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Abstract

Much of the work on the valuation of levered (and unlevered) warrants assumes that
the volatility of the underlying state variable is constant. This paper extends the lit-
erature on warrant pricing to a more general assumption for the state variable pro-
cess, the so-called constant elasticity of variance (CEV) process. The CEV model is
well-known for its ability to capture some empirical observations found in the finan-
cial economics literature, namely the asymmetry between equity returns and volatil-
ity and the implied volatility skew. Using the CEV process, we are able to reduce
pricing bias as the volatility becomes a function of the underlying state variable. We
price European-style call warrants without restrictions on the debt maturity. When
warrants have the same maturity as debt, it is possible to obtain closed-form solu-
tions for warrants prices. When the maturity of warrants is different from the matu-
rity of debt, prices can be computed numerically through very efficient and simple
to implement valuation methodologies.

Keywords CEV model - Warrants - Dilution - Debt - Volatility

JEL Classification C63 - G13 - G32

1 Introduction

As mentioned by Ingersoll (1987), warrants are similar to call options. Both give
the holder the right, but not the obligation, to buy at or before (in case of American-
style) or at (in case of European-style) a given set date, shares of stock of a particu-
lar company at an agreed price (the strike price). In general, there are two types of
warrants: covered warrants (also known as bank-issued options) and equity warrants
(also known as corporate warrants). The covered warrants are issued by a third party
(usually a financial institution) and have no dilution effect. Conversely, the exercise
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of equity warrants leads to a dilution of the equity of the company, being this one
of the biggest differences between this type of warrants and options. In a nutshell,
equity warrants are only issued by companies.

Given their particular features, warrants have been greatly used recently. For
example, Chuang et al. (2021) document that, by the end of 2015, there were 10,542
covered warrants on the Taiwan Stock Exchange. There is evidence of usage of war-
rants as part of underwriter’s compensation—see Dunbar (1995), Garner and Mar-
shall (2014) and Khurshed et al. (2016), among others—, as stand alone capital
raising instruments—e.g., Suchard (2005)—, in unit offerings—see, for instance,
Schultz (1993), Byoun and Moore (2003), Gajewski et al. (2007) and Howe and
Olsen (2009)—, etc.! Given the burgeoning interest on this type of financial instru-
ments, the existence of a model able to price them accurately, taking the observed
stylized facts into account becomes essential. Since covered warrants share, in
essence, their characteristics with options, by the law of one price their prices should
coincide with the prices of the options. The major difficulty arises in pricing corpo-
rate warrants. The creation of a model to price these last has been one the biggest
challenges in the warrant valuation process.

In some cases, both academics and practitioners adopt the Black and Scholes
(1973) stock option formula in order to value corporate warrants. As we will discuss
later, this model ignores several stylized facts found in the financial literature and, as
aresult, its prices are, usually, very inaccurate. For instance, Chang et al. (2013) find
that the market prices of warrants are generally much higher systematically than the
Black—Scholes prices in Chinese warrant market.

In other cases, practitioners adopt somewhat obscure and unreasonable meth-
ods to value warrants, which gives rise to prices very far from reality. An interest-
ing recent example is the case of the bankrupt rental-car company Hertz that has
received much attention in the financial social media—e.g., March 2, 2021, and May
13, 2021, in Bloomberg and Financial Times news articles, respectively. The Finan-
cial Times article states that “The private equity consortium that will acquire Hertz
says the company’s current public stockholders will get a package worth $7.36 for
each share. About $2 of that figure is in cash as well as direct new shares in the reor-
ganised Hertz. The balance comes in the form of warrants, offering the option to buy
into the new Hertz at a given price. These are a derivative security whose valuation
comes from the famed Black—Scholes equation, which contains a variety of inputs.
With Hertz shares trading at $6 a piece, Wall Street does not seem to agree with the
maths involved." The issue here is that private equity bidders and Hertz have used
a stock price volatility input of 57.5% in the Black—Scholes equation to determine
the $5.47 value of warrants, which is very close to the underlying stock price of $6.
Clearly, this calculation has not convinced everyone. This example highlights the
need of more realistic models to value warrants. Hence, the novel pricing solutions
for levered (and unlevered) warrants proposed in this paper should be of interest not
only for academics but also for practitioners in the banking and finance industry.

From a theoretical standpoint, Black and Scholes (1973) propose the valuation
of a warrant as a call option on shares of firm’s equity rather than a call option on

! Units are bundles of common stock and warrants sold together as a package.

@ Springer



Pricing levered warrants under the CEV diffusion model 57

shares of common stock at half stated exercise price (they assume a dilution factor,
i.e. the ratio of the number of outstanding warrants to outstanding shares of com-
mon stock prior to exercise, equal to one). However, the derivation of a formula tak-
ing the dilution effect correctly into account is done by Galai and Schneller (1978).
Despite their great contribution to the warrant valuation process, the models pro-
posed by Black and Scholes (1973) and Galai and Schneller (1978) have the short-
coming of using unobservable variables, namely the firm’s value (the sum of all
warrants outstanding and common stock outstanding) and volatility. To overcome
this issue, Schulz and Trautmann (1994) and Ukhov (2004) propose to solve a sys-
tem of nonlinear equations in order to obtain the value of these variables and then
use them to compute the warrant value.

Even though much of this early work assumes an equity-based approach (equity
as the underlying state variable) and takes the dilution effect into account, there have
been empirical investigations supporting the valuation of warrants as plain-vanilla
call options on common stock ignoring the dilution effect (known as option-like
valuation)—e.g., Schulz and Trautmann (1994), Sidenius (1996) and Bajo and Barbi
(2010). For instance, Schulz and Trautmann (1994) find that option-like valuation pro-
vides correct prices for in-the-money and at-the-money warrants and, therefore, claim
that in these cases there is no need to use the correct warrant valuation approach. Hand-
ley (2002) advocates that this framework is correct and consistent with the Efficient
Market Hypothesis, where the stock price of the underlying firm is already incorporat-
ing dilution and, hence, there is no need to correction. Notwithstanding the practical
usability of this model, it has the inconvenience that the stock cannot follow a lognor-
mal distribution, even when the value of firm’s assets follows such distribution—see,
for instance, Galai and Schneller (1978) and Crouhy and Galai (1994).

Although the models proposed by Black and Scholes (1973) and Galai and Schneller
(1978) shed light on the valuation of warrants, they are not realistic since they do not
consider debt into the firm’s value. The first model taking debt correctly into account is
derived by Crouhy and Galai (1994), where the firm’s value is a sum of equity (aggre-
gate of stock and warrants) and debt. They assume that warrants have a maturity shorter
than debt’s expiration date and that firms reinvest the proceeds from warrants exercise.
This model is extended by Abinzano and Navas (2013) to the cases where warrants
have longer and the same maturity as debt. Like many other authors on warrant pricing,
Crouhy and Galai (1994) and Abinzano and Navas (2013) develop their model under
the assumption that the underlying state variable (firm’s value) follows a geometric
Brownian motion (henceforth, GBM) with constant drift and variance parameters.

Nevertheless, Lauterbach and Schultz (1990) and Hauser and Lauterbach (1997)
show, through an extensive empirical investigation, that the constant elasticity
of variance (henceforth, CEV) model of Cox (1975) outperforms the Black and
Scholes (1973) model when predicting warrant prices.> According to these authors,
despite the analytical tractability of the Black—Scholes model, the assumption of a
GBM with constant drift and volatility can lead investors to mispricing, since, apart
from the problems with stochastic interest rates, early exercise prior to dividend

2 See Veld (2003) for a general overview of the literature on empirical research under alternative sto-
chastic processes.
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payments, among others, it is well-known that equity volatility is far from being
constant.

Bajo and Barbi (2010) find that even the stock-based approach can be more accu-
rate if one incorporates the risk-shifting effect into the valuation by using the CEV
model. According to the authors, the option-like valuation proposed by Schulz and
Trautmann (1994) and Sidenius (1996) under the GBM assumption ignores the vola-
tility spillover which is verified when the firm issues warrants. Since warrants are
similar to call options, a negative (resp., positive) shock on the equity value leads to
a stronger depreciation (resp., appreciation) of the warrant than of the stock price.
To put it in another way, part of the risk assumed by the shareholders is shifted to
the warrant holders which causes a lower stock price variability relative to an identi-
cal firm with no outstanding warrants.

Moreover, it is well documented—e.g., Jackwerth and Rubinstein (1996)—that
after the crash of 1987, the empirical asset returns distributions are more left-skewed
and changed from platykurtic to leptokurtic and, thus, the lognormal assumption is
unable to consider these features. Therefore, the use of alternative stochastic pro-
cesses can reduce pricing bias and help investors improving their decision-making
process.

Overall, there are several advantages in applying the CEV model to price finan-
cial derivatives. It is consistent with two facts empirically supported in the literature,
namely: the inverse relation between the implied volatility and the strike price of an
option contract (implied volatility skew or implied volatility smile) documented, for
example, by Dennis and Mayhew (2002), and the asymmetry between equity return
and volatility, explained by a combination of financial leverage, volatility feedback
and operating leverage, as showed, for instance, in Beckers (1980), Christie (1982),
Bekaert and Wu (2000) and Choi and Richardson (2016). The CEV model allows
analytical tractability and volatility is modeled without the need of introducing an
additional stochastic process as in the case of Heston (1993) stochastic volatility
model. It is, synchronously, a local volatility and a “complete-market” model and,
therefore, allows the construction of synthetic portfolios.

Since the lognormal assumption with constant volatility in the Black and Scholes
(1973) model is unable to accommodate the aforementioned stylized facts, the main
aim of this paper is to generalize the models in the literature under GBM to the CEV
framework where the volatility is no longer constant, but rather becomes a function
of the underlying state variable. To accomplish this purpose, we use the closed-form
solutions proposed by Schroder (1989) for the elasticity parameter § < 2 and Hes-
ton et al. (2007) for g > 2. We price warrants with no restriction of debt maturity,
i.e., warrants can have the same, shorter or longer maturity than debt. When war-
rants have the same maturity as debt, it is possible to obtain analytical solutions

3 A similar conclusion was drawn by Gemmill and Thomas (1997) for warrants on the London Stock
Exchange.
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for warrants prices. When warrants and debt have different maturities, prices can be
computed via numerical procedures.*

The present paper contributes to the literature in different ways. First, we pro-
pose analytical solutions, under the CEV process, for pricing warrants with the same
maturity as debt. For this purpose, we follow Abinzano and Navas (2013) whose
solution was derived under a lognormal assumption. We also follow Schroder (1989)
and Heston et al. (2007) to compute the prices under the CEV model. Although not
trivial, our framework is flexible enough and can be extended or modified in order to
analyze the existence of dark matter in corporate warrants—see, for instance, Bak-
shi et al. (2022). Second, we propose numerical solutions for pricing warrants with
longer or shorter maturity than debt under the CEV diffusion. In this case, to com-
pute the warrant prices with the Abinzano and Navas (2013) model, we use Monte
Carlo simulation and solve the system of nonlinear equations, simultaneously. Third,
we demonstrate, through an extensive numerical analysis, the implication of an
incorrect specification of the underlying state variable process for the valuation of
warrants. Our results show that, in general, the investors are subject to a very signifi-
cative pricing bias assuming the GBM for the state variable. For comparative pur-
poses, we also extend the several models available in the literature such as Ukhov
(2004) model, classical warrant valuation, among others, to the CEV process.

The remainder of this paper is organized as follows. Section 2 shortly overviews
the general setup of the CEV model and addresses the problem of simulating asset
prices under the CEV process. Section 3 derives the warrant pricing models under
the CEV model. Section 4 presents some numerical examples and compares the
results under the CEV framework against those of GBM setup. Finally, Sect. 5 con-
cludes the paper. All the accessory results are relegated to the appendixes collected
in the supplementary file.

2 The CEV diffusion model

This section briefly reviews the building blocks of the CEV model and describes the
Euler-Maruyama scheme that is required to approximate the path of the asset values
for the cases where no closed-form warrant pricing solutions are available.

2.1 Setup of the model

Taking the equivalent martingale measure Q as given, we assume that the asset
price {V,,t > 0} (under Q that takes as numeraire the money market account) is a
time-homogeneous nonnegative diffusion process solving the following stochastic
differential equation:

4 Tt is important to point out that, even in the cases of analytical solutions (warrants with the same matu-
rity as debt), we need numerical procedures to obtain the value of unobservable variables. Also note that
unlike Lauterbach and Schultz (1990), who consider a firm financed only by equity, in this paper we
incorporate debt correctly into the valuation process.
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dv, = rV,dt + o(V)V,dW2, (1)

with the local volatility function given by

-1

o(V) =48V} 2)

(ST

for 6 € R,, f € R and where r represents the constant risk-free interest rate, o(V,)
represents the local volatility function (i.e., the instantaneous volatility per unit of
time of asset returns), which is assumed to be continuous and strictly positive for all
Ve 0),d WlQ € R is a standard Brownian motion under @, initialized at zero and
generating the augmented, right continuous and complete filtration F = {F, : t > 0}

We recall that the CEV specification given by Eqgs. (1) and (2) nests the log-
normal assumption of Black and Scholes (1973) and Merton (1973) (f =2)
as well as the absolute diffusion (f = 0) and the square-root diffusion (f = 1)
processes of Cox and Ross (1976) as special cases. We further note that when-
ever f < 2 (resp., f > 2), the local volatility function (2) is a decreasing (resp.,
increasing) function of the asset price, thus being able to generate downward-
sloping (resp., upward-sloping) volatility skews that are observed in the market.
The elasticity of return variance with respect to price is equal to f — 2 given that
dv(V,))/v(V,) = (f —2)dV,/V,, where w(V,) = (‘52V,ﬂ_2 is the instantaneous variance
of asset returns. The model parameter 6 is a positive constant that can be inter-
preted as the scale parameter fixing the initial instantaneous volatility at time
t=0,0p,=0(V,) = éVg/ *>~! This calibration procedure is standard in the litera-
ture and it ensures that CEV models with different values of f have the same
variance at the beginning of the simulation period, which allows us to make valid
comparisons between different CEV models. Additional background on the CEV
diffusion process can be consulted, for instance, in Davydov and Linetsky (2001),
Dias and Nunes (2011), Larguinho et al. (2013), Dias et al. (2015) and Dias et al.
(2020).

2.2 Simulation of asset values

Unlike the GBM process, where the asset value (V) can be written analytically (thus
yielding an exact solution), in the case of the CEV process such simple representa-
tion is not available. Nevertheless, it is still possible to use Monte Carlo simulation
by discretizing the time interval and simulating the state process dynamic on this
discrete-time grid—see, for example, Broadie and Kaya (2006). The straightforward
Euler-Maruyama discretization scheme, described in Kloeden and Platen (1992),
can be used to approximate the path of the asset value on a discrete-time grid.

Let 0=1y,<t <..<t,=T be a partition of n evenly-spaced time points
t, i=ty+iAt, fori=0,1,..., and with Az := (T - to)/n. The discretization of the
asset value under the CEV model is written as:
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‘
VIi=V  +rV_ At+8V': AWR. €)
We recall that the scale parameter 6 is readjusted so that the initial instantaneous
volatility is the same across different models. Thus, we can rewrite the last expres-
sion as

1-£ b
Q
V=V, +1V]_ At+o, V) PV AW )

It is well-known that Eq. (1) applies only up to the stopping time
1o =inf{r>0:V =0}. 5)

Following the insights of Lindsay and Brecher (2012), the treatment of the process
after the stopping time depends on the underlying financial problem. In this case,
the stopping time (5) indicates the time of bankruptcy of the company. The prob-
ability that V! hits the boundary point 0 for markets exhibiting forward skew pat-
terns (f > 2) is zero and, thus, V/ will never go to negative values in this particular
case. However, when f < 2, Vt’ hits zero with positive probability. Therefore, when
negative values are encountered during the simulation, V/ is simply set to 0 from that
time-step onward.

3 Pricing levered warrants

This section is concerned with the extension of the warrant pricing models available
in the literature under the lognormal framework to the more general CEV process.
In particular, the following models are considered: the classical warrant valuation
model, the Schulz and Trautmann (1994) and Ukhov (2004) model, the Crouhy and
Galai (1994) model and the levered warrant models for the cases of warrants with
different maturities relative to debt.

3.1 Classical warrant valuation

After Black and Scholes (1973) proposed the valuation of warrants as a call option
on equity, adjusted by the dilution factor, this method became standard on the war-
rant valuation process. As recalled by Abinzano and Navas (2013), this model is
usually known as the “correct warrant valuation”. In this model, it is assumed that
the underlying state variable is the firm value. The goal now is to extend the classi-
cal warrant valuation model to the CEV process. Since this model does not consider
debt, the value of the firm in this case is equal to its equity value.

Assume a firm is financed by N shares of common stock and M European-style
call warrants. Each warrant entitles the owner to receive k shares of stock at time
t = T upon payment of X dollars. The company is financed only by these two sources
of funding. Assume also that V, and o, are the firm value and firm returns volatility
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at time ¢, and S, and o denote the stock price and stock volatility, respectively, at
time ¢.> Let w, denote the price of each warrant at time .

In what follows, we show the insights behind the classical warrant valuation
model described in Ingersoll (1987). If the M warrants are exercised at time t = T,
the firm receives an amount of money of MX and issues Mk new shares of stock.
Thus, if it is known that the warrants will be exercised at the maturity date 7, then
each share of stock will be worth S, = (V; + MX)/(N + kM). At the point where
the warrants holders are indifferent about exercising (kV; = NX) each k shares are
worth X, so the warrants are exercised only if kS; > X, just as with plain-vanilla
call options. If the warrants owners strictly prefer exercising (kV; > NX), then the
common stock is worth less than the value of the firm’s assets. Note that this short-
fall simply measures the value of the warrants. The same is generally true prior the
maturity of the warrants. Therefore, the value of each warrant at maturity, 7, is given
by

k
—(V; +MX)-X < kV;>NX
wr =< N+ kM( r ) r
1
=mmax(kVT - NX, 0)
The time-T payoff (6) implies that the time-¢ warrant value is equal to 1 /(N + kM)
call option on kV, with strike price NX and maturity at time 7' (> 1), i.e.

1

w, = mct(le, ]VX, T), (7)
where c,(A,, K, T) is the time-f value of a plain-vanilla call option on the asset price
A,, with strike K and maturity at time 7 (> f) given by

Ct(Ap K’ T)

A,0Q2y;2 — 2v,2x) — Ke"T=D[1 — QQ2x; — 2v,2y)] € f <2

A, [Q(Zx;Zv, 2y) - %} — KeTD[1 — QQ2y:2 +2v,20] € f > 2

@)
as shown by Schroder (1989) and Heston et al. (2007) for § < 2 and f§ > 2, respec-
tively, with I'(a,z) and T'(a) being, respectively, the upper incomplete gamma
function and the Euler gamma function given in Abramowitz and Stegun (1972,
Egs. 6.5.3 and 6.1.1), O(y;v, &) representing the complementary distribution function
of a non-central chi-square law with v(> 0) degrees of freedom and non-centrality
parameter & 0), and®

5 Note that since we are valuing the warrants at the current time ¢, the scale parameter & is selected so
that oy, = o(V,).

 We recall that Eq. (8) corrects the misprint error of (2007, Page 367) highlighted in Veestraeten (2017)
and Dias et al. (2020). Note also that I'(v, x)/T'(v) can be alternatively written as Q(2y; 2v, 0)—see, for
instance, Dias et al. (2020, Footnote 5). As in Larguinho et al. (2013), Ruas et al. (2013), Dias et al.
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]; _ 2r
= B2 - pleTeh 1] 2
x(A,) = x = kAT P T-0CD), (10)
y(K) =y =kK*7, (11)
8(A) :=6=0,A,7"" (12)
and
o |
- B— 2" (13)
Therefore, the warrant price can be expressed as
L]
TN+ kM
[kV,Q(2y;2 — 20, 2%) = NXe"T-D[1 — O(2x; — 2, 2y)]] cp<2
[kv, [Q(2x;2v, 2y) — F;z ;C)] — NXe"T-D[1 — Q(2y:2 + 2v, 2x)]] ep>2
A%

(14)
Unless the investor is able to obtain a good estimate of V, and o, the classical war-
rant valuation model is difficult to use, since these variables are unobservable.

3.2 Schulz and Trautmann (1994) and Ukhov (2004) model

To overcome the problem of unobservable variables in the classical warrant valu-
ation model, Schulz and Trautmann (1994) and Ukhov (2004) follow a different
approach allowing the use of observable variables (o4 and S,) when computing the
value of the warrant. Even though the stock volatility is not observable, it can be
easily estimated from historical stock prices or determined as the implied volatility
in the options prices quoted in the market.

Assume a firm is financed only by equity, where warrants and stocks are contin-
gent claims on firm value. In this sense, the firm volatility is a weighted average of
volatilities of the two claims. Since a warrant is similar to an option, it is riskier than
the stock. Hence, the volatility of the stock is less than the volatility of the entire

Footnote 6 (continued)

(2015), Nunes et al. (2015) and Dias et al. (2020), we adopt the Benton and Krishnamoorthy (2003)
algorithm for computing the required non-central chi-square distributions.
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firm. Define e¢ = AgV,/S, as the elasticity of the stock price with respect to the firm

value, where Ay is the hedge ratio for the stock given by Ag = —

av;
We can relate V, and 6y, to S, and o through the following equation’
|7 V,
Og =ESU(VI)= AS§5V1 =ASS_O'V’ (15)

t t

I3
where 6 = avVll_E. To compute Ag, we need to calculate A, = dw,/dV, given that
V, = NS, + Mw,, where w, is given by Eq. (14). It is straightforward to notice that A,
is similar to the hedge ratio of a call option derived by Larguinho et al. (2013, Eq.
A7) and Dias et al. (2020, Corollary 1). Thus, A, is given by

A = 1
Y N+kM
2-p

2
[kQ(zy;z — 20,20 + XT[kVp(ZyA — 20, 2%)

—~NXe " TDp2x; — 20,20)]| €« p < 2

X —_— 9
< [kQ(2x;2v, 2y) — w [kVp(2x;2v, 2y)
—H(T— I'(v,x) X
_ HT=0) (9 _ i
NXeI0p(2yid + 20, 20] = ks — ke s 1)] cp>2
(16)

where p(y;v, &) is the probability density function of a non-central chi-square dis-
tribution as given by Johnson et al. (1995, Eq. 29.4). Using the fact that a share of
stock is also a contingent claim on the firm (there exists a hedge ratio that meas-
ures stock price changes when firm value, V, changes 1 dollar), then we can write
NAg+ MA,, = Ay, = 1. Hence, Ag can be obtained by substituting A, into the fol-
lowing expression

_1-MA, 17
ST TN (17)
To compute the warrant price (under the CEV process) using only observable vari-
ables (S, and o), we need to:

1. Solve (numerically) the following system of nonlinear equations for (V}', o7)),

NS, =V, — Mw,
6o =A¢—0c ’ (18)
S SS; v

where w, is given by Eq. (14).
2. The warrant price, w,, is calculated as

7 Appendix A of the supplementary file contains further details on the derivation of this relation under
the CEV model.
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W= L (19)

3.3 Crouhy and Galai (1994) model

Even though the previous model overcomes the problem of unobservable variables,
it still has the inconvenience of not considering debt into the valuation process.
To solve this, Crouhy and Galai (1994) propose a model which incorporates debt
correctly albeit based on unobservable variables. To this end, they assume a firm
financed by N shares of stock, M European-style call warrants and debt D. The debt
is a zero-coupon bond with face value F and maturity at time 7},. The proceeds from
exercising the warrants are assumed to be reinvested in the company, thus increasing
its size. They also assume a perfect market condition and that there are no econo-
mies of scale and, thus, the distribution of returns for one unit of investment is sta-
tionary and independent of the firm size. Furthermore, it is assumed that r is known
and constant.

To derive their formula, they also consider that there is a benchmark firm with
the same investment policy as the underlying firm, but financed entirely by common
stock.® Crouhy and Galai (1994) study only the case where warrants have shorter
maturity than debt, i.e. T < T),. At t = 0, the benchmark firm issues N’ shares of
stock at a price V) /N’ = S|, whereas the underlying firm issues N shares of stock, M
warrants and a zero-coupon bond. Then, for 0 < ¢ < T we can write

V,=NS,+ Mw,+D,, with V, = V/, (20)

where S,, w, and D, are, respectively, the values of a share of stock, warrant and debt
of the levered firm.

In the extension of this model to the CEV process, all the assumptions of Crouhy
and Galai (1994) are assumed to hold, except that the underlying state variable follows
now a CEV process. If the warrants are not exercised at # = T, the value of the levered
firm, VTD, will be equal to the value of the unlevered firm, V! o at t = Tp. On the other

hand, if the warrants are exercised at ¢t = T, the amount MX received from the exercise
of the warrants will be reinvested and the value of the levered firm at t = 7}, becomes
Vy, = V’TD(I +MX/V7), while the value of unlevered firm remains V}D. The ratio
MX /V; measures the scale expansion of the firm’s assets at time 7.

The traditional procedure in the financial economics literature is to exercise the war-
rants if the stock price immediately prior to the warrants’ expiration date is greater than
the strike price. Crouhy and Galai (1994) show that this approach can be misleading
if the share price prior to expiration differs from the price after this date. They argue
that such discontinuity in price stems from the fact that the exercise of warrants, which
results in a scale of expansion of the firm, may reduce the probability of default and,
consequently, increase the value of debt which causes a reduction in the share price.

8 This is consistent with the well-known capital structure irrelevance of Modigliani and Miller (1958)
under the assumption of perfect capital markets.
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Therefore, the warrants should be exercised if the post-expiration value of the & diluted
shares is greater than X.

No matter whether warrants are exercised or not, after time 7 the firm’s value is
composed only of common stock and debt. Thus, the post-expiration value of a share of
stock, Sy, can be written as follows:

V.—D\W . )
TT = S’}’W if warrants are not exercised att = T

v;ﬁwx—o;" , 21

S, =
T
— W ; ;
= if warrants are exerci =1
Yy, ST warrants are exercised at ¢

where D;V s D’}’W, STW and S]}'W, represent the value of debt and a share of stock at time
T if warrants are exercised and if warrants are not exercised, respectively. Given that
STW is an increasing function of V7, the exercise criteria can be determined finding a
threshold value of the firm, V], such that kS (V) = X.

Since it is assumed that the proceeds from the exercise of the warrants are rein-
vested, the last expression of S; can be easily determined if we look at the equity of the
levered firm as a call option on the firm value immediately after warrants’ expiration,
with strike F, and maturity at time 7/, that is

CT(V;W F9 TD)

. _ N € V. <V
T =3 (V) + MX,F,Tp) _ (22)

eV >V

N + kM r-r

where ¢,(A,, K, T) is a call option on the asset price A,, with strike K and maturity at
time 7. We recall that under the CEV diffusion, the volatility of the reference firm at
time T becomes o(V}) = 6V;§_1, where 6 = ¢, V/ - Thus, under the assumption
that V] follows the CEV process described by Eq. (1), we can write S, at any time ¢
(<T)as

S, =e_"(T_t)[E@

(V1 F, Tp) e (V! + MX, F, Tp)
[ l{V}SVT} + N + kM {v;>vr}

Vi e (V! F,Tp)
—p—1(T-D) nr °’b .
= f< /0 —————f(V,,T;V,p)dV},

7

N

© cr(Vh +MX, F, Tp)
/V N + kM

f(Vy. TV, t)dV}>,

T

(23)
where Eg[R|F,] denotes the (time-f) expected value of the random variable R, con-
ditional on F; and computed under the equivalent martingale measure @, 15, is an
indicator function of the event B and f(V7,, T;V/, 1) is the probability density function
of V} conditional on Vt’ at time ¢ < T presented in Schroder (1989, Eq. 1) and Ema-
nuel and MacBeth (1982, Eq. 7) for f < 2 and § > 2, respectively, and written as
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@ - PR w! 2P TH e 24aw) < f <2
2-p

FVL TV ) = 1 e » (24)
’ (B = DRT w2 THe L Qyaw) <= f>2
where  is given by Eq. (9),
X(V!) 1= x = kv P rT-00=p) 25)
and
w(vl) i=w=kv.>. (26)

Using the same reasoning which led to S,, the value of debt at any time 7, with¢ < T,
is obtained as

A

D, =Fe™" =0 — 770 < / pr(Vy, F. Tp)f(Vy, TV, 0dVy,
0

0 27

+ // pT(V’T + MX, F, TD)f(V’,T;Vt’,t)dV’>,

T

where p,(A,, K, T) is a put option on the asset price A,, with strike K and maturity at
time T (> t) expressed as

Ke-r<T-f>Q<2x; — 2y, 2y> —A,[l - Q(Zy;z -2y, Zx)] &p<2

P;(A;, K, T) = .
Ke—r<T-f>Q<2y;2 +2u, 2x) —Al[l - Q(Zx;Zv, Zy)] cp>2
(28)
The price of the warrant is obtained substituting S, and D, into the equation
V! = NS, - D,
W= (29)
M

3.4 Levered warrant model for warrants with the same maturity as debt

Even though the Crouhy and Galai (1994) model is more realistic than the classi-
cal warrant valuation and the Schulz and Trautmann (1994) and Ukhov (2004)
approaches, it still has two limitations: it only considers the case where warrants
have longer maturity than debt and it is based on unobservable variables (V] and
oy). Abinzano and Navas (2013) complement the literature on warrant pricing
studying the two other cases: T, < T and T = T},. Moreover, following the insights
of Ukhov (2004), they propose algorithms based only on observable variables for
the three cases of maturity of warrants (being the case T, > T an extension of the
Crouhy and Galai (1994) model).
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In this subsection, we extend the case with T = T}, to the CEV process. Thus, all
the remaining assumptions of Crouhy and Galai (1994) are assumed to hold, except
the maturity of warrants and debt (i.e., in this case, warrants and debt have the same
maturity). Similarly to Crouhy and Galai (1994), we also consider a benchmark firm
with the same investment policy as the underlying firm, but financed entirely by
common stock, as given by Eq. (20). Following an identical reasoning which led to
the expression of the warrant in the classical warrant valuation, we can write w; as

wp = max(kA(E; + MX) — X, 0), (30)

where E; is the value of equity at 7—just after the maturity of debt and prior to the
exercise of the warrants—given by E; = maX(V’T —F,0)and A =1/(N + kM). We
can rewrite Eq. (30) as

wy = Amax(kV;. — kF — NX,0). 31

Therefore, at time ¢t = T, the warrant holder receives the same payoff as the owner
of A European-style call option on kV/, with strike kF' + NX and maturity at time 7.
Under the CEV process, the value of the warrant is given by:

(kv;Q(zy;z —29,2%) — (kF + NX)e"TD[1 — Q(2x; — 2v, Zy)]) cp<2
I'(v,x)
o)
X[1 = Q2y:2 +2v, 2x)]> cp>2

W, = A (kv; [Q(Zx;Zv, 2) — ] — (kF + NX)e~T=0

(32)
The warrant expression given by Eq. (32) is a function of unobservable variables, V/
and oy,. To relate these variables to S, and o, we follow the approach proposed by
Ukhov (2004) defining o = V! /S,Ag0y,, where Ag = 9S,/dV/. Since the firm value
is now V! = NS, + Mw, + D,, to obtain A we have the following expression:

NAG+MA, +Ap,=A, =1, (33)

where A, = 9D, /dV].

To compute Ag we need to know A, and A,. Following (Larguinho et al. (2013), Eq.
A7) and (Dias et al. (2020), Corollary 1), we define A, as given by Eq. (15), where w,
is given by Eq. (32). To compute A, we first need to define D,. We know that at time
T, =T, the debtholders receive min(F, V’T) = F —max(F — V/,0). Thus, D, can be
written as

D, = For(T=0) _ pt(vt’, F,T), (34)

where p,(A,, K, T) is a put option on the asset price A,, with strike K and maturity at
time 7.

Armed with the expression of D,, we can compute A, following Larguinho et al.
(2013), that is
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1— 0Q2y;2 = 2v,2x) — @[V’p@y% —2v,2%)

— Fe T 9p(2x; = 2v,2y)] « p < 2 35
22 -p) .., - (35)
1 = 02x;2 4+ 2v,2y) + ————[V'p(2x;2v, 2y)

— Fe " T=0p(y:d 4 2v,20)] < > 2

Ap=

Finally, the price of the warrant under the CEV process and using only observable
variables is computed by:
1. Solving (numerically) the following system of nonlinear equations for (V/*, oy.. ):

NS, = ¢,(V!,F, T) - Mw,
V/

Og = AS?ZO'V/ ’ (36)

t

where ¢,(A,, K, T) is a call option on the asset price A,, with strike K and maturity at
time 7, w, is given by Eq. (32) and

1-MA, - A, 37
S — N 5

with A, and A, being the delta hedge of warrant and delta hedge of debt as given by
Eqgs. (16) and (35).
2. Substituting the variables (V/*, 6. ) obtained above into the following expression:

KV Q(2y:2 — 2v, 2x) — (KF + NX)eT0[1 — Q(2x; — 20,2y)] < f < 2
r
w, = A3 kV'*|0Q2x;2v,2y) — (V’x)] — (kF + NX)e~rT-0

I'(v)
X[1 = 0Q2y;2+2v,2x)] < f>2

(38)

3.5 Levered warrant model for warrants with shorter maturity than debt

In this case, and as in Abinzano and Navas (2013), we first use the Crouhy and
Galai (1994) model as an expression for the warrants’ value depending on unob-
servable variables (Vt’ and oy,). Then, following Ukhov (2004), we relate the
unobservable variables V! and oy, to observable variables S, and og using the
expression

o5V,

Og = a—‘,t,?t‘fvu (39)

where S, is given by Eq. (23).
The warrant pricing algorithm is as follows:
1. Solve (numerically) the following system of nonlinear equations for (Vt’ ,00):
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— = @=n( V1 aVpFT) 2oy i '
s, = e @ f LB v v, navy
oo er(VIAMX,F,Tp)

! V4 !
+ Vi N+kM f(V’T’Vt’t)dVT> ) (40)
as, v,
7S T v,

t

Oy

with V being the value of V. that satisfies

cr(Vh+MX, F,Tp)

N =X. 41)
2. The warrant price at time ¢ (< T is given by
w, = W 42)
1 Vi ,
where D, is calculated as
7

T
Dt =Fe—r(TD—t) _ e—r(T—t)( / pT(V;*’ F, TD)f(V,*, T,Vt/, t)dV}*
o 0 (43)
+ /V pr(VI + MX, F, TD)f(V;*,T;V;*,r)dv;*).

!
T

3.6 Levered warrant model for warrants with longer maturity than debt

In this particular case, we consider long-term warrants with maturity longer than
debt’s expiration date, i.e. T > T),. The warrant holder has the right to pay X at time
T and receive k shares, each one with a value V;/(N + kM), where V. is the value
of the firm at time 7. Following Crouhy and Galai (1994), we consider a benchmark
firm with the same investment policy, but financed only by common stock, that is

V,=NS,+Mw,+D,, withV/ =V, (44)

At time ¢ = T}, if the value of the levered firm is greater than the face value of the
zero-coupon bond, F, the bondholders receive F whereas the shareholders and war-
rant holders receive the residual value of the company, that is V}D — F. On the other
hand, if the firm value is lower than the face value of the zero-coupon bond, share-
holders and warrant holders get nothing (i.e., the firm defaults), while the bondhold-
ers get what is left of the company, V7. . This can be summed up as follows:

0 <V, <F
=Y v -F eV > F- (45)
D D

@ Springer



Pricing levered warrants under the CEV diffusion model 71

In this connection, the firm value at time t =T can be defined in the following
manner:

0 €V, <F
D
Vp=1 Vi —F < V}D > F and warrants are not exercised . (46)
V} +MX-F <« V} > F and warrants are exercised
D

VI +MX—-F

The warrants should be exercised only in the case k TN+kM > X. Thus, through
straightforward calculations, the warrant value at time ¢ = T is as follows:
0 <= V}D <F
"7\ Amax(kVy - kF —NX.0) < V) >F 47

Working recursively, we can define w;, as:

0 €V, <F
= . (48)

D
" der, (kVi KF+NX,T) &« Vy 2 F

D

Note that the benchmark firm volatility at time T}, is given by o(V}. ) = 6V, g_l,

. _s .
with 6 = oy Vt’ ! 2, for t < T),. Therefore, assuming that Vl’ follows a CEV process
and there are no arbitrage opportunities, it follows that

w, =e "o E, [wr, | 7]

eI, [chu KV, KF + NX, )Ly, o }‘t]

(49)

=~ To=) / der, (kVy KF +NX, T} (Vy. TV, 0dVs, .
F

where f (V’D, Tp; V], 1) is the probability density function of V’TD conditional on V.

Now that we have an expression relating the value of the warrant to V/ and o, we
need to establish a relationship between observable variables and unobservable vari-
ables in order to implement Ukhov’s algorithm. Since the capital structure of the
levered firm at any time prior to debt expiration consists of warrants, debt and com-
mon stock, we know that NS, + Mw, = V/ — D, holds for all ¢ < T},. Thus, we can
look at the right-hand side of the equation as a call option on V’ at time ¢, with strike
F and maturity at time 7, (> f), because at time T}, the warrant holders and the
shareholders will receive jointly V’TD —Fif V}D > F and zero otherwise. That is,
NS, +Mw, = c,(V],F,Tp).

The algorithm to compute the price of the warrant is as follows:

1. Solve (numerically) the following system of nonlinear equations for (V/*, o7, ):
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—r(Tp— © . —
NS, + Me <’z D Acq, (kVy  kE +NX, D)f (V. T3V, 0dVy = c,(V],F,Tp)
aSr vt
O¢ = — Oy
STov s,

(50)
2. The warrant price at time ¢, with ¢ < T}, using Vt’ *and a‘*/, is obtained as
wy = e / Acy, KV KE+ NX. DV TV 0dV . (51)
F

4 Numerical analysis

This section presents computational results for warrants prices under the CEV dif-
fusion. To determine the implications of the correct specification of the underly-
ing state variable process for the valuation of warrants, the obtained results under
the CEV modeling setup are compared with the ones calculated via the lognormal
model. In particular, we consider the following models on the computation of war-
rants prices: the Black and Scholes (1973) and Merton (1973) (BSM) stock option
pricing model for the lognormal process and the Schroder (1989) and Heston et al.
(2007) (SHLW) stock option pricing model for the CEV process, the classical war-
rant valuation model (CWM), the Schulz and Trautmann (1994) and Ukhov (2004)
(STU) model, the classical warrant valuation model with debt (CWMD), the Crouhy
and Galai (1994) (CG) model, and the levered warrant models for warrants with dif-
ferent maturities relative to debt.

To compute the warrants prices we borrow the models’ parameters from Abin-
zano and Navas (2013), but augmented by the f parameter. More specifically, we let
N =100, S € {75,100,110}, M € {10,50,100}, k = 1, X = 100, o € {0.25,0.40},
r=0.0488, F = 1000 and g