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Resumo

A determinação do preço das opções tem sido um problema fundamental na engenharia

financeira desde há várias décadas e tem uma vasta gama de aplicações em vários domı́nios,

incluindo investimentos e gestão de riscos. O modelo de Black-Scholes-Merton tem sido a

base da teoria do preço das opções desde a sua introdução em 1973. No entanto, estudos

emṕıricos mostraram que o modelo tem algumas limitações, incluindo o pressuposto de

uma volatilidade constante, o que leva a um desfasamento entre as previsões do modelo e

os preços de mercado. Em contrapartida, o modelo de Heston, introduzido em 1993, é um

modelo mais avançado de determinação do preço das opções que incorpora a volatilidade

estocástica, o que o torna mais realista.

O modelo de Black-Scholes-Merton e o modelo de Heston são dois dos modelos mais

utilizados em matemática financeira para a determinação do preço de derivados finan-

ceiros. Ambos os modelos utilizam o cálculo estocástico para modelar a dinâmica dos

preços dos activos, mas diferem nos pressupostos que fazem sobre o ativo subjacente.

O objetivo desta tese de mestrado é comparar e contrastar o modelo de Black-Scholes-

Merton e o modelo de Heston, com destaque para os seus pontos fortes e fracos em

diferentes ambientes de mercado. A tese começará com uma breve descrição dos dois

modelos, seguida de uma discussão dos seus principais pressupostos e parâmetros. A tese

apresentará então uma análise emṕırica do desempenho dos dois modelos, utilizando da-

dos financeiros reais sobre opções S&P500 e uma variedade de métricas de avaliação.

Palavras-chave: Modelo Black-Scholes-Merton, Modelo Heston, Volatilidade Es-

tocástica.
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Abstract

Option pricing has been a fundamental problem in financial engineering for several

decades, and it has a wide range of applications in various fields, including investments,

risk management, and portfolio optimization. The Black-Scholes-Merton model has been

the cornerstone of option pricing theory since its introduction in 1973. However, empirical

studies have shown that the model has some limitations, including assuming constant

volatility and ignoring stochastic volatility, which leads to a mismatch between model

predictions and actual market prices. In contrast, the Heston model, introduced in 1993,

is a more advanced option pricing model that incorporates stochastic volatility, which

makes it more realistic and accurate.

The Black-Scholes-Merton model and the Heston model are two of the most widely

used models in quantitative finance for pricing financial derivatives. Both models make

use of stochastic calculus to model the dynamics of asset prices, but they differ in the

assumptions they make about the underlying asset.

The purpose of this master thesis is to compare and contrast the Black-Scholes-Merton

model and the Heston model, with a focus on their strengths and weaknesses in different

market environments. The thesis will begin with a brief overview of the two models,

followed by a discussion of their key assumptions and parameters. The thesis will then

present a comprehensive analysis of the performance of the two models, using S&P500

options real-world financial data and a variety of evaluation metrics.

Keywords: Black-Scholes-Merton Model, Heston Model, Stochastic Volatility.
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CHAPTER 1

Introduction

The world of financial derivatives has witnessed remarkable growth and innovation

over the past few decades, with options contracts being one of the most widely traded

instruments in the financial markets. Investors and traders rely on sophisticated mathe-

matical models to accurately price and analyze options, allowing them to make informed

investment decisions and manage risk effectively. Two prominent models that have gained

significant attention in options pricing are the Black-Scholes-Merton (BSM) model, intro-

duced in Black and Scholes (1973) and Merton (1973), and the Heston model (1993).

The BSM model, developed by the economists Fischer Black, Myron Scholes and

Robert Merton in 1973, revolutionized the field of quantitative finance by providing a

closed-form solution for pricing European options. This groundbreaking model assumes

constant volatility, constant risk-free interest rate, and efficient markets, making it a

cornerstone of options pricing theory. However, it is well-known that these assumptions

may not hold in real-world financial markets, prompting researchers to develop more

advanced models.

The Heston model, proposed by Steven Heston in 1993, attempts to address some

of the limitations of the Black-Scholes model by introducing stochastic volatility. This

model allows for the volatility of the underlying asset to fluctuate over time, capturing

the observed volatility smile or skew in the options market. By incorporating a more

realistic representation of volatility dynamics, the Heston model aims to provide better

pricing accuracy for options on assets with time-varying volatility.

Given the prominence of the S&P 500 index as a benchmark for the U.S. stock market,

it is crucial to investigate the performance of options pricing models specifically calibrated

to this widely followed index. Therefore, this master thesis aims to conduct an empirical

comparison study between the Black-Scholes-Merton model and the Heston model for

pricing options on the S&P 500 index.

The primary objective of this study is to assess the relative accuracy and performance

of these two models in replicating observed option prices and hedging strategies for various

maturities and strike prices. By employing historical data and employing advanced sta-

tistical techniques, we seek to evaluate the models’ pricing errors, their ability to capture

the implied volatility surface, and their effectiveness in risk management.

Furthermore, this study also aims to shed light on the practical implications of using

either model in real-world trading scenarios. We will analyze the impact of transaction
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costs, liquidity constraints, and trading strategies on the overall performance of the mod-

els. Additionally, we will explore the computational efficiency of each model, considering

the computational resources required for accurate pricing and risk management.

Ultimately, the findings of this empirical comparison study will provide valuable in-

sights into the strengths and limitations of the Black-Scholes-Merton and Heston models

for options on the S&P 500 index. The results will be of interest to financial practitioners,

option traders, and researchers seeking to enhance their understanding of options pricing

models and improve their decision-making process in the dynamic and complex world of

financial derivatives.
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CHAPTER 2

Literature Review

This chapter provides a comprehensive review of the literature on option pricing,

the Black-Scholes-Merton model and the Heston model. It examines the assumptions,

derivation, and limitations of both models, as well as their empirical performance in

fitting actual market prices. By reviewing prior research, we aim to identify the key

findings, methodologies, and gaps in knowledge that will inform and support our empirical

comparison study.

The chapter begins by introducing the fundamental concepts of options pricing and

the significance of accurate pricing models in financial markets. We explore the historical

development of options pricing theory, highlighting the pioneering work of Fischer Black,

Myron Scholes and Robert Merton in formulating the Black-Scholes-Merton model. We

examine the assumptions underlying the model, including constant volatility, risk-free

interest rate, and efficient markets and discuss the model’s strengths and limitations in

capturing the complexities of real-world options pricing.

Building upon the foundation of the BSM model, we then delve into the literature

surrounding the Heston model. We trace the evolution of this model, introduced by

Steven Heston as a means to address the limitations of the BSM model, specifically

focusing on its incorporation of stochastic volatility. We discuss the motivations behind

the development of the Heston model and its ability to capture the observed volatility

smile or skew present in options markets. Moreover, we explore the various extensions and

modifications proposed in subsequent studies to enhance the Heston model’s performance

and applicability.

Next, we review empirical studies that have compared the BSM and Heston models

in various financial contexts. We analyze the methodologies employed, the data sets

utilized and the key findings of these studies. We investigate the accuracy of the models

in pricing options, their ability to capture market dynamics, and their performance in

risk management and hedging strategies. Through this analysis, we aim to identify the

existing empirical evidence and the factors that contribute to the models’ performance

disparities.

Furthermore, we examine the limitations and criticisms of both the Black-Scholes-

Merton and Heston models that have emerged from the literature. We explore alternative

models and approaches proposed by researchers to address the weaknesses identified in

these traditional models. We discuss advanced techniques such as stochastic volatility

models, local volatility models, and jump-diffusion models, which have been developed to

capture additional complexities and anomalies observed in options pricing.
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Finally, we outline the gaps and limitations in the existing literature that motivate

our empirical comparison study. We emphasize the need for empirical research specifically

focused on options on the S&P 500 index, considering its significance as a benchmark in the

financial markets. By conducting a comprehensive literature review, we aim to synthesize

the current knowledge landscape, identify research gaps, and establish a robust foundation

for our empirical investigation.

In conclusion, this chapter serves as a comprehensive review of the literature related to

options pricing models, with a specific focus on the Black-Scholes-Merton model and the

Heston model for options on the S&P 500 index. By critically examining prior studies,

identifying gaps in knowledge, and analyzing the strengths and weaknesses of existing

models, we lay the groundwork for our empirical comparison study. The insights gained

from this literature review will contribute to the development of our research framework,

methodology, and the interpretation of our findings.

Several studies have compared the performance of the Black-Scholes-Merton model

and the Heston model in option pricing (Park, Kim and Lee, 2014). Most of these

studies have found that the Heston model outperforms the Black-Scholes model in terms

of accuracy, particularly for options with longer maturities. However, the Heston model

is also more computationally intensive than the Black-Scholes-Merton model, which can

limit its practical use in certain applications.

2.1. Black-Scholes-Merton Model: Assumptions, Mathematical Formulation,

Limitations and Critiques

The Black-Scholes-Merton model, developed by Fischer Black, Myron Scholes and

Robert Merton in 1973, has been a cornerstone of options pricing theory and has revolu-

tionized the field of quantitative finance.

The Black-Scholes-Merton model was the first widely used mathematical method to

calculate the theoretical value of an option contract, using current stock prices, expected

dividends (Black and Scholes do not consider dividends, Merton considers a dividend

yield), the option’s strike price, expected interest rates, time to expiration, and expected

volatility. The initial equation was introduced in Black and Scholes 1973 paper, ”The Pric-

ing of Options and Corporate Liabilities” published in the Journal of Political Economy.

Robert C. Merton helped edit that paper. Later that year, he published his own article,

”Theory of Rational Option Pricing” in The Bell Journal of Economics and Management

Science, expanding the mathematical understanding and applications of the model, and

coining the term ”Black–Scholes theory of options pricing”.

In 1997, Scholes and Merton were awarded the Nobel Memorial Prize in Economic

Sciences for their work in finding ”a new method to determine the value of derivatives.”

Black had passed away two years earlier, and so could not be a recipient, as Nobel Prizes

are not given posthumously; however, the Nobel committee acknowledged his role in the

Black-Scholes model.
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This section provides a comprehensive review of the BSM model, examining its funda-

mental assumptions, mathematical formulation, the challenges and criticisms it has faced

over the years.

2.1.1. Assumptions of the Black-Scholes Model

The Black-Scholes-Merton model is built upon several key assumptions that simplify

the complex dynamics of options pricing. Let’s delve into each assumption in more detail:

(1) Constant Volatility and Risk-Free Rate: The model assumes the risk-free

rate and volatility of the underlying asset are known and constant. While con-

stant volatility is a convenient assumption for mathematical tractability, it does

not accurately capture the time-varying nature of volatility observed in real fi-

nancial markets.

(2) No dividends: The model assumes that no dividends are paid out during the

life of the option. While the original BSM model did not consider the effects of

dividends paid during the life of the option, the model is frequently adapted to

account for dividends by determining the ex-dividend date value of the under-

lying stock (Section 2.1.4). Merton (1973) considers the existence of a dividend

yield.

(3) Efficient Markets: The BSMmodel assumes that financial markets are efficient,

meaning that there are no arbitrage opportunities and all relevant information

is fully and immediately reflected in the stock price. This assumption implies

that the market is frictionless and that there are no restrictions on trading or

borrowing. While market efficiency is a fundamental concept in finance, in prac-

tice, markets may not always be perfectly efficient, leading to deviations between

model prices and observed market prices.

(4) Log-Normal Distribution of Stock Returns: The model assumes that the

distribution of stock returns follows a log-normal distribution. This assumption

allows for the calculation of the probability of the underlying asset reaching a

certain price at the option’s expiration. However, in reality, stock returns often

exhibit skewness and kurtosis, deviating from the symmetric and bell-shaped as-

sumptions of the log-normal distribution.

(5) Continuous Trading and Borrowing: The BSM model assumes that it is

possible to buy or sell the underlying asset continuously and that borrowing and

lending can be done at the risk-free rate of interest. This assumption implies un-

limited liquidity and continuous access to the market, which may not be realistic
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in all situations. Transaction costs, liquidity constraints, and market frictions

can impact the practical application of the model.

(6) No Transaction Costs or Taxes: The BSM model assumes that there are no

transaction costs or taxes associated with buying or selling the underlying asset

or the option itself. In reality, transaction costs, such as brokerage fees and bid-

ask spreads, and taxes on capital gains can significantly impact options trading

strategies and the profitability of options positions.

2.1.2. Mathematical Formulation of the Black-Scholes Model

The BS model provides a closed-form solution for pricing European options on non-

dividend-paying stocks. Black-Scholes employed the Capital Asset Pricing Model to figure

out how options’ required rate of return relates to the expected rate of return of the

underlying stock. Merton set up a portfolio that’s risk-free, consisting of options and the

underlying asset, and argued that this portfolio’s return should be guaranteed for a brief

time. Consequently, the return on this risk-free portfolio represents the risk-free interest

rate under the assumption of no-arbitrage. Black–Scholes Merton model assumed that the

stock price follows a Wiener process with the constant expected mean rate and constant

variance given by:

dSt = µStdt+ σStdzt. (2.1)

where zt is a Wiener process. Black, Scholes and Merton claim that the price of the stock

is positively related with the value of the option and the option is almost surely to be

exercised if the stock price is greater than the strike price. Thus, the current value of the

option is approximated as the stock price minus the price of a pure discount bond having

the same maturity date and face value equal to the option’s strike price. Contrarily, if the

stock price is less than the strike price the option will not be exercised, that is the option

value will be zero. Further, they claim that keeping the stock price unchanged the value

of an option decreases as its maturity date approaches. Under the BSM’s assumptions

mentioned in the introduction, the value of the option V is a function of the price of

the stock, time and the variables considered to be known constants. Mathematically, it

can be written as V = V (St, T, r, σ,K) or simply V = V (St, T ) by ignoring the constant

terms.

Theorem 2.1. The BSM partial differential equation (PDE) relates the rate of return

in the money market account in an infinitesimal period with the change in the option price

by eliminating the individual stock price expectation µ. The PDE is given by:

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 +

∂V

∂S
rS − rV = 0, (2.2)

where V is the value of the option, S is the underlying stock price, σ is the volatility of

the stock price and r is a risk free interest rate.

6



Proof. The stock price dynamic is modeled by the SDE dS = µSdt+σSdz, where S

is the underlying stock price, µ is the expected value of S , σ is the volatility of S and z is

a Wiener process, according to the continuous random walk assumption which is proven

to be a Brownian motion. Using the Itô’s lemma, dV can be written as:

dV =
∂V

∂S
dS +

∂V

∂t
dt+

1

2

∂2V

∂S2
σ2S2dt

=
∂V

∂S
(µSdt+ σSdz) +

∂V

∂t
dt+

1

2

∂2V

∂S2
σ2S2dt.

Collecting the dt terms gives:

dV =

(
∂V

∂S
µS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
dt+

∂V

∂S
σSdz. (2.3)

The coefficient of dt in (2.3) is called a drift and the coefficient of dz is a stochastic

term. The BSM PDE derivation underlies on eliminating the stochastic term which is a

source of uncertainty. For this purpose we use a strategy called delta hedging to counter

balance the risk that would arise due to the stochastic behavior.

Suppose we take a short position on a call option and we want to hedge it by buying

△ amounts of stocks. Suppose also that we borrow m units of money-market Mt with a

risk free interest rate r to finance the transaction (dMt is defined by dMt = rMtdt). We

drop the time index in the notations hereafter for simplicity. Then our portfolio will be:

Π =△ S +mM.

Taking the derivative and substituting the dS from dS = µSdt + σSdz and dM =

rMdt, we get:

dΠ =△ dS +mdM

=△ (µSdt+ σSdz) +mrMdt

= (△ µS +mrM)dt+ △ σSdz.

(2.4)

Now we want to get the value of △ that makes stochastic terms (i.e. coefficients of dz)

in the total portfolio (i.e. in dV + dΠ) zero:

σS
∂V

∂S
+ △ σS = 0

△= −∂V
∂S

(2.5)

Adding together dV from (2.3) and dΠ from (2.4) and substituting the △ from 2.5

gives:

7



dV + dΠ =

[(
∂V

∂S
µS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2)

)
dt+

∂V

∂S
σSdz

]
+

[(
−∂V
∂S

µS +mrM

)
dt+ △ σSdz

]
=

(
∂V

∂S
µS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 − ∂V

∂S
µS +mrM

)
dt+

(
∂V

∂S
σ − ∂V

∂S
σ

)
Sdz

=

(
∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 +mrM

)
dt.

(2.6)

In this last equation of the total portfolio (2.6), we have a deterministic coefficient

only. Thus, the portfolio is riskless and must instantaneously earn the same rate of return

as other short-term risk-free securities. Therefore, the left hand side (LHS) of the total

portfolio dV + dΠ, which can also be written as d(V +Π) will be:

d(V +Π) = (V +Π)rdt

= (V − ∂V

∂S
S +mM)rdt.

(2.7)

By equating (2.6) and (2.7), we get:(
∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 +mrM

)
dt = (V − ∂V

∂S
S +mM)rdt.

Canceling the dt from both sides and rearranging the above expression gives us the

Black-Scholes-Merton PDE:

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2 +

∂V

∂S
rS − rV = 0.

□

In this PDE the expected value of the stock price µ is eliminated, implying that the

investors expectation or attitude towards risk do not have an impact in the BSM model.

Theorem 2.2. The pricing formula, known as the Black-Scholes equation, calculates

the theoretical option price based on the following variables:

Call option price: Ct = S0N(d1)−Ke−rτN(d2) (2.8)

and

Put option price: Pt = Ke−rτN(−d2)− S0N(−d1), (2.9)

8



with

d1 =
ln(S0

K
) + (r + σ2

2
)τ

σ
√
τ

and d2 =
ln(S0

K
) + (r − σ2

2
)τ

σ
√
τ

= d1 − σ
√
τ ,

where:

• Stock Price (S0): The current price of the underlying asset. The model assumes

that the stock price follows a geometric Brownian motion.

• Strike Price (K): The agreed-upon price at which the option can be exercised.

The strike price represents the level at which the option holder can buy (in the

case of a call option) or sell (in the case of a put option) the underlying asset.

• Time to Expiration (τ): The remaining time until the option’s expiration. The

longer the time to expiration, the greater the potential for the option to be prof-

itable.

• Risk-Free Interest Rate (r): The continuously compounded risk-free interest rate

for the option’s term. This rate is typically derived from government bond yields

with a similar term to expiration as the option.

• Volatility (σ): The standard deviation of the underlying asset’s returns, assumed

to be constant. Volatility represents the level of uncertainty or fluctuation in the

stock price and is a critical input in options pricing models.

• N(): Cumulative standard normal distribution function.

The Black-Scholes equation combines these variables to determine the fair value of the

option. The equation considers the relationship between the strike price, the stock price,

the time to expiration, the risk-free rate, and the volatility to produce an option price

estimation.

Despite its simplifications and assumptions, the Black-Scholes model has been influ-

ential in the field of options pricing and provided a framework for subsequent models

that aim to address its limitations. In the next sections, we will explore the empirical

comparison between the Black-Scholes-Merton model and the Heston model, which takes

into account stochastic volatility, for pricing options on the S&P 500 index.

2.1.3. Limitations and Critiques of the Black-Scholes Model

Despite its significant contributions to options pricing theory, the Black-Scholes (BS)

model has faced several limitations and criticisms, which have prompted researchers to

develop more advanced models. The following are some of the key critiques:

(1) Assumption of Constant Volatility: The model’s assumption of constant

volatility may not hold in real-world financial markets, where volatility exhibits

time-varying patterns. This limitation hinders the model’s accuracy in pricing

options, especially during periods of high market turbulence or sudden shifts in

9



volatility. Researchers and practitioners have recognized the need for models that

can capture volatility dynamics more effectively.

(2) Failure to Capture Skewness and Kurtosis: The BS model assumes a log-

normal distribution of stock returns, which implies that the model cannot ad-

equately capture the observed skewness (asymmetric distribution) and kurtosis

(fat-tailed distribution) present in options markets. This limitation leads to the

mispricing of options with non-normal return distributions. In reality, options

exhibit a volatility skew, where out-of-the-money puts tend to have higher im-

plied volatility than out-of-the-money calls, indicating a preference for downside

protection.

(3) Lack of Consideration for Dividend Payments: The BS model assumes

that the underlying asset does not pay any dividends during the option’s life.

This assumption restricts the model’s applicability to options on non-dividend-

paying stocks. For options on dividend-paying stocks, the exclusion of dividends

can lead to pricing errors, as dividends impact the stock price and should be

factored into the option’s value.

(4) Inadequate Risk Management: The BS model assumes that the market

is frictionless, with no transaction costs or taxes. However, in reality, these

costs and taxes significantly affect options trading strategies and can impact the

model’s performance in practical applications. Transaction costs, bid-ask spreads,

and liquidity constraints can lead to deviations between the model’s theoretical

prices and actual market prices.

(5) Sensitivity to Input Parameters: The BS model is sensitive to the accuracy

of its input parameters, especially the estimation of volatility and the risk-free in-

terest rate. Small changes in these parameters can result in significant variations

in the model’s output, leading to potential pricing errors. Accurately estimating

these parameters can be challenging, particularly for longer-dated options.

(6) Limited Scope to Handle Complex Options: The BS model is primarily

designed for European options. It is not easily adaptable to price more complex

options, such as American options, options on futures, or options on assets with

multiple sources of cash flows. Expanding the model to accommodate these com-

plexities requires additional modifications and assumptions.

(7) Crisis and Market Anomalies: The BS model struggled to accurately cap-

ture and predict extreme events, such as market crises and anomalies. The model

10



assumes that stock returns follow a continuous and predictable process, which

is not always the case in turbulent market conditions. The model’s failure to

account for these events has highlighted the need for more robust models capable

of incorporating jumps, stochastic volatility, and other market anomalies.

Over the years, researchers have developed various extensions and modifications to

address these limitations and criticisms of the Black-Scholes model. These advancements

have resulted in the emergence of more sophisticated models, such as the Heston model,

which incorporates stochastic volatility. In the subsequent sections, we will delve into the

literature surrounding the Heston model and explore its contributions, challenges, and

empirical comparisons with the Black-Scholes-Merton model for pricing options on the

S&P 500 index.

2.1.4. Modified Black-Scholes-Merton Model

The original BS model assumes that the underlying asset does not pay dividends during

the life of the option. However, in practice, dividends are a significant factor in options

pricing, particularly for options on dividend-paying stocks. To incorporate dividends into

the BS framework, modifications are made to the model’s formula.

The modified Black-Scholes-Merton model that accounts for dividends is commonly

referred to as the Black-Scholes-Merton model with dividends. The inclusion of dividends

requires adjusting the underlying stock price in the model’s calculations to reflect the

expected cash flows from dividend payments.

Theorem 2.3. Black–Scholes–Merton formula with dividends is a closed form formula

for the price of the European option given by:

Call option price: Ct = S0e
−qτN(d1)−Xe−rτN(d2) (2.10)

and

Put option price: Pt = Ke−rτN(−d2)− S0e
−qτN(−d1), (2.11)

with

d1 =
ln(S0

K
) + (r − q + σ2

2
)τ

σ
√
τ

and d2 = d1 − σ
√
τ ,

where q is the dividend yield (annualized dividend rate expressed as a continuous yield).

In the modified formula, the term e−qτ adjusts the stock price by discounting the

expected dividends during the option’s life. By incorporating the dividend yield (q) into

the model, the modified Black-Scholes-Merton model considers the impact of dividends

on the underlying stock price and, consequently, on the option’s value.

It’s important to note that accurately estimating the dividend yield is crucial for

the reliable application of the modified Black-Scholes model. Dividend expectations and

dividend payment dates should be carefully considered when using this modified formula.
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By accounting for dividends, the modified Black-Scholes-Merton model enhances the

accuracy of options pricing for dividend-paying stocks, providing a more realistic valuation

framework that aligns with market dynamics.

2.2. Heston Model: Assumptions, Mathematical Formulation, Limitations

and Critiques

In the twenty years since its introduction in 1993, the Heston model has become

one of the most important models, if not the single most important model, in a then-

revolutionary approach to pricing options known as stochastic volatility modeling. To

understand why this model has become so important, we must revisit an event that

shook financial markets around the world: the stock market crash of October 1987 and

its subsequent impact on mathematical models to price options.

The exacerbation of smiles and skews in the implied volatility surface that resulted

from the crash brought into question the ability of the Black-Scholes model to provide

adequate prices in a new regime of volatility skews, and served to highlight the restrictive

assumptions underlying the model. The most tenuous of these assumptions is that of con-

tinuously compounded stock returns being normally distributed with constant volatility.

An abundance of empirical studies since the 1987 crash have shown that this assumption

does not hold in equities markets. It is now a stylized fact in these markets that returns

distributions are not normal. Returns exhibit skewness, and kurtosis - fat tails - that

normality cannot account for. Volatility is not constant in time, but tends to be inversely

related to price, with high stock prices usually showing lower volatility than low stock

prices. A number of researchers have sought to eliminate this assumption in their models,

by allowing volatility to be time-varying.

One popular approach for allowing time-varying volatility is to specify that volatility

be driven by its own stochastic process. The models that use this approach, including

the Heston (1993) model, are known as stochastic volatility models. The models of Hull

and White (1987), Scott (1987), Wiggins (1987), Chensey and Scott (1989), and Stein

and Stein (1991) are among the most significant stochastic volatility models that pre-date

Steve Heston’s model. The Heston model was not the first stochastic volatility model to

be introduced to the problem of pricing options, but it has emerged as the most important

and now serves as a benchmark against which many other stochastic volatility models are

compared.

Allowing for non-normality can be done by introducing skewness and kurtosis in the

option price directly, as done, for example, by Jarrow and Rudd (1982), Corrado and Su

(1997), and Backus, Foresi, and Wu (2004). In these models, skewness and kurtosis are

specified in Edgeworth expansions or Gram-Charlier expansions. In stochastic volatility

models, skewness can be induced by allowing correlation between the processes driving

the stock price and the process driving its volatility. Alternatively, skewness can arise by

introducing jumps into the stochastic process driving the underlying asset price.
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The parameters of the Heston model are able to induce skewness and kurtosis, and

produce a smile or skew in implied volatilities extracted from option prices generated by

the model. The model easily allows for the inverse relationship between price level and

volatility in a manner that is intuitive and easy to understand. Moreover, the call price

in the Heston model is available in closed form, up to an integral that must be evaluated

numerically. For these reasons, the Heston model has become the most popular stochastic

volatility model for pricing equity options.

Another reason the Heston model is so important is that it is the first to exploit char-

acteristic functions in option pricing, by recognizing that the terminal price density need

not be known, only its characteristic function. This crucial line of reasoning was the gen-

esis for a new approach for pricing options, known as pricing by characteristic functions.

2.2.1. Assumptions of the Heston Model

The Heston model is built upon several key assumptions that simplify the complex

dynamics of options pricing. Let’s delve into each assumption in more detail:

(1) Geometric Brownian Motion: The model assumes that the underlying asset

follows a geometric Brownian motion, which means the logarithm of the asset

price exhibits random fluctuations over time.

(2) Stochastic Volatility: The Heston model introduces volatility as a stochastic

process, where the volatility itself follows a separate stochastic process. This

assumption acknowledges that volatility is not constant but rather changes over

time.

(3) Mean Reversion: The volatility process in the Heston model incorporates mean

reversion, which implies that the volatility tends to move towards a long-term

average level. This assumption ensures that extreme volatility values eventually

return to a more typical level.

(4) Correlation between Asset Returns and Volatility: The model assumes

a correlation between the asset returns and changes in volatility. Specifically,

when the asset price experiences large movements, the volatility is expected to

increase, and vice versa. This correlation captures the empirical observation that

volatility tends to cluster during turbulent market periods.

(5) No Arbitrage: The model assumes the absence of arbitrage opportunities in

the market. This assumption implies that it is not possible to make risk-free

profits by trading options or the underlying asset.
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(6) Constant Interest Rate: The Heston model assumes a constant risk-free inter-

est rate throughout the option’s lifetime. This assumption allows for consistent

discounting of future cash flows.

(7) Independent Processes: The volatility process and the asset price process are

assumed to be independent of each other. This assumption simplifies the mathe-

matical formulation of the model but may not capture all real-world correlations

between asset prices and volatilities.

(8) Continuous Trading: The Heston model assumes continuous trading in the

underlying asset. It does not account for market discontinuities or jumps in the

asset price.

(9) Efficient Market: The model assumes that the market is efficient, meaning that

all relevant information is immediately reflected in the asset price. This assump-

tion implies that the model does not consider market inefficiencies or investor

behavioral biases.

It is important to note that these assumptions are simplifications made to facilitate the

mathematical tractability of the Heston model. While the model has gained popularity,

it is essential to be aware of its limitations and how these assumptions may affect its

practical applicability. Practitioners and researchers often adapt or extend the model to

better suit specific market conditions and empirical observations.

2.2.2. Mathematical Formulation of the Heston Model

Heston (1993) devised the stochastic volatility model for option pricing. Under the

physical measure, the stochastic volatility model defined an underlying asset process as

follows:

dSt = µStdt+
√
vtStdZ1,t, (2.12)

dvt = k[θ − vt]dt+ ξ
√
vtdZ2,t (2.13)

and

dZ1,tdZ2,t = ρdt, (2.14)

where Z1,t and Z2,t are Wiener processes, respectively, µ is the drift of the process for the

stock, k > 0 is the mean reversion speed for the variance, ξ > 0 is the volatility of the

variance, ρ is the correlation between the log-returns and volatility, θ > 0 is the mean

reversion level for the variance and v0 is the initial (time zero) level of variance. The

volatility of an underlying asset, in the stochastic volatility model, behaves according to

a mean-reverting diffusion process, as described in the equation above. Unlike the Black-

Scholes model, which assumes constant volatility, this model treats the asset’s volatility

as a random process. This approach allows the model to account for the fact that stock

14



returns often don’t follow a normal distribution. Instead, it can explain characteristics

like heavy tails and asymmetry in the distribution of stock returns.

Theorem 2.4. Denoting the log price variable Xt = log(St), the characteristic func-

tion of Xt, following BañoRollin, FerreiroCastilla, and Utzet (2009), is defined by:

ϕT (u) = eA(u)+B(u)+C(u), (2.15)

where

A(u) = iu(X0 + rT ), (2.16)

B(u) = − (u2 + iu)(1− eϕ(u)T )v0
2ϕ(u)− (ϕ(u)− τ(u))(1− e−ϕ(u)T )

, (2.17)

C(u) = −kθ
ξ2

[
2 log

(
2ϕ(u)− (ϕ(u)− τ(u))(1− e−ϕ(u)T )

2ϕ(u)

)
+ (ϕ(u)− τ(u))T

]
, (2.18)

with τ(u) = k − iuρξ and ϕ(u) =
√
τ(u)2 + ξ2(u2 + iu).

Given the characteristic function of such parametric model, we can implement the

computations of option pricing by applying the Fourier transform methods.

Theorem 2.5. Following Carr and Madan (1999), when we know the characteristic

function ϕT of the risk-neutral stock price process and the α-th moment of the stock price,

the European call option price with strike price K and maturity T is given by:

C(k, T ) =
e−αk

2π

∫ +∞

−∞
e−iukψT (u)du, (2.19)

where k=ln(K) and

ψT (u) =
e−rTϕT (u− (α + 1)i)

α2 + α− u2 + i(2α + 1)u
(2.20)

and the integration can be efficiently performed using the fast Fourier transform method.

2.2.3. Limitations and Critiques of the Heston Model

The Heston model, like any financial model, has certain limitations that should be

considered when using it for option pricing or risk management purposes. Here are some

of the key limitations of the Heston model:

(1) Complex Calibration: The model involves multiple parameters that need to

be calibrated to market data, which can be a computationally intensive and chal-

lenging task. Moreover, due to the non-linear nature of the model, calibration
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can be sensitive and prone to errors, especially when using limited or noisy data.

(2) Mean Reversion Speed: The Heston model assumes a constant mean reversion

speed for the volatility process. However, in reality, the speed of mean reversion

may vary over time and can be influenced by market conditions or events. Fail-

ing to capture this variability can impact the accuracy of the model’s volatility

dynamics.

(3) Lack of Jumps and Fat Tails: The Heston model assumes continuous asset

price movements and a log-normal distribution for the underlying asset. It does

not account for jumps or extreme events in prices, which are observed in real

financial markets. Additionally, the model assumes normally distributed returns,

whereas empirical evidence suggests that asset returns often exhibit fat tails.

(4) No Stochastic Interest Rates: The model assumes a constant risk-free inter-

est rate, which may not accurately represent real-world interest rate dynamics,

especially in environments with stochastic interest rates.

(5) Arbitrage-Free but Unrealistic Dynamics: Although the Heston model en-

sures no arbitrage opportunities by construction, its dynamics may not fully

capture all the complexities and intricacies of real market behavior. The model’s

assumptions may oversimplify the dynamics of asset prices and volatilities, lim-

iting its ability to accurately capture market phenomena.

(6) Computational Intensity: The Heston model can be computationally demand-

ing, particularly when pricing complex options or performing risk management

calculations. Simulating paths for both the asset price and the volatility process

can require significant computational resources and time, making it challenging

for real-time applications.

(7) No Closed-Form Solutions: Unlike the Black-Scholes-Merton model, which

has closed-form solutions for option prices, the Heston model does not have ana-

lytical solutions. This means that option pricing and risk management typically

require numerical methods, which can be computationally expensive.

(8) Parameter Stability: The parameters of the Heston model can be sensitive to

changes in market conditions. Calibrating the model for one period may not be

suitable for a different period, which can make it challenging to use for long-term

forecasting.
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It is crucial to be aware of these limitations and evaluate their impact in the specific

context of your research or application. The choice of model should be made considering

these limitations and the suitability of the Heston model for the particular objectives and

market conditions under consideration.
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CHAPTER 3

Methodology

3.1. Data

We used the S&P500 index call options prices to compare the performance of the

Black-Scholes-Merton model and the Heston model. The real market data of the S&P500

index options, which is traded on various exchanges like Chicago Board Options Exchange

and New York Stock Exchange Arca Options, was obtained from Refinitiv database for

the period May 2022 to November 2022.

First, I’ve excluded the options with less than 7 days to expiration or more than 180

days to expiration because they are very sensitive to liquidity-related biases. Second, I

have excluded very deep out-of-the-money and very deep in-the-money options, because

they are not liquid options and their market prices may be quite different from their true

values. An option is very deep in-the-money if its moneyness is greater than 12% and

very deep out-of-the-money if its moneyness is less than -12%. The option moneyness is

defined as the percentage difference between the current underlying price and the strike

price: Moneyness(%) = S
K
.

We define moneyness as OTM: S/K < 0.95, ATM: 0.95 ≤ S/K < 1.05 and ITM:

S/K ≥ 1.05.

Table 1 presents the sample properties of the S&P500 index used in this experiment.

The average call prices, standard deviation of prices, total number of observations of each

financial aspect, and time-to-maturity are described in this table.
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Table 1

Sample properties of S&P500 index options: the notated numbers denote the average

closing prices of call options, the standard deviation of the prices which are shown in

parentheses and the total number of observations (in braces), for each moneyness maturity

category. S is the spot S&P500 index level and K denotes the strike price. ITM, ATM, and

OTM denote, respectively in-the-money, at-the-money, and out-of-the-money options.

Days-to-Expiration

Moneyness

(S/K)

τ < 1 month 1 month ≤ τ < 3 months τ ≥ 3 months

OTM <0.95 2.956 15.574 51.200

{5.027} {17.409} {37.430}
(440) (392) (420)

ATM [0.95,1.05[ 110.516 158.089 237.993

{62.770} {70.152} {70.494}
(931) (445) (419)

ITM ≥1.05 390.022 465.886 527.756

{117.961} {112.501} {103.821}
(863) (484) (467)

3.2. Procedures

We conducted a comprehensive analysis to compare pricing and forecasting method-

ologies. Our data collection involved the acquisition of N option data for multiple time

periods. Subsequently, we computed the estimated call option prices denoted as Ĉ, taking

into consideration their moneyness and time-to-maturity, τi. To gauge the accuracy of

our models, we formulated an error function for optimizing the parameter settings.

ϵi{Ct,i, Ĉ(Mi,t, τi, ϕt,i)} = Ĉ(Mi,t, τi, ϕt,i)− Ct,i, (3.1)

where Ct,i is the observed call prices. Then, we estimated the parameter sets ϕt,i by

solving the following function:

minSSE(t) = min
ϕt,i

N∑
i=1

|ϵi{Ct,i, Ĉ(Mi,t, τi, ϕt,i)}|2. (3.2)

3.2.1. Modified Black-Scholes-Merton Model

We estimated the optimal value of volatility for pricing the Modified Black-Scholes-

Merton model to describe the market prices. We used the Nelder-Mead simplex direct

search method (Nocedal and Wright, 2006).
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3.2.1.1. Nelder-Mead Simplex Direct Search Method

The Nelder-Mead Simplex Direct Search Method is a versatile optimization algorithm

designed to find the optimal solution for complex, nonlinear, and non-convex optimization

problems. Unlike traditional gradient-based methods, it doesn’t require the gradient in-

formation of the objective function, making it suitable for scenarios where obtaining such

information might be challenging or impractical. The method operates by iteratively ad-

justing a simplex—a geometric figure resembling a simplex in the problem’s parameter

space—to explore and converge towards the optimal solution. The simplex reflects the

objective function’s behavior, allowing the algorithm to adaptively move in the search

space. Relies on the construction of a simplex of N + 1 vertices, for an N-dimensional

problem, then, it iteratively replaces its vertices for new ones with lower values of the cost

function.

Key Features and Steps:

(1) Initialization: The algorithm begins by creating an initial simplex around a

starting point in the parameter space.

(2) Exploration and Reflection: It evaluates the objective function at the vertices

of the simplex. The worst vertex is reflected over the centroid of the other vertices

to potentially reach a better solution.

(3) Expansion: If the reflected vertex improves the solution, the algorithm further

expands along that direction to explore the search space more effectively.

(4) Contraction: If the reflected vertex’s improvement is limited, the algorithm

contracts the simplex towards the centroid, aiming to refine the solution.

(5) Shrinkage: In case none of the above steps lead to improvement, the algorithm

contracts the entire simplex around its best vertex, which helps the algorithm

converge towards the optimal solution.

Advantages:

(1) Gradient-Free: Nelder-Mead doesn’t rely on gradient information, making it

suitable for functions that lack analytical gradients or are noisy.

(2) Versatility: It works well for various problem types, including non-smooth,

non-convex, and multimodal functions.

(3) Ease of Implementation: The algorithm’s intuitive geometric approach makes

it relatively easy to implement and understand.

(4) Few Parameters: It has minimal user-defined parameters, which simplifies the

tuning process.

(5) No Derivative Calculations: The method doesn’t require the often-complex

calculations involved in gradient-based optimization.
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Limitations:

(1) Convergence Speed: The Nelder-Mead method might converge slowly, partic-

ularly in high-dimensional spaces.

(2) Sensitivity to Initialization: Performance can be sensitive to the initial sim-

plex configuration.

The Nelder-Mead Simplex Direct Search Method’s ability to handle complex opti-

mization problems without requiring gradient information has made it a valuable tool

in various fields. However, its performance can vary based on problem characteristics

and parameter settings, making it essential to understand its behavior and limitations for

effective use.

3.2.2. Heston Model

To determine the parameter values for the Heston Model based on actual market op-

tion prices, we applied the Carr-Madan Fourier transform method. This method was

originally introduced by Carr and Madan in 1999 and later used by Yang and Lee in

2012. To perform the necessary calculations within the Carr-Madan method, we em-

ployed Simpson’s rule for numerical integration.

3.2.2.1. Carr-Madan Fourier Transform Method

Carr and Madan used a Fourier transform to derive a call option price which is

defined as a function of the natural logarithm of the strike price. They considered a

modified version call price C(k), where k = ln(K). The expected discounted payoff

C = e−rTEQ[{ST −K}+] is written in integral form and es is substituted in the place of

ST , where s = ln(ST ), and e
k is substituted for K.

C = e−rTEQ[{ST −K}+]

=

∫ ∞

K

e−rT (ST −K)Q(ln(ST ))dlnST

CT (k) =

∫ ∞

k

e−rT (es − ek)Q(s)ds.

Definition 3.1. A sufficient (but not necessary) condition for the existence of the

Fourier transform of a function f(x) and its inverse is:∫ ∞

−∞
|f(x)|dx <∞, (3.3)

which is called an integrability condition.

However, this CT (k) given above is not square-integrable as can be shown in the

following lines. As k → −∞, ek → 0 and we get:
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CT (k) =

∫ ∞

−∞
e−rT esQ(s)ds

= e−rTEQ[es]

= e−rTEQ[ST ]

= e−rTS0e
rT = S0.

To tackle this problem, Carr and Madan modified C(k) as follows:

cT (k) = eαkCT (k),

where α > 0 is a damping parameter.

Now we check whether ct(k) is integrable:

∫ ∞

−∞
|cT (k)|ds =

∫ ∞

−∞
|eαkCT (k)|ds

= e−rT

∫ ∞

−∞
|eαk(es − ek)Q(s)|ds→ 0 as k → ∞.

This last expression is integrable, thus the FT exists.

Definition 3.2. Given a function f(x), the FT is defined by:

F [f(x)](v) = ψ(v) =

∫ ∞

−∞
f(x)e−ivxdx.

Then, the Fourier transform ψ(v) of cT (k) is derived as follows:

F [cT (k)](v) = ψ(v) =

∫ ∞

−∞
eivkcT (k)dk

=

∫ ∞

−∞
eivk

∫ ∞

k

eαke−rT (es − ek)Q(s)dsdk

=

∫ ∞

−∞
e−rTQ(s)

(∫ s

−∞
eivkeαk(es − ek)dk

)
ds

=

∫ ∞

−∞
e−rTQ(s)

(
es
∫ s

−∞
e(iv+α)kdk −

∫ s

−∞
e(iv+α+1)kdk

)
ds

=

∫ ∞

−∞
e−rTQ(s)

([
ese(iv+α)k

iv + α

]s
−∞

−
[
e(iv+α+1)k

iv + α + 1

]s
−∞

)
ds

=

∫ ∞

−∞
e−rTQ(s)

(
e(1+iv+α)s

iv + α
− e(iv+α+1)s

iv + α + 1

)
ds

=

∫ ∞

−∞
e−rTQ(s)

(
e(1+iv+α)s[(iv + α + 1)− (iv + α)]

(iv + α)(iv + α + 1)

)
ds

= e−rT

∫ ∞

−∞

e(1+iv+α)s

(iv + α)(iv + α + 1)
Q(s)ds.
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Note that (1 + iv + α) = i(v − i(1 + α)) and, hence,

ψ(v) = e−rT

∫ ∞

−∞

ei(v−i(1+α))s

(iv + α)(iv + α + 1)
Q(s)ds

=
e−rT

(iv + α)(iv + α + 1)

∫ ∞

−∞
ei(v−i(1+α))sQ(s)ds.

The expression in the integral will become ϕ(v − i(1 + α)) by the definition of a

characteristic function. Then, we have:

ψ(v) =
e−rTϕT (v − i(1 + α))

(iv + α)(iv + α + 1)
=

e−rTϕT (v − i(1 + α))

α2 + α− v2 + iv(2α + 1)
. (3.4)

Inversion of Fourier Transform

We retrieve CT (k) by the method of inverse FT defined as follows.

Definition 3.3. The inverse FT is given by:

F−1[ψ(v)](k) =
1

2π

∫
R
e−ivkψ(v)dv.

In our case, since we transformed cT (k) = eαkCT (k), we use e−αk/2π instead of 1/2π

to get the original function C(k).

CT (k) =
e−αk

2π

∫
R
e−ivkψ(v)dv =

e−αk

π

∫ ∞

0

e−ivkψ(v)dv

=
e−αk

π

∫ ∞

0

e−ivk e−rTϕT (v − i(1 + α))

α2 + α− v2 + iv(2α + 1)
dv.

(3.5)

where ϕT is the characteristic function defined in section (2.2.2).

The modification CT (k) to cT (k) makes it integrable along the negative k axis and at

the same time it affects the integrability along the positive k. For cT (k) to be integrable

on both ends, the following sufficient condition has to be fulfilled:

ψ(0) <∞.

We call this condition a sufficient condition for square-integrability,

ψ(0) =
e−rTϕT (−i(1 + α))

α2 + α
.
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The expression e−rT

α2+α
is finite because both r and T are non–negative. Therefore, we

need to check whether ϕ(−i(1+α)) <∞ for the sufficient condition of square-integrability.

To simplify, we use the definition of a characteristic function:

ϕST
(u) = E[eiuST ]

= E[eiuln(ST )]

= E[(eln(ST ))iu]

= E[Siu
T ].

By replacing u by −i(1 + α), we proceed following the same manner,

ϕ(−i(1 + α)) <∞ ⇔ E[S
{i(−i(1+α))}
T ] <∞ ⇔ E[S1+α

T ] <∞.

For equation (3.5) to be square integrable the (1 + α)th moment has to exist and be

finite. The value of α has an impact on both the accuracy and efficiency of our derivation.

3.2.2.2. Trapezoidal Rule and Simpson’s Rule

The implementation of the FT requires discretization of the inverse FT using ap-

proximation methods for computing integrals numerically, for example trapezoidal and

Simpson’s rule.

Discretization using the Trapezoidal Rule

Theorem 3.1. Suppose that we have an integrand f(x) on the interval [a, b] , and the

interval is subdivided into N sub-intervals [xj, xj+1] of width h = (b− a)/N by using the

equally spaced nodes xj = a + jh for j = 0, 1, ..., N . The composite trapezoidal rule

for N subintervals can be expressed as:∫ b

a

f(x)dx ≈ T (f, h) =
h

2
(f(x0) + 2f(x1) + ...+ 2f(xN−1) + f(xN)) .

Truncating the upper limit of the integration for the inverse FT (3.5) to a finite

number, say B, and applying the trapezoidal rule, gives the discrete Fourier transform

(DFT).

CT (k) =
e−αk

π

∫ ∞

0

e−ivkψ(v)dv

≈ e−αk

π

∫ B

0

e−ivkψ(v)dv

≈ e−αk

π

N∑
j=1

e−ivjkψT (vj)η,

(3.6)

where vj = η(j − 1), η = B/N .
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Remark 3.1. Note that η and B correspond to h and b respectively in Theorem 3.1.

The count of summation starts in equation (3.6) from j = 1, as a result we would expect it

to run to N +1. However, the last term is discarded because it’s contribution will become

insignificant as it becomes very small. Additionally, the lower limit for the integration of

C(k) is 0 thus a = 0 . That is why we have vj = η(j − 1) , while xj = a + jh in the

theorem.

The weights are expressed in a slightly different way:

CT (k) =
e−αk

π

N∑
j=1

e−ivjkψT (vj)
η

2
(2− δj−1),

where δn =

1, n = 0

0, n ̸= 0
.

Or, equivalently,

CT (k) ≈
ηe−αk

π

N∑
j=1

e−ivjkψT (vj)wj, (3.7)

where w1 = wN = 1
2
and wj = 1 for j = 2,...,N − 1.

While the DFT requires n multiplication, i.e. O(n) for a single option price, the most

efficient way would be to compute a number of option prices at once. The fast Fourier

transform (FFT) algorithm, taking advantage of the complex roots of unity (see Definition

3.4 below), enables computation of a set of DFT with an n-point series that are power

of two in O(nlogn) multiplications that would have required O(n2) multiplications using

the regular integration method.

Definition 3.4. A complex nth root of unity is a complex number ω such that ω2 =

1. There are exactly n complex nth roots of unity: e2πik/n for k = 0, 1, ..., n − 1. An

exponential of a complex number can also be written using Euler’s formula: eiu = cos(u)+

i sin(u).

Definition 3.5. The FFT maps a vector x = (xj)
N
j=1 on to some vector g(xu) and

the algorithm is given by:

g(xu) =
N∑
j=1

e−i 2π
N

(j−1)(u−1)xj for u=1,...,N.

The conversion of the DFT call price to FFT is done in a few steps:

Step 1. Create a range, say [−b, b], of the logarithm of the strike price k partitioned

into N with equal spacing λ:

ku = −b+ λ(u− 1) for u=1,...,N.

Step 2. Substitute the vj and ku in the DFT equation (3.6):
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CT (k) ≈
e−αku

π

N∑
j=1

e−ivjkuψT (vj)η

=
e−αku

π

N∑
j=1

e−ivj(−b+λ(u−1))ψT (vj)η

=
e−αku

π

N∑
j=1

eibvj−ivjλ(u−1)ψT (vj)η

=
e−αku

π

N∑
j=1

eivjλ(u−1)eibvjψT (vj)η

=
e−αku

π

N∑
j=1

e−iη(j−1)λ(u−1)eibvjψT (vj)η

CT (ku) ≈
e−αku

π

N∑
j=1

e−iλη(j−1)(u−1)eibvjψT (vj)η u = 1,...,N. (3.8)

Step 3. Let λη = 2π/N and eibvjψT (vj)η = xj to get the FFT that corresponds to

Definition 3.5 for the European call price CT (ku) at N number of strike points.

Discretization using Simpson’s Rule

The fact that η = B
N

and λη = 2π
N

induces a trade off between η (which determines the

accuracy of the integration) and λ (which is the spacing of the logarithmic strike price and

determines the chance of getting relevant strike prices) for a fixed computational budget

N . To give more weights to the more relevant points the Simpson rule as in Theorem 3.2

below can be applied to the inverse FT in equation (3.5).

Theorem 3.2. Suppose that [a, b] is subdivided into 2N sub-intervals [xj, xj+1] of equal

width h = (b−a)/2N by using xj = a+ jh for j =0,1,...,2N. The composite Simpson rule

for 2N sub-intervals can be expressed as:∫ b

a

f(x)dx ≈ S(f, h)

=
h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + ...+ 2f(x2N−2) + 4f(x2N−1) + f(x2N)).

Applying Theorem 3.2, expression (3.8) becomes:

C(ku) =
e−αku

π

N∑
j=1

e
−i2π
N

(j−1)(u−1)eibvjψT (vj)
η

3
(3 + (−1)j − δj−1), (3.9)

where vj = η(j − 1), η = B/N and δn =

1, n = 0

0, n ̸= 0
.

Or, equivalently,
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CT (k) ≈
ηe−αk

π

N∑
j=1

e−ivjkψT (vj)wj, (3.10)

where w1 = wN = 1
3
, wj =

4
3
when j is even and wj =

2
3
when j is odd.

In this computation, Carr and Madan are particularly interested at the option price

of at-the-money (ATM) condition.

The use of FFT for calculating OTM option prices is similiar to (3.10). The only

differences are that we replace the multiplication by e−αk with a division by sinh (αk) and

the function call to ψ(v) is replaced by a function call to γ(v) defined in (3.11).

γ(v) =

∫ ∞

−∞
eivk sinh (αk)zT (k)dk

=

∫ ∞

−∞
eivk

eαk − e−αk

2
zT (k)dk

=
ζT (v − iα)− ζT (v + iα)

2
,

(3.11)

where ζT (v) = e−rT
(

1
1+iv

− erT

iv
− ϕT (v−i)

v2−iv

)
and ζT (v) is the Fourier transform of zT (k).

Proof. Let ζT (v) denote the Fourier transform of zT (k):

ζT (v) =

∫ ∞

−∞
eivkzT (k)dk.

The prices of out-of-the-money options are obtained by inverting this transform:

zT (k) =
1

2π

∫ ∞

−∞
e−ivkζT (v)dv.

For ease of notation, we will derive ζT (v) assuming S0 = 1. We may then define zT (k) by

zT (k) = e−rT

∫ ∞

−∞

[
(ek − es)1s<k,k<0 + (es − ek)1s>k,k>0

]
qT (s)ds.

The expression for ζT (v) follows on noting that:

ζT (v) =

∫ 0

−∞
eivke−rT

∫ k

−∞
(ek − es)qT (s)dsdk

+

∫ ∞

0

eivke−rT

∫ ∞

k

(es − ek)qT (s)dsdk.

Reversing the order of integration yields

ζT (v) =

∫ 0

−∞
qT (s)e

−rT

∫ ∞

s

(
e(1+iv)k − eseivk

)
dkds

+

∫ ∞

0

qT (s)e
−rT

∫ s

0

(
eseivk − e(1+iv)k

)
dkds.
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Performing the inner integrations, simplifying, and writing the outer integration in terms

of characteristic function, we get

ζT (v) = e−rT

(
1

1 + iv
− erT

iv
− ϕT (v − i)

v2 − iv

)
.

Although there is no issue regarding the behavior of zT (k) as k tends to positive or

negative infinity, the time value at k = 0 can get quite steep as T → 0, and this can

cause difficulties in the inversion. The function zT (k) approximates the shape of a Dirac

delta function near k = 0 when maturity is small, and thus the transform is wide and

oscillatory. It is useful in this case to consider the transform of sinh(αk)zT (k) as this

function vanishes at k = 0. Define

γT (v) =

∫ ∞

−∞
eivk sinh (αk)zT (k)dk

=

∫ ∞

−∞
eivk

eαk − e−αk

2
zT (k)dk

=
ζT (v − iα)− ζT (v + iα)

2
.

Thus, the time value is given by

zT (k) =
1

sinh(αk)

1

2π

∫ ∞

−∞
e−ivkγT (v)dv.

□

3.3. Test of Forecasting Accuracy

We conducted tests to see if there were meaningful differences in the forecasting re-

sults of the methods we compared. These tests checked whether the mean squared errors

of two sets of forecasts were significantly different. To do this, we used well-established

statistical tests, namely the Diebold Mariano (DM) test and the Wilcoxon (WS) signed

rank test (Diebold and Mariano, 1995).

3.3.1. Diebold Mariano Test

Park, Kim, and Lee (2014) defined the series of forecasting errors as follows

et,i = ŷt,i − yt for i=1,2, (3.12)

where yt is the actual option prices of time-series and ŷt,i is the series of forecasting. To

compare the forecasting performance of two methods, we calculate the difference between

them using a loss function h(.), which gives us dt = h(et,1)− h(et,2). The test to verify if

the forecasting accuracies are equal is based on the null hypothesis,

H0 : E(dt) = 0,

and the DM test statistics is given by
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DM =
d√

2πf̂d(0)/T
, (3.13)

where d =
∑T

t=1(h(et,1)− h(et,2))/T and fd(.) is the spectral density of dt.

3.3.2. Wilcoxon Signed Rank Test

If we have a finite set of actual observations, we can test the difference in sampled loss

by considering the null hypothesis,

H0 : Median(dt) = 0,

based on the ranks of the forecasting errors. When the differences in the sampled data

are distributed symmetrically, this null hypothesis aligns with the null hypothesis used in

the DM test. The WS test statistics here is given by

WS =
T∑
t=1

I+(dt)Rank(|dt|), (3.14)

where

I+(dt) =

{
1 if dt > 0

0 otherwise
.
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CHAPTER 4

Results

This chapter presents the results of the comparative analysis of the Black-Scholes-

Merton model and the Heston model. It includes a discussion of the model parameters,

goodness-of-fit measures, and statistical tests used to evaluate the performance of both

models.

4.1. In-sample Pricing Performance

The in-sample performance was measured by training a variety of option pricing meth-

ods. All models used S&P500 Index call option data for each period by minimizing the

sum-of-squared error between the market and estimated prices. Table 2 reports the root

mean-squared errors (RMSEs) defined by:

RMSE =

√√√√ 1

N

N∑
i=1

(Ct,i − Ĉt,i)2,

respectively for each method.

Table 2

In-sample pricing errors: each model is optimized by minimizing the sum of squared

pricing errors. The reported root-mean-squared error is the differences between the model

price and the market price in a given moneyness-maturity category. The columns are

divided into ‘days-to-expiration’. Moneyness denotes S/K. BSM and Heston stands

for Black–Scholes-Merton model and Heston model, respectively. The best performance

results for each category are shown in bold.

Pricing Errors (RMSE)

Moneyness

(S/K)

Model τ < 1 month 1 month ≤ τ < 3 months τ ≥ 3 months

<0.95 BSM 0.657 3.278 8.158

Heston 1.605 5.626 14.044

[0.95,1.05[ BSM 5.818 10.584 12.957

Heston 4.010 4.007 9.066

≥1.05 BSM 2.390 7.586 10.583

Heston 1.763 2.611 2.011

31



For ITM options, the Heston model consistently demonstrates superior accuracy with

significantly lower RMSE values, particularly for shorter maturities. This highlights the

Heston model’s ability to capture the dynamics of ITM options with precision, making

it a preferred choice for risk assessment, investment strategies, and valuation in these

scenarios.

On the other hand, for ATM options, the Heston model shines as well, boasting

consistently lower RMSE values across all maturities. This finding underscores the Heston

model’s strength in predicting ATM option prices and suggests that it can be a robust

tool for market practitioners seeking accurate pricing for these options.

However, it’s essential to note that for ATM options with maturities extending beyond

three months, the Heston model’s RMSE values show a noticeable increase, indicating

potential limitations in capturing long-term dynamics. In such cases, the choice between

the BSM and Heston models may require careful consideration of the specific analysis

context and time horizon.

For OTM options, the BSM model consistently outperforms the Heston model, as

indicated by significantly lower RMSE values across various time horizons. This suggests

that the BSM model provides more accurate pricing for OTM options, especially for

longer maturities. The BSM model’s ability to maintain better accuracy in OTM option

pricing underscores its suitability for risk assessment, investment strategies, and valuation

in these specific OTM scenarios, particularly when considering longer-term positions.

In conclusion, the data underscores that the Heston model is a strong choice for both

ITM and ATM options, especially for shorter maturities. This underscores its applica-

bility in various financial applications. Yet, for ATM options with extended maturities,

it is important to be mindful of potential limitations and evaluate the trade-off between

model accuracy and computational complexity. However, when addressing OTM options,

the BSM model consistently outperforms the Heston model, especially for extended ma-

turities. This outcome underscores the BSM model’s superior accuracy in OTM option

pricing, particularly in longer-term scenarios. Researchers, analysts, and financial pro-

fessionals should weight these factors when selecting an option pricing model that aligns

with their specific objectives and time horizons.
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4.2. Results of the Statistical Tests

Table 3

Comparison statistics for pricing errors. Provides the 95% significance level of the differ-

ence between BSM model and Heston model. DM-test and WS-test denotes each p-value

from the results of each statistical test. The significant results α = 0.5 are shown in bold.

Moneyness Test τ < 1 month 1 month ≤ τ < 3 months τ ≥ 3 months

OTM DM-test (0.0000) (0.0000) (0.0000)

WS-test (0.0000) (0.9200) (0.0000)

ATM DM-test (0.0000) (0.0000) (0.0000)

WS-test (0.0000) (0.0000) (0.0000)

ITM DM-test (0.0000) (0.0000) (0.0000)

WS-test (0.0000) (0.0000) (0.0000)

The combined results of the Diebold-Mariano (DM) test and the Wilcoxon signed-rank

test provide robust evidence of substantial differences in forecasting accuracy between the

Heston model and the BSM model across a range of maturities and moneyness levels.

For ITM, ATM and OTM options, both the DM and Wilcoxon tests consistently

yield highly significant results, indicating a marked divergence in forecasting performance.

While the direction of these differences may vary, the agreement of both tests underscores

the significant disparities between the models for ITM, ATM and OTM options. These

disparities necessitate careful consideration in selecting the appropriate model, taking into

account the specific context and the intended use of forecasts.

The convergence of findings from both tests underscores the significance of model

selection and its implications for financial analysis and decision-making. Researchers and

financial professionals must weight not only the statistical significance of the differences

but also the practical implications, potential sources of bias, and model assumptions.

Ultimately, the choice of model should align with the specific objectives and constraints of

the analysis, recognizing the distinct strengths and limitations of each model in capturing

market dynamics.

For OTM options with maturities between 1 month and 3 months, the Wilcoxon

signed-rank test suggests that there is no statistically significant difference in performance

between the Heston and BSM models. The data does not provide enough evidence to

conclude that one model outperforms the other for this specific scenario.

In conclusion, the combination of the Diebold-Mariano and Wilcoxon tests strengthens

the evidence of the forecasting accuracy differences between the Heston and BSM mod-

els, providing valuable insights for financial modeling, risk assessment, and investment

decision-making.
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CHAPTER 5

Conclusions

In conclusion, the empirical comparison of the BSM model and the Heston model in

the context of S&P 500 index options has provided valuable insights into the pricing and

risk assessment of these complex financial instruments. Through an extensive analysis of

historical data and option pricing methodologies, this master thesis has shed light on the

strengths and weaknesses of each model.

Our research has shown that the BSM model, while simplistic and easy to implement,

falls short in accurately capturing the dynamics of S&P 500 index ITM and ATM op-

tions. Its assumptions of constant volatility and deterministic paths do not fully reflect

the inherent stochastic nature of financial markets, leading to significant pricing errors,

especially during periods of high volatility and extreme market events.

On the other hand, the Heston model, with its incorporation of stochastic volatility,

has demonstrated superior performance in capturing the dynamic nature of S&P 500

index ITM and ATM options. It better accounts for changes in implied volatility over

time, making it more suitable for pricing options in both calm and turbulent market

conditions. However, it is essential to note that the Heston model’s complexity and

computational intensity may present challenges in real-time trading environments.

It’s worth noting that, in our analysis, the BSM model has demonstrated superior

performance for OTM options when compared to the Heston model. This suggests that

for OTM options, the BSM model may offer a more suitable pricing approach, considering

its relative simplicity and reasonable accuracy.

Furthermore, this research has highlighted the importance of model calibration and

parameter estimation when employing the Heston model, as inaccurate parameter values

can lead to suboptimal results. Additionally, the choice of numerical methods for solving

the Heston model equations can significantly impact computational efficiency.

In summary, the choice between the BSM and Heston models for pricing S&P 500

index options depends on the specific requirements of market participants. While the

BSM model may suffice for some simplistic applications, the Heston model offers a more

accurate representation of option pricing dynamics, especially for sophisticated investors

and risk managers seeking to navigate the complexities of modern financial markets.
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