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Abstract

In this era of population growth and rapid urbanization, effective and sustainable urban

development is a very important factor. In this context, Machine Learning (ML) can

play a leading role in helping with these tasks; it makes possible the treatment of remote

sensing images in a shorter time frame. This thesis focuses on the development and use

of Convolutional Neuronal Network (CNN)s to handle multispectral images.

The principal goal is to evaluate the performance metrics and computational com-

plexity of a CNN-based land cover classification approach. And to try and assess if the

results achieved are better or worse than the architectures currently implemented by the

Direção Geral do Território (DGT). In this order, it was first necessary to understand the

provided data and all its inherent characteristics. This data was then preprocessed, and

the architecture was defined.

The results show that CNNs present a promising alternative in this context to the

implemented methods for land cover classification. Despite the promise it provides, it also

highlights the difficulties faced and how the work can be improved, specifically concerning

the lack of labeled data. The existence of these difficulties presents opportunities for

further development of this work.

As an overview of this dissertation, it is possible to say that the investigation into the

feasibility of using CNNs for land cover classification provided positive results. There is,

however, as would be expected, room for improvement, especially in what concerns the

pre-processing of data.

Keywords: Multispectral imaging, Convolutional Neural Networks, Machine Learn-

ing, Land Use Land Cover Classification, Sentinel-2.
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Resumo

Nesta em que vivemos de crescimento populacional e rápida urbanização, o desenvolvi-

mento urbano eficaz e sustentável é um fator muito importante. Neste contexto, a apren-

dizagem automática pode desempenhar um papel fundamental na realização destas tare-

fas; A utilização deste tipo de algoritmos possibilita por exemplo o tratamento de vários

tipos de imagens rapidamente. Esta tese centra-se no desenvolvimento e uso de Redes

Convolucionais Neuronais para lidar com imagens multiespectrais.

O principal objetivo da tese é avaliar a taxa de acertos e a complexidade computacional

de uma abordagem de classificação da cobertura do solo baseada em redes neuronais con-

volucionais. Além disto, tentar avaliar se os resultados alcançados são melhores ou piores

do que as atuais soluções da DGT. Neste sentido, primeiro foi necessário compreender

os dados fornecidos e todas as suas caracteŕısticas inerentes. Esses dados foram então

pré-processados, e a arquitetura definida.

Os resultados mostram que as CNNs apresentam uma alternativa promissora no

âmbito da classificação da cobertura do solo. Apesar da promessa que oferece, esta dis-

sertação também destaca as dificuldades enfrentadas e como o trabalho pode ser melho-

rado, especificamente no que diz respeito à falta de dados etiquetados. A existência destas

dificuldades oferece oportunidades para um desenvolvimento futuro deste trabalho.

Em resumo, acerca desta dissertação, é posśıvel dizer que que a viabilidade da uti-

lização de CNNs para classificação da cobertura do solo foi provada, contudo, como seria

de esperar, existe ainda margem para melhorias. Estas melhorias podem recair especial-

mente por exemplo no contexto do pré-processamento dos dados.

Palavras-chave: Imagens multispetrais, Redes Neuronais convolucionais, Aprendiza-

gem Automática, Classificação da Superficie Terrestre, Sentinel-2.

ix





Contents

Acknowledgments v

Abstract vii

Resumo ix

List of Figures xiii

List of Tables xv

Acronyms xvii

Chapter 1. Introduction 1

1.1. Background and Motivation 1

1.2. Research Questions 3

1.3. Goals 3

1.4. Methodology/Development Process 3

1.5. Dissertation Structure 4

Chapter 2. Literature Review 7

2.1. Background Concepts 7

2.1.1. Machine Learning 7

2.1.2. Applications of CNNs in image Analysis 9

2.1.3. Multispectral Imaging 11

2.2. Related Works/Projects 12

2.2.1. Systematic literature review 12

2.2.2. Previous Studies in Land Cover Classification 13

Chapter 3. Dataset Overview and CNN Development 17

3.1. Data Collection and PreProcessing 17

3.1.1. Sentinel-2 Data 17

3.1.2. Auxiliary Data 23

3.2. Description of the Received Data 25

3.3. Data Processing 27

3.4. Convolutional Neuronal Network Architecture 34

3.4.1. Sentinel-2 Products Model 35

3.4.2. RGB Model 36

3.4.3. Transfer Learning 36

xi



Chapter 4. Experimental Results 41

4.1. Performance Metrics 41

4.2. Experimental Findings 42

4.2.1. Training and Validation 42

4.2.2. Testing 46

Chapter 5. Conclusions and Future Work 53

5.1. Main Conclusions 53

5.2. Limitations and Future Work 55

References 57

xii



List of Figures

1.1 DSR process model 4

2.1 Classifications of Machine Learning 8

2.2 Example architecture of a CNN 9

2.3 2-D Convolution 10

2.4 Max Pooling example 10

2.5 ReLu and SoftMax Functions 11

2.6 Comparison between a RGB and HSI images 12

2.7 Prisma filtering process 13

2.8 Classification and Segmentation example test in Pavia University dataset 14

2.9 HybridSN model 15

3.1 Sentinel-2 Bands (Image credit ESA) 19

3.2 Sentinel-2 Mission Cover 20

3.3 Sentinel-2 Products 21

3.4 Portugal map from a tile and LU perspective 23

3.5 Summary of the provided Data 26

3.6 Map of the provided data from a tile and LU perspective 26

3.7 Overlay of the four LU training points over the six tiles 27

3.8 Overlay of Tile with training points by LU and by tile 30

3.9 29TNF tile and one training point in RGB 32

3.10Chart with the distribution of the data per Training, Validation and Testing 33

3.1110 Bands Model Architecture 35

3.12RGB Model Architecture 37

3.13Transfer Learning MobileNet Model Architecture 38

3.14Transfer Learning EfficientNet Model Architecture 38

4.1 Learning Curve of the 10 Band CNN 44

4.2 Learning Curve of the CNN for RGB 45

4.3 Learning Curve of the MobileNetV3 Transfer Learning Architecture 45

4.4 Learning Curve of the EfficientNetB0 Transfer Learning Architecture 46

xiii



4.5 Confusion Matrix of the 10 Band CNN 47

4.6 Confusion Matrix of the RGB CNN 48

4.7 Confusion Matrix of the MobileNetV3 Transfer Learning Architecture 50

4.8 Confusion Matrix of the EfficientNetB0 Transfer Learning Architecture 51

xiv



List of Tables

2.1 Exclusion and Inclusion Criteria for Similar-Work Searches 13

3.1 Original Sentinel-2 Bands and Resolutions 19

3.2 Sentinel-2 Bands and Resolutions post Pre-Processing 22

3.3 Implemented spectral indexes with formulas 22

3.4 Characterization of the LU used in the COSsim 24

3.5 Training Point Classes according to the COSsim Nomenclature 25

3.6 Characterization of the LU present in the dataset 26

3.7 Training Classes and Level 3 classes per LU from data 28

3.8 Dataset Division into Train, Validation, and Test 32

3.9 One-Hot Encoding Label Example 34

4.1 Comparison of the Training Performance between the CNNs used 43

4.2 Performance Metrics from 10 Band CNN in Testing Data 48

4.3 Performance Metrics from RGB CNN in Testing Data 49

4.4 Performance Metrics from MobileNetV3 Transfer Learning in Testing Data 49

4.5 Performance Metrics from EfficientNetB0 Transfer Learning in Testing Data 51

xv





Acronyms

AI: Artificial Inteligence.

ANN: Artificial Neuronal Network.

CNN: Convolutional Neuronal Network.

DGT: Direção Geral do Território.
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CHAPTER 1

Introduction

Numerous aspects of land governance and sustainable development rely on Land-Use and

Land-Cover (LULC) mapping through the classification of Remote Sensing (RS) images

[1, 2]. This classification allows government entities and companies to make informed

decisions regarding its use.

For example, in the context of urban planning [3,4], agriculture [5–8], fire prevention

[9,10], or even mineral exploration, the use of LULC mappings allows for better planning.

In addition, it aids in comprehending the planet as a system; despite being frequently

used interchangeably, land cover and land use are not synonymous. Land cover refers

to the types of features present on the earth’s surface, including, among others, trees,

rocks, lakes, and roads. However, land use refers to the specific activity or function

being developed on that piece of land, such as urbanization or residential development.

Comparatively, when referring to a neighborhood, the term land cover would refer to

the road, roofs, grass, and trees, whereas the term land use would refer to residential use.

The significance and value of these High-Resolution Remote Sensing (HRRS) images have

grown as their technology, availability, and quality improved.

Moreover, because of the opportunities they afford, they provide access to vast quan-

tities of data that span vast areas of land in detail and over extensive periods [11]. There-

fore, most land studies involve analyzing satellite or aircraft-mounted sensor photographs.

Nevertheless, the size and variety of data types in these images made them challenging

to process, further complicating the situation. A single pixel may hold spatial, spectral,

and geometric data, among other things.

The process of acquiring and analyzing LULC data was enhanced by the combination

of Machine Learning (ML) and the development of computer vision technology. Because

technology enables coverage, detection of features, and planning on a scale that would be

impossible with human ground coverage, a paradigm shift is occurring.

This chapter will introduce the dissertation’s subject, which is the application of Con-

volutional Neuronal Network (CNN) for land cover classification from HRRS images. The

introduction starts with the motivation for this work, followed by the aims and questions

to be answered. The thesis structure will also be addressed.

1.1. Background and Motivation

With the introduction of computers in the 20th century, numerous opportunities and

possibilities surged. Since the 1940s [12,13], humans have had an interest in trying to

replicate their learning and decision-making capabilities on computers using what they
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later referred to as Artificial Inteligence (AI), which includes concepts such as ML. This

concept of ML has become more popular with time due to its ability to” learn” and make

predictions from data.

The neuronal network (NN) is one of the most significant developments in this context.

These models are based on the biological characteristics and functions of the brain (hence

the term neuron). In the context of this thesis, the most important types of NN are

Artificial Neuronal Network (ANN) and CNNs. The ANN is primarily utilized for pattern

recognition and classification and is highly adaptable. There are various types of ANN,

some with a simpler architecture (typically referred to as shallow) and others with a

more complex architecture (deep). CNN exemplifies one of these more complex and

sophisticated types of ANN. These deep learning architectures specialize in the handling of

grid-like data, as is the case of images (the data here used), because they can establish and

capture patterns in the raw input data without as much pre-processing, a big difference

when compared to a more common ANN, which typically isn’t capable of extracting

features from the data, needing more preprocessing for similar tasks.

During the 1950s [14] and 1960s [15], the early development of AI and neuronal

network architectures laid the foundation for what is more commonly used today. Some

investigators could make progress at the time. They faced, however, a problem related to

the difference in the amount of processing power they needed to continue the development

of their studies and the one that was available. This led to a stalling in this field in the

next decade, the 1970s, that would be solved later.

It would be only in the 1980s and 1990s that the discovery and design of new algorithms

reignited interest in these technologies. As neuronal networks became more rapidly de-

veloped, they began to compete with conventional algorithms and eventually supplanted

them. This change occurred thanks to the amount of data available and the increase in

computational power. This was also around the time that some of the components that

would later influence the CNN we know today began to emerge [16]. This novel neural

network was primarily used for image processing [17,18] and has since become the state

of the art in image analysis.

The adoption of these architectures has, however, only been widespread for the com-

mon public (outside of the scientific community) in the past decade. This was due to two

primary reasons: the increase in computer power through the availability of the Graphics

Processing Unit (GPU)), which made the use of deep learning (which includes CNNs)

more practical and efficient. Other than that, their performance in the ImageNet Large

Scale Visual Recognition Challenge started in 2010 [19]. In this context, CNNs have

dominated since 2012 [20], causing even more interest in deep learning algorithms.

These algorithms are particularly relevant in the context of this thesis due to the

characteristics of the data provided by the DGT, that is an HRRS with several specific

characteristics. This data has multiple bands, which has the potential for redundancies

and limited variance between adjacent bands.
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1.2. Research Questions

Given the environment and motivation of this thesis, the emphasis will be on the devel-

opment of a system capable of automatically recognizing and categorizing ground types

based on Multispectral Imaging (MSI) data supplied by the Direção Geral do Território

(DGT) (captured and shared by the European Space Agency (ESA) within the Sentinel-2

mission, which will be further explained in Chapter 3) and under its rules. This develop-

ment is aimed at answering the following research questions:

(1) How can the accuracy of the LULC classification be improved while preserving

the maximum amount of information?

(2) How does the choice of CNN architecture affect the performance of terrain clas-

sification?

(3) Can transfer learning be used to improve CNN’s performance on MSI data for

terrain classification? What are the most effective methods for fine-tuning pre-

trained models, if applicable?

(4) How do different pre-processing strategies, like normalizing and reducing the

number of dimensions, affect the performance of CNNs when using MSI data to

classify terrain?

1.3. Goals

A variety of objectives will be addressed throughout the course of this dissertation. The

primary objective of this thesis is to develop a CNN model that can accurately identify

and differentiate various land cover and land use types in compliance with standards.

These models will be trained using datasets obtained from satellite imagery provided by

the DGT. In addition to this, one of the main goals will be to attain this outcome while

minimizing computational expenses, thereby enhancing its accessibility.

In addition, a comparative analysis will be conducted between the obtained results

and the existing methodologies employed for the classification of said terrains to conduct

an in-depth investigation of the outcomes.

1.4. Methodology/Development Process

The research process employed the Design Science Research (DSR) methodology [21].

DSR is a concept that focuses on the advancement of design ideas, methodologies, and

tools. The selected methodology was chosen based on its inherent characteristics.

The process was structured according to the steps outlined in Figure 1.1; neverthe-

less, there is no expectation that researchers would consistently do activities 1 through 6

sequentially.

In the initial phase of applying DSR to a specific environment, four options can serve as

the entry point:” problem-centered approach”,” objective-centered solution”,” design and

development-centered approach”, and” client/context approach. The ”problem-centered

approach” was selected for this study due to the pre-existing definition and identification

of the problem.
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Figure 1.1. DSR process model
Source: [22]

The research in this case was conducted following the below-listed activities.

(1) Identify the problem and motivate: this is done in the introduction and the

literature review.

(2) Define the objectives of a solution: are all done in Section 1.3 based on the

literature read.

(3) Development of a solution to the identified problem. This will be done through

the development of mechanisms capable of performing the automatic classifica-

tion of territory based on MSI.

(4) Demonstration: The evaluation of the previously developed mechanisms is con-

ducted in this stage, utilizing a subset of the data sets provided by the DGT.

The datasets must include samples used for testing only, meaning that they have

not been included in prior phases.

(5) Evaluation: After implementing the designed processes, results will be gathered.

By analyzing these outcomes, it can determine how effectively it performs and

where it might be improved. Can also be compared to other methods for the

same purpose to better understand its precision and processing time.

(6) Communication: The final stage of the communication process involves the de-

velopment of the thesis and the presentation of the completed work.

1.5. Dissertation Structure

The present thesis consists of six chapters with the following contents:

• 1 presents the topic of study and its motivation. In addition, it is also here that

the research objectives are defined, and the methodology is first described.

• 2 is divided into two major parts. The first is a contextualization of the main

terms and technologies approached in the thesis, namely, AI, ML, CNN, HRRS,

LULC, and MSI. The presentation of the reviewed literature, as well as the

methodology used to conduct this literature review, comprise the second section.
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• 3 provides a comprehensive overview of the dataset, from how the data was

collected and preprocessed to what was done with the DGT data. In addition,

explains the implementation, development, and testing of CNN architectures, as

well as the transfer of learning.

• 4 starts by describing the performance assessment metrics used for CNN testing.

In addition, we will present the outcomes of the experiments, along with some

observations and an analysis of them.

• 5 explains the interpretation of the results presented. In addition, it outlined

potential future enhancements to the developed work based on the previously

described findings. essentially represents the thesis’s conclusion. A comprehen-

sive summary of the completed work that attempts to answer all of the questions

raised in the introduction, along with some practical implications of the devel-

oped work and potential future work.
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CHAPTER 2

Literature Review

This chapter of the thesis will demonstrate an understanding of the background concepts

as well as the state of the art of related technologies and strategies for problems that are

comparable to those that were encountered. It will also explain how the solutions that

were listed function.

2.1. Background Concepts

As stated previously, this section will provide background information on some of the

technologies that will be used or discussed in this dissertation.

2.1.1. Machine Learning

ML is a subfield of AI that enables software systems to predict future events without being

explicitly programmed to do so. To predict or estimate output values, ML algorithms

utilize historical data as input. For these predictions to be accurate, substantial amounts

of data are required. Generally speaking, ML methods can be classified according to their

complexity and their specific learning strategy type, as depicted in Figure 2.1. When

discussing complexity (typically when talking about neuronal networks), it is essential

to distinguish between shallow and deep learning. Considering the type of learning, the

three primary categories are supervised learning, unsupervised learning, and reinforced

learning [23].

The data involved is the primary distinction between supervised and unsupervised

learning types. Before training, it is necessary to preprocess the data in the context of

supervised learning. Typically, the data is annotated with labels, and the model acquires

knowledge of patterns during the training process to reproduce them later. As a result, a

larger amount of data is required for tasks such as recognizing letters or animal species,

which is essentially a classification problem (i.e., of models, NN, which can be shallow or

deep learning, depending on the number of layers, Support Vector Machine (SVM) [24],

etc.). Unsupervised learning focuses primarily on datasets that lack labels and, as a

result, does not require as much manual preprocessing, necessitating that the architecture

establish connections and relationships within the data autonomously. The discovery of

hidden patterns or structures frequently results in the formation of clusters and groups

within a dataset (i.e., K-Means clustering, Hierarchical Clustering, etc.). The other type

of learning that has not yet been discussed is reinforced learning, where the architecture

consists primarily of feedback-receiving learners. Each time an action is carried out,

it receives feedback to determine whether it is accurate or not. The system consistently
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seeks to maximize precision, which facilitates its growth and development (i.e., Q-learning,

Policy Gradient, etc.).

Machine Learning

Type of Learning Level of Complexity

Supervised Learning

Unsupervised Learning

Reinforced Learning

Shallow Learning

Deep Learning

Figure 2.1. Classifications of Machine Learning

In what relates to the complexity level, as previously mentioned, a straightforward

approach to distinguishing between shallow and deep learning is to examine the disparity

in layers. In the field of deep learning, it is customary for the number of hidden layers

to be relatively high, extending to hundreds in certain cases. In contrast, when speaking

of shallow learning, this number is usually far inferior, usually a single hidden layer. As

expected, this distinction between the two results in a variety of practical differences. For

instance, as the number of layers grows, the architecture typically becomes more time-

consuming and computationally demanding. Shallow learning can only accomplish so

much, and so it is only used for simpler jobs, such as classification used in, for example,

email systems for spam detection. When the case is about their deeper counterparts and

the consequences of their complexity, they are capable of much more complex tasks, like

picture classification or object detection.

The primary objective of this thesis is the analysis of RS data in the context of LULC

classification, as previously stated. As such, and due to its superior performance when

working with this type of data because of its sheer size, deep learning is the architecture

employed. Of the various deep learning architectures, CNNs are one of the most frequently

used in similar projects, as the reviewed papers suggest, so this justifies why they were

selected in this case (deep learning is the one used and as such is underlined in Figure 2.1

along with supervised learning which is also used).
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2.1.2. Applications of CNNs in image Analysis

Like other NNs, CNNs, were built and developed with inspiration from the biological

functioning of the human or animal brain. This approach to supervised machine learning

comprises multiple units (neurons) stacked in layers to mimic the brain’s operation. A

CNN is composed of the three main layer types(Figure 2.2), the input layer, the hidden

layers (typically more than one in the case of deep learning, as CNNs can be hundreds),

and the output layer, where by-products are returned. They are mainly used for image

processing because of the way they are designed: they accept an image as input, treat it

as a matrix, produce increasingly abstract versions of the image inside its hidden layers,

and then return the class to which they belong or be able to segment them. As they

operate based on matrixes, and images are essentially pixel matrixes, they are effective

at operating them, as will be shown.

The hidden layers of a CNN are mainly of three different types. Convolutional, pooling,

and the fully connected layer as shown in the Figure 2.2.

Figure 2.2. Example architecture of a CNN
Source: [25]

The convolutional layer is the fundamental component of this architecture, as it gives

its name to the network itself. It’s composed of three elements: the input data or input

feature map, the kernel (which is essentially a weight matrix that slides over the input

data), and the resulting output feature map or activation map, which is the result of the

convolution between the data matrix and the kernel.

After the convolution layer, the pooling layer is typically applied. This layer is re-

sponsible for reducing the size of the acquired feature maps from the layers that came

before it and are therefore a downsampling operation [25]. This ultimately accelerates

and simplifies subsequent layers. Having a compression effect enables the extraction of

the most vital characteristics while rejecting the least pertinent ones. The pooling layer

can be of different types, such as max pooling, in which it retrieves only the maximum

value of the area covered by the kernel (as shown in the Figure 2.4), or average pooling,

9



Figure 2.3. 2-D Convolution
Source: [26]

in which it retrieves the average of all the values in the area covered by the kernel. There

are additional types, each with a unique application and expected outcome.

Figure 2.4. Max Pooling example
Source: [27]

It operates such that if a 6x6 matrix is subjected to max pooling with a 3x3 kernel,

the result is a 2x2 matrix (Figure 2.4).

The fully connected layer connects each neuron to all neurons in the layer that precedes

it and to all neurons in the layer that follows it. Typically, these layers are used to connect

the final convolutional or pooling layer to the output layer in a CNN.

There are two other elements to be considered when talking about CNNs that impact

their operation. The activation functions and the hyperparameters. The activation func-

tions are functions that introduce nonlinearities to the network, making it suitable for

learning more complex patterns. They essentially calculate the output of a neuron based

on the input. The two most commonly used activation functions are ReLu (Rectified

Linear Unit)(in the hidden layers) and SoftMax (in the output layer). Both can be seen

in the Figure 2.5.
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The ReLu activation function is responsible for the introduction of nonlinearity by

returning its input value as long as it is positive. If not, it returns 0. With the following

formula:

ReLu: f(x) =







0 if x < 0,

x if x ≥ 0.
(2.1)

The Softmax is usually used at the end of the neuronal network with the fully con-

nected layer because it allows the transformation of the outputs into probabilities for

each of the possible classes. The sum of all the probabilities will be 1, meaning that those

probabilities are normalized. With the formula:

SoftMax: f(xi) =
exi

∑n

j=1
exj

, for i = 1, . . . , n. (2.2)
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Figure 2.5. ReLu and SoftMax Functions

The other referred element, hyperparameters, are essentially the user-defined param-

eters of the network that are not automatically defined by the network. They have a

direct impact on the results and computation time and are subject to fine-tuning because

they will likely not be optimal on the first attempt. These include the size and number

of kernels, the existence of padding in the convolution layer, the number of neurons, and

the activation functions.

2.1.3. Multispectral Imaging

Multispectral imaging plays a very important role in modern remote sensing, which makes

it possible to explore and get quite a bit more information about Planet Earth than when

using traditional Red, Green, Blue (RGB) images. Essentially, MSI captures images of

an object at different wavelengths, in this case, the earth, making it possible to study

it from a spatial and spectral perspective. These different wavelengths can range from

infrared to ultraviolet. Along with MSI, there is another type of image that works with

the same fundamental theory, Hyperspectral Imaging (HSI). The main difference is that

the number of captured wavelengths in the HSI is far superior; MSI typically has no more

than fifteen, while HSI can have hundreds. This idea can be easily understood through

the analysis of the Figure 2.6, which compares an image that everybody is used to, RGB
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is composed of three different bands, red, green, and blue, with one of these images with

a higher number of bands. These images, however, require specific optical sensors to be

captured, usually a spectrometer.

Figure 2.6. Comparison between a RGB and HSI images
Source: [28]

In the RGB case, Figure 2.6 demonstrates the distinction between the three expected

bands and the numerous MSI bands on the right. Each of these bands, some of which may

even coincide with RGB, collects and gives information about the presence of vegetation,

water bodies, and other possible things. RGB is much more limited in comparison. This

number of bands and the sheer amount of data are what justifies the use of machine

learning, and in this case, deep learning. Due to its capability to handle high-dimensional

data in large amounts.

2.2. Related Works/Projects

This section will provide a summary of the articles analyzed on this topic and their diverse

approaches to the issue at hand, which may serve as good examples of how to address the

situation.

2.2.1. Systematic literature review

In the development and writing of this thesis, the methodology in order to do the System-

atic Literature Review (SLR) will be used is Preferred Reporting Items for Systematic

Reviews and Meta-Analysis (PRISMA), which was proposed by Barbara Kitchenham

in [29].

The review’s article selection method is based on the three phases depicted in the

Figure 2.7: identification, screening, and inclusion. B-On, a virtual library that provides

access to a massive number of scientific publications, journals, and ebooks (from editors

like IEEE, Springer, etc.), was utilized for the majority of the research. Some of the papers

read at this point came from the references in some of the articles that were researched.

In order to perform research from this library, the following keywords were employed:

CNN, MSI, terrain classification, neuronal network, deep learning, artificial intelligence,

multispectral, Sentinel-2, and satellite images.
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Figure 2.7. Prisma filtering process
Adapted from PRISMA (Page et al.2021)

To further narrow down the number of publications, a list of inclusion and exclusion

criteria was established (as shown in Table 2.1).

Table 2.1. Exclusion and Inclusion Criteria for Similar-Work Searches

Exclusion Criteria

• Documents that aren’t articles
• Written in a language other than Portuguese or English
• Duplicate articles
• Articles from before 2018

Inclusion Criteria

• Articles that discuss the topic of hyperspectral pictures
• CNNs and neural networks applied to MSI and HSI-related articles
• Articles on the subject of terrain classification using CNN and HSI
• Free or inside ISCTE’s scientific license articles

After applying the exclusion criteria, a total of articles 50 were left. The inclusion

criteria were then applied after reading the title and abstract of each article, resulting in

a total of papers being selected for further study. The final phase involved a thorough

examination of these articles, of which 15 were selected for inclusion in the systematic

literature review of this thesis. It’s worth noting that this number has since this stage

increased during the course of dissertation work.

2.2.2. Previous Studies in Land Cover Classification

In this dissertation, a CNN capable of identifying and classifying MSI terrain types will

be developed. This algorithm may be useful to the DGT because it may be superior to

what they have already implemented. Although MSI data will be used for the search,

HSI-using articles were considered to expand the available options.
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When considering HSI, the documents described in this section were considered as the

most relevant. Using three distinct algorithms, [30] classifies terrain from the HSI (Pavia

University Center dataset Figure 2.8a) using two shallow learning-supervised algorithms,

K-Nearest Neighbors (KNN) and SVM, and one deep learning algorithm, 3D CNN with

the results shown in Figure 2.8b. This 3D-CNN [31] signifies that the kernel, rather than

having to be applied to every pixel of a given layer and running on all layers, will be applied

to all layers for each pixel simultaneously, resulting in 3D convolution that takes spectral

and spatial features into account, as demonstrated in the figure. Due to its operation,

this CNN type may be the most suitable choice for this type of image processing. The

Figure 2.8 displays the results that were obtained.

(a) Data and Classes
(b) Segmented w/ KNN, SVM, and 3D-
CNN, from L-R

Figure 2.8. Classification and Segmentation example test in Pavia Uni-
versity dataset

Source: [30]

As expected, the 3D-CNN had the highest accuracy, followed by the SVM, and the

KNN had the lowest accuracy for the reasons stated previously. Comparatively, the

execution times of the various KNNs, SVMs, and 3D-CNNs varied. The authors conclude

in their paper that implementing preprocessing techniques, such as Principal Component

Analysis (PCA), can increase CNN’s accuracy and decrease its training time.

During the creation of the CNN, three distinct activation functions were evaluated:

Tanh, Sigmoid, and ReLu. Among these functions, Tanh demonstrated the best per-

formance in terms of both speed and accuracy. In this instance, the CNN was trained

and created from scratch; however, in many cases, “transfer learning” is employed (as

in [31–33]), which entails the use of pre-trained CNNs with only structural modifica-

tions, typically centered on the fully linked layers.

In a different publication [31], the authors propose employing multiple CNN types,

including one that combines 2D and 3D CNNs, to achieve superior results, and are called

HybridSN (Figure 2.9). The structure of this CNN and has been introduced previously

in [34,35].

As mentioned earlier, the integration of PCA plays a crucial role in reducing redun-

dancy within HSI data before it is fed into the models. The impact of varying PCA
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Figure 2.9. HybridSN model
Source: [31]

ratios on Overall Accuracy (OA) is explored in [35]. Additionally, data augmentation

techniques are employed to increase the number of training data points, further reducing

the risk of overfitting post-PCA.

The data processing pipeline encompasses two distinct convolutional stages: the 3D

stage, which will extract spectral-spatial features from the various spectral bands, and

the 2D stage, which will identify the abstract spatial characteristics.

In addition to this neural network, we deployed a 3D ResNet [36], a 2D CNN, and a

3D CNN. HybridSN possesses the highest OA, followed by 3D-ResNet, 3DCNN, and 2D-

CNN. All other architectures fall within the 95th percentile, but the 2D-CNN architecture

falls within the 91st percentile, making it the least desirable option.

Additionally, as demonstrated in [34], HybridSN has significantly faster training and

inference times compared to 3D-CNN alternatives, offering a promising results with the

combination of high accuracy and computational efficiency. This is particularly advan-

tageous when dealing with images with high spectral dimensions, as is the case with

Hyper-Spectral Imagery (HSI).

A comparison of the accuracy and efficiency of CNN and ANN (often multilayer per-

ceptrons, or MLP) in the context of HSI has already been conducted. As predicted,

however, these shallow learning architectures have encountered difficulties when dealing

with such images. The absence of convolutional and pooling layers increases the likelihood

of overfitting and performance issues.

Despite previous literature suggesting the potential benefits of combining 2D and 3D

CNNs, our dataset’s characteristics aren´t quite the same. Our focus is on MSI, rather

than HSI, so the primary goal will be the development with this in mind, considering then

architectures which are ultimately 2D in nature.

In the context of handling MSI imagery and probably in the whole of this thesis,

the most important article is the one that dealt with the dataset mentioned in [37],

the BigEarthNet. This is a dataset created at the Berlin Technical University, which

consists of 590,326 pairs of Sentinel-1 and Sentinel-2 patches from images. The Sentinel-2

is the most relevant, as is data from the same satellite as the one provided by the DGT.

These 590,326 image patches are from the same approximate period as the ones the DGT

provided between 2017 and 2018. Using these patches of labeled (according to the 44

CLC2018 classes) Sentinel-2 image, tests were conducted to check the performance of the

use of CNNs to handle and classify these images. This articles primary conclusions focus

on the positive results achieved with the use of CNNs that were designed and trained from
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scratch when in comparison with transfer learning based models that use the ImageNet

weights underperforming in comparison.

Another article, [32], focuses on the classification of Sentinel-2 images, this time on a

different dataset, the EuroSAT, using 10 different classes. This different in the number of

classes help improve the performance of the model probably and it achieved the 88.21%

average accuracy.

In [38,39] the focus of the tests isn’t as much in model, it is in the band selection

within the imagery for classification. As the Sentinel-2 images originally have 13 bands,

some of these are more or less important, both dependant on their respective spatial

resolution as from the different wavelengths they capture, these papers focus on doing

tests with different band combinations and different models. Conclusions indicate that

datasets usually achieve better results, with [38] achieving accuracy of 94.8% with only 4

bands and an accuracy of 88.8% with 10 bands. [39], despite considering only 5 classes 5

classes, achieves a accuracy of 98.1% when using a combination of the three RGB bands

with NIR.

Moving to [40], this article focuses on land cover mapping in Algeria, particularly in

the context of natural disaster prevention. A CNN with a pretty shallow architecture,

featuring only 2 hidden layers, is employed to analyze Sentinel-2 imagery of the region.

Object-based analysis is also incorporated into the classification process. The results

are very positive, with an achieved accuracy of 93%, marking a clear improvement over

alternative methodologies that featured Support Vector Machine (SVM) classifiers.

Throughout the literature review, various image-processing techniques utilizing CNNs

were discussed. HybridSN, frequently mentioned in the context of HSI due to its efficacy in

handling multi-layer data, it is however not necessary for our MSI dataset. Our approach

will be closer to the models after shown, like the treatment of the BigEarthNetAs. As

result, the choice was the 2D-CNN. Nevertheless, transfer learning will also be evaluated,

although some articles suggest it may not outperform custom-trained models from scratch.

The text also mentions that a comparison between CNN and an ANN has been con-

ducted and that the latter has difficulties because it lacks convolutional and pooling

layers.
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CHAPTER 3

Dataset Overview and CNN Development

This chapter will include a comprehensive review of the work executed and the method-

ology employed in its development. To categorize land based on the defined classes es-

tablished by the DGT, a series of experiments were conducted using a dataset provided

by this organization. This dataset encompassed MSI data for a specific location inside

Portugal. The main goal was to develop a neuronal network that could present something

different and have better overall classification results in comparison to what is currently

being used (shallow learning).

Taking this into consideration, and in a concise overview of the undertaken actions,

the initial measures involved attaining a comprehensive comprehension of the accessible

data. Then, the data was treated in such a way that it could be divided and fed into

the CNNs for training, testing, and validation to achieve the best possible solution that

would facilitate the best overall accuracy, the lowest loss, and without forgetting to try

and optimize the time it took for it to work. Once the data had been prepared, the

subsequent stage involved the preliminary establishment of the CNN. To do this, basic

architecture models were considered (due to the specifications of the data, the neuronal

network couldn’t have many layers), and an initial framework was established. From

there, diverse experiments were conducted to enhance the performance of the original

CNN. There were also trials conducted involving transfer learning, which refers to the

utilization of the deep portion of pre-trained CNNs while modifying only the topmost

classification layers. These experiments were done to compare and check what approach

would achieve the best results in classifying the given data.

The chapter will be divided into several subchapters, outlining all the steps and tests

done to and with the data to achieve the results that will also be shown.

3.1. Data Collection and PreProcessing

As previously stated, the data used in this thesis was provided by the DGT. The provided

data is relative to an area of the Portuguese mainland (further explanation provided in

3.2) and will now be explained in the following 3.1.1 and 3.1.2 how the data was collected

and pre-processed by this entity.

3.1.1. Sentinel-2 Data

The European Commission, more specifically the ESA, owns the Sentinel-2 constellation of

satellites used in the mission of the same name to collect data. This mission was launched

alongside others with the same name (Sentinel), distinguishable by their number (in this

case, the 2). The Copernicus program essentially has the function of being the earth
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observation component of the EU space program. With the help of satellite constellations

and other sources, the aim of this program is to collect reliable and accurate remote

sensing data that can be used, for instance, to monitor environmental changes and global

warming.

When addressing about the Sentinel-2 mission, it is important to consider the resolu-

tion (or granularity) of data acquisition along four dimensions:

• Temporal Resolution;

• Spatial Resolution;

• Spectral Resolution;

• Radiometric Resolution;

The temporal resolution is related to the time it takes for a satellite to revisit the same

area. In the case of the Sentinel-2 constellation, as it is composed of the two mentioned

satellites positioned with a difference of 180º, the temporal resolution is 5 days, each

having a 10-day cycle. The spatial resolution is defined by the MSI instrument and

depends on the specific sensor configuration. This resolution is considered when talking

about the at-ground representation of the Earth’s surface by a single pixel in the satellite

images. The spectral resolution is the instrument’s capability to differentiate features

along the electromagnetic spectrum, which makes it possible to detect much information

about the Earth’s surface. The final resolution considered is the radiometric resolution.

The radiometric resolution of the instrument is defined as the capacity a system has to

detect variations in intensity or reflectance. For the MSI instrument, the radiometric

resolution is 12 bits, making it possible to represent intensity values up to 4095. These

intensities are, however, converted to reflectance and represented as 16-bit integers in the

final products.

The Sentinel-2 mission, composed of Sentinel-2A (launched in 2015) and Sentinel-2B

(launched in 2017), has the purpose of collecting multispectral optical data (see Table 3.1)

using the two already in-service satellites, Sentinel-2A, launched in 2015, and Sentinel-2B,

launched in 2017. The mission will soon be expanding its constellation, with two further

launches planned for the next two years, 2024 and 2025, of Sentinel-2C and Sentinel-2D.

The data collected by this mission has various uses, for example, urban planning, crop

monitoring, or forest monitoring.

Each of these satellites is outfitted with an MSI instrument containing thirteen bands,

the characteristics of which are detailed in the Table 3.1.

As observable in the Table 3.1, the spatial range has three possible values: 10m, 20 m,

and 60 m. The 10m spatial resolution has the particularity of being used in collaboration

with other missions (Landsat-8 (an American space program with similar goals) and

SPOT-5 (operated by the French Space Agency and with comparable objectives)) with a

focus on land classification. Both satellites were fully developed and designed by Airbus

Defense and Space in France. The capture wavelength range goes from the visible to
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Table 3.1. Original Sentinel-2 Bands and Resolutions

Band Number
Spatial

Resolution (m)
Central
λ (nm)

Spectral Width
∆λ (nm)

Description

1 60 443 20 Ultra Blue
2 10 490 65 Blue
3 10 560 35 Green
4 10 665 30 Red
5 20 705 15 Visible and Near Infrared (VNIR)
6 20 740 15 Visible and Near Infrared (VNIR)
7 20 783 20 Visible and Near Infrared (VNIR)
8 10 842 105 Visible and Near Infrared (VNIR)
8a 20 865 20 Visible and Near Infrared (VNIR)
9 60 945 20 Short Wave Infrared (SWIR)
10 60 1375 30 Short Wave Infrared (SWIR)
11 20 1610 90 Short Wave Infrared (SWIR)
12 20 2190 180 Short Wave Infrared (SWIR)

the Visible and Near Infrared (VNIR) and Short Wave Infrared (SWIR) (as shown in

Figure 3.1 and accordingly also in Table 3.1).

Figure 3.1. Sentinel-2 Bands (Image credit ESA)

Each different combination of spatial and spectral resolution has its own goal. The

10m bands focus mostly on the visible light spectrum due to its sensitivity to the chloro-

phyll in vegetation, both the absorbed and the total in the vegetation itself as well as

the soil background. The 20m bands are mostly in the VNIR vegetation red edge spec-

tral domain; their main goal is applications such as snow/ice and cloud detection, along

with vegetation moisture assessment and leaf area index. The other three bands of 60m

spatial resolution are mostly focused on atmospheric phenomena like cloud detection and

atmospheric corrections.

In addition to the MSI instrument’s technical specifications, the constellation has other

specifications that may impact the data. For example, the fact that satellites are sun-

synchronous means that they maintain the incidence of sunlight on the Earth’s surface in

the image capture.
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Figure 3.2. Sentinel-2 Mission Cover
Source: [41]

In the image, there are three distinct hues, each of which corresponds to a distinct

period between satellite passages.

• Green - every five days

• Yellow - every ten days

• Orange - every ten days from alternate tracks.

As seen in Figure 3.2, their 5-day revisiting cycle encompasses the majority of the

planet.

The areas for which the products are generated can also be viewed: all continental

land surfaces, inland waters between 56° South and 82.8° North, coastal islands up to

20km from the coast, islands over 100km, all EU islands regardless of size, the entire

Mediterranean Sea, and all closed seas.

The product types that are accessible to users from the image collection are an addi-

tional important factor to consider for the mission. There are numerous types of products,

the majority of which are not accessible to all users. Level 2A is the product type that

corresponds to the provided information and is relevant. This is a type of product whose

surface reflectance has been corrected for atmospheric conditions using cartographic ge-

ometry (in the Figure 3.3 is shown the difference between the level 1C and level 2A).

There is a clear distinction between the two products. Despite being preprocessed

images, Level 2A (Figure 3.3b) is of higher quality than Level 1C (Figure 3.3a), to which

only corrections for the upper atmosphere were applied.

The sentinel 2 data is acquired in a continuous mode known as “datatake”. The maxi-

mum length these images may take is 15000 km. All these large data sets are composed of

tiles (depending on ground geometry) or granules (depending on sensor geometry). These

products are the fundamental elements, with a fixed size of these data points collected

over a single orbit and therefore indivisible. In the case of the products that matter to

this thesis (Level-2A), their size is a square with 110x110 km2 orthoimages (images that
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(a) Level 1C (b) Level 2A

Figure 3.3. Sentinel-2 Products
Source: [42]

have had their distortions corrected, distortions related to the camera and the terrain,

thus providing a correct perspective of the ground shape) in projection UTM/WGS84

(the UTM relates to the projection of the map (this way considering the earth flat op-

posed to a globe), it divides the world in 60 different zones while keeping each zone with a

constant scale and origin in the equator; the WGS84 relates to the set of parameters that

is used as a reference point for spatial measurements, this one being the most used; both

are needed to accurately pinpoint points on earth). They are collected in a 100-kilometer

step, so there is always an area that overlaps.

However, the data used to generate the dataset and therefore provided by the DGT

was not obtained directly from the ESA. It was obtained from the Theia Land Data

Centre (THEIA) in France. This was because the available images have already been

preprocessed with the MAJA algorithm [43]. This pre-processing already solves some

issues; it adds a level of atmospheric correction to the bottom of the atmosphere, masks

clouds, their shadows, snow, and water, and provides slope correction. This slope affects

the reflectance correction to ensure that the reflectances are as they would appear on a

flat surface and not a lens.

The downloaded files by the DGT were carefully filtered to include only those with a

maximum cloud cover of 50%. Additionally, the bands with a spatial resolution of 60m

were removed. These specific bands were primarily intended for measuring atmospheric
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properties, which had already been accurately corrected for our purposes. As a result, we

were left with ten bands instead of the original thirteen.

To enhance the dataset’s consistency, a spatial resolution adjustment was performed on

the bands captured at 20m. This adjustment involved upscaling the pixel resolution from

20 meters to 10 meters using a nearest-neighbor interpolation method. This upscaling

ensured that all bands in the dataset were uniform with a spatial resolution of 10m,

facilitating uniform data processing and analysis.

This new data structure with the mentioned changes is shown in Table 3.2.

Table 3.2. Sentinel-2 Bands and Resolutions post Pre-Processing

Band Number
Spatial

Resolution (m)
Central
λ (nm)

Spectral Width
∆λ (nm)

Description

2 10 490 65 Blue
3 10 560 35 Green
4 10 665 30 Red
5 10 705 15 Visible and Near Infrared (VNIR)
6 10 740 15 Visible and Near Infrared (VNIR)
7 10 783 20 Visible and Near Infrared (VNIR)
8 10 842 105 Visible and Near Infrared (VNIR)
8a 10 865 20 Visible and Near Infrared (VNIR)
11 10 1610 90 Short Wave Infrared (SWIR)
12 10 2190 180 Short Wave Infrared (SWIR)

The tiles were then used by the DGT to produce an image that would relate to a

specific period that they defined. For each tile, they were able to produce the median

composite of the time they intended. All the images of the period were stacked band by

band, and for each of the pixels, the median would be calculated. This way, you are not

affected by the effects of clouds or other atmospheric phenomena. Whenever this wasn’t

enough to make the data good throughout the whole image, they would then complete

those period values with the use of linear interpolation with time spans that preceded and

succeeded that [8].

Additionally, DGT derived several spectral indexes computed from the THEIA data.

These spectral indexes include the Normalized Difference Vegetation Index (NDVI), the

Normalized Burn Ratio (NBR), the Normalized Difference Water Index of McFeeters (ND-

WIF), the Normalized Difference Built-up Index (NDBI), and the Normalized Difference

Moisture Index (NDMI). The formula for each is:

Table 3.3. Implemented spectral indexes with formulas

Index Equation Bands Reference

NDVI (NIR-R) / (NIR+R) (B08 - B04) / (B08 + B04) [44]
NBR (NIR-MIR2) / (NIR+MIR2) (B8A - B12) / (B8A + B12) [45]
NDWI (G-NIR) / (G+NIR) (B03 - B08) / (B03 + B08) [46]
NDBI (MIR1-NIR) / (MIR1+NIR) (B11 - B8A) / (B11 + B8A) [47]
NDMIR (MIR1-MIR2) / (MIR1+MIR2) (B11 - B12) / (B11 + B12) [48]
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For both GeoTiffs and spectral indexes, data quantiles were data were calculated for

each of the 10 band time spans. The quantiles 10, 25, 50, 75, and 90, as well as the

q75-q25 and q90-q10 quantile differences.

3.1.2. Auxiliary Data

In addition to the GeoTiff files containing the collected derived products (Sentinel-2 data),

the dataset also included DGT files containing training points. These points correspond

to the labels for certain locations, which correspond to established classes that will be

used to classify the land according to the convention further down the line. There are two

formats for these points: geopackage (gpkg) and comma-separated values (CSV). Both

files contain essentially the same information, the difference being the way the coordinates

for each of the points are stored. With the UMT projection and WGS84 parameters, the

coordinates in the gpkg are generated in a manner comparable to that of the Sentinel-2

imagery products. The CSV file contains points with planimetric coordinates (X and Y).

These coordinates are comparable because the UMT projection is a type of planimetric

coordinate system (planimetric coordinates are those that consider the map to be flat

and stabilize the positions; accordingly, the UMT projection is a type of planimetric

coordinates).

Given that the DGT is providing the data in this instance, the focus is on mainland

Portugal. From the perspective of Sentinel-2, the country land coverage can be divided

into the seventeen tiles shown in Figure 3.4a. From a administrative standpoint, the

division is divided into fourteen distinct Landscape Units (LU), as shown in Figure 3.4b.

(a) Tiles (b) LU

Figure 3.4. Portugal map from a tile and LU perspective
Source: Adapted from the provided documentation [49]

23



These landscape units were defined during the production of the COSsim (Land Oc-

cupation Letter) production process, specifically for COSsim 2018 [49]. COSsim is an

experimental product developed by DGT to partition mainland Portugal into small zones.

These zones are identified by unique letter codes detailed in Table 3.4. These letter codes

are shown in Figure 3.4b.

Table 3.4. Characterization of the LU used in the COSsim

Source: Adapted from the provided documentation [49]
Numeric Code Letter Code Name Area (ha) % Total area

111 MIN Minho 49443 6
112 DOU Douro 192796 2
113 BA Beira Alta 792212 9

114 AMP Área Metropolitana do Porto 88583 1
121 ToM Trás-os-Montes 1177802 13
122 SEBT Serra da Estrela e Beira Transmontana 928857 10

211 AMLO Área Metropolitana de Lisboa e Oeste 389795 4
212 BL Beira Litoral 449384 5
213 MCE Maciços Calcários da Estremadura 217884 2
214 TeS Tejo e Sado 1223890 14
215 AAL Algarve e Alentejo Litoral 234797 3
221 SMCB Serra de São Mamede e Castelo Branco 489464 6
222 ALI Alentejo Interior 1680967 19
223 SALA Serras do Algarve e do Litoral Alentajano 535517 6
Total 8896591 100

Along with the letter and numeric code, the Table 3.4 also shows all the names of the

LU, along with the area of each zone and the percentage of the area of mainland Portugal

that the zone corresponds to.

The training points, or labels, were created by the DGT for each of the LUs and not

for each tile of the Sentinel-2 products. These points were created randomly for each class

and each area and automatically processed to include and exclude areas of interest based

on the characteristics of the land use in that area. The various classes can be seen in the

Table 3.5.

The classes to the left are the training classes; a code is assigned to each of these specific

classes. These classes are distinct from the final COSsim classes, which are divided into

three distinct levels as shown in the table’s right column. These COSsims are typically

comprised of multiple training classes per level because they are less specific than training

classes.

As a summary, Figure 3.5 shows the components of the dataset provided by DGT.

The dataset described in Figure 3.5 is composed of two types: the Sentinel-2 products,

composed of the Sentinel-2 10-band GeoTiff, the indexes, and the metrics. The other type

is the auxiliary data, which are the training points developed by the DGT according to

their goals of building the SMOS.
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Table 3.5. Training Point Classes according to the COSsim Nomenclature

COSsim Nomenclature
Training Points class Code Level 3 Level 2 Level 1
Artificialized territory 11110
Industry 11101
Road network 11120

100 - Artificialized 10 - Artificialized 1 - Artificialized

Oat 21110
Wheat 21120
Barley 21130
Ryegrass 21140
Triticale 21150
Rye 21160

211 - Annual Autumn/
Winter Cultures

Corn 21210
Rice 21220
Tomato 21230
Sunflower 21240
Irrigated Area 21201

212 - Annual Spring/
Summer Cultures

Vine 22101
Orchards 22201
Olive 22301
Pasture 31110

213 - Other Agricultural
Areas

21 - Agriculture 2 - Agriculture

Cork Oak 51101
Holm Oak 51201

311 - Cork and Holm Oak

Adult eucalyptus 51310
Eucalyptus AA2017 51301
1 Year Cuts Eucalyptus 51302
Young Cuts Eucalyptus 51303

312 - Eucalyptus

51410
Other Hardwoods

51401
313 - Other Hardwoods

31 - Hardwoods

52110
Maritime Pine

52101
321 - Maritime Pine

52210
Stone Pine

52201
322 - Stone Pine

Other Softwoods 21310 323 - Other Softwoods

32 - Softwoods

3 - Forest

Agricultural
Spont. Herb. Veg.

31201

Mountain
Spont. Herb. Veg.

31202

Herbaceous
Vegetation AA2017

31203

Herbaceous
Vegetation Cuts

31204

Herbaceous
Vegetation AA2016

31205

420 - Spontaneous
Herbaceous Vegetation

42 - Spontaneous
Herbaceous Vegetation

Dense Bushes 61101
Snow Bushes 61103

61104
Bushes AA2017

61105
Bushes AA2016 61106

410 - Bushes 41 - Bushes

4 - Bushes and Spontaneous
Herbaceous Vegetation

Bare Soil 71110
Bare Rock 71201

500 - Surfaces without
Vegetation

50 - Surfaces without
Vegetation

5 - Surfaces without
Vegetation

Humid Zones 81110 610 - Humid Zones
Water 91110 620 - Water

61 - Humid Zones
6 - Water and Humid

Areas

3.2. Description of the Received Data

As previously stated in the Section 3.1, the data that was provided by the DGT wasn’t of

the full Portuguese mainland; instead, it was relative to a specific area of the map. This

particular region can be observed in the Figure 3.6, both from a tile (Figure 3.6a) and

LU perspective (Figure 3.6b).

There are six tiles, designated as 29TNG, 29TPG, 29TQG, 29TNF, 29TPF, and 29QF.

This region contains MIN, TOM, AMP, and DOU from a LU perspective. These, along
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Dataset

Sentinel-2 Products Auxiliar Data

Sentinel-2 10 Bands

Indexes

Metrics

Training Points

Figure 3.5. Summary of the provided Data

(a) Dataset Tiles (b) Dataset LU

Figure 3.6. Map of the provided data from a tile and LU perspective
Source: Adapted from the provided documentation [49]

with some specifications of their characteristics, can be seen in the Table 3.6, with char-

acteristics such as the area of each of these LUs and the percentage they represent of the

whole Portuguese mainland.

Table 3.6. Characterization of the LU present in the dataset

Source: Adapted from the provided documentation [49]
Numeric Code Letter Code Name Area (ha) % Total area

111 MIN Minho 49,443 6
112 DOU Douro 192,796 2

114 AMP Área Metropolitana do Porto 88,583 1
121 ToM Trás-os-Montes 1,177,802 13

Total 1,580,624 22

In addition to the dataset details, its important to establish the relation between the

tiles, which correspond to the Sentinel-2 imagery, and the LUs, which correspond to the

training points. In Table 3.7, its presented the distribution of the training points across the
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Level-3 COSsim nomenclature classes. The class ’100:Artificialized’ which is composed by

the training point classes ’Artificialized Territory’, ’Industry’, and ’Road Network’, with

the best represented with 22,044 points. On the other hand the least represented class is

’610:Humid Zones’ with 0 samples.

Furthermore, it’s worth appointing that the dataset is composed of 158,847 samples.

This, when compared to the sheer size of each GeoTiff tile which are squares 10980 pixels

height and width. This means that the percentage in the universe of pixels composed of

the six tiles, the percentage of labeled pixels is 0.002194%.

Figure 3.7. Overlay of the four LU training points over the six tiles

Figure 3.7 illustrates the distribution of training points across each of the six tiles.

Opening a GeoTiff for each tile and superimposing the gpkg file with the training points

created this image. These are the training points previously mentioned. Each distinct

point color represents a unique LU, hence the four distinct colors. Several inferences can

be made from the image. As expected, as the number of tiles and LUs increases, the

majority of tiles consist of training points from multiple LUs. Aside from that, and only

visible now, these regions only contain labels from the northernmost points. To be more

complete, training points from other LU like BA (Beira Alta), BL (Beira Litoral), and

SEBT (Serra da Estrela e Beira Transmontana), as shown in the Table 3.4, would be

needed. It is believed that the DGT left these areas out of the dataset because the tiles

wouldn’t completely cover them and, as a result, they weren’t useful.

3.3. Data Processing

The procedure for handling the supplied data will now be detailed. In this regard, it is

crucial to recall the previously provided overview of the dataset, including the distinctions

between tiles (Figure 3.4a), LU (Figure 3.4b), and training points (table something).

Consequently, the applied methodology can be summed up as follows:
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Table 3.7. Training Classes and Level 3 classes per LU from data

LU

COSsim Level 3 Class
Training Points
Class

Code 111 112 114 121
Total/
Class

Total/
level

Artificialized territory 11110 1798 656 1000 3943 7397
Industry 11101 1798 977 1000 2793 6568100 - Artificialized
Road network 11120 1798 983 997 4301 8079

22044

Oat 21110 780 1000 223 4303 6306
Wheat 21120 15 238 0 4303 4556
Barley 21130 0 73 0 910 983
Ryegrass 21140 1798 0 68 704 2570
Triticale 21150 0 0 0 1777 1777

211 - Annual Autumn/
Winter Cultures

Rye 21160 49 167 0 4303 4519

20711

Corn 21210 1796 194 990 4303 7283
Rice 21220 0 0 0 0 0
Tomato 21230 0 0 0 0 0
Sunflower 21240 0 0 0 17 17

212 - Annual Spring/
Summer Cultures

Irrigated Area 21201 0 0 0 0 0

7300

Vine 22101 0 1000 0 0 1000
Orchards 22201 0 0 1000 0 1000
Olive 22301 0 0 0 0 0

213 - Other Agricultural
Areas

Pasture 31110 1798 380 165 4303 6646

8646

Cork Oak 51101 0 1000 4303 0 5303
311 - Cork and Holm Oak

Holm Oak 51201 0 997 0 4303 5300
10603

Adult eucalyptus 51310 1798 285 993 428 3504
Eucalyptus AA2017 51301 1798 1000 0 4303 7101
1 Year Cuts Eucalyptus 51302 1793 1000 991 4303 8087

312 - Eucalyptus

Young Cuts Eucalyptus 51303 1798 1000 958 0 3756

22448

51410 1798 975 0 4245 7018
313 - Other Hardwoods Other Hardwoods

51401 0 0 328 0 328
7346

52110 1798 1000 880 4303 7981
321 - Maritime Pine Maritime Pine

52101 0 0 0 0 0
7981

52210 0 0 0 16 16
322 - Stone Pine Stone Pine

52201 0 0 0 0 0
16

323 - Other Softwoods Other Softwoods 21310 64 0 0 4303 4367 4367
Agricultural
Spont. Herb. Veg.

31201 1370 1000 1000 4303 7673

Mountain
Spont. Herb. Veg.

31202 0 0 0 4303 4303

Herbaceous
Vegetation AA2017

31203 0 994 0 4303 5297

Herbaceous
Vegetation Cuts

31204 0 0 0 0 0
420 - Spontaneous
Herbaceous Vegetation

Herbaceous
Vegetation AA2016

31205 0 0 0 0 0

17273

Dense Bushes 61101 1772 1000 995 4298 8065
Snow Bushes 61103 0 0 0 0 0

61104 1785 0 0 4303 6088
Bushes AA2017

61105 0 0 0 0 0
410 - Bushes

Bushes AA2016 61106 314 0 0 0 314

14467

Bare Soil 71110 1782 1000 1000 4303 8085500 - Surfaces without
Vegetation Bare Rock 71201 1798 5 475 4289 6567

14652

610 - Humid Zones Humid Zones 81110 0 0 0 0 0 0
620 - Water Water 91110 1793 1000 998 4303 8094 8094
Total 33091 17924 18364 96569 - 165948

• Based on the dataset analysis, it was possible to conclude that the indexes and

metrics were not particularly useful. This is because CNN is capable of extracting

meaningful information and features from the images from the raw data without
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the help of these pre-calculated indexes and metrics. As a result, they were dis-

carded. The elements of the products considered were the ten-band preprocessed

GeoTiffs relative to the month of October 2017.

• To align the labels per tile (Figure 3.8a) instead of per LU (Figure 3.8b), it

was necessary to cross information between the CSV containing the training

points and the GeoTiffs. This change was thought to simplify the use of this

data. Essentially, this crossing of information consisted of using the planimetric

coordinates present in each label and checking what tile they would fall inside

(Figure 3.8). This was made possible due to the characteristics of the GeoTiff

files; as raster maps, they allow for the conversion of the pixel coordinates to

geographical coordinates (the ones the CSV files possess). The Algorithm 1

shows how this process was done.

Algorithm 1 Create Labels By Geotiff Instead Of By LU

function Split
▷ This algorithm creates labels for each GeoTIFF tile instead of each LU.

Create a folder called Labels by Geotiff.
Load the CSV files in the variable csv files.
Load the GeoTIFF tiles in the variable geotiff tiles.
Initialize an empty list called csv pixel index.
for all data in csv files do

Initialize an empty list called aux data.
for all i, row in data.iterrows() do

Get the geo x, geo y, and data class from the row.
for all geotiff data in geotiff tiles do

Get the bounds of the geotiff data.
if the geo x is within the bounds of the geotiff data and the geo y is

within the bounds of the geotiff data then
Get the pixel y and pixel x from the geotiff data.
Add a new row with the geo x, geo y, pixel x, pixel y, geotiff file, and

data class to the aux data list.
Break.

end if
end for

end for
Add the aux data list to the csv pixel index list.

end for
Concatenate the csv pixel index list into a DataFrame called grouped.
Group the grouped DataFrame by the geotiff file column.
Initialize an empty list called grouped dataframes.
for all name, group in grouped do

Add the group.reset index(drop=True) to the grouped dataframes list.
end for
for all aux, data in enumerate(grouped dataframes) do

Get the filename from the data.
Remove the .csv extension from the filename.
Remove the last 6 characters from the filename.
Get the filepath as os.path.join(labels folder, filename + ’.csv’).
Save the data to the filepath.

end for
end function

• The originally thought-out concept was based on the assumption that a large

number of contiguous pixels were labeled; however, this was not the case. So,

the idea of doing image segmentation while using CNN for pixel classification
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(a) Overlay of the training points over
one GeoTiff previous training points
per tile

(b) Overlay of the training points over
one GeoTiff after training points per tile

Figure 3.8. Overlay of Tile with training points by LU and by tile

was dropped. Considering that the percentage of labeled pixels per tile was

around (0.02294%) considering the total number of pixels in a tile (10980x10980),

pursuing the segmentation idea was not feasible. The new idea consisted of using

the known location of the labeled pixels of the tiles, previously split by tile, and

using them to crop the tile into smaller patches of land. These patches would be

centered in the known location and would consider all the surrounding areas to

be of the same class as the central pixel.

• To apply this cropping strategy, it was necessary to load the training points per

tile file, convert each label location to a pixel location, and then retrieve the

center point of the patches that needed to be created using this information.

• The next step involved cropping the new GeoTiff based on the center point

location information retrieved. Each image patch would retain all data from the

Sentinel-2 product, keeping information from every band. We chose a patch size

of 33x33 pixels, which corresponds to an area of 108,900 m2 at a spatial resolution

of 10 meters. This crop is shown in Figure 3.9b. It was important to consider

that the use of 33x33 patches required the center point (used for labeling) to be

at least 17 pixels away from the tile’s edge. If this condition wasn’t met, the

cropping would be skipped to avoid falling outside the image. In the full dataset,

this situation occurred 390 times, resulting in a reduction of training points from

165,948 to 165,558, as indicated in Table 3.8.

The choice of the size of the patch was made while trying to strike a balance

between the image size needed to implement a CNN architecture; something

very small won’t have enough size to be subject to convolution and pooling. On

the contrary, with the increase in size and considering that the classification is
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Algorithm 2 Data Crop

function Crop
▷ This algorithm creates labels for each GeoTIFF tile instead of each LU.

Read or create folders to store the new dataset
for all data in dataset folder path do

Create a folder for data
end for
Read CSV files with pixel labels
Read paths of GeoTIFF tiles
Define the window size for cropping
Initialize an empty list for failed rows
for all CSV label files do

for all GeoTIFF tile files do
if CSV file matches GeoTIFF tile then

for all rows in CSV data do
Extract pixel coordinates and class
Determine the output folder
Generate an output file name
Crop around the pixel from the GeoTIFF tile
if crop is successful then

Save the cropped image
else

Add the row to the list of failed rows
end if

end for
end if

end for
end for
Save the list of failed rows to a CSV file
Read the paths of data folders
Split data into training, validation, and test sets
Save the file paths for each set to text files

end function

attributed to the image, other classes in the image may not be considered. For

example, if the point is in the middle of a forest or mountain, it probably won’t

be crossed by anything else. However, if this same forest point refers to an edge

of the forest, other classes like artificialized (i.e., roads that may exist) won’t

be detected. These crops were stored in a structure like the COSsim level three

nomenclature shown in Table 3.5. This choice was made to decrease the number

of classes, especially considering that some of the classes are poorly represented.

So, the labels were converted from the training point class to level three of the

COSsim, and then the crops were stored inside a general file for each class, with

the original name of the tile plus the class and the index in which it was cropped.

From this point on, the original tile didn’t matter. Besides this, from the whole

universe of data, only one month’s worth of data was used from each different

zone (October 2017). This process ocurred as shown in the Algorithm 2

The files that were indexes, metrics, and the rest of the months weren’t con-

sidered. The first two already explained why the question surrounding the choice

of only one month from the data from each of the six months was due to the ap-

parent lack of significant changes from month to month. The Figure 3.9 provides

a comparison between the tile (Figure 3.9a) and a cropped patch (Figure 3.9b).
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(a) 29TNF Tile

(b) 29TNF Artifi-
cialized Patch Ex-
ample

Figure 3.9. 29TNF tile and one training point in RGB

• With the data now split into smaller patches and stored by class, the main goal

changed; it was now to get the data ready to be inputted into the CNN. This

would mean, among other things, that it had to be divided into training (70%)

with a total of 115884 samples, testing (10%) with 16568 samples, and validation

data (20%) with 33106 patches. The distribution across each of the Level 3

classes, as well as some other information, can be seen in Table 3.8 and in a chart

format in Figure3.10.

Table 3.8. Dataset Division into Train, Validation, and Test

Level 3 Total/level Training Validation Testing

100 - Artificialized 21,857 15,299 4,371 2,187
211 - Annual Autumn/Winter Cultures 20,684 14,478 4,136 2,070
212 - Annual Spring/Summer Cultures 7,297 5,107 1,459 731
213 - Other Agricultural Areas 8,587 6,010 1,717 860
311 - Cork and Holm Oak 10,603 7,422 2,120 1,061
312 - Eucalyptus 22,445 15,711 4,489 2,245
313 - Other Hardwoods 7,330 5,131 1,466 733
321 - Maritime Pine 7,943 5,560 1,588 795
322 - Stone Pine 16 11 3 2
323 - Other Softwoods 4,367 3,056 873 438
420 - Spontaneous Herbaceous Vegetation 17,250 12,075 3,450 1,725
410 - Bushes 14,444 10,110 2,888 1,446
500 - Surfaces without Vegetation 14,642 10,249 2,928 1,465
610 - Humid Zones 0 0 0 0
620 - Water 8,093 5,665 1,618 810
Total 165,558 115,884 33,106 16,568

• This was done randomly for each class, keeping the same percentage for each

class. This implies that, even though the number of samples per class is not
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Figure 3.10. Chart with the distribution of the data per Training, Vali-
dation and Testing

equal due to the non-normal distribution, the proportion of samples allocated to

each of the groups within each class remains constant.

• After the data had already been divided into three parts (testing, validation,

and training), the GeoTiffs were reloaded in the subsequent step. Each file was

then normalized so that all the pixel reflectance values would range from 0 to

1. Then, each cropped GeoTiff file was saved in a folder corresponding to their

final goal: test, train, and validate. However, they weren’t saved as GeoTiffs but

as NumPy array files (npy, these files created by the Python library NumPy are

essentially a more compact and efficient way of storing arrays than the format

being used). Of each file, two versions were saved: a ten-band version like the

provided Sentinel-2 product and a three-band RGB file. This choice was made

because of two different factors: the first was that the performance could be

measured from different perspectives; the second was the difference between using

all of the information and only considering a lesser number of bands; and the third

was the interest in trying to use transfer learning. Transfer learning involves

adapting pre-trained CNN models to new data. These algorithms expect data

with certain characteristics depending on the model, typically RGB. Which gave

an even greater incentive. For a better comprehension of the whole process, the

Algorithm 3 gives a pretty good overview.

• After the entire dataset had been divided into three folders and was ready to be

fed into the CNN, the only thing missing was a label file for each folder, given
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Algorithm 3 Data Normalization and .npy storing

function DataNormalizationAndReady
▷ This algorithm normalizes and stores data in .npy files.

Load previously created dataset dir

Initialize classes with class names
Initialize data folders and data splits

for all i, folder in data folders do
Read paths from data splits using index i

Read files from dataset dir using read file paths()

Convert geotiffs to arrays using convert geotiffs to arrays()

Create dataset path using os.path.join()

Extract labels using extract labels()

Save labels as folder labels.npy

Read files from dataset path

Create RGB data folder and paths using folder creator()

and os.path.join()

for all file in data files do
Load and select bands from file

Normalize the data
Save as name RGB.npy

end for
end for

end function

that the training would be performed using one-hot encoding. This means that

the following characteristics are present in a matrix similar to Table 3.9:

Table 3.9. One-Hot Encoding Label Example

0 1 2 3 . . . Nº Classes -1
1 1 0 0 0 . . .

2 1 0 0 0 . . .

3 0 1 0 0 . . .

4 0 0 1 0 . . .

5 0 0 0 1 . . .

. . . . . . . . . . . . . . . . . .

N-1 Samples

Each column in the Table 3.9 represents a class, and each line represents a

certain label. So in the combination of row and column where the is a one, it

symbolizes that that given label is from the class that corresponds to the column.

When all this was completed, the next step was to develop the CNN model.

3.4. Convolutional Neuronal Network Architecture

In what concerns the CNN architecture employed, a division can be made to distinguish

what was tried:

• custom models using 10 bands as input

• custom models using RGB bands as input

• tranfer learning-based models using RGB bands

All the architectures were defined on the before-mentioned computer using Python 3.11

and the Keras library with the Keras backend.
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3.4.1. Sentinel-2 Products Model

The architecture of CNN used when considering the full ten bands is the one that retains

the native spectral information from the provided data, given that the spatial component

has been changed, using patches of dimensions 33x33x10 instead of the tiles with dimen-

sions 10980x10980x10. This neuronal network architecture design (Figure 3.11) with the

goal of image classification has a repeating block structure due to the reduced image size

(33x33 pixels), which makes it unsuitable to use many layers and makes it not a very

deep network. The goal was to achieve a balance between computational complexity and

performance.

Input (33x33x10)

Conv2D (64, 3x3, ReLU)

Conv2D (64, 3x3, ReLU)

MaxPooling2D (2x2)

Dropout (0.3)

Conv2D (128, 3x3, ReLU)

Conv2D (128, 3x3, ReLU)

MaxPooling2D (2x2)

Dropout (0.3)

Flatten

Dense (256, ReLU)

Dropout (0.3)

Dense (Number of Classes, Softmax)

Figure 3.11. 10 Bands Model Architecture
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This referred block is composed of two stacked convolutional layers, which have a

number of filters equal to 64 in the first convolutional layer and 128 in the second. These

filters have a size of 3x3 pixels. The activation function of this block is the ReLu. After

the convolutional layers, a MaxPooling layer with a window size of 2x2 is applied, reducing

the feature map to half of its previous size. After the MaxPooling layer, a Dropout layer

with a dropout ratio of 20% is added to diminish the chances of overfitting and allow the

network to generalize new data. After this is repeated two times, a flatten layer converts

the feature maps that result from the last block to a one-dimensional array. Then this

array goes through a dense layer with 256 units that use the ReLu activation function,

followed by a new dropout layer, this time with a rate of 30%. The final layer of this

architecture is a dense layer, with the number of units equal to the number of classes. The

activation function here used is the softmax, which will produce the class probabilities.

3.4.2. RGB Model

When considering the RGB data only the three corresponding bands were used (instead of

ten bands). The defined architecture is close to the one described in the previous section,

but only three input channels are used, as shown in Figure 3.12.

Other architectures were attempted; through them, the increase and decrease, for

example, in convolutional layers occurred; however, these are the architectures that got

the best results.

3.4.3. Transfer Learning

Besides the customized architectures described in the previous sections, additional archi-

tectures were defined, based on the idea on the idea of transfer learning. The two tested

transfer learning-based architectures were the MobileNet [50] and the EfficientNet [51].

3.4.3.1. MobileNet The first attempt at transfer learning was with a focus on Mo-

bileNetV3. This CNN comprises two different versions, the small and large variants.

These two models present differences in what concerns their structure, with the larger

being the most complex and having a superior number of hidden layers, as evident by

their names. The structure employed in the tests for both the large and the small is the

same and is shown in the Figure 3.13.

There are, however, some requirements that need to be met for these networks to

operate. The data values should range from 0 to 255, and the minimum input dimension

is 32x32 (ideally it should be at least 224x224).

In the first part, the data failed to comply as it was normalized between 0 and 1, so it

had to be multiplied by 255. In terms of the data dimensions, they were kept, as they are

above the minimum input size, and the resizing test that was done didn’t achieve better

results. Only a drastic increase in the training time would make the increase in data size

so that the data would be loaded, batched, and shuffled in parts.

With the data now ready to be loaded into the CNN, the dimensions stayed at 33x33x3,

with pixel values ranging between 0 and 255. This model was loaded with its pre-trained

36



Input (33x33x3)

Conv2D (64, 3x3, ReLU)

Conv2D (64, 3x3, ReLU)

MaxPooling2D (2x2)

Dropout (0.3)

Conv2D (128, 3x3, ReLU)

Conv2D (128, 3x3, ReLU)

MaxPooling2D (2x2)

Dropout (0.3)

Flatten

Dense (256, ReLU)

Dropout (0.3)

Dense (Number of Classes, Softmax)

Figure 3.12. RGB Model Architecture

weights from the ImageNet dataset [19]. To this model, and as expected in transfer

learning, other layers were added—in this case, four. A first layer that flattens the data,

a dense layer with 256 units and ReLu activation, a dropout layer with a 30% dropout

rate, and a final dense layer that is the same as the one used in the other architectures,

along with a SoftMax function to convert to the land classification classes

Important to this architecture’s implementation (transfer learning) was the freezing

of the pre-trained weights of each layer and neuron relative to ImageNet training. This

ensures that the layers remain static during training and that the only layers that are

trained are the deeper ones. As part of the transfer models’ fine-tuning, it was determined

how many layers would remain frozen with their pre-trained weights and how many layers
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Input (33x33x3)

MobileNetV3Small (Pre-trained)

Flatten

Dense (256, ReLU)

Dropout (0.3)

Dense (Number of Classes, Softmax)

Figure 3.13. Transfer Learning MobileNet Model Architecture

would be trained. This was accomplished by starting with all model layers frozen and

removing the freeze one layer at a time, beginning with the deepest layers, all while

evaluating the performance metrics. With this process in mind, the number of unfrozen

layers was seven in the case of MobileNetV3.

3.4.3.2. EfficientNet The EfficientNet architecture (Figure 3.14), like MobileNet (Fig-

ure 3.13), is comprised of various versions. Instead of the large or small models, Efficient-

Net has models that go from B0, the less complex, to B6, the most complex alternative.

The more complex versions, as in the case of the MobileNet, are the ones that promise

better results; however, they are also the ones that are more demanding on the hardware

and require a larger dataset for an adequate training process.

Input (33x33x3)

EfficientNetB0 (Pre-trained)

Flatten

Dense (256, ReLU)

Dropout (0.3)

Dense (Number of Classes, Softmax)

Figure 3.14. Transfer Learning EfficientNet Model Architecture
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The complete architecture is similar to the one based on MobileNet previously de-

scribed: the size of the patches used in the input is 33x33x3, the pre-trained model used

in this case is EfficientNetB0, and the remaining network layers are the same as previously

described. The number of unfrozen layers in this case was five.
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CHAPTER 4

Experimental Results

This chapter provides an overview of the tests conducted and an explanation of the results

obtained during this stage.

In terms of the hardware and platform used for training and validation of the CNN, it

was an NVIDIA T1000 with 4 GB of VRAM along with a 6th generation i7 processor with

64 GB of RAM. This hardware will be one of the most limiting factors in the training;

the maximum memory the computer has will, for example, limit the amount of data that

can be input to the network, influencing many parameters like batch size (the number of

samples of the data propagated by the network in each iteration).

4.1. Performance Metrics

Several metrics were used to evaluate the performance of the developed CNN architectures

and how they behaved during training. These were implemented throughout the training

and validation phases. Accuracy and loss were used for both the training and validation

datasets, along with a plot that provided more user-friendly information on how the

different values of loss and accuracy evolved during the training process (epochs), also

known as the learning curve. Precision, recall, F1-score, and the use of a confusion matrix

were used as performance measures when testing the trained network networks on test

sets (containing different images than the ones used during training).

As a summary of each metric, it can be said that accuracy refers to the proportion of

correctly classified data elements, while loss quantifies the difference between the predicted

and actual probabilities of the label’s value. It is important to note, however, that these

performance indicators work better on balanced datasets, which the dataset used here

does not. So, it is better to use the other mentioned performance indicators. To better

understand the way these performance indicators are obtained, it is necessary to first

define four concepts: false positives, false negatives, true positives, and true negatives.

False positives happen when the model incorrectly predicts a positive class when it should

be negative. Meaning that the architecture incorrectly identified it as belonging to the

class of study. A false negative is the opposite of a true positive, as the name implies;

the model predicts something as not belonging to the class when in reality it belonged

there and hence should have been positive. True positive and true negative refers to

instances in which the architecture correctly predicts that a sample belongs to or does

not belong to a given class. With these concepts now explained, the remaining metrics

can be better introduced. Precision relates to the ratio of true positive predictions to all
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positive predictions, both true and false. Its formula is:

Precision =
True Positives

True Positives + False Positives
(4.1)

Essentially calculates the accuracy of the positives in the model. The recall has the

formula:

Recall =
True Positives

True Positives + False Negatives
(4.2)

, measuring the ratio and the number of actual positive instances that are correctly

predicted as positive. The F1-score relates both, combining them to make a more balanced

metric. It has the formula:

F1 Score =
2 · Precision · Recall

Precision + Recall
(4.3)

In conclusion, precision aims to minimize the number of false positives and the recall of

false negatives, whereas the F1 score allows for an attempt to find a balance between the

two. The confusion matrix is a tool that enables more direct data collection, providing a

summary of the number of true and false positives as well as the number of true and false

negatives, which allows a calculation of the various metrics discussed previously.

4.2. Experimental Findings

There were two distinct steps in this testing and implementation phase of the previously

defined and explained models.

The first one, which is the training and validation of the network, as the name implies,

uses the training and validation datasets created before, and this is the part that is more

time-consuming and computationally demanding. In this first part, accuracy and loss are

evaluated and the learning curve is presented, which allows for a better understanding of

how the training progressed.

The second section is the testing section, which utilizes the testing portion of the

dataset. Consisting of the loading of previously trained models, followed by data clas-

sification using them. Precision, recall, and F1 score are the criteria for this section of

testing. The confusion matrix serves as a graphical aid here. This second element will be

as significant as the first, if not more so, due to the uneven distribution of data between

classes.

4.2.1. Training and Validation

In this, initial, and typically most time-consuming phase, of implementing CNNs, when

dealing with already preprocessed data, one thing must be completed before anything else.

This is the loading of the already-divided data from the .npy files and the corresponding

labels. The loading of the data can be better understood with the following algorithm;

however, a brief description would include loading the data relative to the training points,

loading the labels, and constructing a dataset using the TensorFlow framework.

By permitting the creation of a dataset-type variable, this framework facilitates the

shuffling and batching of data before feeding it to the CNN, as well as the multiplication

42



Algorithm 4 Data Loading

function LoadAndPreprocessData
Initialize dataset dir to ’D:/newDataV2’

Initialize folder paths with [’RGB train’, ’RGB test’, ’RGB validation’]

Initialize labels files with
[’train labels.npy’, ’test labels.npy’, ’validation labels.npy’]

Initialize input shape to (33, 33, 3)

Initialize batch size to 128

for all file name in labels files do
Load labels from os.path.join(dataset dir, file name)

Convert labels to TensorFlow tensors with data type tf.float32
end for
for all folder path in folder paths do

Read file paths from
os.listdir(os.path.join(dataset dir, folder path))

Sort file paths alphabetically
Initialize empty lists training data and validation data

for all file name in file paths do
Load data from os.path.join(dataset dir, folder path, file name)

Append data to training data if in training folder
or validation data if in validation folder

end for
Stack training data and validation data to create tensors
Create TensorFlow datasets from tensors
Map function to normalize data in datasets
Shuffle and batch datasets

end for
end function

by 255 to make it between 0 and 255 and the resizing of images. This also means that

if the data itself or after resizing is too large for the available computer memory, it will

be loaded in pieces so that the system can manage it. Anything other than shuffling and

batching must be performed during the testing phase, as the training and validation data

must have the same characteristics as the testing data.

Table 4.1 provides an overview of the results of the training and validation of each

distinct architecture with the previously mentioned data. These are the results of training

and validating the data with the above-mentioned architectures (3.4.2), which yielded the

best results after many experiments.

Table 4.1. Comparison of the Training Performance between the CNNs
used

Models

Metric 10 Band RGB MobileNetV3 EfficientNetB0

Epochs 22 26 29 23
Average Time per Epoch (s) 3311.15 1168.59 315.80 948.26
Accuracy (%) 97.51 96.96 95.10 91.19
Val Accuracy (%) 98.51 97.84 89.67 92.96
Loss 0.0733 0.0891 0.1403 0.2574
Val Loss 0.0527 0.0795 0.3733 0.2452

By analyzing this table, it is easy to see that the architectures that were designed from

scratch for this purpose performed significantly better in all metrics, achieving significantly
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lower losses and significantly higher values of accuracy. In contrast, the time required to

build the network is also very large. The average time per epoch required to train the

10-band architecture versus MobileNetV3 demonstrates the greatest difference. Taking

into account the number of epochs (22 for the 10 Band and 29 for the MobileNetV3), this

difference amounts to a total of 63687,1 s (17 hours, 41 minutes, and 27 seconds).

Comparing each of the architecture types, that is, transfer learning and those defined

from scratch, it is possible to observe that the 10-band model performs marginally better

than the RGB model. The difference in precision is negligible (10 bands = 97.51 and

RGB = 96.96 for training and validation, 98.51 and 97.84, respectively). The difference

is greater when considering the loss values, particularly the validation loss of 0.0527 for

the 10 bands and 0.0795 for the RGB model (during training, the difference was smaller,

0.0733 for the 10 bands and 0.0805 for the RGB). Taking into account the number of

epochs and the average time of each epoch, it is clear that the 10-band model requires

approximately three times as much time to train and validate (1,168.59 s vs. 3,311.15 s);

however, it requires fewer epochs, 22 as opposed to 26.

Figure 4.1. Learning Curve of the 10 Band CNN

The models learning curves (Figure 4.1, Figure 4.2, Figure 4.3, Figure 4.4) illustrate

the progression of learning and validation across epochs.

Observing them confirms what was previously stated, namely that custom architec-

tures perform better, are more stable during training, have fewer fluctuations, and con-

verge more quickly.

As with the other parameters, the 10-band model (Figure 4.1) appears slightly superior

to its 3-band (Figure 4.2) counterpart.
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Figure 4.2. Learning Curve of the CNN for RGB

Figure 4.3. Learning Curve of the MobileNetV3 Transfer Learning Ar-
chitecture

The validation loss line is more rounded, and there is not a single spike in the validation

accuracy. Specifically, the loss validation parameter in EfficientNetB0 (Figure 4.4) demon-

strates significantly larger fluctuations for the transfer learning models. EfficientNetB0 is

the only model among the two transfer learning models that exhibits greater convergence
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Figure 4.4. Learning Curve of the EfficientNetB0 Transfer Learning Ar-
chitecture

between the training and validation data, despite exhibiting the most fluctuations in the

loss validation. MobileNetV3 (Figure 4.3) is the architecture that demonstrates superior

convergence performance. Among the four distinct models, the one whose training and

validation lines are separated by a greater distance.

Unmentioned factors must be taken into account concerning these two architectures

that rely on previously trained models. After testing, the learning rates for both architec-

tures were adjusted to 0.0152 because it was determined that this value would produce

the best results. This was necessary because these networks performed significantly worse

than their personalized counterparts. Aside from this, after the networks were loaded

with the weights developed when they were trained with the Imagenet dataset, these

layers were largely “frozen”, meaning that these weights were maintained, and the only

layers that changed during training were those added here. However, as with the need

to add the learning rate through testing and make some of the last layers available for

training, it was possible to improve on the results until a certain point, past which the

results would once again degrade. This quantity of unfrozen layers would be seven for

MobileNetV3 and five for EfficientNetB0.

4.2.2. Testing

In this final phase of the analysis of the results, the focus is on the testing of the trained

models; this is the step that is closer to what a user of the models will experience. In

this phase, the performance of these models is studied through the evaluation of the

performance metrics of the tests, precision, recall, and F1-score.
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In this sense, four different tables are presented, each accompanied by its confusion

matrix. These tables represent each of the four architectures:

• 10-band CNN: Table 4.2 and confusion matrix in the Figure 4.5

• 3-band CNN: Table 4.3 and confusion matrix in the Figure 4.6

• MobileNetV3 based CNN: Table 4.4 and confusion matrix in the Figure 4.7

• EfficientNetB0 based CNN: Table 4.5 and confusion matrix in the Figure 4.8

Figure 4.5. Confusion Matrix of the 10 Band CNN

Analyzing Table 4.2 and its associated confusion matrix (Figure 4.5) for the 10-band

CNN model reveals that it performs worse with seasonal cultures, agricultural areas, and

spontaneous herbaceous vegetation classes. It is also possible to see that it performs

perfectly in the two classes: water and stone pine. For these classes, the F1-score is 1.

Considering the whole data, the fact that precision and recall are mostly similar or close

means that the balance between false positives and false negatives is good.

The evaluation is mostly done considering the F1-score, as it takes into consideration

both precision and recall. The ’Support’ column indicates the sample count for the specific

class, making it possible to check the data imbalance; for example, there are no samples

of humid zones or a very low amount of stone pine samples.
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Table 4.2. Performance Metrics from 10 Band CNN in Testing Data

COSsim Level 3 Class Precision Recall F1-Score Support

100 - Artificialized 0.99 0.99 0.99 2187
211 - Annual Autumn/Winter Cultures 0.97 0.97 0.97 2070
212 - Annual Spring/Summer Cultures 0.95 0.92 0.94 731
213 - Other Agricultural Areas 0.97 0.97 0.97 860
311 - Cork and Holm Oak 0.99 0.99 0.99 1061
312 - Eucalyptus 0.99 1.00 0.99 2245
313 - Other Hardwoods 0.99 1.00 0.99 733
321 - Maritime Pine 0.98 0.97 0.97 795
322 - Stone Pine 1.00 1.00 1.00 2
323 - Other Softwoods 0.99 0.97 0.98 438
420 - Spontaneous Herbaceous Vegetation 0.97 0.99 0.98 1725
410 - Bushes 0.99 0.99 0.99 1446
500 - Surfaces without Vegetation 0.99 0.99 0.99 1465
620 - Water 1.00 1.00 1.00 810

Figure 4.6. Confusion Matrix of the RGB CNN

When considering the RGB model, both the table (Table 4.3) with class-specific met-

rics and the confusion matrix (Figure 4.6) consistently show high precision, recall, and
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f1-score across the classes. Although marginally lower than the 10-band model (espe-

cially in the worst classes), it is still a model worth considering; it is less computationally

demanding, takes less time to train, and the data needed to use it is simpler.

Table 4.3. Performance Metrics from RGB CNN in Testing Data

COSsim Level 3 Class Precision Recall F1-Score Support

100 - Artificialized 1.00 0.99 0.99 2187
211 - Annual Autumn/Winter Cultures 0.96 0.98 0.97 2070
212 - Annual Spring/Summer Cultures 0.96 0.90 0.93 731
213 - Other Agricultural Areas 0.96 0.93 0.95 860
311 - Cork and Holm Oak 0.97 0.99 0.98 1061
312 - Eucalyptus 0.98 0.99 0.99 2245
313 - Other Hardwoods 0.97 1.00 0.98 733
321 - Maritime Pine 0.99 0.93 0.96 795
322 - Stone Pine 1.00 1.00 1.00 2
323 - Other Softwoods 0.97 0.99 0.98 438
420 - Spontaneous Herbaceous Vegetation 0.98 0.99 0.98 1725
410 - Bushes 0.98 0.97 0.97 1446
500 - Surfaces without Vegetation 0.99 0.99 0.99 1465
620 - Water 1.00 0.99 1.00 810

After analyzing both the training and validation phases, it is not surprising to find that

the performance of the two above-mentioned models (custom design models) is superior

when compared to the transfer learning-based models. However, in the end, their perfor-

mance metrics aren’t all that bad. F1-score, precision, and recall consistently exceed 0.9

for all classes.

Table 4.4. Performance Metrics from MobileNetV3 Transfer Learning in
Testing Data

COSsim Level 3 Class Precision Recall F1-Score Support

100 - Artificialized 0.98 0.95 0.96 2187
211 - Annual Autumn/Winter Cultures 0.89 0.96 0.92 2070
212 - Annual Spring/Summer Cultures 0.88 0.79 0.83 731
213 - Other Agricultural Areas 0.90 0.89 0.89 860
311 - Cork and Holm Oak 0.91 0.95 0.93 1061
312 - Eucalyptus 0.91 0.95 0.93 2245
313 - Other Hardwoods 0.90 0.95 0.92 733
321 - Maritime Pine 0.90 0.78 0.83 795
322 - Stone Pine 1.00 1.00 1.00 2
323 - Other Softwoods 0.90 0.99 0.94 438
420 - Spontaneous Herbaceous Vegetation 0.98 0.95 0.96 1725
410 - Bushes 0.92 0.84 0.88 1446
500 - Surfaces without Vegetation 0.96 0.99 0.98 1465
620 - Water 0.98 0.98 0.98 810

When comparing the transfer learning-based models with each other, it is possible to

check that the performances of both are pretty similar to one another; in some classes,

one is better than the other in what concerns precision, but then the recall evens out.
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Figure 4.7. Confusion Matrix of the MobileNetV3 Transfer Learning Ar-
chitecture

This is seen in the F1-score, where they have the same value in all the classes. The class

in which the performance gets the worst results in all of the tables is the recall in the

MobileNet-based model with 0.78. But even this minimum is pretty much equal to the

recall in the same class from the EfficientNet-based model with 0.79.

After conducting the tests, and as an overview, some things can be said. It became

evident that the custom architectures designed specifically for this task consistently out-

performed their transfer-learning-based alternatives. Of these, the one that obtains the

best performance is the 10-band CNN. The RGB model appears pretty similar, only

slightly below in terms of precision and recall over the classes. Due to this, and with the

reduction in the general size of the data it needs, it is still a viable alternative.

In what concerns the transfer learning-based model, despite, as stated, performing

worse in comparison, it still shows competitive performance metrics. Between the two

architectures, as in the custom model case, the differences are minimal, which indicates

comparable effectiveness in the context of their use.
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Figure 4.8. Confusion Matrix of the EfficientNetB0 Transfer Learning
Architecture

Table 4.5. Performance Metrics from EfficientNetB0 Transfer Learning
in Testing Data

COSsim Level 3 Class Precision Recall F1-Score Support

100 - Artificialized 0.96 0.96 0.96 2187
211 - Annual Autumn/Winter Cultures 0.90 0.94 0.92 2070
212 - Annual Spring/Summer Cultures 0.87 0.78 0.83 731
213 - Other Agricultural Areas 0.89 0.90 0.89 860
311 - Cork and Holm Oak 0.91 0.94 0.93 1061
312 - Eucalyptus 0.91 0.95 0.93 2245
313 - Other Hardwoods 0.98 0.86 0.91 733
321 - Maritime Pine 0.88 0.81 0.84 795
322 - Stone Pine 1.00 1.00 1.00 2
323 - Other Softwoods 0.94 0.97 0.95 438
420 - Spontaneous Herbaceous Vegetation 0.96 0.96 0.96 1725
410 - Bushes 0.90 0.88 0.89 1446
500 - Surfaces without Vegetation 0.98 0.98 0.98 1465
620 - Water 0.96 0.98 0.97 810
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CHAPTER 5

Conclusions and Future Work

This thesis examined the viability of using CNNs to classify land cover using high-

resolution remote sensing imagery. With this objective in mind, Sentinel-2 mission data

(MSI data from October 2017 to September 2018) was preprocessed in the THEIAS be-

fore being downloaded and preprocessed by the DGT, along with training points for zones

within the imagery. Before this data could be utilized, it had to be processed, and deep

learning models had to be developed and refined.

This chapter will provide an overview of the entire body of work and answer the

questions posed in Chapter 2. In addition, future work or improvements that can be

made are highlighted, along with the limitations encountered in this study.

5.1. Main Conclusions

All of the objectives of this project were accomplished. It was possible to develop CNN

models capable of correctly identifying various LULCs by DGT parameters. While the

four architectures met the objectives, some performed better than others. The architec-

ture designed for 10-band imagery analysis was the one that produced the best overall

results across various performance metrics, as detailed above. However, it is also more

computationally intensive and time-consuming in the training process, which raises ques-

tions about whether it should be preferred over the 3-band RGB custom model also

defined in this study.

This 3-input channel model offers faster training times despite requiring more epochs

to train (26 instead of 22 for the 10-band model). Each epoch on average is, however,

quite quicker to train, requiring 1168.59 seconds when compared to 3311.15 seconds for

the 10-band model. The difference between the two is minimal in terms of performance.

The transfer learning-based models both show worse performance when compared to

the custom-designed models, achieving approximately 90% validation accuracy compared

to around 97% and significantly higher loss (around 0.3 when in comparison with 0.07).

Additionally, this dissertation provides information on what concerns specific classes

that are more troublesome in the classification, such as ’Annual Spring/Summer Cultures,’

’Maritime Pine,’ ’Other Softwoods,’ and ’Bushes’. These are the classes that consistently

achieved lower classification results, probably because of their visual similarities or even

due to the season characteristics that they show, given that the data analyzed is from

the end of the summer. The difference in accuracy registered between the custom models

and the transfer learning-based models may be attributed to the relatively small image

size, only 33x33x3, as mentioned. The two networks used in the transfer learning process,
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MobileNetV3 Large and EfficientNetB0, each expect ideal data with sizes of 224x224x3

and 256x224x3, respectively. To further improve accuracy and preserve more information,

increasing the number of labeled pixels would be beneficial. The expansion of a larger

number of training points would allow for the inclusion of more image patches and even

enable pixel-level classification, which would make possible image segmentation. Other

attempts were conducted with different image sizes with the use of resizing, but the results

were not much different despite the increase in training time. With knowledge, the option

was to not apply to resize, as it would only increase the time it would take to do each

stage.

In what concerns the questions asked in Chapter 1, they will now be addressed explic-

itly:

(1) How can the accuracy of the LULC classification be improved while preserving

the maximum amount of information?

In an attempt to maintain the maximum amount of information, the initial

approach was to do pixel-level classification. However, due to the number of

labeled pixels being very low in the scale of the data, this wasn’t possible. Instead,

what was used were patches of the original image, which ended up being useful

but a quite smaller dataset. With this new data, despite the stated smaller

sample size, it was possible to achieve good model performance.

(2) How does the choice of CNN architecture affect the performance of terrain clas-

sification?

The different CNN models achieve different performances, as would be ex-

pected. The first difference can be established by saying that the transfer learning

models present lower performance when compared to the custom-defined mod-

els. Other than this, it is shown by the results that the model with more input

channels generally outperforms the 3-band model.

(3) Can transfer learning be used to improve CNN’s performance on MSI data for

terrain classification? What are the most effective methods for fine-tuning pre-

trained models, if applicable?

From what was observed here, the use of transfer learning-based models

was not capable of improving the classification performance when compared to

custom-defined models, as previously shown. In regards to the aspect related to

the fine-tuning of the parameters in this case, it was done with the changes in

the learning rate and the change in the number of pre-trained layers that would

or would not be trained with new data.

(4) How do different pre-processing strategies, like normalizing and reducing the

number of dimensions, affect the performance of CNNs when using MSI data to

classify terrain?

Regarding the reduction of dimensions or bands, this resulted in a slight

decrease in performance metrics. This decrease in the metrics is almost irrelevant
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in the case of the custom model, which is the best to conduct this analysis given

that the only difference is indeed the number of channels. In terms of data

normalization, a comparison between two methods was made: one ranging from

0 to 255, used in transfer learning base models, and the other ranging from 0 to

1. While the second, used in custom models, performed better, it must be said

that differences in performance aren’t probably related only to normalization;

other factors are also at play as the structures of models are also different with

different parameters inside of them.

5.2. Limitations and Future Work

As stated previously, the designed architectures achieved success within the current con-

text. However, the analysis can be enhanced. Currently, the analysis is restricted to

ground patches of 33x33 pixels. Given the spatial resolution of 10m per pixel, this means

that these patches cover an area of 108900 m2. As this is a quite large area, the classifi-

cation can certainly be improved.

One way for this work to be improved is if it were possible to change from patch

classification to pixel-level classification. This would, however, involve the labeling of

each single label before training, validation, and testing the models. Allowing for a finer

analysis and making it possible to capture the details, in contrast to what is currently

being used, which only has the central pixel with a ground truth label and relies on smaller

parts of the image. This would also allow for less information loss and make it possible

to improve the classification of smaller things in border areas.

For this change to be possible, two things would have to be done as stated; the second

would depend on the first:

• Creating a data set where every single pixel of the images is labeled Maybe with

the use of clustering algorithms to assign labels to individual pixels. An attempt

was made at this during this thesis; however, as it didn’t achieve good results

and there wasn’t enough time to invest here, the idea was just changed. This

step would be fundamental to the next phase of implementation.

• Training new CNNs for pixel analysis would make it possible to even do image

segmentation. These new models would make it possible to use all of the available

information, taking full advantage of what was provided.

These new improvements are thought to be improvements in the right direction. En-

hancing the classification of the images. However, it is important to make it clear that

they present considerable challenges. The classification of every single pixel in the images

is a process that may be very time-consuming and certainly computationally intensive.

And also, depending on the algorithms chosen to do this work,

As an overview, despite the work done here achieving good results in proving that

CNNs are a good alternative to the classifications of the images, the DGT, and their

classifiers, which achieve accuracy values of around 70%, there is still large room for
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improvement in this work. The proposed paths could lead to promising improvements in

this context.
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mento: Cristina Roxo, David Francisco, Dénis Andrade, Francisco Moreira, Flávio Oliveira, Giselda

Monteiro, Hugo Costa, Inês Machado, Joana Laurentino, José Tomé, Pedro Benevides, Rogério
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Abstract: In an era of population growth and rapid urbanization, sustainable urban development 1

is crucial. Machine learning (ML) emerges as a key player, facilitating the swift processing of 2

remote sensing images. This paper centers on leveraging Convolutional Neural Networks (CNNs) 3

for multispectral image handling. The primary goal is to evaluate the performance metrics and 4

computational complexity of a CNN-based land cover classification approach, comparing results 5

with the Direção Geral do Território (DGT) architectures. Initial steps involve comprehending the 6

provided data, preprocessing it, and defining the architecture. Results indicate CNNs as a promising 7

alternative for land cover classification, though challenges, notably the scarcity of labeled data, 8

underscore opportunities for improvement. Despite promising outcomes, the work highlights areas 9

for enhancement, particularly in data preprocessing. In summary, the investigation into CNNs for 10

land cover classification yields positive results with room for expected improvement, especially in 11

data preprocessing. 12

Keywords: Multispectral imaging, Convolutional Neural Networks, Machine Learning, Land Use 13

Land Cover Classification, Sentinel-2. 14

1. Introduction 15

Numerous aspects of land governance and sustainable development rely on Land Use 16

and Land Cover mapping through the classification of Remote sensing images. This classi- 17

fication allows government entities and companies to make informed decisions regarding 18

its use. 19

For example, in the context of urban planning , agriculture , fire prevention , or 20

even mineral exploration, the use of LULC mappings allows for better planning. In 21

addition, it aids in comprehending the planet as a system; despite being frequently used 22

interchangeably, land cover and land use are not synonymous. Land cover refers to the 23

types of features present on the earth’s surface, including, among others, trees, rocks, lakes, 24

and roads. However, land use refers to the specific activity or function being developed on 25

that piece of land, such as urbanization or residential development. Comparatively, when 26

referring to a neighborhood, the term land cover would refer to the road, roofs, grass, and 27

trees, whereas the term land use would refer to residential use. The significance and value 28

of these High resolution remote sensing images have grown as their technology, availability, 29

and quality improved. 30

Moreover, because of the opportunities they afford, they provide access to vast quan- 31

tities of data that span vast areas of land in detail and over extensive periods. Therefore, 32

most land studies involve analyzing satellite or aircraft-mounted sensor photographs. 33

Nevertheless, the size and variety of data types in these images made them challenging to 34

process, further complicating the situation. A single pixel may hold spatial, spectral, and 35

geometric data, among other things. 36
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