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Resumo 

 

Este estudo tem como objetivo investigar a dinâmica do preço e volatilidade da Bitcoin. O 

primeiro passo da análise consiste em examinar os retornos diários da Bitcoin, identificando 

uma série temporal estacionária com clusters de volatilidade acentuada. Essas características, a 

par com (a)simetria e a (não)uniformidade da dispersão identificadas, sugerem a adequação do 

uso de modelos ARCH/GARCH para a análise estatística. 

Para determinar o modelo mais apropriado, são avaliados diversos modelos GARCH, 

EGARCH e modelos GARCH com variáveis exógenas. A avaliação inclui uma análise 

cuidadosa dos valores de AIC e BIC e a interpretação dos coeficientes dos parâmetros dos 

modelos. A significância estatística dos coeficientes confirma o impacto dos retornos passados 

ao quadrado e das variâncias condicionais na volatilidade atual. 

O estudo culmina numa análise detalhada da previsão do Value at Risk, (VaR), sendo que 

o modelo EGARCH (1,1) com distribuição t-student se destaca como o mais eficaz na captura 

do VaR dos retornos da Bitcoin, com base no número de quebras identificadas a níveis de 

confiança de 99% e 95%. A pesquisa destaca a importância de escolher um modelo que esteja 

alinhado com o perfil de risco e os objetivos de investimento do utilizador. No entanto, também 

reconhecemos algumas limitações no nosso estudo, como a incapacidade de usar uma variável 

exógena na previsão da VaR e a necessidade de métodos computacionais mais avançados em 

futuras investigações. 
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Abstract 

 

This study aims to investigate the dynamics of Bitcoin’s price and volatility. The analysis 

begins by examining Bitcoin’s daily returns, identifying a stationary time series with 

pronounced volatility clusters. These characteristics, combined with (a)symmetry and 

(non)uniform dispersion, suggest the suitability of ARCH/GARCH models for statistical 

analysis. 

To determine the most appropriate model, a range of GARCH, EGARCH, and GARCH 

models with exogenous variable models are evaluated. The assessment includes a careful 

examination of AIC and BIC values and the interpretation of the coefficients of the model 

parameters. The statistical significance of coefficients confirms the impact of past squared 

returns and conditional variances on current volatility.  

The study culminates in a detailed analysis of Value at Risk (VaR) forecasting, with the 

EGARCH (1,1) model with a Student’s-t distribution emerging as the most effective in 

capturing Bitcoin returns’ VaR, based on the number of exceedances identified at 99% and 95% 

confidence levels. The research underscores the importance of choosing a model that aligns 

with the user’s risk profile and investment goals. However, it also acknowledges some 

limitations, such as the incapacity of using the exogenous variable in VaR forecasting and the 

potential for more advanced computational methods in future investigations. 
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CHAPTER 1 

Introduction 

 

Financial time series data exhibits distinctive characteristics and stylized facts that reveal the 

need for advanced modeling techniques to capture the inherent complexity of this kind of times 

series. This research delves into the realm of volatility, an essential component of financial 

markets and risk assessment.  

In recent years, the landscape of financial markets has witnessed a significant 

transformation, with the emergence of cryptocurrencies as a novel and dynamic asset class. 

This surge has been particularly driven by the unparalleled dominance of Bitcoin. Being 

inherently volatile assets, gaining a comprehensive understanding of the dynamics of 

cryptocurrency volatility holds paramount significance. This understanding has practical 

implications, influencing investment strategies, risk management, derivative valuation, and 

even public and private policy decisions (Aharon et al., 2023). The influence of 

cryptocurrencies extends beyond their intrinsic characteristics, as they are interconnected with 

other global financial markets. This interrelation is particularly evident in the context of crude 

oil, a vital and geopolitically significant resource that holds a dominant position within the 

energy market (Zhang & Ji, 2019).  

From the literature consulted, it is our understanding that major cryptocurrencies exhibit 

the specific statistical characteristics that provide a rationale for the widespread adoption of 

Autoregressive Conditional Heteroskedasticity (ARCH) and its more evolved counterpart, 

Generalized ARCH (GARCH) models and Exponential GARCH (EGARCH) models. For the 

purpose of this study, we will adopt Bitcoin as the focus of our analysis. 

 The innovative factor of this thesis relates to the use of exogenous variables to predict 

the Bitcoin’s daily returns volatility and VaR forecast. The exogenous variable taken into 

account was the also highly volatile asset: crude oil. By analyzing the dynamics of Value at 

Risk, we seek to improve our understanding of the risk assessment and management of these 

digital assets, thus contributing to the broader field of financial economics. 

In the subsequent sections, we will first introduce the core concepts relevant to depict a 

theoretical framework on this topic in chapter 2. In chapter 3, we will summarize the empirical 

findings from studies conducted in the context of financial time series volatility using GARCH 

models. In chapter 4 we will present and describe the data used to achieve this study and in 
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chapter 5 we will describe the results reached through our data analysis. Finally, in chapter 6, 

we will elaborate our conclusions and recommendations for further research on this topic. 
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CHAPTER 2 

Theoretical Framework 

 

2.1. Cryptocurrencies 

Initially emerging as specialized assets utilized within small online communities, 

cryptocurrencies have transitioned into the mainstream, capturing the interest of both financial 

professionals and the public (Bergsli et al., 2022a). Digital currencies play an important role on 

making electronic payments easier, given that they eliminate the need of a bank (or other third 

party) intermediation. (Panagiotidis et al., 2022).  

Recently, the cryptocurrency market has experienced a fast growth in volume and number 

of tradable coins, thus capturing the attention of several shareholders such as governments, 

investors, firms, and the public (Fung et al., 2022). The total market capitalization of the asset 

class increased significantly, soaring from $295 billion in March 2018 to a staggering $1.5 

trillion by March 2021, primarily driven by the unquestionable supremacy of Bitcoin (Fung et 

al., 2022). Cryptocurrencies share multiple characteristics with precious metals, such as safe 

haven, hedge, and diversification for risk assets (Corbet et al., 2020). Specifically, the hedging 

capability of precious metals is usually compared to Bitcoin (Dyhrberg, 2016). 

Cryptocurrencies are inherently volatile assets. Unlike other currencies, cryptocurrencies 

operate independently and are not tied to any national economy (Bergsli et al., 2022). Recent 

studies have evidence that the volatility generated in cryptocurrency markets transmits to other 

financial markets worldwide (Hsu et al., 2021; Uzonwanne, 2021). Gaining insight into the 

dynamics of this asset category volatility is essential for “investment, hedging strategies, and 

derivative valuation in financial markets as well as for public and private policymaking” 

(Aharon et al., 2023).  

Some of the most relevant specificities of cryptocurrencies compared to other fiat 

currencies (i.e., any form of currency declared by the government as an acceptable form of 

transaction) are their higher return and volatility profile (Fung et al., 2023). In fact, several 

studies found significant excess volatility of Bitcoin relative to the US dollar and the S&P 500 

index (Baumöhl, 2019; Charfeddine et al., 2020) 

Across the literature, evidence can be found that major coins exhibit non-zero skewness, 

heavy tails, excess volatility relative to assets like gold and the US dollar, long-memory, and 

volatility persistence (Fung et al., 2022), which justifies the generalized use of GARCH modelto 



 

4 
 

depict the volatility of Bitcoin and other cryptocurrencies. Aharon et al. (2023), revisits 

evidence from literature that shows that major cryptocurrencies present an inverse asymmetrical 

volatility: positive shocks increase price volatility more than negative ones. 

Being the most popular cryptocurrency and having a large amount of historical data, we 

chose Bitcoin as the focus of this study. However, there is evidence that cryptocurrencies are 

highly correlated (Bergsli et al., 2022), thus some of this study’s conclusions can be inferred 

for other cryptocurrencies. 

 

2.2. Crude oil prices and their predictive capacity 

Crude oil is a vital resource with major global geopolitical and economic significance and 

assumes a dominant place in the energy market (Zhang & Ji, 2019). It is possible to prove that 

a crude oil shock can affect investors’ willingness to hold Bitcoin (Bruno & Shin, 2015). 

Studying the interactions between these two variables is necessary since it can profoundly 

impact economic stability and influence investor behavior and policy decisions.  

As an energy market, crude oil prices have the power to affect Bitcoin prices, which is also 

observed for other commodity markets (Okorie & Lin, 2020). The study of the relation between 

these two asset classes is particularly interesting, given that cryptocurrency mining is a process 

that consumes significant amounts of energy resources. 

 

2.3. Volatility and Financial Time Series Analysis 

Volatility can be defined as the level of variation of the price of an asset over time and is used 

to quantify the risk of the asset category. It is usually obtained from calculating the annualized 

standard deviation of the daily, weekly, or monthly variations and presented as a percentage. 

As volatility measures the deviations about the mean, the values will be closer to the mean, the 

smaller the volatility value is. 

Statistically, a time series is a set of sequential observations made over time. In contrast to 

linear regression models, in which the observation order does not impact on subsequent 

analysis, the same cannot be said for time series: the order of the collected data is crucial. Time 

series are characterized by large data size, presenting high dimensionality, and their continuous 

update. One must consider time series as a whole since “unlike traditional databases where 

similarity search is exact match based, similarity search in time series data is typically carried 

out in an approximate manner” (Fu, 2011).  
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Volatility cannot be directly observed; thus in order to estimate its behavior, it must be 

modelled. Volatility estimation models must focus on capturing persistence, mean reversion, 

the impact of positive and negative shocks, and the influence of exogenous variables. Literature 

suggests that asset returns time series exhibit peculiar characteristics: an asymmetrical 

distribution with heavy tails and negative skewness (Durante et al., 2015).  

In the context of financial time series modeling, it is assumed that returns have a 

deterministic component (including seasonality, trends, and specific relationships with other 

variables) and a stochastic component (that captures the unpredictable part of a variable’s 

behavior). The stochastic component is usually modeled according to statistical methods and is 

typically associated with volatility.  

The most relevant stylized facts (i.e., the common behavioral patterns across different 

markets) identified throughout the study of the stochastic component of the volatility of 

financial assets are non-normality, limited evidence of short-term predictability in returns, and 

strong evidence of predictability in squared returns (Guo, 2022). Across the literature, there is 

evidence that major cryptocurrencies exhibit non-zero skewness, heavy tails, excess volatility 

relative to assets like gold and the US dollar, long-memory, and volatility persistence (Fung et 

al., 2022), which justifies the generalized use of GARCH models to depict these currencies 

volatility. 

 

2.4. ARCH/GARCH models 

Prior to Autoregressive Conditional Heteroskedasticity (ARCH) models, the existing 

econometric models assumed “a constant one-period forecasting” (Engle, 1982). The ARCH 

model introduced by Engle was built upon “serial uncorrelated processes with non-constant 

variances conditional on the past, but non-constant unconditional variances” (Engle 1982). The 

first application of this model goal was to estimate the volatility of United Kingdom inflation. 

The author demonstrated that the variance of inflation shocks was not constant but dependent 

on past shocks. For return series that follow the stationary process (as in eq.1), when the aim is 

to define the conditional variance, the underlying processes of the considered shocks (Et) to the 

returns must be specified (McAleer, 2014). Recurring to the ARCH framework, the conditional 

variance can be defined as a constant unconditional variance and a function of past errors and 

is specified in the following way:  

𝑟𝑡 = 𝜇 + 𝜀𝑡 , 𝜀𝑡 =  𝑧𝑡𝜎𝑡 

 Eq (1) 
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𝜎𝑡
2 = 𝜔 +  ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑝

𝑖=1

 

  Eq (2) 

Where 𝑟𝑡 represents the return series,  the mean and 𝜀𝑡 the error term. To ensure that the 

conditional variance is not negative, we must assume as parametric constraints 𝜔 > 0 and 𝛼𝑖 ≥

0, with 𝜔 being the constant term and 𝛼𝑖 representing the shock. In financial modeling, the 

constant term represents the average level of volatility that the model assumes when we do not 

take into account other variables. The ARCH model is symmetric, which means that positive 

and negative shocks of the same size will impact the conditional variance equally in magnitude.  

A few years later, in 1986, Bollerslev suggested improving Engle’s work and introduced 

the Generalized ARCH (GARCH) model. The first application of this model focused on 

predicting the conditional variances of US quarterly inflation rates from 1948 to 1983, and it 

was proven a success mainly due to the model’s “ability to succinctly capture volatility 

clustering in financial rates of returns” (Bollerslev, 2023) and thus allowing for more flexibility 

than the traditional ARCH. This is achieved by including lagged conditional variances in the 

model equation, as follows: 

𝜎𝑡
2 = 𝜔 +  ∑ 𝛼𝑖𝜖𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

  Eq (3) 

This model adopts the parametric restrictions that 𝜔 > 0; 𝛼𝑖 > 0 ∀ 𝑖; 𝛽𝑗 ≥ 0 ∀ 𝑗; to ensure 

that the conditional variance is always non-negative and 𝛼𝑖 + 𝛽𝑗 < 1 ∀ 𝑖, 𝑗 to guarantee that the 

covariance process is stationary. As ARCH, the GARCH model is symmetric and presents the 

same response for positive and negative shocks. 

 

2.5. EGARCH 

Financial data commonly displays asymmetric volatility, i.e., positive and negative shocks 

affect volatility differently. Nelson (1991) proposed EGARCH models to account for 

asymmetric volatility specifically. An EGARCH model can be described as follows: 
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ln 𝜎𝑡
2 =  𝜔 +  ∑ 𝛼𝑖(|𝑒𝑡−𝑖| − √2

𝜋⁄ )

𝑝

𝑖=1

+ ∑ 𝛾𝑒𝑡−𝑗 +

𝑗=1

∑ 𝛽𝑘ln

𝑞

𝑘=1

𝜎𝑡−𝑞
2   

  Eq (4) 

Where ln 𝜎𝑡
2 is the natural algorithm of the conditional variance at time t, ω is the constant 

term, 𝑒𝑡−𝑗 represents the past squared returns at time t-j and |𝑒𝑡−1| its absolute value. For a 

better understanding of the equation, we can look at the expressions one step at a time: 

∑ 𝛼𝑖(|𝑒𝑡−𝑖| − √2
𝜋⁄ )

𝑝

𝑖=1

 

  Eq (4.1) 

∑ 𝛾𝑒𝑡−𝑗

𝑗=1

 

  Eq (4.2) 

∑ 𝛽𝑘ln

𝑞

𝑘=1

𝜎𝑡−𝑞
2  

  Eq (4.3) 

The term represented in equation (4.1) takes into consideration the asymmetric effect of 

past return shocks on volatility. The parameter 𝛼 represents the coefficients for past squared 

returns (𝑒𝑡−1). The absolute value of 𝑒𝑡−1 ensures that both positive and negative shocks are 

being considered. The 2nd part of the equation (Eq. (4.2)) deals with the impact of past 

conditional variances on the current volatility and coefficient γ measures how past conditional 

variances affect the current volatility. Finally, through equation (4.39), the model controls how 

past logarithms of conditional variances influence the current volatility. 

 

2.6. Value at Risk Forecasting 

In times of extreme uncertainty, such as the 2008 global financial crisis, they revealed the 

importance of improving the quality of forecasts of risk measures. Firstly, introduced in the 

nineties, this risk measure arose to quantify exchange risk. In the banking sector, Basel 
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Committee on Banking Supervision has determined VaR to be the best approach to decide on 

minimum capital requirements for market risk (Thavaneswaran et al., 2020). 

 Value at Risk (VaR) is one of the most recognized and used financial risk measures, and 

it elaborates an estimate of the potential loss in value of a portfolio of assets over a given period 

at a specified confidence level (Owusu Junior et al., 2022). VaR correct computation is crucial 

for the estimation of other quantile-based risk measures. Its construction requires a quantile 

estimate of the far-left tail of the unconditional returns distribution (Braione & Scholtes, 2016). 

In this sense, VaR can be defined as the loss in a traded asset portfolio, such that there is a 

given probability (p) of losses equal or superior to the VaR in the specified transaction period 

and a probability of (1-p) of losses that are less than the VaR. Thus, VaR can be obtained by  

𝑃[𝑄 ≤  − 𝑉𝑎𝑅(𝑝)] = 𝑝 

  Eq (5) 

VaR consists of three parameters: the confidence level, time horizon and a given value. The 

confidence level (that in this study will be calculated at 95% and 99%) determines the level of 

certainty associated with the risk measurement. The higher the confidence levels, the greater 

the losses will be. For example, when we consider a 99% VaR, we expect that for each 100 

VaR observation at least once, the financial investment loss will be greater than the one 

estimated recurring to VaR. The time horizon stems for the time interval under analysis; the 

greater the horizon, the greater the loss. Finally, the given value is the monetary value that is at 

risk for loss during the time horizon at the proposed confidence level. 

There are various methods for calculating VaR, but the most frequently used ones are the 

parametric approach, the historical simulation and the Monte Carlo Simulation. The parametric 

approach is built upon the premise that asset returns follow a certain probability distribution 

(such as normal or t-student distribution) that estimates VaR based on statistical properties (like 

mean and standard deviation). The historical simulation method recurs to the historical data 

price of the asset, calculating the potential losses over the selected time horizon in the past, 

using the historical losses to compute the future potential losses. The Monte Carlo approach 

follows a method that generates many possible scenarios for the asset price and calculates VaR 

through the distribution of simulated returns. In our study, the method selected to conduct the 

VaR forecasting of Bitcoin returns volatility.  
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It is relevant to note that in the case of having actual losses in the portfolio that exceed the 

calculated value in the estimated loss, there is a break in VaR. Nevertheless, if the actual 

observed portfolio loss is above the estimated only a few times, it does not necessarily mean 

that the estimated VaR was a failure. When this happens, it is crucial to understand the 

frequency of these failures. 
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CHAPTER 3 

Literature Review 

 

In the following chapter, we will delve into the body of recent research on using 

ARCH/GARCH frameworks to model the volatility of Bitcoin and other cryptocurrencies and 

several volatile financial assets. 

The study led by Aharon et al. (2023) aimed to demonstrate the importance of considering 

structural breaks in volatility forecasting by using asymmetrical volatility models with 

endogenously detected structural breaks. The authors analyse the asymmetric volatility 

behavior of five cryptocurrencies: Bitcoin, Ethereum, Dogecoin, Ripple, and Monero, using as 

data the daily prices for the five currencies from May 2013 to April 2022. Structural breaks 

were detected using the modified iterative sums of squares (ICSS) algorithm. The results of this 

study show that there is a decrease in volatility persistence after incorporating structural breaks 

into asymmetric GARCH models. In fact, after considering structural breaks, the asymmetric 

behavior of all the considered cryptocurrencies increased (due to the increase in the value of 

the asymmetric term). 

Wei et al., (2023) used the GARCH-MIDAS model with the incorporation of 

cryptocurrency policy and price uncertainty (and other frequently used uncertainty measures) 

to compare the in-sample impacts and out-of-sample predictability of these uncertainty 

variables on the volatility forecast of gold and silver futures markets. The period considered 

was from January 2014 to May 2022. The authors used a GARCH-MIDAS model since this 

kind of model allows for different variable data frequencies (daily precious metals returns 

versus monthly uncertainty indices), with the further extension to a GARCH-MIDAS-X model, 

adding to the model an exogenous low-frequency impactor. The in-sample results of this study 

demonstrate that cryptocurrency uncertainty significantly impacts the volatilities of precious 

metal futures markets, and the out-of-sample results further confirm the predictive ability of 

cryptocurrency uncertainty on volatility forecasting of the precious metal market.  

Research conducted by Fung et al. (2022) acknowledges the rapid changes occurring in the 

cryptocurrency market and records the financial properties of assets, as well as identifies the 

most suitable models for describing volatility across a wide range of coins. Various previous 

studies disclosed the inefficiencies of the cryptocurrency market, yet, efficiency varies across 

time and individual coins. To address the literature gap, the authors analyzed data from 254 

cryptocurrencies organized by traded volume and usage categories (e.g., Finance, Blockchain, 
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Technology) and reported their adherence to stylized empirical facts of asset returns. The data 

collected refers to the period between March 2019 and March 2021. The authors modeled 

volatility using eight ARMA-GARCH models (Standard GARCH; TGARCH; AVGARCH; 

APARG; EGARCH; IGARCH; GJR-GARCH) and six distributions for the error term, resulting 

in 48 distinct specifications per coin. The authors examined the out-of-sample 1%-VaR 

forecasts for each model specification using standard back-testing procedures. As expected, the 

authors concluded that GARCH models accounting for the common features of 

cryptocurrency’s return behavior (long memory, conditional heteroskedasticity, heavy tails, and 

negative leverage effects) show evidence of the best goodness-of-fit properties. It is found that 

the TGARCH family presents the best goodness-of-fit for about one-third of the considered 

coins. The study also suggests that cryptocurrencies are well described by Student’s t error 

distributions, with these GARCH specifications accounting for 80% of the coins. On the 

contrary, the GARCH normal and skewed normal specifications are never chosen. 

Panagiotidis et al. (2022) recured to Markov Switching GARCH models with the aim of 

identifying structural changes in the volatility of the cryptocurrencies without a previous 

specification at the time of the change. MS-GARCH models incorporate regime switching 

dynamics, i.e., changes in the market regimes, that affect volatility. The main conclusions 

reached were that when we look at the data tested, it seems that MSGARCH models fit the data 

better for over half of the cryptocurrencies studied. Additionally, when predictions are made 

using MSGARCH models, they turn out to present a higher degree of accuracy more than 60% 

times. For a given number of regimes and a given conditional distribution, the EGARCH model 

provides worse results than GARCH and TGARCH models, both in- and out-of-sample. The 

analysis of two asymmetric models (EGARCH and TGARCH) evidence the presence of 

negative leverage effect in most of the considered cryptocurrencies, indicating that positive past 

returns have a greater impact on the volatility of cryptocurrencies compared to the negative past 

returns, as found in other authors work (Fung et al., 2022).  

Over the years, several studies (Kang & Yoon, 2013; Lu et al., 2014; Wu & Shieh, 2007) 

evidenced that the market risk of commodity futures contracts time series presented 

characteristics commonly observed in spot price time series (non-normality, non-zero skewness 

and volatility clustering), thus it makes sense to apply GARCH models to estimate their Value 

at Risk (VaR). Following the same approach, Guo (2022) applied GARCH models for the risk 

management of Bitcoin futures, using close price daily data from December 18, 2017 to 

December 4, 2020. One of the key findings of this study was that heavy-tailed distributions 

perform better than the normal distribution predicting the Bitcoin futures returns and that, by 



 

 

comparing the three used distributions (Student’s t, Non Inverse Gaussian (NIG) and Normal 

distribution) “the NIG distribution has the best in-sample performance” (Guo, 2022). The 

author considers that “it is more important to introduce a heavy-tailed distribution than select a 

type of GARCH models” (Z. Y. Guo, 2022).  

To comprehend and forecast the price volatility of Bitcoin, Bergsli et al. (2022) considered 

two types of models: heterogeneous autoregressive (HAR) models and generalized 

autoregressive conditional heteroskedasticity (GARCH) models. The data used was the daily 

price of Bitcoin from 1-Jan-14 to 19-Sep-18, providing a total of 1720 observations. GARCH 

models were estimated using daily returns data, and HAR models were estimated using the 

realized variance calculated from high-frequency data. The effectiveness of the models is 

assessed by the authors using realized variance as a stand-in for genuine variance. The retracted 

conclusions state that EGARCH and APARCH exhibit greater performance among the 

employed GARCH models. The authorsconsider that Heterogeneous Autoregressive models 

(HAR) perform better than even the best performing GARCH models. 

Jara & Piña (2023) used a combined approach to assess the efficacy of FX interventions. 

The authors apply this methodology to analyze five FX interventions observed in Chile since 

the adoption of a fully flexible exchange rate regime in September 1999, including the 

intervention in 2019. It used a Markov-Switching GARCH model to calculate the likelihood of 

the exchange rate volatility to be in a high or low state, to assess if it is possible and effective 

to consider FX interventions for stabilizing exchange rate volatility. Additionally, the authors 

use a high-frequency local projection setting, taking various domestic and international 

financial factors into account as control variables so that it can determine the impact of FX 

interventions on exchange rate volatility and on the volatility states and their persistence over 

time. According to the authors, the most effective model to study Chile’s exchange rate 

volatility is a switching regime model built on an ARMA (0,1)-EGARCH(1,1) model 

characterized by a persistent low-volatility state. 

Venter & Maré (2022) research was focused on the suitability of a GARCH option pricing 

model applied to price discovery in volatility index option markets (Chicago Board Options 

Exchange (CBOE) Volatility Index (VIX)). This study used futures price data obtained from 

CBOE and included the following delivery dates: 19-Aug-20, 16-Sep-20, 21-Oct-20, and 18-

Nov-20. However, the author remarks that it is important to utilize error distributions that 

integrate skewness and kurtosis to accurately model the risk-neutral dynamics. The results of 

this study corroborate those of earlier studies, showing that the GARCH option pricing model 

can be a valuable instrument for analyzing the pricing dynamics of volatility index options. 
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Notably, the authors stressed the importance of including error distributions that take skewness 

and kurtosis into account to accurately describe risk-neutral dynamics. This emphasizes the 

need to consider different error distributions.  

Segnon et al. (2023) contributed to the literature by studying the impact of geopolitical risks 

in forecasting future stock market volatility by resorting to an autoregressive Markov-switching 

GARCH mixed-data-sampling (AR-MSGARCH-MIDAS) framework, considering Dow Jones 

Industrial Average (DJIA) prices and monthly GPR observations from January 1900 until 31 

March 2022 (around 33,000 daily and 1467 monthly observations). The model adopted 

considers nonlinearities, volatility regime shifts, and the impact of geopolitical risks and 

macroeconomic variables, separating volatility into short-term components (day-to-day 

liquidity concerns) and long-term components (monthly observations on geopolitical risk and 

other macroeconomic variables). For the out-of-sample analysis, the authors employed equal 

predictive ability (EPA) tests, constructed model confidence sets, and used forecast-

encompassing tests for model selection.  The authors discovered that non-Markov-switching 

models benefit from the addition of GPRs when predicting the volatility of the US stock market 

one to four months in advance, resulting in considerable accuracy gains. On the other hand, the 

impact of geopolitical concerns on predicting one-month-ahead stock market volatility is 

minimal when using superior Markov-switching MIDAS prediction models that more 

effectively account for nonstationary features and volatility regime changes. Overall, the 

study’s findings demonstrated that the effect of geopolitical risk will vary depending on how 

well the model can account for regime changes and nonstationary characteristics of the data. 

To understand the volatility of crude oil prices Zhao, (2022) addresses the multifaceted 

challenge of comprehending both short-term and long-term factors influencing oil price 

fluctuations and assessing the varying impacts of these factors on different types of oil, such as 

WTI and Brent crude oil. Employing a Mixed Data Sampling (MIDAS) framework, which 

accommodates high and low-frequency data integration, the study delves into four distinct 

categories of influencing factors: commodity attributes, financial factors, geopolitical events, 

and alternative energy. A Lasso (Least Absolute Shrinkage and Selection Operator) approach 

is used to address multicollinearity issues in the model. Notably, it identifies that the impact of 

these factors can evolve over time, emphasizing the need for a dynamic perspective on oil price 

volatility. Furthermore, the study introduces the innovative use of the Lasso approach to 

mitigate multicollinearity issues in the model. The results reveal that incorporating geopolitical 

risk, economic policy uncertainty, and alternative energy dynamics significantly enhances the 

prediction of oil price volatility, particularly in a Markov-switching MIDAS model, shedding 



 

 

light on the nuanced nature of oil market dynamics and presenting a valuable tool for investors 

and policymakers alike. 

The study led by Guo et al. (2023) assesses the impact of climate policy uncertainty (CPU) 

and climate-related disasters on natural gas futures price volatility, aiming to understand and 

quantify these risks in the energy market context. To address this issue, the authors employed 

the GARCH-MIDAS model, selecting daily natural gas futures as a proxy for energy futures 

due to its global energy significance and lower carbon emissions. Monthly climate policy 

uncertainty indices represent transition risk, while climate-related disasters (measured through 

their monthly frequencies) serve as indicators of physical risk. The data sample period was from 

January 1, 1991, to July 29, 2022. It is concluded that the GARCH-MIDAS model is well-suited 

to manage monthly CPU indices and disaster frequencies in conjunction with daily natural gas 

futures prices, facilitating a comprehensive analysis of climate risk factors in the market. The 

empirical results reflect that CPU and disaster frequency significantly impact the secular 

component of natural gas futures price volatility, evidencing good tracking power on in-sample 

volatility. However, regarding predictive scenarios, only disaster frequency could increase the 

accuracy of volatility predictions. 

Liang et al., (2022) study, contributed to the literature by introducing extreme weather 

factors within the GARCH-MIDAS framework for the predictability of natural gas market 

volatility. Additionally, an extended GARCH-MIDAS-ES model is introduced to account for 

the impact of extreme shocks (ES). The empirical findings prove that including weather 

indicators in predictive models enhance their performance in forecasting natural gas market 

volatility and that certain extreme weather events provide valuable information for improved 

prediction. 

The study led by Salisu et al. (2022) explores the predictive role of the global financial 

cycle (GFCy) on crude oil returns volatility, resorting to a GARCH-MIDAS framework. This 

model is used due to the simultaneous work on different frequency variables: predicting high-

frequency daily oil market volatility using low-frequency global predictors, specifically the 

monthly GFCy index. The study compares the GARCH-MIDAS-GFCy model’s predictive 

performance with the conventional GARCH-MIDAS-RV model, assessing their robustness to 

varying risk aversion and leverage ratios. The authors found that the GARCH-MIDAS-GFCy 

model consistently outperforms the conventional GARCH-MIDAS-RV model across various 

measures of oil market volatility and forecasting horizons. What’s significant is that this 

outperformance remains robust even when considering different levels of risk aversion and 

leverage ratios. These results underscore the substantial predictive value and economic 



 

16 
 

importance of the global financial cycle in forecasting energy market volatility. This suggests 

that leveraging a common factor that influences global asset prices, as captured by the GFC, 

proves highly effective in forecasting low-frequency energy market returns volatility. 

Aware of the complexity of achieving an accurate streamflow prediction and its importance 

in the contexts of water resource management, flood control, and infrastructure development, 

Wang et al. (2023) developed an ARIMA-MS-GARCH model, which considers both structural 

breaks and regime changes in streamflow time series to improve prediction accuracy. In terms 

of methodology, the authors identified structural breaks using the Bai and Perron test, 

distinguishing different fluctuation states and inferring future streamflow fluctuations based on 

calculated regime change probabilities. The findings of this study reveal that when structural 

breaks and regime changes are considered, the accuracy of streamflow prediction significantly 

increases. 

 



 

 

 

CHAPTER 4 

Data 

4.1. Bitcoin 

The aim of this study is to construct a GARCH model that forecasts and estimates the volatility 

and VaR of Bitcoin. It is under our consideration to study the daily volatility of Bitcoin, and we 

will take the closing price to compute the daily return of Bitcoin, i.e. the percentual change 

registered in Bitcoin closing prices. 

The Bitcoin data was collected from Yahoo Finance and it is publicly available. The sample 

period considered was from 1 January 2017 to 30 June 2023, generating a sample of 2369 

observations. This time interval was selected since it includes the 2018 financial crisis, the 

COVID-19 pandemic and the Russia-Ukraine conflict.  

 

Figure 1: Evolution of Bitcoin daily closing prices (USD) between 01/01/2017 and 30/06/2023 

From the observation of Figure 1, we can conclude that the evolution of Bitcoin closing 

prices for the selected period was not steady. Throughout 2017 the closing price increased 

consistently, reaching 20.000 USD in December. In 2018 it can be observed a downward trend, 

as a consequence of the financial crisis observed during this year, with a year-end closing price 

below 5.000 USD. During 2019 and the biggest part of 2020 Bitcoin price progressively 

increased, facing some fluctuations. For example, the generalized financial insecurity felt upon 

the emergence of the COVID-19 pandemic. On the transition from 2020 to 2021 Bitcoin prices 
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registered a remarkable growth, surpassing the closing price of 60.000 USD in April 2021, 

reaching its all-time high of approximately 68.000 USD by the end of the year. Around the first 

quarter of 2022 the closing price of Bitcoin decreased considerably, mirroring the effect of the 

Russia-Ukraine conflict. 

 

Figure 2: Evolution of Bitcoin daily returns between 01/01/2017 and 30/06/2023 

Focusing on the evolution of the daily returns of Bitcoin (Figure 2), the time series that we 

aim to study, we can easily observe that although the time series faces some fluctuations, it is 

largely stationary and presents volatility clusters i.e., the data is organized in groups of 

observations with high variances followed by other groups of high variances and the same 

applies for groups of low volatility tend to cluster together as well. 

To assess the asymmetry of the time series, we obtained the histogram depicted in Figure 

3 below. The obtained figure suggests that the time series data follows an almost symmetric 

distribution. The distribution resembles the shape of a bell, with the concentration of most of 

the data on the central zone of the histogram, around zero. This suggests that most observations 

present values close to the mean and the data dispersion is relatively uniform. The observed 

histogram indicates that the data follows a leptokurtic bell-shaped distribution.  



 

 

 

Figure 3: Bitcoin Daily Returns Histogram 

To gain an insight into the autocorrelation of the data, we generated a partial autocorrelation 

function (PACF) for the Bitcoin returns, considering a lag of 20. The obtained plot (Figure 4) 

suggests that the autocorrelation coefficients are close to zero, which indicates that at these lags, 

there is little evidence of substantial autocorrelation (conditional mean).  

 

Figure 4: Partial autocorrelation of the Bitcoin Returns 

Given that the focus of our study is to address the volatility associated with Bitcoin Returns, 

we plotted the squared Bitcoin returns PACF (Figure 5), which exhibits the presence of points 

that extend beyond the confidence interval at lags 1, 3, 4, 7 and 16, evidencing that there is 

significant autocorrelation at these specific lags (conditional variance). This indicates that past 
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squared returns of these lags influence the current squared returns, highlighting the importance 

of accounting for temporal dependencies in volatility. In this sense, we conclude that adopting 

GARCH models for understanding and forecasting the volatility dynamics of Bitcoin returns 

and estimating financial risk is appropriate. 

 

Figure 5: Partial autocorrelation of the squared Bitcoin Returns 

4.2. Crude Oil 

For some of the models developed, we will use Brent crude oil prices as an exogenous variable. 

We will treat the data like we did for Bitcoin, by computing the daily return of crude oil using 

the Brent crude oil daily closing prices obtained from Yahoo Finance. We will consider the 

same period (1 January 2017 to 30 June 2023) and the sample size is 2369 as well. 

Crude oil is a volatile asset and its price can fluctuate due to a variety of factors: geopolitical 

events (such as territorial disputes), supply and demand dynamics, new energy policies, among 

others. During the considered period, crude oil prices witnessed the most significant increases 

during periods of considerable uncertainty. For example, the prices evidence a high degree of 

volatility during 2018, and in this year was marked by geopolitical tensions like the US 

withdrawal from the Iran nuclear deal, which contributed to supply concerns, that were reverted 

by the end of the year, since it was registered a downwards tendency. The prices in 2019 

remained approximately constant, recording small fluctuations, and it was at the time that the 

COVID-19 pandemic arose, that the greatest fall during the considered period is observed. This 

is justified by the lockdowns and travel restrictions impact on global supply. As the pandemic 

began to improve, with travel restrictions being lifted and the distribution of the COVID-19 



 

 

vaccine, the crude oil prices regained some value. In 2021, the Suez Canal blockage also created 

tension in the crude oil market. Throughout 2022 and 2023 the crude oil prices present a high 

volatility, mainly due to the Russia-Ukraine conflict and inflation pressures.  

 

Figure 6: Evolution of Crude Oil closing prices (USD) between 01/01/2017 and 30/06/2023 

As for Bitcoin prices, we computed the crude oil daily returns and obtained a largely 

stationary time series that also presents volatility clusters, as can be observed in Figure 7.  

 

Figure 7: Evolution of Crude Oil daily returns (USD) between 01/01/2017 and 30/06/2023 
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CHAPTER 5 

Results 

5.1. GARCH models - without exogenous variables 

Given that in the previous chapter, we detected the presence of ARCH effects in this time series, 

the following step will be to determine the efficiency of applying GARCH models to the 

considered data. We tested five prediction models for the Bitcoin returns volatility and 

compared their efficiencies. 

In the table below (Table 1), we present a summary of the coefficients obtained in each 

model: 

• Model 1 – GARCH (1,1) with a Student’s-t  distribution 

• Model 2 – GARCH (1,1) with a normal distribution 

• Model 3 – GARCH (2,2) with a Student’s-t  distribution 

• Model 4 – ARCH (1) with a Student’s-t  distribution 

• Model 5 – ARCH (3) with a Student’s-t  distribution 

 

Table 1: AIC and BIC of GARCH models 

• Model AIC BIC 

Model 1 – GARCH (1,1) 

Student’s-t  distribution 

12460.7 12489.6 

Model 2 – GARCH (1,1) 

normal distribution 

12960.0 12983.1 

Model 3 – GARCH (2,2) 

Student’s-t  distribution 

12464.7 12505.1 

Model 4 – ARCH (1) 

Student’s-t  distribution 

12661.8 12684.9 

Model 5 – ARCH (3) 

Student’s-t  distribution 

12605.0 12639.6 

 

The Akaike and Bayesian Information Criterion (AIC and BIC) are model selection criteria 

considering model complexity and fit goodness. AIC favors models that explain the data well 
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while keeping the number of parameters relatively low. On the other hand, BIC has a stronger 

penalty for model complexity than AIC, since it includes a term proportional to the logarithm 

of the sample size. When comparing GARCH models, lower AIC and BIC values indicate a 

better trade-off between goodness of fit and model complexity. As presented in Table 1, the 

model that shows the lower AIC and BIC values is Model 1, which represents a GARCH(1,1) 

model with a Student’s-t  distribution, followed by Model 2, a GARCH (2,2) with a Student’s-

t  distribution model. In this sense, we can conclude that the best kind of GARCH models for 

studying the volatility of Bitcoin returns are the ones that follow a t-student distribution, since 

returns distributions are asymmetric and leptocurtic. 

In the table below (Table 2), we present the parameter coefficients for each model. Every 

model includes an omega and an alpha coefficient at least. The omega estimated coefficient 

represents the constant volatility term, i.e., the component of the conditional variance that is not 

dependent on past returns or past conditional variances. The alpha coefficients represent the 

ARCH features of the model and capture the effects of squared past returns on the conditional 

variance. Simply, it reflects the volatility sensitivity to return’s recent shocks. The beta 

estimated coefficients are associated with the GARCH term and capture the volatility 

persistence.  

The first conclusion we can draw from the analysis of the p-values is that for each model, 

every estimated coefficient presents positive p-values, suggesting a direct relationship between 

past squared returns and  

Table 2: P-values of each GARCH model coefficient 

Model Omega Alpha 1 Alpha 2 Alpha 3 Beta 1 Beta 2 

Model 1 – GARCH 

(1,1) with a 

Student’s-t   

distribution 

0.183 6.448e-08   2.052e-

258 

 

Model 2 – GARCH 

(1,1) with a normal 

distribution 

2.668e-03 1.512e-04   1.430e-

141 

 

Model 3 – GARCH 

(2,2) with a 

0.205 6.059e-06 2.552e-03  0.755 6.978e-39 



 

 

Student’s-t   

distribution 

Model 4 – ARCH (1) 

with a Student’s-t   

distribution 

2.603e-08 4.431e-04     

Model 5 – ARCH (3) 

with a Student’s-t   

distribution 

2.650e-09 1.111e-03 3.021e-03 1.093e-03   

 

As mentioned previously, the model that presents the better goodness of fit according to 

both AIC and BIC criteria is Model 1. Looking at the p-values of the coefficients associated 

with Model 1, we can gain the following insights: 

• Omega () p-value of 0.183 > 0.05 indicates that the constant volatility term is not 

statistically significant. This suggests that the constant level of volatility does not 

significantly contribute to explaining the variation in Bitcoin volatility return. In 

this sense, we can assume that this model does not penalize the absence of a constant 

term. This observation aligns with a simpler model focusing primarily on capturing 

the volatility dynamics based on past returns and conditional variances. In simpler 

words, the model does not require a constant component to accurately describe the 

conditional variance. 

• Alpha (α) < 0.05 evidence that the impact of past squared returns on current 

volatility is statistically significant, i.e., extreme recent returns have a meaningful 

role in driving volatility, reflecting that when a significant price change occurs, the 

market will immediately respond. 

• Beta (β) < 0.05 indicates the statistical significance of past conditional variances. 

This coefficient captures the persistence of volatility, thus a significant and positive 

β means that the model correctively accounts for the long-term dependency of 

volatility, which is crucial for assessing the clustering of Bitcoin returns volatility. 

After Model 1, we can conclude that Model 3 (GARCH (2,2) with a t-student distribution) 

is the second-best option within this set of models, following the AIC and BIC figures. A closer 

analysis of its coefficient’s p-values leads to similar conclusions as for the GARCH (1,1) with 

a t-student distribution: omega () is not statistically significant since it is greater than 0.05; 
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alpha coefficient p-values (α1 and α2) and beta p-values (β2) are both smaller than 0.05, 

indicating that for this model the past returns and past conditional variances have a statistical 

significance impact.  

 

5.2. EGARCH models 

To account for asymmetry, we also tested EGARCH models’ suitability to study this time 

series. Table 3 below summarizes the AIC and BIC function results for each model: 

• Model 6 – EGARCH (1,1) with a Student’s-t  distribution 

• Model 7 – EGARCH (2,2) with a normal distribution 

• Model 8 – EGARCH (2,2) with a Student’s-t  distribution 

• Model 9 – EGARCH (1) with a Student’s-t  distribution 

• Model 10 – EGARCH (3) with a Student’s-t  distribution 

Table 3: AIC and BIC of EGARCH models 

Model AIC BIC 

Model 6 – EGARCH (1,1) 

Student’s-t  distribution 

12434.0 12462.9 

Model 7 – EGARCH (1,1) 

normal distribution 

12965.4 12988.4 

Model 8 – EGARCH (2,2) 

Student’s-t  distribution 

12434.5 12474.9 

Model 9 – EGARCH (1) t- 

Student’s-t  distribution 

12667.6 12690.7 

Model 10 – EGARCH (3) 

Student’s-t  distribution 

12629.3 12663.9 

 

Similarly to what was observed for GARCH models, the models that present the best 

goodness of fit according to both of these criteria are Models 6 and 8, representing respectively 

an EGARCH (1,1) and EGARCH (2,2) models that follow a Student’s-t  distribution. 

 



 

 

 

Table 4: P-values of each EGARCH model coefficient 

Model Omega Alpha 1 Alpha 2 Alpha 3 Beta 1 Beta 2 

Model 6 – EGARCH 

(1,1) Student’s-t  

distribution 

2.240e-03 1.717e-14   0.000  

Model 7 – EGARCH 

(1,1) normal 

distribution 

2.976e-04 2.417e-07   0.000  

Model 8 – EGARCH 

(2,2) Student’s-t  

distribution 

8.160e-03 1.369e-08 0.145  3.662e-11 0.857 

Model 9 – EGARCH 

(1) Student’s-t  

distribution 

5.788e-53 3.271e-10     

Model 10 – 

EGARCH (3) 

Student’s-t  

distribution 

2.688e-41 1.887e-08 2.463e-07 4.514e-04   

 

Delving into the p-values of the coefficients from the originated EGARCH models, we can 

conclude that the model with the best goodness of fit (according to AIC and BIC) presents p-

values that suggest a strong statistical significance of the coefficients: 

• Omega () p-value of 2.240e-03 < 0.05, thus, we can infer that including a constant 

term in our volatility model is statistically significant.  

• Alpha (α) and Beta (β) p-values are both below 0.05, indicating the statistical 

significance of past squared returns and past conditional variance. 

Although presenting suitable AIC and BIC functions, Model 8 will be rejected from our 

study since its α1 and β2 p-values are greater than 0.05, indicating that including more 

parameters in the model will most likely not improve and validate the model.  
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In this sense, along with Model 6, we will select for the forecasting analysis Model 10, an 

EGARCH (3) with a Student’s-t  distribution. This model was chosen because it presents the 

third lowest AIC and BIC, and the p-values of all its coefficients indicate statistical significance.  

 

5.3. GARCH models – with exogenous variables 

In this section, we will explore if considering crude oil prices as an exogenous variable increases 

the model’s suitability. We estimated two models: 

• Model 11 - GARCH (1,1) with Student’s-t  distribution (as identified in the previous 

section as the model with the best performance) 

• Model 12 - ARCH (2) with a Student’s-t  distribution. 

Comparing the two models with exogenous variables (Model 11 vs Model 12), we can 

conclude that the model that presents the best performance is Model 11, since it shows AIC and 

BIC values both smaller than the ones registered for Model 12. This means that, when 

considering an exogenous variable, including lagged conditional variances and accounting for 

volatility, persistence translates into a better performing model. 

Table 5: Comparison between Model 11 and Model 12 

 Model 11 Model 12 

AIC 12460.7 12625.8 

BIC 12488.8 12660.4 

Omega 0.195 2.41e-09 

Alpha 1 2.052e-07 7.435e-04 

Beta 1 2.004e-242 1.399e-03 

 

From Table 5, we can additionally describe the statistical significance of the coefficients of 

this new model. The results present similarities to the ones obtained in Model 1: the constant 

term (omega, ω) gives a p-value of 0.195, thus higher than 0.05 and both alpha (α) and beta (β) 

present p-values below 0.05, indicating that the impact of past squared returns and past 

conditional variances on current volatility is statistically significant.  

 



 

 

5.4. Volatility forecasting 

In this section, we will delve into the analysis of the Bitcoin volatility forecasting ability of 

each of the five models selected from the previous sections: 

• Model 1 – GARCH (1,1) with a Student’s-t  distribution 

• Model 3 – GARCH (2,2) with a Student’s-t  distribution 

• Model 6 – EGARCH (1,1) with a Student’s-t  distribution 

• Model 10 - EGARCH (3) with a Student’s-t  distribution 

• Model 11 – GARCH (1,1) with a Student’s-t distribution, considering an exogenous 

variable. 

We specify that 31st December 2021 is the last observation date for which the model was 

fitted. In this sense, the target data is the year 2022 and onwards. We extracted the conditional 

mean and conditional variance of Bitcoin conditional returns for the year 2022 and onwards, 

removing any missing values from the forecast. We calculated the 1% and 5% quantiles of the 

distribution specified in the models using the estimated parameters for the last observation in 

the dataset.  

Having the models adequately fitted and validated, we moved on to the Value at Risk (VaR) 

estimation for the Bitcoin returns in 2022 and 2023. To do so, we started by calculating VaR as 

the negative of the conditional mean minus the square root of the conditional variance 

multiplied by the quantiles. 

We created a plot of the VaR levels at 99% and 95% confidence levels and defined the 

colour of scatter points based on whether Bitcoin returns exceed the VaR thresholds. The line 

depicted in blue represents the VaR at a 99% confidence level, and the line in orange represents 

the VaR at a 95% confidence level. The scatter points represent specific time series values in 

the selected period. The points are black if there is no exceedance, i.e., the actual returns did 

not fall below the VaR estimate. The red scatter points reflect when there is a 1% exceedance 

and translate into losses worse than expected for 1% of the observations, indicating a high level 

of risk. Finally, scatter points coloured in purple represent time moments when there was a 5% 

exceedance, meaning that losses were worse than expected 5% of the time, which can suggest 

a lower but still significant level of risk.  

From observing the plots obtained, we concluded that some models do not efficiently 

capture the Bitcoin returns VaR. This is the case of Model 10 (EGARCH (3)) and Model 11 
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(GARCH(1,1) following a t-Student distribution and considering crude oil prices as an 

exogenous variable). We analyzed the exceedances detected for the rest of the models to 

compare which of them performed the most accurately in the Bitcoin return VaR forecasting.  

In Table 6 below, we summarize the number of exceedances observed for each model at 

the given confidence levels: 

Table 6: Number of exceedances observed for each VaR forecast 

Model 99% 95% 

Model 1 – GARCH (1,1) 

with a Student’s-t  

distribution 

6 24 

Model 3 – GARCH (2,2) 

with a Student’s-t  

distribution 

2 27 

Model 6 – EGARCH (1,1) 

with a t-student distribution 

2 24 

 

Comparing the different models for forecasting Bitcoin returns volatility using the 

parametric approach, we will assume that the model that provides the most reliable estimate of 

VaR is the one that presents fewer exceedances or breaks. These breaks, represented by the 

scatter points in red or purple, represent the moments in which the actual loss in Bitcoin returns 

is superior to the VaR estimate. We can conclude that Model 6 (EGARCH (1,1) with a t-Student 

distribution) generates the most efficient forecasting of the Bitcoin returns VaR. The parametric 

estimation of VaR for Bitcoin returns forecasting recuring to this model presents 2 exceedances 

at a 99% confidence level and 24 at a 95% confidence level, as shown in Figure 8 below.  



 

 

 

Figure 8: Parametric VaR forecasting – Model 6 (EGARCH(1,1) with a t-student distribution) 

The other models produced similar results, with Model 1 evidencing more 1% exceedances 

and Model 3 presenting more exceedances at a 5% level. A certain level of consistency is 

observed at the 1% level, given that both Model 3 and Model 6 present the same number of 

exceedances (2 observations), which means that the models are comparable in terms of 

capturing more extreme events. 

Model 3 has the highest number of breaks at 5% (27 observations against the 24 

observations registered for Models 1 and 6); hence, it might be more conservative in estimating 

risk at a 95% confidence level. A higher number of exceedances means the model possibly 

overestimates risk at this confidence level. This interpretation has implications for risk 

management, since more conservative models with more exceedances can result in false alarms. 

However, a more conservative model leads to a more risk-averse approach, that can translate 

into missed investment opportunities. 
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CHAPTER 6 

Conclusions 

As with other cryptocurrencies and as expected, the evolution of the Bitcoin closing prices was 

not steady and presented high levels of volatility. When we compute the Bitcoin daily returns, 

i.e., the percentual change registered in Bitcoin closing prices, we obtain a stationary time series 

that presents volatility clusters. These characteristics, aligned with the fact that the time series 

distribution is slightly asymmetric, suggesting a relatively uniform dispersion, were the first 

indicators that this time series, in statistical terms, is suited to be analyzed recurring to 

ARCH/GARCH models.  

We analyzed the Bitcoin returns, and the squared Bitcoin returns autocorrelation functions 

(ACF and PACF) for a 20 lag interval. As presumed, the autocorrelation function for Bitcoin 

returns, at the considered lags, found little evidence of substantial autocorrelation. However, 

when we consider the squared Bitcoin returns ACF, we observe that there is significant 

autocorrelation at some lags, indicating that the past squared returns of these lags influence the 

current squared returns. This led us to solidify the appropriateness of considering GARCH 

models to study the behavior of Bitcoin’s returns volatility. 

Delving into the selection of the GARCH model that would be more suited to evaluate the 

Bitcoin data, we first built models that fall under three different categories: GARCH models 

without an exogenous variable, EGARCH models without an exogenous variable and GARCH 

models with an exogenous variable. The first step of this part of our analysis was to focus on 

the simpler ARCH and GARCH models. 

We considered three GARCH models and two ARCH models that differed in number of 

lags and type of distribution. Taking into account the AIC and BIC values was the first stage to 

select the models that presented the best goodness of fit. From this assessment, the models that 

showed the lowest AIC and BIC were Model 1 – GARCH (1,1) and GARCH (2,2), both with 

a Student’s-t distribution. Then, we focused on understanding the p-values of each model, and 

a first observation was that for every estimated coefficient, there were positive p-values, which 

indicates a direct relationship between past squared returns and past conditional variances, and 

the current volatility. The analysis of the coefficients' p-values led us to some conclusions: the 

omega () coefficient for the GARCH models considered (both following a Student’s-t  

distribution, but at different lags) is not statistically significant since its p-value is greater than 
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0.05. The alpha and beta coefficients p-values are smaller than 0.05, indicating that - for these 

models - the past returns and past conditional variances have a statistically significant impact. 

Following the simpler models, we also assessed the goodness of fit of five EGARCH 

models. As was seen with GARCH models, Models 6 and 8—which represent EGARCH (1,1) 

and EGARCH (2,2) models that follow a Student’s-t distribution, respectively—present the 

best goodness of fit according to both AIC and BIC. When we considered the coefficient 

associated with each model, we disregarded Model 8 since α1 and β2 p-values were superior to 

0.05, suggesting that adding more parameters to the model is unlikely to make it better or more 

reliable. For the forecasting study, we chose Model 10, an EGARCH (3) with a Student’s-t 

distribution, in addition to Model 6, since it has the third-lowest AIC and BIC, and all of its 

coefficients’ p-values showed statistical significance. 

Finally, the third category of estimated models considered crude oil prices as an exogenous 

variable. We find that Model 11 (GARCH (1,1) with a Student’s-t distribution) performs better 

than Model 12 (ARCH (2) with a Student’s-t distribution) when we compare two models that 

include an exogenous variable since it evidences smaller AIC and BIC values. This shows that 

a more effective model is produced when lagged conditional variances and volatility persistence 

are considered in the presence of an exogenous variable. Furthermore, Model 11’s coefficients 

are statistically significant; alpha (α) and beta (β) have p-values less than 0.05, demonstrating 

the importance of past conditional variances and squared returns on current volatility. The p-

value for the constant component (omega, ω) is 0.195, which suggests that it is not statistically 

significant, but the model as a whole is still robust. 

At last, we reached a selection of five different GARCH and EGARCH models. One 

interesting aspect to note is that all models selected follow a Student’s-t distribution, which is 

consistent with the literature consulted: Guo (2022) indicated that it is of greater importance 

“to introduce a heavy-tailed distribution than select a type of GARCH models” and the study 

conducted by Fung et al. (2022) concluded that cryptocurrencies are well described by 

Student’s-t error distributions and for 80% of the coins analyzed in this study these were the 

GARCH specifications chosen, contrarily to GARCH normal and skewed-normal 

specifications, that the author never selected. 

The last step of our study was to evaluate the predictive quality of each model to determine 

Bitcoin volatility. After eliminating any missing values from the forecast, we retrieved the 

conditional mean and conditional variance of the Bitcoin returns for the years 2022 and beyond. 



 

 

Using the predicted parameters for the dataset’s final observation, we computed the 1% and 5% 

quantiles of the distribution given in the models. After assuring the models were properly fitted, 

we estimated the Value at Risk (VaR) for the Bitcoin returns, creating a plot of the VaR at 99% 

and 95% confidence levels and colouring the scatter points of the plot based on whether Bitcoin 

returns exceed the VaR thresholds. From this analysis, we reached some conclusions. Firstly, 

we assessed that more complex models do not capture efficiently the Bitcoin returns VaR. This 

is aligned with our expectations. For Model 10 (EGARCH (3)), we are using three lags to model 

the conditional variance, which affected the volatility estimation and produced an inaccurate 

forecast. Model 11 (GARCH (1,1) considering crude oil prices) was the model that presented 

the higher complexity and like Model 10 was unable to capture the Bitcoin returns volatility 

VaR at a 95% confidence level.  

We concluded that the model that produces the most efficient forecasting of the Bitcoin 

returns VaR is Model 6 (EGARCH (1,1) with a Student’s-t distribution). The parametric 

estimation of VaR for Bitcoin returns forecasting using this model generates 2 exceedances at 

a 99% confidence level and 24 at a 95% confidence level. The two other models considered 

(Model 1 – GARCH (1,1) with a Student’s-t distribution and Model 3 – GARCH (2,2) with a 

Student’s-t distribution) produced similar results. We focused on empirical factors to determine 

which model forecasts more accurately Bitcoin returns volatility, however, the decision on 

which kind of model to consider ultimately will depend on the risk profile of the user of the 

model: More conservative models will produce higher numbers of exceedances, reflecting that 

the model may be overestimating risk at the given confidence level and can translate in the loss 

of investment opportunities.  

We recognize that these study results reveal some insufficiencies, as we failed to forecast 

VaR by models that include an exogenous variable, and the model selected for the forecasting 

presents a simple nature. It would have been interesting to assess if the results were to be 

different if, instead of using the parametric approach for the VaR forecasting, we used other 

methods, like the Monte Carlo method and the historical simulation. At this point, the Python 

library used for the forecasting, as recognized by Kevin Shepard (author of the library) is not 

properly developed to ensure the correct modeling of GARCH/EGARCH models with 

exogenous variables. In this sense, it will be key to consider more advanced computational 

methods for future investigation on this topic.  
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Appendix 

 

Appendix 1: Model 1 - GARCH (1,1) with a Student’s-t  distribution 

 



 

 

Appendix 2: Model 2 – GARCH (1,1) with a Normal Distribution 

 

Appendix 3: Model 3 – GARCH (2,2) with a Student’s-t  distribution 
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Appendix 4: Model 4 – ARCH (1) with a Student’s-t  distribution 

 

Appendix 5: Model 5 – ARCH (3) with a t-student distribution 

 



 

 

Appendix 6: Model 6 – EGARCH (1,1) with a Student’s-t  distribution 

 

Appendix 7:  Model 7 – EGARCH (1,1) with a normal distribution 
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Appendix 8: Model 8 – EGARCH (2,2) with a Student’s-t  distribution 

 

Appendix 9: Model 9 – EGARCH (1) with a Student’s-t  distribution 

 

Appendix 10: Model 10 - EGARCH (3) with a Student’s-t  distribution 



 

 

 

Appendix 11: Model 11 GARCH (1,1) with a Student’s-t  distribution, considering crude-oil prices 

as an exogenous variable 

 

Appendix 12: Model 12 ARCH (2) with a Student’s-t  distribution, considering crude oil prices as an 

exogenous variable 
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Appendix 13: VaR forecasting, using Model 1 

 

Appendix 14: VAR forecasting, using Model 3 



 

 

 

Appendix 15: VaR forecasting, using Model 10 

 

Appendix 16: VaR forecasting, using Model 11 

 

 


