
Text Mining de Relatórios Clínicos

Ana Catarina Martins Gonçalves

Mestrado em Ciência de Dados

Orientadores:
Doutora Ana Maria Carvalho de Almeida, Professora Associada,
ISCTE - Instituto Universitário de Lisboa

Doutor Maurício Breternitz, Jr., Professor Auxiliar Convidado,
ISCTE - Instituto Universitário de Lisboa

Outubro, 2023





Departamento de Métodos Quantitativos para Gestão e
Economia

Departamento de Ciências e Tecnologia da Informação

Text Mining de Relatórios Clínicos

Ana Catarina Martins Gonçalves

Mestrado em Ciência de Dados

Orientadores:
Doutora Ana Maria Carvalho de Almeida, Professora Associada,
ISCTE - Instituto Universitário de Lisboa

Doutor Maurício Breternitz, Jr., Professor Auxiliar Convidado,
ISCTE - Instituto Universitário de Lisboa

Outubro, 2023





Acknowledgment

This work was partially financed by national funds through FCT - Fundação para a Ciência

e Tecnologia, I.P., within the scope of projects UIDB/04466/2020, UIDP/04466/2020 and

DSAIPA/AI/0122/2020.

i





Resumo

No âmbito do projeto de investigação em Inteligência Artificial AIM Health, foram obti-

dos ficheiros de texto, em português europeu, com relatórios de procedimentos e exames

médicos, para explorar a possibilidade de extrair variáveis para melhorar algoritmos de

Aprendizagem Automática. Uma análise inicial revelou que os textos incluíam dados

pessoais, como nomes de médicos e pacientes ou datas.

A recolha, tratamento e armazenamento de dados são estritamente regulamentados

na Europa e, sem consentimento explícito, dados pessoais não podem ser partilhados.

A remoção de dados pessoais em grandes volumes de textos não é uma tarefa simples.

Identificar os dados manualmente é uma solução onerosa e propensa a erros. Existem

soluções automáticas para apoiar esta identificação, mas surgem inúmeras dúvidas ao

avaliar o desempenho e a equidade destes mecanismos.

Este trabalho visa proporcionar uma melhor compreensão dos textos, dos possíveis

dados pessoais neles contidos e dar apoio sobre como geri-los. O objetivo final e fornecer

um solido ponto de partida para trabalhos futuros e promover o uso responsável dos dados.

Foram analisados cerca de 2.000 notas de admissão e relatórios de procedimentos e

exames, e identificados quase 4.000 blocos de texto com eventual informação identificável,

em 12 categorias distintas. Para apoiar a anotação manual, foi desenvolvida uma ferra-

menta customizada, e cerca de 12.000 abreviaturas registadas, resultando num dicionário

auxiliar com 967 abreviaturas distintas, a sua forma completa e tipo semântico.

Finalmente, com base no relatório anterior, algumas experiências com identificação

automática provaram que estes métodos, com supervisão responsável, podem ser um re-

curso valioso.

Palavras-chave: NLP; Texto Clínico; Anonimização de Texto.
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Abstract

In the context of the Artificial Intelligence scientific research project AIM Health, text

files, in European Portuguese, with reports of medical procedures and exams were made

available, to explore the possibility of extracting features to improve Machine Learning

algorithms. An initial analysis revealed that the texts included Personally Identifiable

Information, such as full names of physicians and patients or dates.

Data collection, treatment, and storage are strictly regulated in Europe and without

explicit consent, personal data cannot be shared. Removing Personally Identifiable Infor-

mation from large amounts of text is not a simple endeavor. Manually identifying data is

a very costly solution and prone to error. Automatic solutions can support the identifica-

tion of sensitive data, but questions arise when assessing these mechanisms’ performance

and fairness.

This work aims to provide a better understanding of the texts, possible personal

information in them, and support on how to govern them. The end goal is to provide a

solid stepping stone for following works and promote responsible use of the data.

Around 2,000 admission notes and procedure reports were read and almost 4,000

possible Personally Identifiable Information were identified, in 12 distinct categories. To

support manual annotation, a custom tool was developed, and nearly 12,000 abbreviations

were registered, resulting in an auxiliary dictionary with 967 unique abbreviations, their

complete form, and corresponding semantic types.

Finally, based on the previous report, some experiments with automatic identification

proved that these methods, with responsible supervision, can be a valuable resource.

Keywords: NLP; Clinical Text; Text anonymization.
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CHAPTER 1

Introduction

1.1. Contextualization and Motivation

Artificial Intelligence based Mobile Applications for Public Health Response (AIM Health)

is a scientific research project, funded by the Portuguese government, that aims to develop

a mobile application and distributed service to enable the identification of Coronavirus

Disease 2019 (COVID-19) patients and exposure risk in a preventive approach. These

services have a potential wider impact by providing valuable public health information

and other patient health assessment tools. In the scope of this project, among Hospi-

tal structured data, around 12,000 text files with reports of various medical exams and

procedures, such as computed tomographies or angiograms, were made available.

The original raw text files had not been explored or analyzed. The first inquiry that

inspired this report was to try to understand if it was possible to extract features from

these texts to enhance the performance of the deep learning models developed in the scope

of AIM Health project.

The work started with the preparation and exploration of the given raw text files,

resulting in a brief overview of all the data found. These files had the same data structure,

including information about procedures and exams, patients, and the data extraction

process. Afterwards, the two free text narratives found were analyzed with more detail:

short admission notes, called observations, and longer technical reports with detailed

descriptions of exams or procedures.

During this initial phase, in the context of the AIM Health research project, some

inquiries were made to detect various pathologies or diseases’ diagnostics in the texts,

like thromboembolisms. This seemingly simple task made clear the difficulty, for a non-

specialist, to extract clinical information from narratives. Most often the texts do not

have a direct statement that allows a non-expert to assume a diagnostic.

Also in this initial exploration, one important feature of both text types was immedi-

ately obvious and had to be addressed if the goal was to use the texts to support research

studies and Machine Learning (ML) tasks: the texts included Personally Identifiable In-

formation (PII), such as full names of physicians and patients or exams dates. As they
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are, the texts cannot be shared, and their storage and manipulation have to be strictly

monitored.

Data collection, subsequent treatment, and storage are strictly regulated in Europe.

Any of those tasks may only be performed under previously given explicit and informed

consent of the individuals. The alternative is to remove all identifiable personal data

from the texts. The difficulty lyes in removing personal data from large amounts of

text. Manually identifying data is a very costly solution and prone to error. Automatic

processes can support identification, but questions arise when assessing these solutions,

not only about their performance in warranting that identification is not possible but also

about their fairness.

Additionally, there is a trade-off that must be taken into consideration: to remove

data is to remove value. While the first objective is to guarantee that no identifiable

information is disclosed, we need to ensure the minimum value loss.

1.2. Objectives and Research Questions

Knowing that these texts hold valuable data and in the face of the existence of personal

information, this work aims to provide a better understanding of the texts, and the

possible personal information in them and give some assistance on how to govern it. The

end goal is to provide a solid stepping stone for following Natural Language Processing

(NLP) tasks.

The challenge to remove identifiable information from free narratives begins with

the question of what identifiable data is. The answer is not straightforward. NLP de-

identification tasks usually start by classifying text using a pre-defined set of categories

that can be considered as PII, such as names or telephone numbers.

In clinical text research, almost always these categories follow the Health Insurance

Portability and Accountability Act (HIPAA) Privacy Rule1. HIPAA guidelines, a United

States regulation, are remarkable because they list and define types of Protected Health

Information (PHI) that can be found in medical documents [1], being a very useful re-

source. At the same time, these categories can be a too narrow classification when trying

to guarantee that all identifiable data is removed.

Some studies use a broader PII definition and include more information in the defined

categories. For example, HIPAA guidelines only consider ages of 90 and above as PHI [2]

but many studies identify all age references in texts. Moreover, there can be identifiable

1https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
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information that is not possible to categorize [3,4]. For example, in the narratives studied

in this work, it is mentioned an accident with an agricultural machine, makes it possible,

arguably, due to the event rarity, to identify the patient. There is no PHI category in

HIPAA guidelines to classify this information.

After identifying two possible text narratives to work with, a more in-depth analysis

is required to understand what information the texts hold and if admission notes and

reports on procedures or exams are similar or should be treated differently. The features

to extract from different text types likely vary, and extraction strategies may have to

adapt to the narrative type. Possibly, even the existing PII entities will differ, and the

following de-identifying methods will require different approaches.

This text characterization aims to go beyond the commonly used PHI categorization

and help support decisions on how to proceed in removing identifiable information.

The identified abbreviations were also examined and characterized, using their seman-

tic type, given by a clinical domain-specific tool. This semantically categorized abbrevi-

ations dictionary can also be a useful resource for possible future NLP tasks using these

texts or similar ones.

1.3. Methodology

The first proposed task was to detect and characterize all possible identifiable information,

the texts had to be analyzed and annotated manually. Since no specialists were available,

the task of annotating the texts was taken over by a non-specialist with no annotation

experience, a questionable decision.

To support annotation, a custom annotation tool was developed. A customized tool

allowed the adaptation and implementation of custom features more easily, not being

limited to a standard annotation task. Also, this annotation mechanism did not require

local installation or the exchange of data files, a significant benefit if, in the future, clinical

experts could use it to review the annotated texts.

The annotation process was complicated by the omnipresence of abbreviations, many

of them specific to the clinical domain, and difficult for the non-professional to fully

understand, even when recurring to standardized medical terminologies. As the texts

were being read in full to annotate possible sensitive data, a new feature was added to

the above-mentioned annotation tool, to enable the annotation of abbreviations as well.

The first idea was to give the annotator an easy-to-use abbreviation dictionary built on

the abbreviations seen before. Knowing that this dictionary would be helpful to a human
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annotator, there was also the hope that it could be a resource for other following NLP

tasks.

Around 1,000 observations and 1,000 reports were read resulting in the identification

of almost 4,000 possible PII and nearly 12,000 abbreviations. This annotation process,

with all its known faults, resulted in a more solid knowledge of the texts, but it was

very time-consuming. One can argue that, given medical professionals’ cost and the time

needed to annotate large amounts of text, this non-expert annotation can be a building

block for a future more robust annotation task. facilitating and speeding the specialists’

work.

A detailed analysis of the found PII and abbreviations followed. Abbreviations’

description and characterization were based on the Unified Medical Language System

(UMLS) Metathesaurus Browser and Clinical Terminology Center (Centro de Terminolo-

gias Clínicas, CTC) Catalogues, but the most source of knowledge was the texts them-

selves.

Based on the previous assessments, the final task consisted of a simple approach to

automatic personal data identification.

The first experiments used simple regular expressions to detect identification numbers,

dates, and names. A Microsoft tool to anonymize text was tested. This tool allows

language adaptation, in particular for the supporting NLP tasks like tokenization or

Named Entity Recognition (NER), which was customized to use a spaCy’s Portuguese

pipeline. The tool also allows the adaptation of the PII categories recognizers, but these

remained with the default settings. More two models were tested, based on complex neural

networks, contextualized embeddings, and general and domain-specific language models,

both trained to de-identify clinical text, but only one using the Portuguese language.

1.4. Dissertation Structure

The document starts with a brief overview of what text mining is and NLP and the more

recent developments in the area. With a focus on the clinical domain and Portuguese

language specificities, de-identification tasks are given special attention.

The methodology part of this document describes in detail data preparation, text

annotation, and analysis tasks, and the use and evaluation of automatic processes to

identify PII. For each task, a step-by-step explanation is given, justifying the choices

made along the process.
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The outputs from the tasks described in the methodology are presented in the results

chapter. From both narrative types perspectives, identified PII findings are examined cat-

egory by category, and found abbreviations description was organized using their semantic

type.

To avoid, as much as possible, extensive and repetitive text listing numeric data, some

results are presented in tables that aim to be as simple as possible. Also, some figures are

included to better illustrate relevant findings.

The results from the automatic PII identification methods tested are presented by

method, with a final overview comparing them, once again the analysis is done for each

category separately.

The document closes with a succinct report on the most relevant conclusions, including

the work contributions, limitations, and future work perspectives.
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CHAPTER 2

Literature Review

2.1. Text Mining and Natural Language Processing

Text is our most common medium for the formal exchange of information, but often

can lack the needed structure to allow traditional automatic processing. Text Mining

is the process of extracting structured data from text [5, pp.515]. NLP is part of the

methods and techniques used in Text Mining. Witten et al. define it as “the process

or ability of a machine or program to understand natural (or human) text or speech”

[6, pp. 283], clarifying that tools for information retrieval, like web scrapping, or the

use of dictionaries, are within the scope of Text Mining but not NLP. NLP makes use

of several techniques to achieve its goals, NER and Relation Extraction (RE) are very

common and omnipresent techniques [7]: NER aims to identify, classify and categorize

named identities and it is commonly used in clinical NLP to de-identify text, but also to

discover symptoms, diseases, drugs or body parts [8]. RE identifies the relation between

these entities. Another valuable NLP technique is Part-Of-Speech (POS) tagging, which

classifies words in text according to their morphosyntactic value.

ML techniques are classified depending on the process complexity: 1) classical machine

learning obtains results directly from a given dataset; 2) representational learning makes

use of some intermediate data mapping prior to results, a classic example is using a

nearest neighbour algorithm to a dataset where, based on the original features, principal

components have been identified and summarized; and 3) deep learning relies on multiple

steps, each additional step provides an architecture “depth” [5]. In this context, we will

consider classical and representation machine learning as traditional machine learning or

ML, as opposed to deep learning.

Deep learning builds on multiple abstract levels, mainly neural network-based algo-

rithms that make use of advanced optimization techniques like Recurrent Neural Net-

works (RNN), Convolutional Neural Networks (CNN) or transformers [9]. Deep learning

has revolutionized NLP, but it also presents some new technical challenges: these algo-

rithms are computationally demanding and hard to parallelize; CNNs can have difficulty
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identifying long-distance relations present in texts and RNNs, that explicitly model se-

quential relations are limited by text length; some variations have been used to address

these issues, but with limited success [10]. Many of these problems have been addressed

with the introduction of attention mechanism and transformer architectures [9], like Bidi-

rectional Encoder Representations from Transformers (BERT) or Generative Pre-trained

Transformer (GPT).

Text, or words, are the input for these methods. Embeddings are representations of

words, that, ideally, retain as much as possible the word meaning in the given context, or

its semantic, in a low-dimensional continuous space and make it easier to do ML on large

inputs [11]. Ideally, an embedding captures some of the semantics of the input by placing

semantically similar inputs close together in the embedding space. An embedding can be

learned and reused across models.

Deep learning methods can receive as input embeddings. We can distinguish em-

bedding methods in static and contextual. Word-level vector representation methods, or

static word embeddings, assign a constant vector to each word, a single global representa-

tion [12]. Examples of word-level vector representation available methods are Word2vec1,

a word-level representation method that improves continuous Skip-gram model [13],

Global Vectors for Word Representation (GloVe)2 [14] and FastText 3 [15]. More recently,

contextual representation methods, like Embeddings from Language Model (ELMo) [16],

BERT [17] and GPT [18], took embeddings to a new level when considering word context

in their vector representation by assigning different vectors to the same word, depend-

ing on their context, and replaced the use of static word embeddings with significant

improvements on many NLP tasks [11, 19]. The term “contextual representation” can

be misleading because static representations use context to generate the representation,

but the representations themselves are not context-dependable. Contextual embedding

models are pre-trained on large unlabelled corpus to build context-sensitive embeddings;

but whereas ELMo takes these embeddings as input features for the downstream task (is

feature based) BERT and GPT-2 integrate the entire model downstream, a fine-tuning ap-

proach; additionally, GPT-2 takes advantage of a deep uni-directional transformer model

and BERT of a bidirectional one that can improve long-distance context comprehen-

sion [11,19]. Also, BERT uses as input the entire given context at once while GPT-2 is

1https://www.tensorflow.org/text/tutorials/word2vec
2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/
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auto-regressive and incorporates its previous output to the sequence of inputs in the next

step [12].

Flair embeddings, or contextual string embeddings, are, considering that these repre-

sentations vary depending on text context, and contextual representation methods, but

operate in a character sequence level. These methods maintain the ability to be trained

in large unlabeled corpora, and also, due to the character sequence approach, handle well

rare, misspelt and subwords, like suffixes and prefixes [20].

In March 2023, OpenAI reported the development of GPT-4. Their technical re-

port describes better performances than other models in English and other 26 languages,

after translating the Massive Multitask Language Understanding (MMLU) benchmark.

Portuguese is not one of the tested languages but Spanish, French and Italian, similar

Latin languages, were among the top six performers, with better results than English

GPT-3.5 [21, fig.5].

2.2. Clinical Text Mining

There is a considerable amount of research focused on texts with clinical content, some

patient-authored, some created by experts, or others like tweets, online forums or med-

ical literature, all of which have different linguist profiles [22]. Text is still our most

natural and meaningful way to record clinical events and Electronic Medical Records

(EMR) hold valuable information about patients in free-text clinical descriptions. EMR

are digital reports of patients’ assessments, predominantly created by clinical profession-

als and administrators [22]. It is worth mentioning that Garets and Davis distinguish the

terms Electronic Health Records (EHR) and EMR depending on their environment and

scope [23], but in this context EMR and EHR will assume the same meaning, taking the

broader definition of both.

Even when only contemplating clinical notes from EMR, there is a vast variety of

audiences, authors’ profiles, styles, tasks, requirements and outcomes to consider. For

example, radiology reports and discharge summaries differ in style, structure and vocabu-

lary. Furthermore, even in the scope of a specific task and text, like disease phenotyping,

there are distinct attributes when considering different medical specialities. As an ex-

ample, though metabolic diseases are more prevalent in the general population, there is

more clinical NLP research in diseases of the circulatory system than metabolic diseases,

maybe because metabolic diseases diagnostics rely more on structured data [24].
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As these clinical texts are taken from discharge summaries from patient’s EHR, they

contain some known issues as grammatical errors, use of acronyms, and lack of a formal

structure

Clinical text differs from a standard text in many aspects: misspellings, and domain-

specific terminology and abbreviations are prevalent; clinical texts contain incomplete

sentences, frequent negations (e.g. when excluding symptoms), and vague, uncertain or

speculative expressions; and there are differences between text types and medical special-

ities [8,25]. For example, discharge summaries and autopsy reports, written for a broader

audience, are usually better structured than other clinical narratives which explains their

prevalent use in research [26]. Clinical NLP is NLP accommodating for clinical text

specificities, needs and requirements.

Clinical concept extraction, the most popular clinical NLP task [19,22], can be defined

as the automatic process of identifying clinical concepts from unstructured text. It consists

of concept detection, generally NER, and concept encoding, which allocates standard or

pre-defined terminologies to the identified entities. The term BioNER is also used to

identify the various tasks that aim to identify biomedical entities [27]. Another common

clinical NLP task is phenotyping, which consists of the identification of a patient’s health

condition and relation extraction [22].

Clinical concepts in NLP tasks are controlled vocabularies like the Systematized

Nomenclature of Medicine: Clinical Terms (SNOMED CT) or standardized terminolo-

gies or ontologies like the Medical Subject Headings (MeSH)4 thesaurus, an index for

health-related concepts, or the International Statistical Classification of Diseases (ICD)5,

a database with 80,000 entries characterizing diseases and syndromes, maintained by the

World Health Organization (WHO), intended to offer global accurate and comparable

statistics on causes of mortality and morbidity or health-related phenomena [28, 29].

Developed by the United States National Library of Medicine (NLM), UMLS6 is om-

nipresent in Clinical NLP. It comprises three knowledge sources: the Metathesaurus, the

Semantic Network, which provides high-level categories for the concepts in the Metathe-

saurus, and a syntactic lexicon, SPECIALIST Lexicon, and related tools [23]. The UMLS

Metathesaurus is updated quarterly and integrates biomedical terms from various other

sources, including SNOMED CT, MeSH, ICD, Logical Observation Identifiers Names and

4https://www.nlm.nih.gov/mesh
5https://www.who.int/standards/classifications/classification-of-diseases
6https://www.nlm.nih.gov/research/umls
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Codes (LOINC)7, a catalogue on health measurements, observations, and documents,

and RxNorm8, a normalized naming system for clinical drugs. Although there are several

domain-specific resources, Bay et al. note that some patient-related documents have a low

rate of medical ontological terms and highlight the importance of non-medical language in

patient-related document characterization proposing the construction of a specific body

of terms from both medical and everyday language [30].

Since 2018, and despite its “black box” status, there seems to be a growing acceptance

of deep learning by the medical community. However, although deep learning has largely

outperformed traditional methods, there is an understandable lag in the adoption by the

medical field [22]. Wu et al. show that, at least until 2019, RNNs have dominated clinical

deep learning architectures research in all types of tasks, except text classification where

CNN appeared in half of the analyzed documents [22]. At the same time, they highlight

the increasing popularity of attention mechanisms, often used with other methods, and

predict the future growing research in attention mechanisms.

Embedding pre-training can be an alternative to collecting annotated data, a difficult

task, especially in the area of clinical data [18]. Developing an annotated corpus in

a clinical context can be very difficult due to sensitive and private information, text

specificity, and the need for medical experts’ input [25].

Another hurdle when working with these new embedding methods is that they are

computationally demanding and can struggle to process long texts. Ethayarajh suggests

extracting static representations from contextualizing models, claiming that these can of-

ten perform better than traditional static embeddings [11]. Another alternative is BERT-

based models pre-trained with public biomedical texts or clinical texts, like Bidirectional

Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) [31],

ClinicalBERT [32] or EhrBERT [12].

Domain adaptation is key in clinical narrative analysis. Transfer learning, for exam-

ple using the pre-trained BERT models with an extremely large set of domain-specific

narratives to produce a language representation model, is one possible strategy to lever-

age the domain specificity challenge. Another is multi-concept learning (or multitask

learning), which means making use of features from multiple datasets to improve model

performance [10].

7https://loinc.org/
8https://www.nlm.nih.gov/research/umls/rxnorm/index.html
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A comparative study of various embedding methods for clinical concept extraction

found that: i) contextual embeddings perform better than traditional embeddings, and

can provide additional semantic information; ii) it is beneficial to pre-train on a clinical

domain corpus (domain-specific embedding versus open-domain) in both traditional and

contextual embeddings; iii) pre-trained deep language models with a large corpus, followed

by a fine-tuning approach (BERT) seem to outperform all other methods [19].

One of the challenges of clinical NLP is misspelling. Tissot & Dobson [33] note that

generic drug name spelling errors occur in up to one out of six entries in information

systems, and that these errors are not innocuous and can lead to adverse drug events.

To address this issue, they combined string and phonetic similarity to correct drug mis-

spellings. The hurdle is that phonetic representation (based on the sound of the spoken

word) is highly language-dependent, demanding a language-specific tailored solution. Un-

fortunately, they only explore a hybrid ruled-based solution, suggesting the use of machine

learning methods in possible future work.

2.3. Portuguese Clinical Text

Another area where transfer training can be useful, is language adaptation. Wu and al.

observed that a great majority of published clinical NLP studies used English datasets,

followed by Chinese (almost 20%), and works with datasets in other languages were less

than 3% [22]. In their study, there is no mention of Portuguese datasets. Also, essential

standardized medical ontologies, clinical thesauri, or controlled vocabularies are much

more mature for the English language, which is predominant in the biomedical field,

when compared to the Portuguese language [34], and the majority of clinical corpora for

research are in English [8].

In European Portuguese, the CTC9, publishes several semantic health catalogues,

mapped with internationally recognized classifications and terminologies like SNOMED

CT and LOINC, to be used in Portuguese Health Information Systems.

Historically, a common approach to tackle the Portuguese language handicap has been

making use of Machine Translation (MT) to translate the texts to and from English. In

2007, Coutinho et al, translated Portuguese X-rays reports to English and then used

the Medical Language Extraction and Encoding System (MedLEE), a NLP Service, to

binary classify 165 texts considering two questions: radiography normality and presence

of devices [35]. More recently, Lamy et al. intended to use the open-source Clinical

9https://www.ctc.min-saude.pt/
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Text Analysis and Knowledge Extraction System (cTAKES) to detect a variety of clinical

information: diseases, medications, symptoms, signs, anatomical regions and procedures.

To take advantage of both cTAKES and SNOMED CT, not available in Portuguese,

the texts were translated to English with Google Translator [36]. The common use of

clinical acronyms and abbreviations was addressed by replacing them with the full word

prior to translation, but these were manually identified. As expected, results were below

cTAKES’ standards. In 2021, Schneider et al. trained a GPT-2-based model with titles

and abstracts from scientific papers that were translated to Portuguese using MT [12].

Even though BERT and similar models are conceptually simple and promise great

results, training these models requires large amounts of data that can be difficult to

access, particularly when working with non-English languages [37].

Acknowledging that i) neural networks are the state-of-the-art POS tagging archi-

tecture approach, in particular Bidirectional Long Short-Term Memory Networks (Bi-

LSTM); ii) the scarcity of studies exploiting this method for Brazilian Portuguese clinical

texts; and iii) the difficulties in building clinically annotated corpora; de Oliveira et al.

propose a POS tagging neural architecture for these texts making use of a corpus that

results from the combination of four different biomedical and journalistic corpora and

“achieved comparable results to other state-of-the-art studies in journalistic contexts”,

with an accuracy of 92.39% for Brazilian Portuguese clinical texts [25].

Motivated by the scarcity of clinical NLP research in Portuguese, Lopes et al. ex-

tended their previous Conditional Random Fields (CRF) study [38], and compared the

performance of different methods for NER in Portuguese clinical data using CRF and two

Long Short-Term Memory Networks (LSTM) models with different word embeddings pre-

training approaches using fastText: a general-knowledge and an in-domain model [39].

The general-knowledge model was built on billions of tokens from Wikipedia and common

crawl, and the in-domain model was trained with 3.377 clinical texts from a journal (a

total of 686.762 tokens). The LSTM models achieved the best performance and, in line

with what has been found in other languages, the in-domain embeddings outperformed

the general knowledge, even if trained with much fewer tokens. More interestingly, the

results suggest that it is possible to train a model with publicly available data (for training

purposes, the research only used Portuguese clinical texts from journals). However, it had

a very small test dataset of 20 clinical notes from the Neurology service of a Portuguese

hospital, including admission notes, diagnostic test reports and patient discharge letters.
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Duarte et al., also using deep learning with word embeddings, show accuracy scores

over 75,9% when assigning ICD-10 full-codes (a large number of classes sparsely used) for

underlying cause of death to Portuguese death certificates, clinical bulletins, and autopsy

reports [40]. Unfortunately, this study does not reflect on the specifics and challenges of

Portuguese or the domain language.

Coutinho and Martins reproduce the task by Duarte et al. [40] using a transformer-

based model BERT model and outperform the previous models with an accuracy score of

over 80% when assigning full-codes with a model that was pre-trained with Portuguese

clinical data [37].

Another study also assigns ICD-10 codes to Brazilian-Portuguese clinical notes using

logistic regression, a CNN, a CNN and Attention Convolutional Neural Network (Att-

CNN) [41]. All neural networks used word2vec embeddings and they worked with different

subsets of note types (discharge summaries, clinical developments and physical exams).

The Att-CNN model, with all types of notes, was the one with the best result with a F1

score of 0.485.

Aiming to compare clinical word-embedding models with different granularities (coarse

versus fine-grained), Silva e Oliveira et al., set to identify Urinary Tract Infection (UTI)

cases in clinical narratives from hospitals using a neural network [42]. They trained three

word2vec models with three different datasets: 1) a coarse-grained, with 745,731 docu-

ments from 3 different hospitals, multiple types of notes and several medical specialities;

2) a subset of this coarse-grained with only the narratives annotated with UTI related

codes and 3) also narratives annotated with UTI related codes but selected from another

hospital. They also trained a GloVe model with the third dataset to train the neural net-

work. The best results were very similar for all models, allowing to conclude “a tradeoff

between corpus size and similarity when it comes to word-embeddings”. To evaluate the

coarse word embeddings model (an evaluation that does not depend upon the downstream

tasks), experts translated and adapted to Brazilian Portuguese the Bio-SimLex database,

a clinical nouns dataset where word-pairs similarity is scored to support intrinsic evalua-

tion of word representation models [43]. Although with some challenges in the translation

(ambiguous terms and pairs with no obvious translation), they conclude that the results

are comparable to the state-of-the-art models.
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Portuguese Biomedical GPT-2 small (GPT2-BioPT) was made available by Schneider

et al. in 2021 [12]. GPT2-BioPT is a GPorTuguese-2 model trained with titles and ab-

stracts from Portuguese scientific papers; whereas GPorTuguese-2 is an English GPT-2

model pre-trained with roughly 1GB of data from Portuguese Wikipedia 10. The model

was evaluated on a classification task with the Flair API, where given an annotated

dataset with progress notes the goal is to identify fall incident reports, a classification

task. The FLAIR framework11, developed using the PyTorch12 Python library, provides a

simple interface to facilitate the easy use of different embeddings. [44], and an exhaustive

assessment of various static embeddings (Word2Vec and FastText) and contextual embed-

dings models (ELMo, BERT and GPT) with and without domain (generic, biomedical

and clinical) and language (English and Portuguese) specific training was carried out.

GPT2-BioPT outperformed all other models with an F1-score of 0.90. The second-best

result was obtained by BioBERTpt 13, a deep model developed to support Portuguese clin-

ical and biomedical NER, based on a multilingual-BERT model pre-trained with a corpus

of clinical texts and biomedical papers in Brazilian Portuguese [26]. The results strongly

suggest a gain when applying contextual versus static embeddings and the benefits of

domain and language-specific pre-training.

2.4. Text De-identification

Data privacy regulations have a strong impact on all data-driven medical research and

production due to the large volume of PHI in EMR [45]. Since 2018, the General Data

Protection Regulation (GDPR) has enforced strict constrains regarding data collection,

treatment, and storage in Europe. Without explicit and informed consent of the indi-

viduals, personal data can only be used for the purpose used when collecting it [46].

De-identification is the process of removing data that can be associated with a specific

person [47]. Although some authors make a distinction between de-identification and

anonymization, for example, Kayaalp writes that de-identication is a well-defined process

and anonymization a goal [47], the difference is not very relevant in this context and the

terms will be used interchangeably.

De-identification methods are the combination of two very different tasks: the identi-

fication of sensitive data and the concealment of the identified data. Different suppression

10https://huggingface.co/pierreguillou/gpt2-small-portuguese
11https://github.com/flairNLP/flair
12https://pytorch.org/
13https://huggingface.co/pucpr/biobertpt-all
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strategies result in different levels of information disclosure. Removing the identified data

and all its context, or the phrase containing it, is the more radical approach. But it is

also possible to mask the information with a generic mask, like ‘XXXX’, or replace it with

a specific class or category, like NAME, giving more information about the hidden data.

Another option is to use a surrogate, or pseudo, like ’JOHN DOE’ [48].

With the exponential growth of the available data and the cost of manually identifying

sensitive information, there is an increasing interest in automatic anonymization methods

using NLP techniques [49]. It is an example of the success of NLP requiring the use of

NLP.

Automatic de-identification tolls, like Presidio14 and Amnesia15 are becoming popular,

but this automatic anonymisation poses new challenges balancing data protection and

keeping the research value of anonymised datasets [50].

Another hurdle of automatic identification of sensitive data is the limitation to prede-

fined categories, which may ignore texts that do not fit the defined labels but could still

identify individuals [3].

Jain et al., in one of the first studies using spaCy16 for clinical text de-identification,

a Python open-source library for NLP processing, compare different deep architectures

on the Informatics for Integrating Biology and the Bedside (i2b2) data set, including Bi-

LSTM-CNN and conclude that, although Bi-LSTM-CNN shows a better F1 score, the

model based on spaCy (version 2.1) outperforms all other models, with the second best

F1 score and a better time cost [51]. On a later work, Pearson et al. also used spaCy and

OpenNLP17 to identify five categories of PHI on medical examination reports, and spaCy

showed a better F1 score of 0.9075 and better recall scores.

More recently, using a multi-institutional dataset of 6,193 documents, with identified

PHI, chest X-ray, Computed Tomography (CT) reports and medical notes, Chambon et

al.developed a transformer-based deidentification pipeline, that also replaces the identified

PHI with surrogates, and report to outperform all human labelers on i2b2 2014 data [52].

On the privacy issues, literature addressing specifically the Portuguese case is very

scarce [53]. Santos et al. believe to carry, in 2021, the first study on the detection

of patient names in Portuguese texts, with contextualized embeddings. The downstream

tasks were based on a Bidirectional Long-Short-Term-Memory Conditional Random Fields

14https://microsoft.github.io/presidio/
15https://amnesia.openaire.eu/
16https://spacy.io/
17https://opennlp.apache.org/
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(Bi-LSTM-CRF) neural architecture, supported by Flair framework: a Bi-LSTM model,

trained for traditional sequence labeling, and a CRF token labeler. They used several

language models generated from a corpus of both Brazilian and European Portuguese:

WE-NILC18, generated from 17 different sources and from various domains with almost 1.4

billion tokens, and trained using word embeddings (Word2vec, FastText, Wang2vec and

Glove) [54]; WE-EHR-Notes19: also trained using word embeddings, it was generated from

603 million tokens from hospital progress notes [55]; FlairBBP: a pre-trained language

model with 4.9 billion Portuguese words corpus, trained using with Flair embeddings [56];

and FlairBBPFnTg: a FlairBBP refinement using the EHR-Names Corpus as input, a

corpus built on 2,500 clinical notes from Brazilian hospitals manually annotated with

4,999 identified entities [57].

NLP classification methods evaluation usually employ precision, recall and F1 scores,

where F1 is the harmonic mean of precision and recall. These measures compare the

number of classified items in a result set to a previously defined classified set, the target

set. But traditional metrics are being disputed. Hendrycks et al. reflect on NLP recent

evolution with the advent of transformer models and how the model assessment will have

to adapt to new standards, especially domain-specific trained models [58].

For text anonymization tasks, performance is highly associated with recall scores since

recall assesses the significance of the terms that should have been identified and were

not [48]. But, in de-identification, different terms and different masking techniques carry

diverse information significance, they are not all equal. Recall, and other similar measures,

do not this take into consideration and assign the same weight to all terms. An alternative

is to evaluate re-identification risk, a much more complex metric [4].

Beyond pure performance evaluation, another important aspect to consider when

employing automatic techniques is fairness, Xiao et al. have recently shown, studying

name de-identification in clinical records, that existing de-identification systems can be

biased [59].

2.5. Chapter Conclusions

The recent developments in NLP methods, supported by innovative pre-processing strate-

gies, like flair embeddings, coupled with complex neural architectures, like transformers,

have exhibited remarkable results.

18http://nilc.icmc.usp.br/embeddings
19https://github.com/nlp-pucrs/fall-detection
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The rapid success of these very complex methods gives rise to new questions on model

assessment and fairness.

Even among this success, there are lingering challenges when addressing domain-

specific texts and languages, like in the case of clinical texts in European Portuguese.

Besides the models themselves, increasing attention is being given to the content of

the texts used to train them. De-identifying text has been an active research area, due to

strict regulation and the growing need for large amounts of text.

Traditional PII categorization and the following methods’ evaluation present several

constraints that call for new approaches, like de-identification risk.

To guarantee that these amazing tools deliver an accurate, responsible, and fair output,

we face a seemingly unreasonable task: it is important to have a greater knowledge of the

increasingly larger texts being used.

This work aims to provide a better understanding of two types of clinical narratives

that will possibly be used in the development of ML algorithms, with particular attention

to the existing PII and how to treat it. The following chapter will describe the tasks un-

dertaken to achieve this, afterward, the results of the described activities will be reported

and discussed.
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CHAPTER 3

Methodology

This chapter describes in detail all the steps that were taken during this work in order

to mine the text data: starting with the raw data preparation and exploration and end-

ing with the performance evaluation of the automatic identification process. In between,

the options taken when manually annotating, and the reasoning behind them, are pre-

sented, as are the descriptions of the validation, classification, and analysis tasks that

have followed.

3.1. Data Preparation

The original data set comes from 12,651 text files, structured in JavaScript Object Nota-

tion (JSON) format with three properties: the extraction timestamp, an object "Patient"

with an identification number and birth date, and an object Report. The Report includes

an identification number (accession number), the exam’s type, a validation timestamp,

and two texts in rich text format: Observation and Report.

After transforming all rich text into a simple text format, using striprtf1, this data

was saved in JSON files (35MB) and loaded to a pandas dataframe, adding the original

filename as a column for future reference. Ignoring filename and the extraction timestamp,

dropped duplicates, in a total of 217 duplicated records. The resulting dataframe, with

12,434 distinct records and 8 columns was saved to a Comma Separated Values (CSV)

file (27.4MB).

3.2. Data Exploration

All records were exported in February 2023 and include procedures or exams ranging from

November 2020 to January 2023. From these, 85.33% (10,610) date from 2021, 10.56%

from 2022, 0.01% from 2020 and 2023 and the remaining 510 had no date. In total,

there are 1,541 distinct patients. There are only 7,302 distinct accession numbers and,

for the same accession number, there can be different exam types, reports, and validation

timestamps, but always for the same patient and presenting the same observation text,

although the same observation can show different accession numbers. The fact that there

1https://pypi.org/project/striprtf/
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are more records than unique values for several variables seems to indicate that these were

exported from a relational database where an admission (accession number) is related to

one patient and one observation, and more than one exam type and respective report text.

Also, the same report can be found in different records with different accession numbers,

observations, and exam types. For example, the most frequent report appears in seven

records with seven distinct accession numbers, four distinct observation texts, and distinct

exam types, all CTs of different anatomic parts.

Table 3.1 depicts a summary of the variables in the dataset.

Table 3.1. Variables description.

Variable Type Values
count

Null
values Unique Max.

Freq.

Extraction timestamp date and time 12,434 - 12,434 1

Patient id integer 12,434 - 1,541 68

Patient birthdate date 12,434 - 1,476 68

Accession number integer 12,434 - 7,302 8

Observation text 10,943 1,491 5,173 158

Exam type text 12,433 1 254 1,865

Report text 12,434 - 6,807 7

Validation date date and time 11,924 510 6,303 9

Table 3.2 aims to give a brief description of the text variables, taking into considera-

tion, for each variable, non-null unique values. Text length is the direct result of the len()

Python function, which returns the number of characters in a string, and the token count

counts the length of the result of the function word_tokenize() from the Natural Language

Toolkit (NLTK) Tokenizer Package2, for Portuguese language default parameters.

Observations are text narratives that contain, predominately, exams or procedure

requests with a brief clinical history. These are, sometimes, included in full in the report

text labeled as clinical information. Concerning the text size frequency, three text lengths

occur most frequently and were analyzed in more detail: 325 texts with 107 characters and
2https://www.nltk.org/api/nltk.tokenize.html
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Table 3.2. Unique non null text variables description

Variable Values
count

Text length Token count

Min. Average Max. Min. Average Max.

Observation 5,173 2 242.1 1,025 1 41.0 216

Exam type 254 3 32.8 64 1 5.3 16

Report 6,807 2 1,493.5 10,546 - 235.4 1,687

192 with 62 were found to be scheduling notes, all with the same format, with date and

location for an appointment or exam. Another 112 texts have exactly 1,025 characters,

which happens to be the maximum size for all of the texts. These seem to be truncated

texts, ending abruptly in the middle of a sentence or word. Some limitations on the

exporting process may have truncated these texts.

For the annotation task, all 339 observations beginning with Agendamento (Booking)

were removed after manual inspection to confirm there was no other relevant information.

The resulting data, with 4,834 unique texts and the original filename for future reference,

were shuffled and saved.

Exam types are texts that are shorter than observations, stating a type of exam or

medical procedure and, sometimes, the corresponding part of the body to be examined.

Presenting only 254 unique values and 68 types that only appear once, it is possible that

there was a list of exams to choose from, extended with the possibility to add a new type

with free text. The most frequent exam type is the CT, with 63% of all records referencing

TC (which stands for CT in Portuguese) in the exam type text. The top-5 most common

exams are CTs: chest CT (1,865 texts); upper abdomen CT (1,305); pelvic CT (1,258);

additional angiography CT (1,097) and skull CT (875). Other common exam types are

ultrasounds, 13% of the records, and 6% refer RM, which means Magnetic Resonance

Imaging (MRI) in Portuguese.

Similar to the observation variable, but this time only showing unique values, an

analysis of text length frequency showed that texts were also probably truncated in the

exportation process, with 22 texts presenting exactly 64 characters, which is the maxi-

mum value. When reading these 22 texts, it becomes obvious that once more these are

incomplete texts.

The exam types that have been found do not entirely match with the terms in the

CTC catalogues for Radiology [60], Gastroenterology [61] and Cardiology [62], with the
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given preferred terms and synonyms. Of the 254 distinct exam types, 97 were found in

the Radiology Catalogue, five in the Gastroenterology, and only one in the Cardiology

catalogue.

For the text not found in any of the catalogues, another matching approach was

performed: (i) considering all cases when the text for the exam type was included in the

catalogue term; (ii) ignoring the last character in all unmatched texts. The rationale lies

in the fact that Portuguese words can be gendered and that gender can alter the last letter

in a word, e.g. there is an exam type TC pélvico and a CTC catalogue term TC pélvica

and both mean ’pelvic computed tomography’; (iii) ignoring all text after including, the

characters (, - and the word excluí (Portuguese for exclude).

For each entry, the catalogues display a preferred term and a synonym in Portuguese.

These searches were always performed using the preferred term. If no match was found, a

new search was performed using the synonym value. As an example, with the approximate

search, the exam type TC dos membros inferiores - Perna (ESQ) (CT of the lower limbs -

Leg (LEF)), will now match TC dos membros inferiores (cada segmento anatómico) (CT

of the lower limbs (each anatomical segment)), a reasonable match. Using the approximate

search it was possible to categorize a total of 136 records, 33 more than when using the

exact match.

Counting all records, we have 10,273 exam types, 83% obtained with an approximate

match. However, with this approximation, four cases matched terms in more than one

catalogue. The most frequent exam type (665 records) with no corresponding term found

in any of the CTC catalogues, is Imag Geral - TC, suplemento de contraste endovenoso

(Imag General - CT, intravenous contrast supplement). In the Radiology catalogue, there

is a synonym term TC, suplemento de contraste endovenoso (CT, intravenous contrast

supplement) that could label this exam type, so maybe a more robust and complex match-

ing system could yield even better results.

Reports are longer texts with detailed image descriptions and technical details, many

of them ending with the name and clinical speciality of one or more physicians. These

reports include data that may be redundant because it can be found in other fields or

calculated based on other variables, like the patient’s age. Patient and clinician names

and identification numbers are frequent, and, for 385 unique reports (697 in total) the

corresponding observation text is included at the beginning of the report described as

Informação clínica (Clinical information), maybe intending to contextualize the following
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data. It can be assumed that the information system makes it difficult for the clinic to

visualize all relevant information at once. Also common are references to previous exams

or procedures, using their date as reference. Similar to what was found in observations,

text length analysis revealed that there are texts that are not medical narratives but

booking details, but no truncated texts were found. Although all texts have characters,

6 reports have a zero in the token count because they only consist of newline characters

\n, and these are all ignored.

For the annotation task, all 36 reports beginning with Agendamento (Booking) were

ignored, after confirming that they did not contain more information. 6,771 unique texts,

and the corresponding original filename for future reference, were shuffled and saved.

A brief note about the three CTC catalogues used in this work: the Portuguese Cat-

alogue of Radiology v1.0, the Portuguese Catalogue of Gastroenterology v1.1, and the

Portuguese Catalogue of Cardiology v1.0, all issued in 2021. These had to be requested

from the CTC and the data was provided in Excel files, but they had to be treated to

maintain the information in a tabular form.

Table 3.3. CTC catalogues record number per level

Catalogue Area Sub-area Sub-sub-area Exam or
procedure

Radiology 7 16 37 409

Gastroenterology 3 6 8 104

Cardiology 8 - - 143

Total 18 22 45 656

Each catalogue has a list of procedures or exams with a hierarchical categorization.

The difference between a category row and a procedure row is that the rows for the

categories are a single merged cell, and the rows for procedures have various data. For

the categories, different types of text indicate different levels: Areas are in uppercase text;

sub-areas in normal text and sub-sub-areas in underlined text. Each procedure category

is determined only by the row order in the file. Table 3.3 relates the number of categories

and procedures in each catalogue.

To ensure that the defined hierarchical categorization did not rely on record order

or text type, three new variables were added: i) the ID (a sequential number assigned

23



to all rows); ii) the level and iii) the parent. The categories description was assigned to

the English Preferred Term column. Area, a category in bold text and upper case, e.g.

COMPUTED TOMOGRAPHY (CT) was assigned level 1, while level 2, the sub-

area, was assigned to entries with descriptions in lower case, such as Head and Neck.

Underlined descriptions, such as Abdomen and Pelvis (Non-Vascular), are assigned as

level 3, i.e, the sub-sub-area. All other entries, procedures or exams, were registered

as level 4. The parent variable identifies the ID of the category to which the respective

record belongs.

All the catalogues were reviewed manually, added to pandas dataframes and saved as

CSV files.

3.3. Manual Data Annotation

3.3.1. Sensitive Data Identification

The first proposed task was to identify and characterize all data that could associate an

individual with a specific record or event.

Identified data was labeled following HIPAA and several previous annotation methods

[1, 63–67], with a similar classification to the i2b23 and Medical Information Mart for

Intensive Care (MIMIC)4 datasets [63]. Using these guidelines, three main categories

were considered: general data, which includes location and date references; patient (or

related individuals, like family) and clinician or staff data.

Dates were considered only if more detailed than a year and less detailed than a day.

When only the day of the week or month were mentioned these were also not identified.

All locations were annotated, including countries, cities, institutions and services (or

wards). Floor and bed numbers were also considered locations and labeled as services.

Patients’ and clinicians’ personal data found in the text was annotated, such as sex,

age, name, identification number or contact. Although HIPAA only considers PHI ages

above 89 [2], all age references were annotated. For the sex category only explicit refer-

ences were taken into account. Because Portuguese words are gendered it can be easy to

infer the patient or clinician’s gender, for example, "o doente" is a male patient and "a

doente" a female male, or, due to the medical nature of the reports, anatomic or clinical

description sometimes reveal the patient sex.

3https://www.i2b2.org/
4https://mimic.mit.edu/
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A category “other” was also created to include all cases where the previous categories

were not suitable.

Each string in the defined categories, named entity, was added to a list of identified

entities and stored in JSON format detailing the position of the first and last characters

of the string in the given text and the given category. For example:

{

"ents": [

{

"start": 218,

"end": 235,

"label": "LOCATION"

},

{

"start": 293,

"end": 298,

"label": "DATE"

}

]

}

3.3.2. Abbreviations

The second proposed task was to detect whenever a word or phrase appeared in a trun-

cated form, not in a complete version, namely abbreviations and acronyms. The use of

symbols, when used with other meaning than the most mathematical meaning; for exam-

ple / was identified when used as an or statement (not when it was used as a quotient).

The term annotated abbreviation will be referring to both of these situations from now

on.

Some rules were defined for consistency:

− Whenever possible, longer abbreviations were considered for annotation, for ex-

ample, if TC (computed tomography, tomografia computorizada in Portuguese)

was preceded by Angio, Angio TC was annotated as a single abbreviation with

the description ngiografia tomografia computorizada (Angiography Computed To-

mography). Exam names were described, whenever possible, using the preferred

term in the CTC catalogues. In the previous example, Angiografia Tomografia

Computorizada occurs as a preferred term. There were two exceptions to this

rule:
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– When the abbreviation included texts in different languages these were an-

notated separately, e.g. LMA NPM1 was annotated as LMA, Leucemia

Mieloide Aguda (Acute Myeloid Leukemia) and NPM1 as Nucleophosmin 1.

– Exam names and anatomical terms were also annotated separately. For ex-

ample, TC TAP, meaning Tomografia Computorizada de Tórax, Abdómen e

Pélvis (Computed Tomography of the Chest, Abdomen and Pelvis) required

two records: TC (Computed Tomography) and TAP(Computed Tomogra-

phy)).

− To facilitate the following analyses, the description assumed the singular form,

and when the abbreviation had no specific gender the description used the mas-

culine form.

− Abbreviations immediately preceded by their full form were not annotated, but

all other occurrences in the same text were.

− The given descriptions always followed the language used in the abbreviation. If

an abbreviation could refer both to Portuguese and English languages, the Por-

tuguese language was used. For example, when CoV was found, it was described

as Coronavírus and not Coronavirus.

− If the abbreviation includes a symbol, like a period in the end, this was included

as part of the abbreviation text.

− Obvious abbreviations where it was not possible to find the corresponding de-

scription were annotated as a single question mark.

− Dubious cases were not identified. As an example, many specific clinical tool

names are upper case and can be, or not, abbreviations.

Identified abbreviations were stored in JSON format with the position of the first and

last characters in the text and the corresponding description:
"abbrs": [

{

"start": 9,

"end": 17,

"desc": "Angiografia Tomografia Computorizada"

},

{

"start": 76,

"end": 78,

"desc": "Endovenoso"

}

]
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3.3.3. Annotation Tool

Searched for available annotation tools, but none provided the desired functionalities to

automate the process or could treat PII categories and abbreviations, and the correspond-

ing description, at the same time, as intended.

Moreover, keeping in mind that medical specialists should review the annotation and

wanting the minimize data sharing, the goal was to have a very easy-to-use tool that

could work on the already shared set-up environment (Jupyter Lab5). This would allow

the creation of specific credentials to access the tool, without having to share data files

or elaborate set-up instructions.

An annotation tool was built in Python. The annotator only has to run a Jupyter

notebook6. Given the dataset location and an index row, an interactive widow7 runs

within the notebook, with four distinct panels: navigation, text, and add and remove

panels. It also has an automatic labelling function.

The navigation panel allows loading of the previous and next texts and has a save

button to save working changes in a CSV file. Figure 3.1 is an example of an annotated

text as it is presented in the tool. In the figure, all sensitive information was altered.

Figure 3.1. Annotated text in the annotation tool

5https://jupyterlab.readthedocs.io/
6https://jupyter.org/
7https://ipywidgets.readthedocs.io/
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The text to annotate is shown with a specific style to facilitate the annotation process

and minimize errors. For example, the text was given a bigger line height and larger

padding and margins than the default values. Identified entities are highlighted with

a specific colour background and contrasting text colour, depending on their identified

category. Identified abbreviations’ text is bolder, underlined and, when hovered, the given

description is shown. The index number of the text being annotated and the last checked

date are also displayed.

To annotate a new entity, the user must write the text to label and choose a category

from a drop-down box. To identify an abbreviation, one has to write the abbreviation as

it is in the original text and the corresponding long description.

The tool will label all strings in the original text that match exactly the input strings

if there is no overlapping to already identified data. This means that a given character

in the original text can only be part of a single abbreviation or entity. Abbreviations and

entities can overlap.

On the right side of the text, two lists of buttons, ordered by their text position, allow

the removal of identified data. Each button shows an identified entity or abbreviation,

with the corresponding text, start and end positions. The entities removal buttons also

indicate the category and have the same category background colour used in the text. In

the abbreviations, the description is also shown. Each of these listed buttons enabled the

removal of information with a single click. Figure 3.2 displays the list corresponding to

the annotations in the text in figure 3.1.

Upon loading a data set, the application generates auxiliary lists with previously

identified entities, except for the age category. These lists are ordered by the number of

characters in the identifying text, from largest to smallest, to guarantee that longer texts

are identified first.

Abbreviations and their corresponding description are also listed and ordered first

by abbreviation text size and then description frequency, from the most to the least

common. Abbreviations with only one character and descriptions with a single question

mark (unknown descriptions) are not added to this list.

When a text is loaded the application iterates these ordered lists and automatically

identifies possible entities or abbreviations.

Afterwards, regular expressions automatically identify possible dates and ages: first,

all cases of 3 groups of one or more digits separated by one of the characters - backslash
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Figure 3.2. Buttons to remove identified entities and abbreviations

\”, period ., hyphen – or a single space - were automatically identified as dates; secondly,

also as dates, were considered the same cases of 2 groups. Finally, cases of 2 digits that

were not preceded or followed by another digit were marked as age entities. Order is very

important in this process because overlapping is not permitted, so the objective was to

identify longer occurrences first.

The application easily allows to disable the automatic identification, useful in a first

annotation, but maybe not in a review process.

3.3.4. Annotation Process

Using the previous tool, nearly 1,000 observations and 1,000 reports were annotated with

the automatic annotation feature enabled.
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The first version of the tool had no automatic identification feature using previous

annotated texts, but there were several recurring abbreviations and entities across all texts

and the feature, that have been fine-tuned during annotation, proving to be extremely

helpful.

The way new annotations are made, where a given string is matched in the entire text,

and the existence of automatically inserted entities and abbreviations on text load, made

it possible to have a large number of false entities or abbreviations. The reasoning was

that it was preferable to remove false entities than to risk missing a true one. This is why

it was important to have an easy way to remove annotated entities and abbreviations,

like the already described buttons.

Nevertheless, the annotation of an abbreviation like a for ano (year) resulted in too

many false abbreviations listed. A new function was added that, given a text and a list of

numbers, would delete all abbreviations or entities matching exactly the given text and

those whose starting position was not in the given list.

Even with the automatic feature, this proved to be a tedious and challenging task,

specifically the abbreviations annotation, due to the lack of expert knowledge.

The annotation used the catalogues provided by CTC and UMLS search tools as

primary resources, but many searches issued no results. Many times, a Google8 search

provided better results than the ones with the specific domain tool, mainly for Portuguese

terms. One of the more valuable information sources was the texts themselves, many

abbreviations and their descriptions were found in the texts.

After the first round, all texts were reanalysed, starting again with the first text, this

time without the automatic identification feature.

3.4. Manual Annotation Validation

To ensure some data consistency, all abbreviations with more than one description were

listed, with all texts considered in lowercase. From these, the ones with no given de-

scription were reviewed to evaluate if the identified descriptions for the same abbreviation

would be suitable. For example, the abbreviation PCR could appear as:

8https://www.google.com/
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’pcr’: {

’total’: 49,

’desc’: {

’proteína c-reativa’: 32,

’paragem cardiorrespiratória’: 12,

’polymerase chain reaction’: 3

’polmerase chain reaction’: 1

’?’: 1

}

}

For PCR we have one record with no description, identified with ?, so the corre-

sponding text was read once more to check if the other descriptions Proteína C-Reativa

(C-Reactive Protein), Paragem Cardiorrespiratória (Cardiorespiratory Arrest) or Poly-

merase Chain Reaction could be used.

Also, these listings made it possible to detect description misspellings or slightly dif-

ferent description options, like in the PCR case and the misspelled description Polymerase

Chain Reaction.

To accelerate these reviews, another feature was added to the annotation tool that

allowed to navigate through a list of given indexes.

The abbreviations’ lists with more than one description were reviewed for reports and

observations separately, and then with both text types combined.

3.4.1. Semantic Type Identification and Grouping

To try to further characterize these abbreviations, the identified terms were categorized

as given by UMLS semantic type. It is not a thorough classification, it was done using

the UMLS Metathesaurus Browser9, a UMLS Terminology Service.

For the Portuguese terms that were not found, used Google Translator10 to retrieve an

English translation. For example, the abbreviation BO, Bloco Operatório, was translated

do Operating Room, and this term is listed with two semantic types: Manufactured Object

and Health Care (HC) Related Organization, none existed in the categorized list. It was

classified as HC Related Organization because it seemed to better suit Bloco Operatório

as a HC structure.

The classification was almost entirely done with no context, using the abbreviations

lists. Only when the exact term was not found, the full text was read to help in filtering

9https://uts.nlm.nih.gov/uts/umls/home
10https://translate.google.com/
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similar terms in the result list. When a given term had more than one semantic type,

the one more common in the already classified terms was chosen. If there was not one

more common, the one that seemed to better suit the term was chosen. When a term

was not found, if there was a similar term, the corresponding similar semantic type was

chosen; for example CCO, described as Consciente, Colaborante e Orientado (Conscious,

Collaborative and Oriented), had no match, but conscious appears with the semantic type

Mental Process, the abbreviation was classified as Mental Process. This similar classifi-

cation was not done often and a total of 210 terms were not classified (46 unique). Also,

559 abbreviations were not identified (with no description) and the 414 corresponding to

symbols were not classified.

Inspired by McCray et al. [68] and following the semantic groups in the UMLS

Metathesaurus Browser, semantic types were grouped aiming to reduce analysis com-

plexity [68]. In Appendix refApendix:UMLS we present Table A.1 that shows exactly

how the types were classified into eleven groups. This grouping is very similar to the

given by the UMLS, with very few differences, namely: 1) Quantitative Concept type was

considered a single group, due to its weight in the dataset; 2) A group Other was con-

sidered to include all groups with fewer representation; 3) The types Patient or Disabled

Group and Professional or Occupational Group, that UMLS includes in the group Living

Beings, were include in the Other category, to keep Living Beings group with only the

types Bacterium, Fungus and Virus that, for the identified abbreviations, presented some

unique characteristics.

3.5. Automatic Identification of Entities

Sensitive data annotation made it possible to evaluate automatic identification processes.

This evaluation can support decisions on the use of automatic sensitive data identification

in future work. This section will describe the use and evaluation of four different automatic

processes on the identification of the annotated sensitive data entities, from simple regular

expressions to complex specifically trained models using Flair embeddings.

3.5.1. Automatic Identification Processes

To prepare the data for automatic processing, a new pandas dataframe, with all the 2,012

annotated texts, was set up with the following data columns:

- Filename, the original filename;

- Text, the original text;
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- Entities, list of annotated entities;

- Abbreviations, list of annotated abbreviations;

- Text type, identification if the text is an observation or a report ;

- Text with abbreviations, the original text where identified abbreviations with a

description, has been replaced with the corresponding description;

- Entities altered, list of annotated entities where starting and ending positions

have been altered to match the new texts with the abbreviations’ descriptions.

The tested automatic processes vary in complexity and goal, table 3.4 shows, for the

different tested processes, the corresponding sensitive data categories.

Table 3.4. Automatic processes sensitive data categories

Automatic Process Name Date Location Identification
Number

Regular Expressions X X - X

Presidio X X X -

Stanford De-Identifier X X X X

No-Harm Anony X - - -

To be used as a baseline result, the first approach for automatic identification was using

the same regular expressions already used in the annotation tool to propose possible dates.

To build a baseline for the identification numbers, all five-digit numbers were labeled

as clinician identification numbers, and all seven-digit numbers as patient identification

numbers.

For patient and clinician names, a baseline was also set up where regular expressions

were used to identify all sequences of words where the first letter was capitalized and all

the following were not, ending with a not capitalized word or a character that was not a

letter. For this baseline, all names that followed the expression Report validated by:, were

also automatically identified as names.

Some experiments were done using Microsoft´s data protection and de-identification

Software Development Kit (SDK), Presidio, in particular the analyzer module, with

the default PII recognizers and spaCy ’s Portuguese news and media trained pipeline,
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pt_core_news_lg11. These experiments involved using both the original texts and the

texts where identified abbreviations were replaced by their given descriptions.

Standford de-identifier is a transformer model trained with English clinical narratives,

including radiology documents, for de-identification purposes [52]. The model was used

to identify PII in the texts using the transformers pipeline12, with all the default settings,

except the TokenClassificationPipeline that was set to use the simple aggregation strategy,

labeling the results as entity group.

Also, NoHarm-Anony - De-Identification of Clinical Notes Using Contextualized Lan-

guage Models and a Token Classifier 13 [57], was used to identify names. This is a model

based on FlairBBP trained specifically with Portuguese clinical narratives.

3.5.2. Automatic Identification Evaluation

Precision, recall, and F-measure are common measures to analyze automatic de-identification

systems results. Precision and recall measure the weight of the number of corrected iden-

tified records, but precision compares it with the universe of all predictions, and recall

compares it with the universe of all true values. The F-measure balances both mea-

sures, taking their harmonic mean [2]. In this work, evaluation is performed with two

perspectives: at the level of each identified PHI, and at the token level.

The first approach was to evaluate the models considering PHI as a whole. In this

context, a correctly identified record, or a True Positive (TP), for a given set of similar

categories, is an annotated entity that is also present in the given result set: with the same

start and end values and on given lists of similar categories. For example, let’s consider

the labels "NAME_CLINICIAN" and "NAME_PATIENT" (present in the annotated

set) similar to the entity type "PERSON" (in the result set). A TP will be a record

with the same start and end positions in both and labeled as "NAME_CLINICIAN" or

"NAME_PATIENT" in the annotated list and "PERSON" in the automatic result. False

Negative (FN) a record in the annotated set that is not in a TP and, similarly, a False

Positive (FP) is an entry in the automatically detected entities that are not a TP. This

means that a result will be a string that can contain one or more tokens.

All automatic processes output results were in the form of complete PII, except for

the Standford De-Identifier. For the Stanford model, although set up to aggregate results,

11https://spacy.io/models/pt#pt_core_news_lg
12https://huggingface.co/docs/transformers/main_classes/pipelines
13https://huggingface.co/noharm-ai/anony
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tokens were not being grouped as expected, resulting in fully identified entities counted

as FN, and the tokens in these counted as FP.

Another evaluation considering token count was set up. After NLTK tokenize, using

the Portuguese language parameter, to tokenize each given text, a token was counted as

a TP, for a given set of similar categories, if it was part of an annotated entity and part

of an entity in the model output. If it was not part of an annotated entity but part of an

entity in the model result, it was counted as a FP, and FN is a token part of an annotated

entity but not part of an entity in the model output.

The used metrics, for complete PHI and token counts, are as follows, where # stands

for the cardinally of each set:

Precision: P =
#TP

#TP +#FP
(3.1)

Recall: R =
#TP

#TP +#FN
(3.2)

F-Measure: F =
2P R

P +R
(3.3)

For each automatic process, and each pair of lists of similar categories, precision, recall,

and F-measure were calculated using both complete PII and token counts, for the entire

dataset and each text type. To facilitate this process, TP, FP, and FN were first calculated

and saved text by text and a final metrics dataframe kept all metrics registry with the

data columns:

- Date, the date when results were calculated;

- Model, the automatic process used;

- Text type, with the types considered: observations, reports or both;

- Count type, PII or tokens;

- Labels, identification of the categories being evaluated;

- Total annotated, number of annotated entities in labels;

- Total model, number of entities identified by the automatic process in labels;

- TP, number of TP;

- FP, number of FP;

- FN, number of FN;

- Precision, calculated precision metric;

- Recall, calculated precision metric;
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- F1, calculated F-measure metric;

After the results inspection, it was noted that some processes, like Presidio did not

consider years and days as single a PII, while the Standford De-identificator did. For

dates, a new evaluation was done where all PII made up of only years or days were

ignored. This was done using a regular expression that filtered out, from all entities,

single numbers from 1 to 31 and from 1900 to 2029.

3.6. Chapter Conclusions

The previous sections are a detailed description of all executed tasks, from the original

raw data to the calculation of the metrics used to evaluate the automatic PII identification

processes. These include data exploration, the development of a customized annotation

tool, the manual annotation of text to identify personal data and abbreviations, and the

use of automatic classification processes to identify personal data, with various complex-

ities, from simple custom functions using regular expressions to specialized complex ML

models.

Also, the previous sections, portray the more debatable decisions made, hopefully

providing reasonable justifications for the actions taken, like when describing the strategies

to match exam types with the terms in the CTC catalogues.

The next chapter will describe the outputs from these tasks, keeping with their chrono-

logical order, putting emphasis on text characterization and found personal data.
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CHAPTER 4

Results

A total of 2,021 texts were manually annotated, 1,014 observations, 21% of all observa-

tions, and 1,007 reports, 15% of the total. These observations, randomly chosen, revealed

a text length average of 251.3 characters, and 42.5 token count. Annotated reports, also

shuffled randomly, have 1,509.7 and 237.4, respectively, very similar, only slightly longer,

to the values for all unique texts in the original dataset, as previously shown in table 3.2.

In the annotated texts, 3,866 possible PII were identified, and 12,202 abbreviations.

Based on this annotation, this chapter will describe both text types, highlighting similar-

ities and differences.

The identification and characterization of the found PII entities, made it possible to

assess different automatic methods for the identification of personal data. The ending

section will focus on the results of this assessment.

In this chapter, data will be described not only in absolute numbers, to illustrate the

total of annotated text, but also with the values for 1,000 texts, to compare values per

text, because there were slightly more observations than reports analysed, and values for

each 500,000 characters, to enable the comparison between reports and observations, very

different in text length. The number 500.000 was chosen to approximate the values per

1,000 texts, hoping it would make the information more apprehensible.

4.1. Identified Sensitive Data

Reports include 63% of all identified entities, but, if we take into consideration text length

and count the number of identified entities per character, they represent only 22% of all

annotated entities, which may suggest their more technical nature when compared to

observations.

Figures 4.1 and 4.2 illustrate the number of entities identified, distinguishing text type

and used categories.

The figures effectively convey the differences when considering values per text and

per character, due to the large difference in length for the two narrative types. The

figures also reveal the prevalence of the identities in observations, and, another difference
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Figure 4.1. Identified entities in 1,000 texts

Figure 4.2. Identified entities in 500,000 characters

between entities in observations and reports, is the fact that reports have more clinician

data, confirming the idea that these are very different texts.

Dates are the most common entities being 25.7% of all identified texts, followed by

the names (19.6%) and patient’s age (18.3%). Table 4.1 shows, per text type, not only

the absolute number of identified entities in each category but also their representation

per text and per text length.
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Table 4.1. Number of identified entities

Type Label
Total In 1,000 texts In 500,000 characters

N % Observ. Reports Observ. Reports

GENERAL

Date 994 25.7 338.6 644.0 673.7 213.3

Location 333 8.6 203.6 126.2 405.0 41.8

ID 2 0.1 - 2.0 - 0.7

PATIENT

Age 708 18.3 428.0 273.2 851.5 90.5

Sex 442 11.4 257.2 180.5 511.7 59.8

Name 12 0.3 - 11.8 - 3.9

ID 5 0.1 - 4.9 - 1.6

Other 113 2.9 72.5 39.6 144.2 13.1

CLINICIAN

Name 758 19.6 48.7 699.2 96.8 231.6

ID 129 3.3 - 127.2 - 42.1

Contact 5 0.1 4.0 1.0 7.9 0.3

Other 365 9.4 55.6 304.7 110.6 100.9

4.1.1. Date Category

From the 341 dates found in observation texts, 107 (31.4%) do not correspond to strings

matching the regular expression used in the annotation tool. The same is true for only

13% of all dates in reports.

Dates not matching the regular expression have varied forms, all with non-numeric

characters (except one case with added extra spaces), and most of them with the month

name fully written or abbreviated. Other cases include periods like início de dezembro

(beginning of December) or two dates as in 26 e 30 de Abril (26 and 30 April). In the

second case, we could have only considered the 30 April as a date, leaving 26 because it

was a day of the month, but the option was always to identify the whole text including

as much information as possible, only days with no more context were ignored.

4.1.2. Name Category

Names are very common in the texts, especially physicians’ because many reports end

with the physician’s name, clinical speciality, and report date.

The 709 clinician names found correspond to 108 distinct names, a majority with more

than one token, with only three findings, corresponding to three distinct strings, made of
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one first name, identified in the observations. In reports, the minimum number of tokens

in names is two.

Patient names, only found in reports, are longer and have more tokens than clinician

names, with an average text size of 25.6 characters, while clinician names have an average

of 14.8, suggesting that the patient names appear as full names. In this case, a total of

12 patient names correspond to 9 distinct patients.

4.1.3. Age Category

After dates and clinician names, ages’ references are the third most common PII category,

more common in observation than reports. If there is no doubt that dates and names

constitute sensitive information, HIPAA Privacy Rule only considers PII ages above 89

[69] and, from all 709 ages found, only 2 are 90 years old or above.

knowing that the patient’s date of birth is registered in the information system, these

references seem redundant. With the caveat that the circumstances that led to explicitly

stating these patients’ data are unknown, it is possible to recommend that patients’

known information, like name and age, should not be included in admission notes or

clinical reports. The same is valid for all the most common PII found like dates, names,

and identification numbers.

4.1.4. Sex Category

Only explicit references to the patient’s sex were annotated, in a total of 442. No implicit

references were identified, but it is often easy to infer sex from the gender of related

words or anatomic descriptions in the texts, raising doubts about the pertinence of this

identification. Moreover, HIPAA guidelines do not include sex as a PHI.

A total of 64 abbreviations were found (14.5%), such as F, meaning Feminino (Fe-

male) and H, standing for Homem (Man). Curiously, the most common abbreviation M,

identified 32 times, can mean Masculino (Male) or Mulher (Woman). It was possible to

determine that ten of them refer to Male, other ten to Woman, but it was not possible to

ascertain the meaning of the remaining 12. There are slightly more explicit references to

men (61.1%) than women, but, ignoring the patient’s sex distribution, it is not possible

to know if this only reflects patient distribution or if there is some trend in the narratives.

4.1.5. Location Category

Geographic or location references are also common, much more in observations than

reports. Per text, 61.7% of identified locations are in reports, and 90.6% if we consider
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text length. Found locations were categorized as country, locality, institution, and service,

where services include references to bed and floor numbers. Only three countries and two

cities are identified. Figure 4.3 shows the number of locations per text and per category.

Figure 4.3. Identified locations per type

The majority of locations (82.9%) refer services or wards, and most services (79.3%)

are referred to as abbreviations, surely well known in this Hospital, but maybe not in

other settings.

All 52 identified institutions, corresponding to 23 unique texts, are Hospitals or similar,

and also in this case there is a prevalence of abbreviations (84.6%), giving strength to the

idea that the inclusion of an abbreviation dictionary could help in an automatic identifier

task.

One other relevant characteristic of these locations is that there are a few with a high

frequency, for example, the most common service appears 68 times, and the second one

57, in a total of 276 service references.

4.1.6. Identification Number Category

A total of 136 identification numbers were found in the texts, all of them in reports, once

again showing the differences in these texts.

Of the 129 identification numbers found, 35 correspond to unique doctors’ registration

numbers. These are 5-digit numbers where the first digit ranges from 2 to 6 and are often

explicitly identified at the end of the report following the clinician´s name.
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There are 117 reports ending with the same text format, similar to the one in figure

3.1, from 34 different physicians, suggesting that the texts are inserted following a pre-

defined rule, most probably automatic, that maybe could be removed, and can easily be

automatically identified:

Report validated by: doctor’s name (Doctor’s Order Number: DDDD)

Report validated on: YYYY-MM-DD HH:MM

Patients’ identification numbers are all seven digits long, not matching the nine digits

of the Portuguese Health Service number, or any other broadly used Portuguese identi-

fication number, such as citizen or fiscal numbers. The numbers were labeled as patient

identification because they appear in the texts always following patients’ names.

The other two possible identifiable numbers, included in the general broader cate-

gory, are a pharmaceutical batch number and a study reference. Ignoring what type of

information can be inferred from both, opted to to include them in this review.

4.1.7. Contact Number Category

There were four contact numbers found in observations, all with five digits, probably

internal telephone extensions, and one standard 9-digit Portuguese telephone number in

the reports.

Of the 5-digit contacts, all but one have 9 as the first digit, making it possible to

differentiate them from the physician’s identification number, also 5 digits long. The

one 5-digit contact starting with a 5, similar to a physician’s identification number, was

labeled as a contact due to text context and because it did not match any of the physicians’

identification numbers.

No patient contacts were identified in the texts.

4.1.8. Other Category

As expected, the most difficult information to characterize is the one in the other category.

For patients, these include physical and behavioural features, such as smoking habits

with 28 references, sometimes detailing the number of packs a year, a commonly clinical

used metric. Also found were 27 references to obesity, occasionally with qualificatives like

severe or an explicit degree, or alcoholism with 12 references.

Arguably, all medical history can be thought of as identifiable information. Annotation

tried to identify information that could be sociably recognizable, meaning that could be

identified by a neighbor or co-worker.
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There are 22 references to previous incidents, in most cases that led to current Hospital

admission, with different levels of detail, such as the ingestion of an infusion with a specific

type of mushrooms, a surfing accident, self-harm behavior, or a fall in a public space. One

can argue that some can be specific enough to identify the patient.

There are eight references to recent births and pregnancies. Three observations state

that the patient is included in a specific study, two mention the patients’ professions and

two reports have patients’ height and weight.

Two reports describe less common clinical family history, one of them stating a famil-

iar’s age at the time of a specific procedure. Other possible identifiable single references

include general descriptions like "raça branca" (white race) or more specific ones like

single-leg amputee.

In the other category, for the physicians, the vast majority of annotated texts refer

to the clinician’s clinic specialty, that could fit in a possible profession category. The two

texts that are not medical specialties are similar in nature, as they refer to professional

careers: the abbreviation TSDT appears 5 times and stands for Técnico Superior de

Diagnóstico e Terapêutica (Senior Diagnostic and Therapeutic Technician), and there is

one identified abbreviation for "Professor" as "Prof.".

4.2. Identified Abbreviations

4.2.1. Identified Abbreviations Description

A total of 12,202 abbreviations were identified consisting of 1,254 distinct values.

To make reading easier, in this work, the annotated abbreviations will appear in their

most common form, and the corresponding descriptions, or long form, with the first letter

of any word in upper case. The original texts don’t necessarily follow this format. For

example, Tomografia Computorizada (Computed Tomography) appears in diverse forms

in the original texts, like TC, Tc, and tc.

This means that a string abbreviation can have different descriptions, depending on

its context, and the same description can appear in different annotated forms. A dis-

tinct count will be a distinct pair of annotated text and given description, both strings

considered in a case insensitive comparison.

Again, there are obvious differences between the two text types. Observations have

fewer identified abbreviations in total (4,499, 36.9%) but, when considering text size,

abbreviations are far more common in observations representing 77.9%.
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There are two abbreviations much more frequent than all the others: mm with the

description Milímetro(Millimeter), identified 1,225 times and TC as Tomografia Com-

putorizada (Computed Tomography), with 1.184 occurrences.

All abbreviations described as Millimeter appear as mm, but the description Tomo-

grafia Computorizada (Computed Tomography) appears a total of 1.291 times, included

in the descriptions of texts such as TAC and T.C.. Also, the abbreviation CT, described

as Computed Tomography has 2 occurrences. Moreover, because the annotation process

followed the principle to identify the longer found text, mm and TC are included in other

abbreviations. There are more 117 annotations that include mm, such as mmHg (Millime-

tre of Mercury), or mm2 (Square Millimeter); and more 317 abbreviations with TC or

CT, such as all the 308 abbreviations standing for Angiografia Tomografia Computorizada

(Angiography Computed Tomography), that include the identified texts Angio-TC, Angio

TC, AngioTC AngioTAC or (Angio)TC, among others.

One curious fact is that, although, as described above, when considering text size,

almost 78% of all abbreviations found are in observations, the mm abbreviations are 82.7%

in reports (96.7% in absolute values). TC, described as Tomografia Computorizada, follows

the other abbreviations on the dataset with 73.6% in observations when considering text

size.

As seen, Millimter or Computed Tomography is the most common abbreviation, de-

pending on the counting strategy. The two are far more frequent than the third more

common text that is cm, standing for centimeter, highlighting the prevalence of length

units.

The descriptions given were also marked as being in Portuguese, English, or other,

keeping in mind that the description language option followed the rule that whenever the

original abbreviation matched the Portuguese language then Portuguese was chosen for

the corresponding description. The descriptions that are not classified as Portuguese or

English are Latin expressions, such as bid, bis in die, a common medical expression that

means twice a day, scientific names as Staphylococcus or universal unit symbols like mm.

The abbreviations with no description and symbols were not classified as language is

concerned. From a total of 11,229 abbreviations, 7,255 (64.6%) are in Portuguese, 1,414

(12,6%) in English, and the remaining 2,560 are a majority of universal units (2,468), but

also include bacteria and fungi names.
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Figure 4.4. Identified abbreviations per language and text type

As seen in figure 4.4, the language distribution reflects the stronger use of universal

units in reports, with 32.3% of abbreviations in these texts not classified as Portuguese or

English, hinting that reports are more technical narratives.

4.2.2. Abbreviations Semantic Groups

A total of 58 semantic types were identified, categorizing a total of 11,019 abbreviations,

and these were grouped into 11 semantic groups. Table 4.2 depicts the absolute number

of identified abbreviations per semantic group and the values per 500,000 characters and

per text type.

Of the 210 terms not categorized, most of them are not clinical terms. The most

common text with no category is the term vs meaning versus, with 64 records, but there

is also a common clinical term Parâmetro Inflamatório (Inflammatory Parameter) that

appears as PI and PInf both in observations and reports, that remained uncategorized.

Probably a domain specialist could have found a similar term in the UMLS Metathesaurus.

Symbols are the group with a stronger presence in observations, reinforcing the idea

that observations are more informal and less technical than reports. The most common

symbol found was + representing the conjunction and, like in the text Doente com LLA

+ tonturas (Patient with ALL + dizziness), and also positive as in "COVID +". Also /

is used as either the conjunctions and and or, like in exclusão de patologia/hemorragia

intracraniana (exclusion of intracranial pathology/hemorrhage). The characters -> are

frequently used to illustrate relations in the text, as in COVID + -> doente intrans-

portável (COVID + -> untransportable patient), or11->17->21 (PCR), highlighting the

parameter evolution.
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Table 4.2. Identified abbreviations, per semantic group

Semantic group
All texts Observ. Reports

N % Unique (*) (*)

Procedures 2,919 23.9 177 2,104.1 605.5

Quantitative Concept 2,725 22.3 81 304.3 839.7

Disorder 1,690 13.9 179 1,878.9 241.4

Concepts & Ideas 1,223 10.0 146 987.8 236.1

Anatomy 819 6.7 129 661.9 158.1

Living beings 442 3.6 29 521.6 58.1

Physiology 386 3.2 54 142.2 102.6

Chemicals & Drugs 332 2.7 85 420.8 38.9

Organizations 276 2.3 35 345.7 33.0

Devices 154 1.3 32 55.3 42.7

Other semantic type 53 0.4 20 69.1 5.9

Symbol 414 3.4 35 588.8 37.9

No semantic type 210 1.7 46 235.1 29.7

No description 559 4.6 287 572.9 87.9

Total 12,202 1,254 8,584.3 1,676.2

(*) Values in 500,000 characters

Many symbols are simply used as visual references, like the common use of # as a

bullet point in lists. There are some cases where # can also be used in trauma references,

again, maybe a clinical specialist could have identified these cases.

It is curious how text type distribution varies within these semantic groups, as seen

in the abbreviations text type distribution per semantic group, taking into consideration

text size, depicted in figure 4.5.

Procedures is the most common semantic group, 23.9% of all data, as shown in table

4.2, and its distribution is almost identical to the global distribution, which may be

expected from a very representative group. But, quantitative concepts, 22.3% of the
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Figure 4.5. Identified abbreviations distribution per semantic group, con-
sidering text size

total, are much more common in reports. Only Physiology and Devices also exhibit a

report representation larger than the total.

Procedures includes the types Diagnostic, Therapeutic or Preventive and Laboratory

Procedures, that correspond to 27.2%, 7.1% and 4.9% of the total of identified abbre-

viations, respectively. It also includes the types Molecular Biology Research Technique,

Research Activity and Health Care Activity, but these are rare, with a combined total of

sixteen records, with only seven unique.

As already discussed, Tomografia Computorizada (Computed Tomography) is the most

common Diagnostic Procedure term appearing 1,291 times, and it represents almost half

of all procedures (44.5%), followed by Angiografia Tomografia Computorizada (Angiog-

raphy Computed Tomography) with 308 records and Ressonância Magnética (Magnetic

Resonance) with 115. All other procedures appear less than 100 times. Extracorporeal
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Membrane Oxygenation, written as ECMO, is the most common abbreviated Therapeutic

or Preventive Procedure, with 72 occurrences, and Activated Clotting Time, ACT, is the

most frequent Laboratory Procedure abbreviation with fourteen.

The Quantitative Concept type is the most common one and, if we evaluate diversity as

the ratio of distinct values to all values, it is also the least diverse of the types, considering

only the types with more than 10 records. Figure 4.6, depicting diversity scores for all

semantic groups, illustrates how this type’s diversity stands out from the others, even

when compared with the other groups with very frequent abbreviations like Procedures.

Figure 4.6. Identified abbreviations diversity

For almost all quantitative concepts, the identified abbreviation is a universal unit

symbol (90.6%). It is questionable if these universal units should even be considered

abbreviations. Nevertheless, intending to understand these texts, it seemed useful to also

identify and characterize them, thinking that the information can be useful for future

tasks.

The use of the universal units also contributes to the lack of diversity in this group,

making it harder to have different annotated texts for the same description, Centimeter is

always noted as cm, which does not happen, for example with the procedure Tomografia

Computorizada (Computed Tomography), as already discussed.

Disorders include 10 different semantic types, being Disease or Syndrome the most

represented with 67,6% of all values. Also, the four most common disorders are of the

type Disease or Syndrome, and these four make 67.7% of all Disease or Syndrome type:
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Severe Acute Respiratory Syndrome, with 336 records, Coronavirus Disease, with 264,

Tromboembolismo Pulmonar (Pulmonary Thromboembolism), with 208, and Acidente

Vascular Cerebral (Stroke), with 67. Only the fifth, with 50 records, Adenocarcinoma, is

of the Neoplastic Process type.

Disorders and Devices are the groups with more English terms, mainly due to the

abbreviations COVID and SARS, and several pacemakers’ references, like CRT-D as

Cardiac Resynchronization Therapy Defibrillator.

UMLS Concepts & Ideas group includes the types Quantitative Concept, Spatial Con-

cept, Intellectual Product, Conceptual Entity, Qualitative Concept, Temporal Concept, Reg-

ulation or Law, Functional Concept, Idea or Concept. For this analysis, it was decided to

keep Quantitative Concept as a separate group due to its size and particular features.

In Concepts & Ideas group, the most common abbreviated term, with 303 records, is

a Portuguese form to refer to medical professionals, used as a name prefix: Dr., or the

feminine Dra.; in these texts also appears as Dr, Dr.ª or Dra, among others. It stands

for Doutor, for males, or Doutora, for females, meaning doctor. These prefixes can help

identify clinician´s names and distinguish them from patient names.

Also common are the temporal concepts hour, written as h, with 117 records, and

day as d, with 89 records. Also frequent, with 106 annotated abbreviations, is the term

Antecedente Patológico (Pathological History) from the semantic type Intellectual Product.

The most common Anatomy terms are the ones that often follow a diagnostic proce-

dure, like a computed tomography or a MRI: the Body Part, Organ, or Organ Component

Cranioencefálico (Cranioencephalic), with 200 abbreviations found, and the Body Loca-

tion or Region Tórax, Abdómen e Pélvis (Chest, Abdomen and Pelvis). The three terms

included in the latter description also appear abbreviated in different combinations, like

Abdómen e Pélvis or alone, in a total of 105 times. These represent 25.0% of the total

of the Anatomy terms. There are also various abbreviations standing for arteries, a total

of 101, with more or less detail, like plain Artéria (Artery) to Artéria Femoral Comum

Esquerda (Left Common Femoral Artery).

4.3. Sensitive Data Automatic Identification

Automatic identification of sensitive data can be a very helpful feature, for example, to

produce suggestions for a human annotator. The previously developed toll only used

regular expressions to identify dates. But, with the goal of identifying other possible

suggestions, a variety of automatic identification processes were used and evaluated.
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4.3.1. Regular expressions

The first automatic identification processes tried, using regular expressions, identified, in

the original texts, a total of 1,591 dates, 1,597 names, and 148 identification numbers.

For names, using regular expressions, there was no distinction between patient names and

names of non-patients, but for the identification numbers it was assumed that the clini-

cian’s identification numbers are 5 digits long, and the patient´s identification numbers

have 7 digits.

4.3.2. Presidio

Presidio models identified possible PII in the original texts in the following categories:

PERSON, LOCATION, DATE_TIME, URL and PHONE_NUMBER. For evaluation

purposes, these labels had to be mapped to the annotated categories.

The 5,301 LOCATION entities were mapped to the corresponding location annotated

label, although there were only 333 Locations in the annotated set. The model identified

as location many abbreviations, such as ECMO or COVID-19. Even considering the

texts where the abbreviations were replaced with their corresponding long description,

the model output had 4,716 Locations, with many unexpected FP results like Escherichia

or Celcius. Presidio’s documentation1 describe these default locations as politically or

geographically defined, such as cities, countries but also mountains or bodies of water,

among others, but the default PII categories are set up for the English language.

The PERSON category, with 3,003 records in the result set, which is supposed to

include full names (first, middle, and last names, or initials) was matched with both

name labels, patient and clinician, that had only a total of 721 entities. The majority

of FP results, like Doença de Crohn (Crohn’s disease) can be explained due to language

and domain specificities, and there are also misspelt Portuguese words as FP results, like

justiifuqem, probably standing for justifiquem (justify).

The 617 DATE_TIME entities were compared to the 994 annotated dates. Presidio’s

results, as in the annotated set, do not include single years or single days and exhibit a

precision of 1 in observations narratives and 0.9967 for all texts. The annotated dates not

identified by Presidio are the ones with months in Portuguese, like agosto de 2020 (August

2020) or dates with no year, like 04.Mar or 21/07. A curious fact is the recall score gap

when comparing reports, with 0.6139, and observations with 0.2857, an extremely low

score. When compared to the regular expressions baseline, despite the low sensitivity,

1https://microsoft.github.io/presidio/supported_entities/
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Presidio’s results still perform better with an F-measure of 0.7584 versus the 0.6369

baseline score.

Almost all the 15 entities identified as PHONE_NUMBER are dates, and none corre-

sponds to the annotated clinicians´ contacts. Also, no URLs were present in the annotated

text. The 15 entities identified as PHONE_NUMBER and the 73 labeled as URL were

ignored.

Table 4.3. Relevant automatic identification F-Measures for all texts

Annotation label Date
Name Identification number

Patient Clinician Patient Clinician Other

Regular expressions 0.6264 0.6264 1.0000 0.9520 n.a.

Presidio 0.6630 0.5007 n.a. n.a. n.a.

Stanford De-Identifier 0.8616* n.a. 0.6141 0.8584

NoHarm Anony n.a. 0.9903 n.a. n.a. n.a.

* single years and days removed

4.3.3. Stanford De-Identifier

The output from the Stanford De-Identifier model had 6 different PII categories. The

most common, and with the best performance, was DATE, with 969 records and an F-

score of 0.8616. The Stanford result set included single days and years as dates, but these

were not in the annotated set by choice. To compare results, all PII consisting of single

years or days were removed, leaving a total of 858 dates in the filtered output set. Similar

to Presidio’s results, the 200 FN dates are almost entirely dates with Portuguese months´

names and numeric dates with no year, but there are also some FN dates with the usual

European format yyyy-mm-dd or dd/mm/yyyy. From a total of 64 FP result tokens, 6

are the string janela (window) and the 2 marcha(march or walk), perhaps mistaken for

misspelt months January and March. Once again, the reports ’ results, with an F-measure

of 0.8747 are better than the observations ’ score of 0.8241.

The Stanford De-Identifier model classified 112 tokens as identification numbers.

These were compared to all identification numbers annotated (patients, clinicians, and

others), in a total of 136 tokens. It failed to identify several 5-digit numbers, many of

them written with the M letter as a prefix. The model did not perform better than the
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regular expressions, but results have to be analyzed taking into consideration that the

used regular expressions were custom-made to fit the found identification numbers after

text annotation.

Healthcare Workers (HCW) is a Stanford De-Identifier category that, with a more

suitable name, identifies the same type of information of the 758 strings annotated with

the label clinician name. A total of 524 HCW entities were found. When considering text

types, although with a similar F-measure for observations (0.6544) and reports (0.6101),

the results are very different for precision and recall: observations have a sensitivity of

0.9271, and reports texts a precision of 0.8040.

The identified entities in the categories HOSPITAL, with 82 records, PATIENT with

15, and PHONE with 5 did not show any resemblance to the annotated data and were

thus ignored.

4.3.4. NoHarm-Anony

The NoHarm-Anony only identifies names, but with very good results. This is the only

language and domain specif model tested and it identified 758 names that were compared

to the 770 names in the annotated dataset. Considering token count, only 23 token results

were FN, and, in those, twelve records correspond to a first name with only an initial and

a period and four names are not traditional Portuguese names. Thirteen FP token results

were detected, ten of them being the strings Homem (Man) or Mulher (Woman). For

all texts, using token counting, NoHarm-Anony scored a final F-measure of 0.9903, with

0.9447 for observations and 0.9928 for reports, with sensitivity higher than precision.

4.4. Chapter Conclusions

From the initial 12,000 files, only 4,834 distinct observations and 6,771 distinct reports

were considered for the following analyses.

Observation and report narratives are very different texts in many aspects: size, struc-

ture, and content, specifically PII content.

For the most commonly identified PII categories, the majority of the found information

seems redundant, because it is registered in the information system, like patients’ names,

birthdays, and identification numbers, as well as clinicians’ names, identification numbers,

and specialities. Maybe some of this information was written down to be highlighted in

a given clinical context, but many times it seems a question of convenience or habit.
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Identified dates also seem often redundant. Dates are used as references to previous

exams that are registered in the system, or to state the date of the occurring exam. Maybe

the exam date could be omitted and references to previous exams could be made using

an internal surrogated number with no meaning outside the system scope.

Abbreviations analysis reinforces the difference between the two text types and, in

combination with semantic type classification, presents suggestions for information to be

extracted from the narratives, like findings measures or specific pathologies.

Reports have more relevant metrics calculated because observations don’t have iden-

tification numbers or patient names. The fifteen relevant metrics evaluated for reports,

considering original texts and token evaluation, have an average F-measure score of 0.7904,

and the ten relevant metrics for observations only have 0.5937. This can be explained by

the more structured and formal text in reports.

Although there are significant differences in performances for observations and reports,

that is not the case for all the best-performing models, as shown in figure 4.7. It can be

concluded that the high performance is consistent in both text types.

Figure 4.7. Automatic identification scores

The use of the text with the abbreviations replaced with their corresponding descrip-

tions did not significantly alter any of the identification processes’ performance. The

exception is, as expected, the regular expression in name identification that performed

much poorly in the replaced text. This regular expression searched for sequences of one

or more words with the first letter capitalized, and that is exactly the abbreviations’

description format.
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CHAPTER 5

Conclusions

5.1. Main Conclusions

Of the 12,000 original files obtained from a Portuguese Hospital Picture Archiving and

Communication System (PACS), two different unstructured text types were extracted for

further evaluation: 4,834 distinct observations and 6,771 distinct reports.

Admission notes, or observations, are short and condensed narratives focusing on pa-

tient clinic history. Reports are much longer and more formal, with detailed information

on the corresponding image exam or procedure, including findings descriptions, and mea-

sures. Both observations and reports are clinical texts that require specialized knowledge

for a corrected interpretation, with many domain-specific terms and abbreviations.

Despite being different narratives, both contain sensitive personal information that

should be removed. The identified personal information, although different in nature,

seems similar enough in both text types to be treated with similar approaches.

It is also possible to conclude that automatic identification of PII can be used with

success in the texts, at least for the great majority of the categorized data. But different

PII categories require very different automatic identification approaches. It is evident that

automatic personal data identification is not one classification task, but several distinct

tasks that vary with the different PII categories.

Regular expressions exhibit very good performance results in recognizing identification

numbers, although in evaluating this success one has to keep present that the expressions

used were tailored to fit the found numbers. They succeed in these texts and maybe can

be used in similar narratives, but there is a possibility that would perform poorly in other

text types, even from the same Hospital.

The No-Harm Anony results for name identification are remarkable, and it would be

interesting to explore similar options, i.e. models specifically trained for this task with

in-domain Portuguese texts, for the identification of other PII categories, like locations,

one of the categories with the lowest performance scores.

The main issue is probably the fact that the manual PII identification was not re-

viewed. Nevertheless, it is arguable that the automatic processes results can serve as
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a form of review, considering the following FP values examination, and generate some

confidence in the subsequent work.

5.2. Main Contributions

Decision making can only be responsible if well informed. This report can help support

decisions on what purposes can the texts serve, how to handle the existing personal

information, and how to proceed in future works.

The work includes a description of the two different narratives. The two text types,

even though both can be considered in the clinical domain, are revealed to be very different

texts. This conclusion, and the given characterization, can be beneficial for following NLP

tasks when deciding methods and text approaches.

The resulting abbreviations dictionary, which proved useful during manual annotation,

can be a valid resource for following NLP tasks. Abbreviations’ semantic characterization

and analysis shone more light on the nature of both text types and suggested the possible

extraction of useful features. For example, the prevalence of universal units as mm and

mm in reports invites for extracting findings dimensions.

The manual annotation experience, and the results on automatic PII identification,

support the idea that the best approach to personal data identification will probably

be a hybrid approach, where human annotators and reviewers, preferably with domain

expertise, clinical and legal, are supported by automatically generated suggestions. The

suggested entities can be identified based on simple regular expressions and more complex

models, that, similar to the No-Harm Anony, make use of contextualized embeddings, Bi-

LSTM-CRF neural architectures, diverse language models, and should be trained specif-

ically on clinical Portuguese text to identify personal data.

5.3. Limitations and Future Work

This work presented several obstacles and not all of them were completely overcome.

Occasionally, the option had to be to get around those obstacles, and these options should

be recognized and examined.

The first challenge was to work with data that had not been previously prepared or

analyzed. It was raw data exported from a hospital information system with no additional

documentation. It was known that it was comprised of reports extracted from a PACS,

an information system dedicated to clinical image acquisition devices, with text data and
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no images. These could eventually support other ML tasks, but there was no insight into

exactly what information these files could hold.

Documentation on the original data source and the data exportation process would

have been useful. For example, assuming that the original source was a database, table

content and information on the tables relations could have easily explained the repeated

data throughout the files, and made clear how exam types, observations, and reports relate.

Also, a greater understanding of the entire original information system could make it

possible to make contextualized recommendations. For instance, recommend the use of

the CTC catalog preferred terms as exam types names, or, because some of the personal

information seems to be automatically added to the end of the reports, the disabling of

some unnecessary features.

Knowing that some texts were truncated, it would be advisable to make a new ex-

portation to warrant the complete data, and, if possible, make accessible the exportation

procedure queries.

The use of CTC catalogs as references did not deliver significant results, leading only

to the conclusion that it would be beneficial to implement standardized terminology in

the original information system. The UMLS tools, although much more helpful, were very

limited for the Portuguese Language.

There was also, naturally, a time limitation, and the annotation process was revealed

to be extremely time-consuming, even with some automatisms integrated and fine-tuned

throughout the process. The initial proposal of having, at least, 20% of all observations

and reports annotated, to guarantee a solid base for possible conclusion extrapolation,

was not accomplished. Although 21% of observations were annotated, only 15% of reports

were also reviewed.

The biggest setback was the lack of domain knowledge, in particular clinical expertise.

It was not possible to have medically specialized advice during the different phases. Legal

expertise on personal data issues would also have been valuable. Review, especially done

by experts, clinical and legal, would validate the initial work and add value and weight

to the following analysis.

On the legal questions, many questions remain purposely open throughout this report,

like the possible non-categorized sensitive data, inviting a more in-depth and knowledge-

able discussion.

57



From the most relevant PII categories defined, location was the more difficult to auto-

matically identify. Knowing that hospital names and their services are the most commonly

found locations, a list of Portuguese hospitals and corresponding internal units could im-

prove automatic identification. Due to the prevalence of abbreviations in locations, a list

with both long descriptions and abbreviations would be the better solution.

The No-Harm Anony results for name identification are remarkable, it would be in-

teresting to explore similar options, models specifically trained in in-domain Portuguese

texts, for other PII categories.

The anonymization process does not end with PII identification. It is also necessary

to remove, mask, or replace with pseudonyms the identified data. Unfortunately, it was

not possible to explore how these different possibilities would impact the anonymization

goal.
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APPENDIX A

UMLS semantic types and proposed groups

Table A.1: UMLS semantic types and proposed groups

Semantic group Semantic type UMLS semantic group

Anatomy Anatomical Structure Anatomy

Body Location or Region Anatomy

Body Part, Organ, or Organ Component Anatomy

Body Space or Junction Anatomy

Body Substance Anatomy

Body System Anatomy

Cell Anatomy

Tissue Anatomy

Chemicals & Drugs Amino Acid, Peptide, or Protein Chemicals & Drugs

Antibiotic Chemicals & Drugs

Biologically Active Substance Chemicals & Drugs

Immunologic Factor Chemicals & Drugs

Inorganic Chemical Chemicals & Drugs

Organic Chemical Chemicals & Drugs

Pharmacologic Substance Chemicals & Drugs

Concepts & Ideas Conceptual Entity Concepts & Ideas

Functional Concept Concepts & Ideas

Idea or Concept Concepts & Ideas

Intellectual Product Concepts & Ideas

Qualitative Concept Concepts & Ideas

Regulation or Law Concepts & Ideas
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Semantic group Semantic type UMLS semantic group

Spatial Concept Concepts & Ideas

Temporal Concept Concepts & Ideas

Devices Medical Device Devices

Disorders Acquired Abnormality Disorders

Anatomical Abnormality Disorders

Cell or Molecular Dysfunction Disorders

Congenital Abnormality Disorders

Disease or Syndrome Disorders

Finding Disorders

Injury or Poisoning Disorders

Neoplastic Process Disorders

Pathologic Function Disorders

Sign or Symptom Disorders

Living beings Bacterium Living beings

Fungus Living beings

Virus Living beings

Organizations HC Related Organization Organizations

Physiology Clinical Attribute Physiology

Mental Process Physiology

Organ or Tissue Function Physiology

Organism Attribute Physiology

Procedures Diagnostic Procedure Procedures

Health Care Activity Procedures

Laboratory Procedure Procedures

Molecular Biology Research Technique Procedures

Research Activity Procedures

Therapeutic or Preventive Procedure Procedures
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Semantic group Semantic type UMLS semantic group

Quantitative Concept Quantitative Concept Concepts & Ideas

Other Activity Activities & Behaviors

Biomedical Occupation or Discipline Occupations

Gene or Genome Genes & Molecular Sequences

Laboratory or Test Result Phenomena

Manufactured Object Objects

Occupation or Discipline Occupations

Patient or Disabled Group Living Beings

Phenomenon or Process Phenomena

Professional or Occupational Group Living Beings
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