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Resumen. Utilizamos que el isomorfismo dado por el teorema de Gelfand-
Mazur para álgebras reales de Banach reales preordenadas conmutativas con
unidad a su vez define una representación numérica compatible con la estruc-
tura de orden.
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1. Introduction

Let (X ,�) be a pre-ordered set and let (R,≤) denote the ordered field of the real
numbers. A real-valued function f : X → R is called a numerical representation
of (X ,�) if f(x) ≤ f(y), whenever x � y.

In economic theory, if (X ,�) is a totally pre-ordered topological space and
� verifies some topological compatibility, f is called a utility function, usually
denoted by u. This interplay between topology and order is an important tool
to characterize topological properties of the underlying topological space X and
has many applications ranging from economic theory to functional analysis, see
[3, 4, 2] and the bibliography therein.
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104 GASTÃO BETTENCOURT & SÉRGIO MENDES

On the other hand, the study of orders in Banach and C∗-algebras has
attracted the attention of operator algebraists for a long time, see [6, 7, 9]. In [3]
and [4] the authors studied numerical representations on semi-topological real
algebras and in [5] numerical representations of pre-ordered semigroups were
considered. In both articles, the order and algebraic structures are compatible.

In this note we consider a similar algebraic setting. Let (A,�) be a pre-
ordered topological real algebra. Our aim is to show that the isomorphism
provided by the Gelfand-Mazur theorem can be used to provide a numerical
representation of � which is compatible with the algebraic structure on A. In
particular, the pre-order � induced by a suitable cone on A extends to a total
pre-order. The proofs use an argument due to Oudadess [8] on a sharp version
of the Gelfand-Mazur theorem for real topological algebras.

2. Preliminaries

For convenience of the reader, we begin by recalling some background on or-
dered structures, continuous numerical representability and ordered Banach
algebras.

2.1. Ordered structures and numerical representation functions

A pre-order � on a nonempty set X is a binary relation which is reflexive
and transitive. An antisymmetric pre-order is called an order. A total pre-order
(resp., total order) on X is a pre-order (resp., order) such that if x, y ∈ X then
x � y or y � x.

The asymmetric relation ≺ associated with a total pre-order � on X is
defined to be

x ≺ y ⇔ x � y ∧ ¬(y � x).

A linear (or total) extension of a partial order � on X is a total order �∗
on X that is compatible with �, i.e.

(x � y ⇒ x �∗ y) and (x ≺ y ⇒ x ≺∗ y).

According to the order extension principle, every partial order has a linear
extension.

Given a totally pre-ordered set (X ,�), a real-valued function f : X → R
is said to be order preserving, also known as a utility function or a numerical
representation for �, if

x � y ⇔ f(x) ≤ f(y),∀x, y ∈ X .

We shall adopt the latter designation throughout the paper. Now, suppose X
is a topological space. A total pre-order � on X is said to be continuously
representable if there is a continuous numerical representation f : X → R
representing �, where R is endowed with the usual topology.
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Define the lower and upper contour sets on (X ,�) by L(x) = {y ∈ X :
y � x} and G(x) = {y ∈ X : x � y}, respectively. Then, the family of sets
{L(x), G(x) : x ∈ X} form a sub-basis for a topology on X , called the order
topology. If (X ,�) is a topological totally pre-ordered space, then � is said to
be continuous if L(x) and G(x) are closed sets, for all x ∈ X . On the other
hand, a topology on X is said to be totally pre-orderable if it coincides with
the order topology, for some total pre-order � on X .

Next result provides topological conditions for a continuous total pre-order
defined on a topological space to be continuously representable by a numerical
representation.

Theorem 2.1. (Eilenberg) Let (X , τ) be a connected and separable topological
space. Let � be a continuous total pre-order on X . Then, there is a numerical
representation function which represents �.

2.2. Ordered Banach Algebras

By A we denote an associative algebra over the field K (K = R or C). A is a
topological algebra provided that it has a topology and addition, multiplication
and scalar multiplication are continuous functions with respect to that topology.
If A has a unit e = eA we call it a unital algebra. It is always possible to adjoin
a unit to an algebra by a well known procedure. A special case of topological
algebras are normed algebras, i.e., those whose topology is induced by a norm
‖.‖. A Banach algebra is a complete normed algebra. It is called a real Banach
algebra or complex Banach algebra depending on whether K = R or K = C,
respectively.

A (two-sided) ideal of A is a subspace I of A, denoted by I �A, such that
AI ⊂ I and IA ⊂ I. It is called proper if I 6= {0} and I 6= A. An ideal
M �A is called maximal if, for every ideal I such that I ⊃ M we have that
I =M. We denote by A+ = {x2 : x ∈ A} the set of squares of A. Ideals of A
containing A+ will play a role in the sequel.

A homomorphism of Banach K-algebras is a K-linear map φ : A → B
such that φ(xy) = φ(x)φ(y), for all x, y ∈ A. If φ is a real or complex valued
homomorphism of A, that is, B is either R or C, then Kerφ is a maximal ideal
of A. In particular, if A is commutative then A/Kerφ is a commutative real
division algebra.

Every real banach algebra A may be complexified as follows. Write the
direct sum AC = A⊕ iA in the category of real vector spaces and define in AC
addition in the usual way, scalar multiplication by α+ iβ ∈ C as

(α, β)(x, y) = (αx− βy, βx+ αy),

and multiplication by

(x, y)(x′, y′) = (xx′ − yy′, yx′ + xy′).
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Then, AC is a complex Banach algebra and A is identified with its copy A⊕ i0
in AC. Now we recall the notion of spectrum of an element of A. As pointed out
in [1, p.294], contrary to the complex case, an element in a real Banach algebra
may have empty spectrum. Denote by G(A) the set of invertible elements of
A. The spectrum of an element x ∈ A is the set

σ(x) = {α ∈ R : x− αe /∈ G(A)}

and the complex spectrum of x is the set

σC(x) = {α+ iβ ∈ C : (x− αe)2 + β2e /∈ G(A)}.

To define a partial pre-order on a real Banach algebra A we now recall the
notion of an algebra cone.

Definition 2.2. A nonempty subset C ⊂ A is called a cone if it satisfies the
following conditions:

(i) C + C ⊂ C,

(ii) λC ⊂ C, for all λ ≥ 0.

If, in addition, the following properties hold

(iii) C.C ⊂ C,

(iv) 1 ∈ C

then C is called an algebra cone. Moreover, if

(v) C ∩ −C = {0}

the cone C is said to be proper.

A cone C induces a binary relation � on A as follows. Given x, y ∈ A,

x � y if, and only if, y − x ∈ C.

This allows us to write

C = {x ∈ A : x � 0}. (1)

It can easily be shown that the binary relation � induced by a cone C is
a pre-order, i.e it is reflexive and transitive. However, it does not have to be
antisymmetric. In view of the above characterization, C is also called the positive
cone of the partially ordered algebra (A,�).

We have the following characterization of properness.
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Proposition 2.3. The cone C is proper if and only if the ordering is antisym-
metric.

Proof. Suppose C is a proper cone and let x � y and y � x. Then,

y − x ∈ C and x− y = −(y − x) ∈ C ⇔ y − x ∈ −C.

So, y − x ∈ C ∩ −C = {0} and y = x.

Conversely, suppose C is not proper. Then, there exist x ∈ C ∩ −C, with
x 6= 0. Let x = −y. We have

x+ (−y) = 2x ∈ C ⇒ y � x

y + (−x) = 2y ∈ C ⇒ x � y

Therefore, x � y, y � x and x− y = 2x 6= 0. �X

When the algebraic structure of A is compatible with the order structure,
we have a (partially) ordered Banach algebra. Taking into account the partial
pre-order � induced by a cone, we may rewrite definition 2.2 and call the pair
(A,�) a partially ordered Banach algebra (A a real or complex unital Banach
algebra), if the ordering � verifies the following conditions:

(i) 0 � x, y ⇒ 0 � x+ y,

(ii) 0 � x, λ ≥ 0⇒ 0 � λx,

(iii) 0 � x, y ⇒ 0 � xy,

(iv) 0 � 1.

If φ : A → B is a homomorphism of Banach algebras (real or complex)
and C is a cone in A then the set φ(C) = {φ(c) : c ∈ C} is an algebra cone in
B. In particular, if I � A is a closed ideal and π : A → A/I is the canonical
surjection then π(C) is an algebra cone in A/I, although we cannot guarantee
the closedness of π(C) in case C is closed, see [9, p.492]. Similarly, it is an easy
exercise to show that, if C′ is an algebra cone of B, then the pre-image φ−1(C′)
is an algebra cone of A.

3. Main result

A theorem of Mazur states that every topological real division algebra is iso-
morphic either to the field of real numbers R, the field of complex numbers C
or the skew field of quaternions H. This result became known as the Gelfand-
Mazur theorem for real topological algebras. On the other hand, the classi-
cal complex Gelfand-Mazur theorem, established by Gelfand, says that every
normed division algebra over the complex field C is isomorphic to C. In [8],
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Oudadess defines sufficient conditions for the real Gelfand-Mazur theorem to
be as sharp as the complex case, i.e to guarantee, under certain conditions,
that a topological real division algebra is isomorphic to R.

Definition 3.1. Let A be a real topological algebra. We say that A satisfies
the Real Gelfand-Mazur conditions (RGM for short) if σ(x) 6= ∅ for every
x ∈ A, and if there is a cone CRGM ⊂ A containing all the squares, i.e C ⊃ A+.

The above definition is pertinent since, as mentioned before, although the
complex spectrum σC(x) of an element x in the complexification AC of A is
never empty, the real spectrum may be empty. Note also that in the definition
we do not require the algebra A to be commutative.

Example 3.2. A commutative example is given by the algebra of real valued
continuous functions on a compact set X , A = C(X ,R), where we have

A+ = {f ∈ C(X ,R) : f ≥ 0}.

3.1. Commutative algebras

Next result is due to Oudadess and establishes that the RGM conditions are
sufficient conditions for a topological real division algebra A to be isomorphic
to R. For the sake of completeness we include the proof.

Proposition 3.3. [8] Let A be a real commutative unital topological algebra
verifying the RGM condition. If A is a division algebra then A is isomorphic
to R.

Proof. Since (x+ e)2, (x− e)2 ∈ CRGM , for all x in A, it follows that

x =
1

4
(x+ e)2 − 1

4
(x− e)2

and so A = CRGM − CRGM .

Define I = CRGM ∩−CRGM . The set I is clearly a subspace. It is also easy
to show that IA ⊂ I. In fact, given xa ∈ IA, we have xa = xr − xs, for some
r, s ∈ CRGM . Since xr and xs are in I, the result follows. A similar argument
shows that AI ⊂ I and we conclude that I is a two-sided ideal of A.

By hypothesis, A is a division algebra and so it is simple. It follows that

I = CRGM ∩ −CRGM = {0}.

Let x ∈ A. Since σ(x) 6= ∅ there is α+ iβ ∈ σC(x) such that

x− (α+ iβ)e /∈ G(A).

Since A is a division algebra, x− (α+ iβ)e = 0. But

(x− αe)2 = −β2e⇒ x− αe ∈ C ∩ −C = {0}.

Therefore, x = αe. �X
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We may now prove our main result.

Theorem 3.4. Let A be a unital real commutative topological algebra verifying
the RGM condition. If the cone CRGM is closed and proper then CRGM defines
a continuous partial order � on A which extends to a total pre-order �∗ and
is compatible with the algebraic structure. In particular, A admits a character
χ : A → R.

Proof. Define as usual

x � y ⇔ y − x ∈ CRGM .

As we have seen in Proposition 3.3, the set I = CRGM ∩−CRGM is a two sided
ideal of A. Let M be a maximal ideal containing I. Since A is commutative,
A/M is isomorphic to the topological real algebra R. Now, since CRGM is
closed, the upper and lower contour sets

G(x) = {y ∈ A : x � y} = x+ CRGM

and
L(x) = {y ∈ A : y � x} = x− CRGM

are also closed. Therefore, � is continuous.

Now, since A/M is isomorphic to R as real algebras, using the canonical
surjection π : A −→ A/M, there is a continuous total pre-order �∗ such
that (A,�∗) is a totally pre-ordered real algebra. We claim that �∗ is a linear
extension of the continuous order � on A induced by CRGM .

In fact, for x, y ∈ A,

x � y ⇔ y − x ∈ CRGM ⇒ π(y − x) ∈ π(CRGM )

and
(ρ ◦ π)(y − x) ∈ (ρ ◦ π)(CRGM ) = R+

0 ,

that is, (ρ ◦ π)(y − x) ≥ 0⇔ (ρ ◦ π)(x) ≤ (ρ ◦ π)(y). Hence,

x � y ⇒ x �∗ y.

The proof that
x ≺ y ⇒ x ≺∗ y

is similar. Finally, χ = ρ ◦ π is clearly a character of A and moreover, if the
maximal ideal M is proper, then χ is nontrivial. �X

In the conditions of Theorem 3.4, we conclude the following result.

Corollary 3.5. The total pre-order �∗ is continuous representable by the char-
acter χ = ρ ◦ π.
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Proof. Clearly, χ is continuous. Since �∗ is induced by the cone C∗ = {x ∈
A : x �∗ 0}, which in turn is the pre-image of the usual total order of the real
algebra R, we have:

x �∗ y ⇔ y − x ∈ C∗

⇔ (ρ ◦ π)(y − x) = χ(y − x) ≥ 0

⇔ χ(x) ≤ χ(y).

�X

Remark 3.6. In [4], the authors defined a maximal ideal I(0) which is crucial
in the proof of their Theorem 3.14. In our setting, the ideal I(0) admits the
following interpretation:

I(0) = {x ∈ A : x ∼ 0}
= {x ∈ A : 0 �∗ x �∗ 0}
= {x ∈ A : χ(x) = 0}
= ker(χ).

Example 3.7. Let `∞ denote the real space of bounded real-valued sequences.
Define a multiplication on `∞ componentwise, so that x.y is the sequence

(x.y)n = xnyn , n ∈ N,

with x, y ∈ `∞. Let Σ(`∞) denote the spectrum of the real Banach algebra
`∞, i.e., the set of multiplicative linear functionals. For each natural number
n ∈ N, the n-th projection πn : x ∈ `∞ 7→ xn ∈ R defines a multiplicative
linear functional of `∞ and so N ⊂ Σ(`∞). However, the inclusion is proper
since N is not w∗-compact. In fact, the spectrum Σ(`∞), can be identified with
the Stone-Čech compatification β(N) of N.

Now, we have:
`∞/kerπn ' R,

and the evaluation map evπn : `∞ → R , x 7→ evπn(x) = πn(x) = xn defines a
nontrivial real character of `∞. In particular, we have a total pre-order �n on
`∞ which is continuously representable by the evaluation map, that is,

x �n y ⇔ evπn
(x) ≤ evπn

(y)⇔ xn ≤ yn.

The above total pre-order is compatible with the algebraic structure of `∞.

3.2. Noncommutative algebras

We will now extend the results of the previous section to unital noncommutative
algebras.
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Definition 3.8. A real Banach algebra A is called strictly real if every element
has real spectrum.

A simple criteria for strictly real Banach algebras is the following. An al-
gebra A is strictly real if and only if e + x2 is invertible for every x in A, see
[6, p.250].

The radical of A, denoted Rad(A), is the intersection of all its maximal
ideals. Clearly, Rad(A) is an ideal of A. Write A′ = A/Rad(A).

Next result is elementary but we include a proof for convenience of the
reader.

Lemma 3.9. The pre-image of a total pre-order under an algebra homomor-
phism is a total pre-order.

Proof. Let φ : A → B be an algebra homomorphism and let C be a cone in B
inducing a total pre-order �C on B. Let x, y ∈ A. Then, either we have

φ(x) �C φ(y)⇔ φ(y)− φ(x) = φ(y − x) ∈ C (2)

or we have
φ(y) �C φ(x)⇔ φ(x)− φ(y) = φ(x− y) ∈ C. (3)

From (2) and (3), and denoting by �φ−1(C) the pre-order induced by the pre-
image of C under φ we conclude that

x �φ−1(C) y or y �φ−1(C) x,

that is, the pre-order induced by the pre-image is total. �X

Now, we restrict to the case of strictly real Banach algebras. Theorem 3.10
below extends, under certain conditions, Theorem 3.4 and Corollary 3.5 to
noncommutative real Banach algebras.

Theorem 3.10. Let A noncommutative, strictly real, unital Banach algebra
such that A′ = A/Rad(A) verifies the RGM conditions. Suppose that the cor-
responding cone CRGM is closed and proper. Then there exists a total pre-order
�∗ on A which is continuously representable by a numerical representation
f : A → R. Moreover, f is a real algebra homomorphism.

Proof. Since A is strictly real, by Kaplansky’s theorem [7, Th.4.8], A′ is com-
mutative. From Theorem 3.4, the cone CRGM defines a continuous partial order
�′ which extends to a total pre-order �′∗ on A′.

Let � denote the partial order on A induced by the pre-image cone
π−1(CRGM ). Since CRGM is closed and π is continuous then π−1(CRGM ) is
closed. In particular,

G(x) = {y ∈ A : x � y} = x+ π−1(CRGM )
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and

L(x) = {y ∈ A : y � x} = x− π−1(CRGM )

are also closed and so � is continuous.

Denote by C′∗ the cone associated with the total pre-order �′∗ on A′. By
Lemma 3.9, the pre-image π−1(C′∗) := C∗ induces a total pre-order �∗ on A
which is clearly a linear extension of � because the inclusion CRGM ⊂ C′∗
implies π−1(CRGM ) ⊂ π−1(C′∗).

Finally, from Corollary 3.5, the total pre-order �′∗ is continuously repre-
sentable by a character χ : A′ → R. Therefore,

x �∗ y ⇔ π(x) �
′∗ π(y)⇒ (χ ◦ π)(x) ≤ (χ ◦ π)(y).

and

x ≺∗ y ⇔ π(x) ≺
′∗ π(y)⇒ (χ ◦ π)(x) < (χ ◦ π)(y)

and the result follows, with f given by the composition

f = χ ◦ π : A → A′ → R.

�X
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