V �

T
, T;V �

t
, t)dV �

T

+ �
∞

V̄ �
T

cT (V
�
T
+MX,F, TD)

N + kM
f (V �

T
, T;V �

t
, t)dV �

T

)
,
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where k̃ is given by Eq. (9),

and

Using the same reasoning which led to St , the value of debt at any time t, with t < T  , 
is obtained as

where pt(At,K, T) is a put option on the asset price At , with strike K and maturity at 
time T (≥ t) expressed as

The price of the warrant is obtained substituting St and Dt into the equation

3.4 � Levered warrant model for warrants with the same maturity as debt

Even though the Crouhy and Galai (1994) model is more realistic than the classi-
cal warrant valuation and the Schulz and Trautmann (1994) and Ukhov (2004) 
approaches, it still has two limitations: it only considers the case where warrants 
have longer maturity than debt and it is based on unobservable variables (V �

t
 and 

�V � ) . Abínzano and Navas (2013) complement the literature on warrant pricing 
studying the two other cases: TD < T  and T = TD . Moreover, following the insights 
of Ukhov (2004), they propose algorithms based only on observable variables for 
the three cases of maturity of warrants (being the case TD > T  an extension of the 
Crouhy and Galai (1994) model).

(24)f (V �
T
, T;V �

t
, t) =

⎧
⎪⎨⎪⎩

(2 − 𝛽)k̃
1

2−𝛽 (xw1−2𝛽)
1

4−2𝛽 e−x−wI 1

2−𝛽

(2
√
xw) ⇐ 𝛽 < 2

(𝛽 − 2)k̃
1

2−𝛽 (xw1−2𝛽)
1

4−2𝛽 e−x−wI 1

𝛽−2

(2
√
xw) ⇐ 𝛽 > 2

,

(25)x(V �
t
) ∶= x = k̃V �

t

2−𝛽
er(T−t)(2−𝛽)

(26)w(V �
T
) ∶= w = k̃V �

T

2−𝛽
.

(27)
Dt =Fe

−r(TD−t) − e−r(T−t)
(
∫

V̄ �
T

0

pT (V
�
T
,F, TD)f (V

�
T
, T;V �

t
, t)dV �

T

+ ∫
∞

V̄ �
T

pT (V
�
T
+MX,F, TD)f (V

�
T
, T;V �

t
, t)dV �

T

)
,

(28)

pt(At,K, T) =

⎧⎪⎨⎪⎩

Ke−r(T−t)Q
�
2x; − 2v, 2y

�
− At

�
1 − Q

�
2y;2 − 2v, 2x

��
⇐ 𝛽 < 2

Ke−r(T−t)Q
�
2y;2 + 2v, 2x

�
− At

�
1 − Q

�
2x;2v, 2y

��
⇐ 𝛽 > 2

.

(29)wt =
V �
t
− NSt − Dt

M
.
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In this subsection, we extend the case with T = TD to the CEV process. Thus, all 
the remaining assumptions of Crouhy and Galai (1994) are assumed to hold, except 
the maturity of warrants and debt (i.e., in this case, warrants and debt have the same 
maturity). Similarly to Crouhy and Galai (1994), we also consider a benchmark firm 
with the same investment policy as the underlying firm, but financed entirely by 
common stock, as given by Eq. (20). Following an identical reasoning which led to 
the expression of the warrant in the classical warrant valuation, we can write wT as

where ET is the value of equity at T—just after the maturity of debt and prior to the 
exercise of the warrants—given by ET = max(V �

T
− F, 0) and � = 1∕(N + kM) . We 

can rewrite Eq. (30) as

Therefore, at time t = T  , the warrant holder receives the same payoff as the owner 
of � European-style call option on kV ′

t
 , with strike kF + NX and maturity at time T. 

Under the CEV process, the value of the warrant is given by:

The warrant expression given by Eq. (32) is a function of unobservable variables, V ′
t
 

and �V ′ . To relate these variables to St and �S , we follow the approach proposed by 
Ukhov (2004) defining �S = V �

t
∕StΔS�V � , where ΔS = �St∕�V

�
t
 . Since the firm value 

is now V �
t
= NSt +Mwt + Dt , to obtain ΔS we have the following expression:

where ΔD = �Dt∕�V
�
t
.

To compute ΔS we need to know Δw and ΔD . Following (Larguinho et al. (2013), Eq. 
A7) and (Dias et al. (2020), Corollary 1), we define Δw as given by Eq. (15), where wt 
is given by Eq. (32). To compute ΔD , we first need to define Dt . We know that at time 
TD = T , the debtholders receive min(F,V �

T
) = F −max(F − V �

T
, 0) . Thus, Dt can be 

written as

where pt(At,K, T) is a put option on the asset price At , with strike K and maturity at 
time T.

Armed with the expression of Dt , we can compute ΔD following Larguinho et al. 
(2013), that is

(30)wT = max(k�(ET +MX) − X, 0),

(31)wT = �max(kV �
T
− kF − NX, 0).

(32)

wt = 𝜆

⎧
⎪⎪⎨⎪⎪⎩

�
kV �

t
Q(2y;2 − 2v, 2x) − (kF + NX)e−r(T−t)[1 − Q(2x; − 2v, 2y)]

�
⇐ 𝛽 < 2�

kV �
t

�
Q(2x;2v, 2y) −

Γ(v, x)

Γ(v)

�
− (kF + NX)e−r(T−t)

×[1 − Q(2y;2 + 2v, 2x)]
�
⇐ 𝛽 > 2

.

(33)NΔS +MΔw + ΔD = ΔV � = 1,

(34)Dt = Fe−r(T−t) − pt(V
�
t
,F, T),
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Finally, the price of the warrant under the CEV process and using only observable 
variables is computed by:

1. Solving (numerically) the following system of nonlinear equations for (V �∗
t
, �V �∗ ):

where ct(At,K, T) is a call option on the asset price At , with strike K and maturity at 
time T, wt is given by Eq. (32) and

with Δw and ΔD being the delta hedge of warrant and delta hedge of debt as given by 
Eqs. (16) and (35).

2. Substituting the variables (V �∗
t
, �V �∗ ) obtained above into the following expression:

3.5 � Levered warrant model for warrants with shorter maturity than debt

In this case, and as in Abínzano and Navas (2013), we first use the Crouhy and 
Galai (1994) model as an expression for the warrants’ value depending on unob-
servable variables (V �

t
and �V � ) . Then, following Ukhov (2004), we relate the 

unobservable variables V ′
t
 and �V ′ to observable variables St and �S using the 

expression

where St is given by Eq. (23).
The warrant pricing algorithm is as follows:
1. Solve (numerically) the following system of nonlinear equations for (V �∗

t
, �∗

V � ):

(35)ΔD =

⎧
⎪⎪⎨⎪⎪⎩

1 − Q(2y;2 − 2v, 2x) −
2x(2 − 𝛽)

V �
[V �p(2y;4 − 2v, 2x)

− Fe−r(T−t)p(2x; − 2v, 2y)] ⇐ 𝛽 < 2

1 − Q(2x;2 + 2v, 2y) +
2x(2 − 𝛽)

V �
[V �p(2x;2v, 2y)

− Fe−r(T−t)p(2y;4 + 2v, 2x)] ⇐ 𝛽 > 2

.

(36)

⎧
⎪⎨⎪⎩

NSt = ct(V
�
t
,F, T) −Mwt

�S = ΔS

V �
t

St
�V �

,

(37)ΔS =
1 −MΔw − ΔD

N
,

(38)

wt = 𝜆

⎧⎪⎨⎪⎩

kV �∗
t
Q(2y;2 − 2v, 2x) − (kF + NX)e−r(T−t)[1 − Q(2x; − 2v, 2y)] ⇐ 𝛽 < 2

kV �∗
t

�
Q(2x;2v, 2y) −

Γ(v, x)

Γ(v)

�
− (kF + NX)e−r(T−t)

×[1 − Q(2y;2 + 2v, 2x)] ⇐ 𝛽 > 2

.

(39)�S =
�St

�V �
t

V �
t

St
�V � ,
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with V̄ ′
T
 being the value of V ′

T
 that satisfies

2. The warrant price at time t (< T) is given by

where Dt is calculated as

3.6 � Levered warrant model for warrants with longer maturity than debt

In this particular case, we consider long-term warrants with maturity longer than 
debt’s expiration date, i.e. T > TD . The warrant holder has the right to pay X at time 
T and receive k shares, each one with a value VT∕(N + kM) , where VT is the value 
of the firm at time T. Following Crouhy and Galai (1994), we consider a benchmark 
firm with the same investment policy, but financed only by common stock, that is

At time t = TD , if the value of the levered firm is greater than the face value of the 
zero-coupon bond, F, the bondholders receive F whereas the shareholders and war-
rant holders receive the residual value of the company, that is V �

TD
− F . On the other 

hand, if the firm value is lower than the face value of the zero-coupon bond, share-
holders and warrant holders get nothing (i.e., the firm defaults), while the bondhold-
ers get what is left of the company, VTD

 . This can be summed up as follows:

(40)

⎧
⎪⎪⎨⎪⎪⎩

St = e−r(T−t)
� ∫ V̄ �

T

0

cT (V
�
T
,F,TD)

N
f (V �

T
, T;V �

t
, t)dV �

T

+ ∫ ∞

V̄ �
T

cT (V
�
T
+MX,F,TD)

N+kM
f (V �

T
, T;V �

t
, t)dV �

T

�

𝜎S =
𝜕St

𝜕V �
t

V �
t

St
𝜎V �

,

(41)k
cT (V

�
T
+MX,F, TD)

N + kM
≡ X.

(42)wt =
V �∗
t
− NSt − Dt

M
,

(43)
Dt =Fe

−r(TD−t) − e−r(T−t)
(
∫

V̄ �
T

0

pT (V
�∗
T
,F, TD)f (V

�∗
T
, T;V �

t
, t)dV �∗

T

+ ∫
∞

V̄ �
T

pT (V
�∗
T
+MX,F, TD)f (V

�∗
T
, T;V �∗

t
, t)dV �∗

T

)
.

(44)Vt = NSt +Mwt + Dt, with V �
t
= Vt.

(45)VTD
=

{
0 ⇐ V �

TD
< F

V �
TD

− F ⇐ V �
TD

≥ F
.
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In this connection, the firm value at time t = T  can be defined in the following 
manner:

The warrants should be exercised only in the case k V �
T
+MX−F

N+kM
≥ X . Thus, through 

straightforward calculations, the warrant value at time t = T  is as follows:

Working recursively, we can define wTD
 as:

Note that the benchmark firm volatility at time TD is given by �(V �
TD
) = �V �

TD

�

2
−1 , 

with � = �V �V �
t

1−
�

2 , for t < TD . Therefore, assuming that V ′
t
 follows a CEV process 

and there are no arbitrage opportunities, it follows that

where f (V �
TD
, TD;V

�
t
, t) is the probability density function of V ′

TD
 conditional on V ′

t
.

Now that we have an expression relating the value of the warrant to V ′
t
 and �V ′ , we 

need to establish a relationship between observable variables and unobservable vari-
ables in order to implement Ukhov’s algorithm. Since the capital structure of the 
levered firm at any time prior to debt expiration consists of warrants, debt and com-
mon stock, we know that NSt +Mwt = V �

t
− Dt holds for all t < TD . Thus, we can 

look at the right-hand side of the equation as a call option on V ′ at time t, with strike 
F and maturity at time TD (≥ t) , because at time TD the warrant holders and the 
shareholders will receive jointly V �

TD
− F if V ′

TD
> F and zero otherwise. That is, 

NSt +Mwt = ct(V
�
t
,F, TD).

The algorithm to compute the price of the warrant is as follows:
1. Solve (numerically) the following system of nonlinear equations for (V �∗

t
, �∗

V � ):

(46)VT =

⎧
⎪⎨⎪⎩

0 ⇐ V �
TD

< F

V �
T
− F ⇐ V �

TD
≥ F and warrants are not exercised

V �
T
+MX − F ⇐ V �

TD
≥ F and warrants are exercised

.

(47)wT =

{
0 ⇐ V �

TD
< F

𝜆max(kV �
T
− kF − NX, 0) ⇐ V �

TD
≥ F

.

(48)wTD
=

{
0 ⇐ V �

TD
< F

𝜆cTD(kV
�
TD
, kF + NX, T) ⇐ V �

TD
≥ F

.

(49)

wt =e
−r(TD−t)𝔼ℚ[wTD

|Ft]

=e−r(TD−t)𝔼ℚ

[
�cTD(kV

�
TD
, kF + NX, T)1{V �

TD
≥F}

||||Ft

]

=e−r(TD−t) �
∞

F

�cTD(kV
�
TD
, kF + NX, T)f (V �

TD
, TD;V

�
t
, t)dV �

TD
,
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2. The warrant price at time t, with t < TD , using V �∗
t

 and �∗
V �
t

 is obtained as

4 � Numerical analysis

This section presents computational results for warrants prices under the CEV dif-
fusion. To determine the implications of the correct specification of the underly-
ing state variable process for the valuation of warrants, the obtained results under 
the CEV modeling setup are compared with the ones calculated via the lognormal 
model. In particular, we consider the following models on the computation of war-
rants prices: the Black and Scholes (1973) and Merton (1973) (BSM) stock option 
pricing model for the lognormal process and the Schroder (1989) and Heston et al. 
(2007) (SHLW) stock option pricing model for the CEV process, the classical war-
rant valuation model (CWM), the Schulz and Trautmann (1994) and Ukhov (2004) 
(STU) model, the classical warrant valuation model with debt (CWMD), the Crouhy 
and Galai (1994) (CG) model, and the levered warrant models for warrants with dif-
ferent maturities relative to debt.

To compute the warrants prices we borrow the models’ parameters from Abín-
zano and Navas (2013), but augmented by the � parameter. More specifically, we let 
N = 100 , S ∈ {75, 100, 110} , M ∈ {10, 50, 100} , k = 1 , X = 100 , �S ∈ {0.25, 0.40} , 
r = 0.0488 , F = 1000 and � ∈ {0, 1, 2, 3} , where � = 2 corresponds to the models 
presented in Abínzano and Navas (2013) under the lognormal assumption. With the 
three level of stock prices, we are able to value out-of-the-money (OTM), at-the-
money (ATM) and in-the-money (ITM) warrants. It is also assumed a non-dividend 
paying stock. Following MacBeth and Merville (1980) and Davydov and Linetsky 
(2001), the scale parameter � is selected so that the initial instantaneous volatility is 
the same across different models.

When numerical procedures are necessary to compute the warrants prices—
as in the case of the levered warrant models for warrants with longer and shorter 
maturities than debt—, we employ Monte Carlo simulation, more specifically, the 
Euler–Maruyama scheme to simulate the asset values under the CEV model.9 In 
each of these cases, we use 1,000,000 paths and 1000 time-steps. We also use Monte 

(50)

⎧
⎪⎨⎪⎩

NSt +Me−r(TD−t) ∫ ∞

F
�cTD (kV

�
TD
, kF + NX, T)f (V �

TD
, TD;V

�
t
, t)dV �

TD
= ct(V

�
t
,F, TD)

�S =
�St

�V �
t

V �
t

St
�V �

.

(51)wt = e−r(TD−t) ∫
∞

F

�cTD(kV
�∗
TD
, kF + NX, T)f (V �∗

TD
, TD;V

�∗
t
, t)dV �∗

TD
.

9  It is noteworthy to emphasize that numerical procedures are necessary in the three cases of maturi-
ties for the computation of values of unobservable variables (for models based on observable variables). 
However, when we mention numerical procedures here, we are referring to the ones implicit in the war-
rant formula itself and not in the approach proposed by Ukhov (2004).
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Table 1   Warrants prices under the CEV model with � = 0

Note: This table prices European-style call warrants under the CEV diffusion model with � = 0 when 
warrants and debt have the same maturity. The table indicates whether the stock price S or the firm value 
V is used in the calculation and if the model considers debt F (whether correctly or incorrectly). 
The volatility of stock returns is used in all calculations. Warrant prices are obtained using six different mod-
els: (1) SHLW is computed via the Schroder (1989) stock option formula; the price of the warrant obtained 
using the SHLW, w

SHLW
 , is used to compute the approximate value of the equity Ẽ = NS

t
+Mw

SHLW
 , where 

N is the number of shares of stock and M is the number of outstanding warrants; (2) CWM is the extension of 
the classical valuation model taking V = Ẽ ; (3) STU is the extension of the Schulz and Trautmann (1994) and 
Ukhov (2004) model to the CEV process; (4) CWMD is the extension of the classical warrant model but now 
taking V = Ẽ + Fe

−rT
D ; (5) LWM1V is the extension of the model proposed by Abínzano and Navas (2013) 

based on unobservable variables (Eq. (32)); (6) LWM1S is the same model but now based on observable vari-
ables S

t
 and �

S
 ; V∗ and �∗

V
 denote the firm value and firm volatility which solve the system of Eq. (36). In all 

models, the number of shares of stock is N = 100 , the maturity of warrant is T = 3 , the risk-free interest rate 
is r = 0.0488 , the strike price is X = 100 , the elasticity parameter is � = 0 and each warrant gives its owner 
the right to buy k = 1 share. The face value of the zero-coupon bond as well as its maturity are F = 1000 and 
T
D
= 3 , respectively. Warrant prices are calculated for three stock prices, S ∈ {75, 100, 110} , three levels of 

dilution, M ∈ {10, 50, 100} , and two levels of stock volatility, �
S
∈ {0.25, 0.4}

F = 1000 F = 1000 F = 1000

SHLW CWM STU CWMD LWM1V LWM1S

S V = Ẽ S V = Ẽ + Fe
−rT

D V = Ẽ + Fe
−rT

D S

S w w w w w V
∗ �∗

V
(%) w

Panel A: Low volatility, �
S
= 25%

 Panel A1: Low dilution, M = 10

  75 7.2170 6.8948 7.1494 11.4379 8.0800 8428.74 23.17 7.2008
  100 23.8024 23.3528 23.8819 29.8305 24.5168 11093.91 24.09 23.9222
  110 31.9532 31.5169 32.0749 38.3775 32.5750 12175.21 24.30 32.1024

 Panel A2: Medium dilution, M = 50

  75 7.2170 6.0903 6.9127 9.6465 6.9835 8700.57 25.26 6.9954
  100 23.8024 22.3756 24.1165 27.3786 23.1613 12052.80 27.23 24.1837
  110 31.9532 30.6154 32.4460 35.8649 31.2963 13466.83 27.52 32.4880

 Panel A3: High dilution, M = 100

  75 7.2170 5.6230 6.6721 8.4795 6.3060 9021.69 27.33 6.7894
  100 23.8024 21.9856 24.3008 25.8996 22.5080 13268.08 30.07 24.3864
  110 31.9532 30.3044 32.7536 34.3685 30.7365 15108.16 30.33 32.8006

Panel B: High volatility, �
S
= 40%

 Panel B1: Low dilution, M = 10

  75 14.1365 13.7049 14.0622 19.2872 15.6771 8413.77 38.52 14.4148
  100 33.0790 32.5989 33.1514 39.3747 34.5347 11097.95 39.26 33.3646
  110 41.6110 41.1475 41.7314 48.1737 43.0124 12182.00 39.43 41.8849

 Panel B2: Medium dilution, M = 50

  75 14.1365 12.6819 13.7942 17.0325 14.1478 8954.33 41.50 14.1683
  100 33.0790 31.5811 33.3443 36.7663 32.9366 12416.01 42.45 33.5442
  110 41.6110 40.2004 42.0706 45.5405 41.4837 13848.46 42.53 42.2043

 Panel B3: High dilution, M = 100

  75 14.1365 12.1623 13.5163 15.6180 13.2613 9613.95 44.08 13.8891
  100 33.0790 31.1988 33.4785 35.2184 32.1529 14083.31 44.94 33.6471
  110 41.6110 39.8806 42.3276 43.9914 40.7713 15962.03 44.88 42.4291
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Carlo simulation with the same number of paths and time-steps for the case of the 
levered warrant model based on unobservable variables when warrants have the 
same maturity as debt.

We construct three tables for the lognormal models based on the relationship 
between the maturities of warrants and debt. In case of the CEV model, we con-
struct nine tables based on the different � parameters and the relationship between 
the maturities of debt and warrants, that is three tables for each case of maturity. 
Given space constraints, we only present here, as an example, Table 1 that contains 
the results for the case with T = TD and � = 0 . The remaining eleven tables are rel-
egated to appendixes B, C and D of the supplementary file.

Each table has six panels, which reflect the two levels of volatility and three 
degrees of dilution. As mentioned before, warrant prices are obtained using six 
different models. The first column of each table shows the stock price, S, of the 
underlying firm. The second column uses the BSM formula in case of the log-
normal process or SHLW stock option pricing formula in case of the CEV pro-
cess to compute the warrant prices wBSM and wSHLW , respectively. The third col-
umn uses the CWM to calculate the price of the warrant assuming that the firm 
has no debt. Since this model uses unobservable variables, we approximate the 
firm’s value by Vt = Ẽt = NSt +MwBSM for the lognormal model ( � = 2 ) and 
Vt = Ẽt = NSt +MwSHLW for the CEV model. In both cases, we approximate firm’s 
volatility by �V = �S.

The fourth column uses the STU model to compute the warrant price. In this 
model, only observable variables are used. In the fifth column, we once again imple-
ment the CWM model, but now assuming that Vt = Ẽt + Fe−rTD . Thus, it is assumed 
that the investors ignore debt when valuing warrants but are able to obtain a good 
approximation of the firm value. The sixth column reports the prices obtained using 
the models proposed by Abínzano and Navas (2013) and Crouhy and Galai (1994) 
in case of � = 2 , and the ones proposed in this paper under the CEV setup, which 
incorporate debt correctly but are based on unobservable variables.

Finally, columns 7–9 report the values obtained using the models proposed by 
Abínzano and Navas (2013) (for the lognormal process) and the models proposed 
in this paper under the CEV framework, all based only on observable variables. 
Column 7 reports the firm value, column 8 shows the firm volatility and column 9 
documents the warrant price.

Additionally, we construct three tables (highlighted below) based on the rela-
tionship between the maturities of the debt and the warrants to illustrate the abso-
lute percentage pricing errors the investor is subject if he/she incorrectly assumes 
the GBM for the state variable. For this purpose, we consider the models which 
incorporate debt correctly into the valuation process whether based on observable 
variables or not. All the numerical results are obtained through the Python pro-
gramming language, version 3.7.4.
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4.1 � Warrants with the same maturity as debt

The prices of the warrants are obtained assuming that the debt has the same maturity 
as warrants, i.e., T = TD = 3 . Tables 1, B.1, B.2 and B.3 illustrate the computational 
results for warrants prices obtained for � ∈ {0, 1, 2, 3} , respectively. Table 2 gives 
the absolute value of the percentage difference between the GBM warrant price and 
the CEV warrant value relative to the GBM price.

We start our analysis by comparing the prices obtained under both diffusion pro-
cesses (CEV and GBM). Examination of the data reveals that OTM (resp., ITM and 
ATM) call warrants under the CEV model with � ∈ {0, 1} are worth less (resp., 
more) than under the lognormal model. Much more pronounced differences are 
revealed for OTM warrants. The differences in ATM call warrants are not all that 
significant when the volatility is low for � ∈ {0, 1} , but it becomes more significant 
for the high volatility case. We also note that the absolute percentage differences 
in OTM warrants decrease (resp., increase) as the proportional dilution rises for 
LWM1V (resp., LWM1S) when 𝛽 < 2 (see Table 2). Similarly, the absolute percent-
age pricing errors in ITM and ATM warrants increase as the dilution rises for both 
models when 𝛽 < 2.

If the evolution of the firm’s returns is characterized by an inverse leverage effect 
with � = 3 , OTM (resp., ITM and ATM) warrants prices tend to be higher (resp., 
lower) under the CEV diffusion than under the lognormal model when the volatility 
is low. When the volatility is high, the prices of warrants, in general, (for all the lev-
els of moneyness) under the CEV model are lower than under the GBM. For exam-
ple, in Tables B.2 and B.3, panel B3 (high volatility, high dilution), we observe that 
prices of ITM warrants obtained through LWM1S under GBM and CEV models 
are, respectively, 39.7961 and 34.4344. The absolute percentage difference is 13.47% 
(see Table 2—� = 3 , panel B3). The absolute percentage differences in OTM war-
rants prices tend to decrease (resp., increase) as the dilution rises for LWM1V (resp., 
LWM1S) when the volatility is low. When the volatility is high, the absolute per-
centage differences are more pronounced in the case of high dilution. After having 
showed the mispricing the investors are subject assuming the GBM for the underly-
ing state variable, we proceed by comparing the prices computed using the different 
valuation models extended in this work to the CEV setup.

Comparing first the models with no debt (SHLW, CWM and STU, columns 
2–4) across the tables, we find that the differences between prices predicted by 
these models are not very significant in most of the cases. However, in a few cases, 
the differences are pronounced. For example, in Table B.3, panel B3 (high vola-
tility, high dilution), we observe that the prices of ITM warrants are, respectively, 
37.1853, 32.6824 and 28.0258 . SHLW prices are not affected by dilution. Con-
versely, CWM prices always decrease with dilution while STU prices decrease more 
slowly when � ∈ {0, 1} and somewhat faster when � = 3 (especially high volatility), 
or even increase slightly (for ITM and ATM warrants with � ∈ {0, 1} ). CWM prices 
are always lower than SHLW prices. CWM prices are also lower than STU prices 
in most of the cases, except the case of medium and high dilution (high volatility) 
when � = 3 , where CWM prices are higher than STU prices. Finally, comparing 
STU and SHLW prices, we find that when � = 3 , SHLW prices are always greater 
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than STU prices. Nonetheless, when � ∈ {0, 1} , SHLW prices are slightly higher for 
OTM warrants and somewhat lower for ATM and ITM warrants than STU prices.

The CWMD model represents the first attempt to incorporate debt into the analy-
sis. The assumption is that the investor can obtain a reasonable estimate of the firm 
value, but is unable to develop a model which incorporates debt correctly. Thus, 
the firm value is now higher and drives up the value of the warrant. CWMD prices 
always decrease with dilution. As the � parameter increases, CWMD prices increase 
for OTM warrants and decrease for ATM and ITM warrants. For instance, the prices 
of CWMD ITM warrants in panel B3 for the three beta values (� ∈ {0, 1, 3}) are, 
respectively, 43.9914, 41.8500 and 36.2870.

Table 2   Absolute percentage differences between the lognormal warrant price and the CEV warrant 
value relative to the lognormal price when warrants have the same maturity as debt

This table reports the absolute percentage differences between the GBM warrant price and the CEV war-
rant price relative to the GBM price using the results collected in Table 1 and Appendix B

� = 0 � = 1 � = 3

S LWM1V LWM1S LWM1V LWM1S LWM1V LWM1S

Panel A: Low volatility, �
S
= 25%

 Panel A1: Low dilution, M = 10

  75 17.13 17.60 9.14 9.61 10.07 10.98
  100 0.60 0.52 0.09 0.05 0.03 0.18
  110 2.67 2.52 1.14 1.11 1.15 0.95

 Panel A2: Medium dilution, M = 50

  75 15.89 18.41 8.27 10.28 9.54 11.89
  100 2.63 1.58 1.16 0.53 0.82 0.45
  110 4.27 3.73 1.95 1.69 1.67 1.66

 Panel A3: High dilution, M = 100

  75 14.99 19.21 7.73 10.96 8.82 12.06
  100 3.68 2.66 1.65 1.07 1.29 2.08
  110 4.89 4.97 2.20 2.33 1.84 3.20

Panel B: High volatility, �
S
= 40%

 Panel B1: Low dilution, M = 10

  75 13.77 12.61 7.91 7.43 0.20 5.16
  100 1.54 1.72 0.06 0.41 6.30 2.43
  110 4.22 4.13 1.44 1.71 7.16 3.44

 Panel B2: Medium dilution, M = 50

  75 10.83 13.14 5.94 7.56 1.61 1.59
  100 5.15 2.72 2.01 1.06 7.96 7.76
  110 7.59 5.36 3.21 2.47 8.62 8.09

 Panel B3: High dilution, M = 100

  75 9.02 13.77 5.04 7.66 3.65 10.46
  100 7.25 3.74 3.01 1.75 9.30 14.15
  110 9.36 6.62 4.02 3.26 9.68 13.47
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We now address the models where the debt is properly incorporated. To obtain 
the warrants prices using LWM1V, we first define the reference firm volatility as 
�V � = �S and the initial value of the benchmark firm as V �

t
= Ẽt + Fe−rTD . Next, we 

simulate by Monte Carlo the value of V ′
t
 from t = 0 to t = T  . In each round, the 

warrant value at time t = T  is computed as wT = �max(kV �
T
− kF − NX, 0) (see Eq. 

(31)). The warrant price at the current time t is the mean of the discounted payoffs of 
the warrant. Note that V ′

t
 is simulated through Eq. (3). LWM1S prices are obtained 

by solving the system of Eq. (36) to obtain the values of unobservable variables and 
then by substituting them and the remaining inputs into Eq. (38).

From columns 6 and 9 across the tables, we find that LWM1V prices can be 
greater or smaller than LWM1S, and these differences are, sometimes, significant. 
For example, in panel B3 of Table B.1, the prices of ATM warrants for LWM1V and 
LWM1S are 30.8797 and 33.0027. The firm value and volatility consistent with the 
market data in the latter case are 14, 123.65 and 46.10%, respectively. When � ≤ 2 , 
its values may have a positive or negative impact on warrant prices. However, for 
a given warrant, the impact appears to be always monotonic, that is as � increases 
from 0 to 2, the value of warrant either increases monotonically or decreases mono-
tonically. There are several points that are noteworthy to highlight comparing 
LWM1S with other pricing models in the tables. LWM1S prices can be higher or 
smaller than SHLW prices and STU prices; we obtain higher prices with LWM1S 
than with CWM; we always obtain lower prices with LWM1S than with CWMD.

To sum up, we have the following remarks from this subsection. Warrants prices 
always decrease with dilution for OTM warrants. The value of � may have a positive 
or negative impact on warrant prices, but it appears to be always monotonic (at least 
when 𝛽 < 2 ). The absolute value of the percentage difference between the CEV war-
rant prices and GBM warrant prices relative to GBM prices, at least for the models 
considered (LWM1V and LWM1S), are more significant for OTM warrants in most 
of the cases. In this sense, a misspecified value of � can lead the investor to signifi-
cant pricing errors in various cases, especially for OTM and ITM warrants.

4.2 � Warrants with shorter maturity than debt

This subsection addresses the case T < TD , where T = 1 and TD = 3 . Since the matu-
rity of warrants is shorter, the prices are now, obviously, lower than in the previous 
subsection. Tables C.1, C.2, C.3 and C.4 display the computational results for war-
rants prices with � ∈ {0, 1, 2, 3} , respectively. Table 3 gives the absolute percentage 
difference between the CEV warrant price and GBM warrant price relative to GBM 
price for the CG model and the levered warrant model based on observable variables 
(LWM2S).

Analysing the tables, we find that OTM (resp., ITM and ATM) warrants prices 
are lower (resp., higher) under the CEV model with � ∈ {0, 1} than under the GBM. 
As in the previous case, the differences are much more pronounced in OTM war-
rants. For example, in Tables C.1 and C.3, panel A3 (low volatility, high dilution), 
the values of OTM warrants computed via LWM2S under CEV and under GBM 
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are, respectively, 0.9950 and 1.4413. The absolute value of the percentage difference 
in this case is 30.96% (see Table 3, panel A3). From Table 3, we can see that the 
maximum percentage difference from the lognormal case when the market exhib-
its downward sloping volatility smile pattern (i.e., 𝛽 < 2 ), for the set of parameters 
used, is about 33%, which is not negligible.

When � = 3 and volatility is low, we obtain higher (resp., lower) prices under the 
CEV model for OTM (resp., ITM) warrants than under GBM. In case of ATM war-
rants, prices can be higher or lower under CEV than under GBM, but the difference 
is almost insignificant. This is to be expected as the � value is adjusted to the value 
of � such that the instantaneous volatility of the percentage change in asset values 
is identical for the CEV process with different � values. When � = 3 and volatil-
ity is high, prices can be higher or lower under the CEV model than under GBM 
depending on the model (levered or unlevered), dilution and moneyness. Never-
theless, when volatility is high, the absolute percentage differences are very pro-
nounced in case of high dilution, even for ATM warrants. For instance, in Tables 
C.3 and C.4, panel B3, the prices of an ATM warrant under GBM and CEV com-
puted through LWM2S are, respectively, 17.9520 and 12.0469. Overall, the absolute 
percentage differences are very pronounced in several cases and this figure can be as 
high as 62.46% (see Table 3, panel B3). We now proceed with comparing the prices 
obtained via the different models extended in this paper to the CEV process.

As usual, we begin with the unlevered models (SHLW, CWM and STU). CWM 
prices are always lower than SHLW and STU prices. SHLW prices are lower than 
STU prices for ITM and ATM warrants when � ∈ {0, 1} and � = 3 , the latter case 
only when the volatility is low and dilution is low or medium. In all the other cases, 
SHLW prices are higher than STU prices (however, the differences are not very 
high). We move on to CWMD and find the prices to be, in general, greater than the 
prices obtained with the other models (recall that firm value under CWMD is higher 
than under other unlevered models).

Now, we compare the prices obtained using the models which incorpo-
rate debt correctly, that is CG and LWM2S. When implementing the CG model, 
we take V �

t
= Ẽt + Fe−rTD as the initial value of the benchmark firm and �V � = �S 

as the initial volatility of firm returns. We then find the reference asset value, V̄ ′
T
 , 

above which the warrants are exercised. That is, we find the value of V ′
T
 that satis-

fies [cT (V �
T
+ 100M, 1000, 3)]∕(N +M) = 100 . Note that the volatility in this case 

is �(V �
T
) = �V �

T

�

2
−1 , where � = �V �V �

t

1−
�

2 . Using V̄ ′
T
 obtained, we simulate by Monte 

Carlo (see Eq. (3)) the value of the benchmark firm, V ′
t
 , from t = 0 to t = T  . In each 

round, the share value is obtained using the Eq. (22), and wT = kST − X if war-
rants are exercised or wT = 0 if warrants are not exercised. After a simulation wih 
1, 000, 000 paths and 1, 000 time-steps, we obtain the values of St and wt . When 
implementing LWM2S, we use the simulation described above and solve the system 
of equations given by (40) such that the value of St given by the simulation coincides 
with the known value of St and the expression of �S is satisfied. LWM2S prices can 
be greater or lower than CG prices. However, LWM2S prices are always greater 
than CG prices when volatility is high and dilution is medium or high.
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Comparing LWM2S with other pricing models, we find that LWM2S prices 
can be greater or lower than SHLW prices, and when � = 3 , these differences are 
very pronounced. For example, in Table C.4, panel B3, the prices of ITM war-
rants computed via SHLW and LWM2S are, respectively, 24.3436 and 18.6631. 
This is to be expected as SHLW ignores dilution. CWM prices are lower than 
LWM2S prices when � ∈ {0, 1} . When � = 3 , CWM prices can be greater or 
lower than LWM2S prices. The prices obtained using STU also can be greater 
or lower than the ones obtained using LWM2S. Finally, we obtain higher prices 
with CWMD than with LWM2S in most of the cases. In summary, like in the 
previous subsection, prices always decrease with dilution for OTM warrants. In 
case of ITM and ATM warrants, prices can increase or decrease with dilution. 

Table 3   Absolute percentage 
differences between the 
lognormal warrant price and 
the CEV warrant value relative 
to the lognormal price when 
warrants have shorter maturity 
than debt

This table reports the absolute percentage differences between the 
GBM warrant price and the CEV warrant price relative to the GBM 
price using the results collected in Appendix C

� = 0 � = 1 � = 3

S CG LWM2S CG LWM2S CG LWM2S

Panel A: Low volatility, �
S
= 25%

 Panel A1: Low dilution, M = 10

  75 29.81 32.44 15.50 16.69 18.66 51.88
  100 0.64 0.42 0.36 0.38 0.13 2.69
  110 2.62 2.32 1.32 1.30 0.98 0.16

 Panel A2: Medium dilution, M = 50

  75 30.31 31.64 15.75 15.74 17.96 16.91
  100 1.83 3.09 0.94 2.08 0.64 12.51
  110 3.32 4.11 1.64 2.37 1.39 3.17

 Panel A3: High dilution, M = 100

  75 30.90 30.96 16.06 15.02 14.26 13.05
  100 2.55 6.15 1.27 3.80 1.45 7.89
  110 3.50 6.48 1.70 3.60 1.62 7.90

Panel B: High volatility, �
S
= 40%

 Panel B1: Low dilution, M = 10

  75 21.36 25.79 11.00 11.76 13.91 12.81
  100 1.60 0.88 0.62 0.35 12.84 3.11
  110 4.36 2.16 1.94 1.67 11.81 4.37

 Panel B2: Medium dilution, M = 50

  75 21.19 22.52 10.80 9.07 34.46 23.04
  100 3.33 3.70 1.56 2.61 21.39 16.58
  110 5.76 5.95 2.71 3.28 17.83 12.91

 Panel B3: High dilution, M = 100

  75 20.96 17.69 10.62 5.91 62.46 58.64
  100 4.62 10.31 2.18 4.87 33.72 32.89
  110 6.56 11.67 3.07 5.14 26.10 24.70
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Prices can be greater or lower under the CEV model than under the lognormal 
model depending on several factors, viz. moneyness, dilution, volatility, leverage, 
etc. As before, the elasticity parameter, � , has a significant impact on the warrant 
value and, therefore, a misspecified value of � can lead the investor to significant 
pricing errors (especially for OTM warrants).

4.3 � Warrants with longer maturity than debt

Now, we assume T = 3 and TD = 1 . Tables D.1, D.2, D.3 and D.4 show the com-
putational results for warrants prices under the CEV model for � ∈ {0, 1, 2, 3} , 
respectively. Table 4 illustrates the absolute percentage difference between the CEV 
warrants prices and GBM warrants prices relative to GBM prices for the levered 
warrants models based on unobservable variables (LWM3V) and on observable var-
iables (LWM3S).

As in the previous subsections, we start by comparing the results under both dif-
fusion processes. The results, once again, indicate that OTM (resp. ITM and ATM) 
warrants are worth less (resp. more) under the CEV model than under GBM when 
𝛽 < 2 . On the other hand, when � = 3 , prices under CEV can be higher or lower 
than prices under GBM, depending on volatility and the specific model being used. 
For example, in Tables D.3 and D.4, panel B1, the prices of an OTM warrant com-
puted via LWM3V and LWM3S under GBM are, respectively 18.5087 and 16.7596, 
and under CEV are 18.3539 and 17.2418. We also note that the absolute value of 
percentage difference between CEV prices and GBM prices relative to GBM prices 
for ATM warrants is significant in various a cases (especially high dilution).

We now compare the prices obtained through different valuation models under 
the CEV setup. Since the maturity of warrants is the same as in Sect. 4.1, warrants 
prices in this section obtained through unlevered warrants models (SHLW, CWM 
and STU) are the same as the ones obtained in that subsection. Moreover, since the 
maturity of the debt is now shorter, both firm value and debt value are now higher 
which may explain why the models incorporating debt produce higher values in this 
subsection than in Sect. 4.1. LWM3V prices are obtained in the following manner. 
First, we take V �

t
= Ẽ + Fe−rTD and �V � = �S as the initial value of the benchmark 

firm and its volatility, respectively. Next, we simulate by Monte Carlo the value of V ′
t
 

from t = 0 to t = TD . In each run, the warrant value at time t = TD is determined as a 
function of whether the value of V ′

TD
 given by the simulation is above or below F, for 

which we use the expression of wT given by (47).
To compute prices using LWM3S, we use the simulation described above and solve 

the system of nonlinear equations given by (50) such that the value of St given by the 
simulation coincides with the known value of St and the expression of �S is satisfied. 
Analyzing the data, we find that when � ∈ {0, 1} , LWM3S underprices LWM3V when 
dilution is low and overprices it when dilution is medium or high. The absolute dif-
ference between the models is more pronounced when LWM3S overprices than when 
it underprices. When � = 3 , LWM3S only overprices when volatility is low and dilu-
tion is medium or high. In all the other cases (i.e., low volatility and low dilution or 
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high volatility), LWM3S always underprices LWM3V, but the differences are not very 
high. We also find that LWM3S prices are always higher than SHLW, CWM and STU 
prices when 𝛽 < 2 . When � = 3 , LWM3S seems to underprice SHLW more often 
and overprice CWM and STU more frequently. CWMD, in general, overprices other 
pricing models. Finally, warrants prices may either increase or decrease with dilution, 
but the impact appears to be always monotonic. In summary, when � ∈ {0, 1} , OTM 
warrants prices are lower under the CEV model than under GBM and ITM and ATM 
are higher. From the results, we conclude that the introduction of debt into the models 
plays an important role on warrant pricing and, therefore, this variable should be taken 
into account when valuing warrants. The absolute percentage pricing differences found 

Table 4   Absolute percentage differences between the lognormal warrant price and the CEV warrant 
value relative to the lognormal price when warrants have longer maturity than debt

Note: This table reports the absolute percentage differences between the GBM warrant price and the 
CEV warrant price relative to the GBM price using the results collected in Appendix D

� = 0 � = 1 � = 3

S LWM3V LWM3S LWM3V LWM3S LWM3V LWM3S

Panel A: Low volatility, �
S
= 25%

 Panel A1: Low dilution, M = 10

  75 15.62 15.23 8.21 7.96 9.51 9.12
  100 1.08 1.52 0.40 0.63 0.09 0.33
  110 2.99 3.19 1.36 1.47 1.13 1.22

 Panel A2: Medium dilution, M = 50

  75 14.79 9.03 7.72 4.75 8.75 8.45
  100 2.81 6.33 1.25 2.79 0.96 3.17
  110 4.35 7.16 2.00 3.18 1.73 1.71

 Panel A3: High dilution, M = 100

  75 14.08 0.23 7.31 0.52 8.11 1.40
  100 3.76 12.80 1.68 5.40 1.37 4.89
  110 4.91 12.36 2.21 5.21 1.86 4.92

Panel B: High volatility, �
S
= 40%

 Panel B1: Low dilution, M = 10

  75 12.24 11.37 6.66 6.09 0.84 2.88
  100 2.41 3.08 0.83 1.22 6.57 4.74
  110 4.95 5.37 2.11 2.36 7.36 5.86

 Panel B2: Medium dilution, M = 50

  75 10.15 0.94 5.54 1.01 2.85 6.60
  100 5.44 11.19 2.27 4.94 8.49 13.23
  110 7.79 12.44 3.42 5.57 9.07 14.05

 Panel B3: High dilution, M = 100

  75 8.39 14.04 4.61 5.59 4.57 17.52
  100 7.40 20.52 3.16 9.32 9.78 23.94
  110 9.43 20.16 4.13 9.27 10.09 24.71
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in this paper could have been higher had different set of parameters (eg., higher � s in 
modulus, higher stock price, etc.) been used. In this sense, we can conclude that an 
incorrect specification of the underlying variable may lead investors to significant pric-
ing errors.

5 � Concluding remarks

This paper is concerned with the pricing of levered warrants under a state dependent 
volatility process, namely the CEV process. It complements the literature on warrant 
pricing since much of the previous work assumes that the underlying state variable fol-
lows a GBM process. We derive pricing solutions for warrants in closed-form for the 
case where the maturity of the warrant is the same as the maturity of the debt. Like the 
GBM case, when the maturity of warrants differs from the maturity of the debt, prices 
can be computed numerically. Given the fact that both the lognormal and CEV models 
were calibrated so that the instantaneous volatility at the initial firm value is the same 
across different models, the differences found throughout the numerical analysis stem 
purely from the relationship between volatility and price levels.

We conclude that, in general, investors are subject to a significative pricing bias 
assuming the GBM for the state variable and, thus, the CEV process should be pre-
ferred when valuing warrants. The relative difference between CEV prices and GBM 
prices (with GBM prices as reference) is more pronounced for OTM warrants. Since 
warrants prices are sensitive to the volatility specification of the CEV process, the pric-
ing errors may be even larger if we assume different elasticity parameters. Dilution may 
have either a positive or negative impact on warrants prices, but the impact seems to be 
always monotonic. The debt assumes an important role on warrant pricing and, thus, 
models consistent with market data can be used to price warrants taking this variable 
correctly into account. Finally, the pricing bias problems discussed in the Introduction 
section of this paper regarding the Hertz company would be reduced had our formulas 
been available and used to value warrants.
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