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Abstract

Buildings are key in supporting human activities and well-being by providing shelter and other
important services to their users. Buildings are, however, also responsible for major energy use
and greenhouse gas (GHG) emissions during their life cycle. Improving the quality of services
provided by buildings while reaching low energy demand (LED) levels is crucial for climate and
sustainability targets. Building sector models have become essential tools for decision support on
strategies to reduce energy demand and GHG emissions. Yet current models have significant lim-
itations in their ability to assess the transformations required for LED.We review building sector
models ranging from the subnational to the global scale to identify best practices and critical gaps
in representing transformations toward LED futures. We focus on three key dimensions of in-
tervention (socio-behavioral, infrastructural, and technological), three megatrends (digitalization,
sharing economy, and circular economy), and decent living standards. This review recommends
the model developments needed to better assess LED transformations in buildings and support
decision-making toward sustainability targets.
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Demand-side
mitigation strategies:
climate change
mitigation measures
associated with
individual behavior,
lifestyle changes and
social practices,
infrastructure design
and use, and
technology adoption,
potentially reducing
energy consumption
and GHG emissions

Building sector
model:
computer-based tool
to support the analysis
of energy demand,
GHG emissions, and
other quantities
related to buildings at
the sector level

1. INTRODUCTION

Buildings support human activities by providing important services, such as shelter, thermal com-
fort, and illumination, to their occupants (1). These services are key contributors to several aspects
of human well-being, including health and life satisfaction (2, 3). For example, adequate build-
ing design, materials, and heating, ventilation, and cooling (HVAC) systems contribute to the
thermal comfort of occupants and reduce health risks due to exposure to pollution, extreme tem-
peratures, and humidity. At the same time, the demand for services in buildings drives significant
energy consumption and greenhouse gas (GHG) emissions both directly, in building operation
(e.g., for heating and cooling spaces), and indirectly, in service and product supply chains (e.g., for
producing building construction materials) (4).

At the global level, the building sector accounted for 21% of GHG emissions in 2019, includ-
ing direct and indirect emissions and emissions from the use of steel and cement (5). Buildings
play a key role in reaching climate mitigation targets (6) and many of the Sustainable Develop-
ment Goals (SDGs) (7) due to their crucial contribution to economic growth, social progress,
and environmental protection (8). Improving the way services are provided in buildings while re-
ducing energy demand during their life cycle is key for supporting the well-being of populations
and reducing burdens on the environment. Several strategies to reduce the energy demand, also
termed demand-side mitigation strategies, were investigated in recent scenario analyses for build-
ings, including socio-behavioral (e.g., social practices in energy savings, behavioral and lifestyle
changes), infrastructural (e.g., compact cities, living floorspace rationalization, architectural de-
sign), and technological (e.g., energy efficiency solutions, shift to renewables) interventions (5,
9). Demand-side mitigation strategies could technically reduce GHG emissions of buildings by
78% (6.8GtCO2e) by 2050 (10) and make the transition to renewables much faster and more
cost-effective (11).

The low energy demand (LED) scenario (12) shows that drastic reductions in energy demand
(at least 40% from 2020 to 2050) would be possible with social and technological change consistent
with demand-side strategies (LED transformations), leveraging digitalization, sharing, and circu-
lar economy megatrends while delivering higher standards of living. The LED scenario narrative
assumes higher levels of end-use services (e.g., thermal comfort, consumer goods, mobility, and
food) with stark reductions in energy inputs to reach climate change mitigation and sustainable
development targets without relying on uncertain supply-side large-scale negative emissions.

To support effective decision-making and to provide quantitative evidence on the effect
of demand-side mitigation strategies, computer-based modeling has become an essential tool
(13–15). Most of the existing building sector models used to project future energy demand and
GHG emissions, however, focus on specific strategies and lack a comprehensive view on the
broader transformations, enablers, and requirements to reach low levels of energy demand while
supporting well-being. Representing LED transformations requires shifts in modeling practices
(16), placing energy services (1) in the foreground, accounting for social and technological het-
erogeneity, and addressing relevant drivers, which currently are not part of most models used to
assess climate change mitigation scenarios. Despite the large literature on building sector models
(Section 2), a mapping of the current tools in relation to key gaps and model development needs
for representing LED transformations in future scenarios (LED futures) is currently not available.

This article aims to address this gap by reviewing building sector models ranging from
the subnational to the global scale to identify best practices and critical issues in representing
LED transformations. In particular, we identify (a) the components of LED transformations
already represented in models and how they are implemented; (b) the current critical modeling
gaps for understanding LED futures; (c) the key drivers and elements that need improved
representation; and (d) how these models and research efforts need to be developed further. To
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a

b

• Individual behavioral and lifestyle 
changes

• Social norms and nudges
• Participatory governance

• Energy-efficient appliances, 
lighting, and heating, ventilation, 
and cooling (HVAC)

• Energy-efficient buildings
• Whole building approaches

• Low-carbon building design and 
materials

• Urban forms and floorspace 
rationalization

• Community-centered approaches

• Virtual community approaches
• Building information modeling
• 3D printing of buildings

• Teleworking
• Smart meters
• Demand–response

• Energy service focus for energy 
efficiency

• Technology leapfrogging for 
buildings transformation (e.g., 
prefabricated renovation systems)

• Access to clean and 
affordable technologies 

• Leapfrogging in provision 
of durable housing

• Low-carbon materials and 
building systems

• Lifetime extension

• Low-carbon design and 
materials

• Longer use, reuse, and 
repurposing of buildings

• Circular practices and 
changes in behaviors

• Longer use and reuse of 
appliances and facilities

• Sufficient housing floorspace
• Adoption of clean 

technologies

• Co-housing and co-working
• Community-based services

• Lifestyle changes toward 
sharing services and facilities

• Centralization of equipment
• Sharing of appliances 

• Smart homes and 
appliances

• Access to adequate 
housingDecent living 

standards

Sharing economy

Circular economy

Digitalization

TechnologicalInfrastructural

Low energy demand transformations in buildings

Megatrends

Socio-behavioral

Infrastructural Technological

Socio-behavioral–technologicalSocio-behavioral–infrastructural

Infrastructural–technological

Well-being 
support

Low energy 
demand 

transformations in 
buildings

Socio-behavioral

• Purchase decision on energy-efficient appliances
• Investment decisions on building renovation

• Switch to on-site renewable sources (prosumers)
• Efficient operation of technology by the users

• Monitoring of and feedback on consumption to shift 
behavior

• Floorspace sufficiency  
• Choice of living and working places

• Shared services and facilities
• Longer use and reuse

• Positive energy districts

Figure 1

Overview of low energy demand (LED) transformations in buildings. (a) Examples of interventions for the three dimensions of LED
transformations (triangle corners, colored boxes) and transversal strategies (triangle sides). (b) Examples of interventions for three
megatrends and well-being support, and their relationships with LED transformations.

present the LED scenarios coherently, we focus on three key dimensions of LED transformations,
as conceptualized in the most recent Intergovernmental Panel on Climate Change (IPCC) report
(9) (Figure 1a): socio-behavioral, infrastructural, and technological interventions. In addition, we
investigate three cross-cutting megatrends playing a key role as enablers of LED transformations
(Figure 1b)—digitalization, sharing economy, and circular economy—and the provision of higher
living standards for all, using the concept of decent living standards (DLS) as a benchmark of
material conditions for human well-being (3, 9).
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We use a multimethod approach combining a literature review, a survey of model features,
and their comparative analysis, as well as expert elicitation and appreciation (see Section 1 in
the Supplemental Text) to tackle the complexity of LED transformations in building sector
modeling. The selected literature ranges from subnational to global in geographical scope,
covers both the Global North and the Global South,1 and consists of both impact assessment
and forward-looking scenario studies using building sector–specific or multisectoral models. We
conduct a detailed survey and comparative analysis of 16 models representative of a diversity
of solution algorithms and features and geographical coverage (Table 1). We use a dedicated
questionnaire (see the Supplemental Questionnaire) in combination with interviews with

Table 1 Overview of the surveyed building demand models

Sector coverage Geographical coverage Model name Approaches Reference(s)
Buildings Subnational or local to

national
BENCH Agent-based modeling 28, 49
JCBSEM Simulation, agent-based

modeling
192

NHM Simulation 193
SAFARI Hybrid 194
TREES Simulation, agent-based

modeling
195

National to regional or
global

ACCESS-E-USE
(MESSAGEix-Buildings)

Simulation, optimization or
minimization, partial
equilibrium

167

EDGE-Buildings Simulation, optimization or
minimization

87

HEB Other 196
STURM/CHILLED

(MESSAGEix-Buildings)
Simulation 88

Multisectoral Subnational or local to
national

FORECAST Simulation, other 197
PIER Optimization or minimization,

accounting
180

RTE model Simulation, accounting 198
National to regional or
global

DREAM Simulation, accounting 199
POTEnCIA Simulation, partial equilibrium 192
RECC Simulation, system dynamics,

hybrid
191

US-REGEN Simulation, optimization or
minimization, partial
equilibrium, hybrid

200

Abbreviations: BENCH,Behavioral change in ENergy Consumption of Households; DREAM,Demand Resources Energy Analysis Model; EDGE,Energy
DemandGenerator; FORECAST,Forecasting Energy Consumption Analysis and SimulationTool; HEB,High Efficiency Buildingmodel; JCBSEM,Urban
Building Energy Model for Japanese Commercial Building Stock; NHM, UK National Household Model; PIER, Perspectives on Indian Energy based on
Rumi; POTEnCIA, Policy Oriented Tool for Energy and Climate Change Impact Assessment; RECC, Resource Efficiency–Climate Change mitigation
framework; RTE, Réseau de Transport d’Electricité model; SAFARI, Sustainable Alternative Futures for India; STURM/CHILLED, Stock TURnover
Model of global buildings/Cooling andHeating gLobaLEnergyDemandmodel; TREES,Total Residential End-use Simulation; US-REGEN,USRegional
Economy, Greenhouse Gas, and Energy model.

1Here, the Global North and Global South follows the definition given by intergovernmental development
organizations, referring to economically disadvantaged nation-states (17), that is mostly used in regional and
global building sector energy modeling studies. This definition differs from the social designation (rather than
geographical) provided to Global North and Global South in other works focusing on sustainable living (18).
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expert modeling teams to investigate the scope, features, and potential of existing models to
capture the future dynamics and impacts of LED transformations. Finally, we summarize the
results emerging from our literature review, comparative model analysis, and expert elicitation
workshops to identify modeling gaps, needs, and best practices.

In the following sections, we first give an overview of the current and emerging building sec-
tor models (Section 2). We then introduce the rationale, key interventions, best practices, and
challenges in modeling LED transformations (Section 3), LEDmegatrends (Section 4), and DLS
(Section 5). Finally, we discuss key modeling gaps (Section 6) and future developments in building
demand modeling and our conclusions (Section 7).

2. BUILDING SECTOR MODELS

Building sector models (19) have become essential tools for developing and assessing potential
strategies to reduce energy demand and GHG emissions of buildings. While there is a long tra-
dition of energy demand models for single buildings, modeling the energy demand and GHG
emissions of buildings at the sector level (from subnational to national, from regional to global)
has emerged only in the past few decades. Building sector models can be grouped as top-down,
bottom-up, or hybrid (13, 15, 19) (Figure 2a).

Top-downmodels represent the building sector at the aggregated level and are either economic
or technological.They are usedmostly to assess economy-wide policy responses (19) and are often
limited in their ability to represent the impact of new technologies and disruptive changes, as they
lack granularity (level of detail). For example, an aggregatedmodel might not distinguish buildings
in the stock by their characteristics, failing to properly assess the effect of new technology uptake
(e.g., heat pumps or deep renovations) on different building types.

Bottom-up models represent individual buildings or subsystems in detail and subsequently
aggregate results at the system level. They include engineering, statistical (including machine
learning), and hybrid approaches. Bottom-up models can explicitly represent key dynamics of
energy use, building heterogeneity, and the aggregate effect of changes from individual buildings
(13) and are used to estimate the technoeconomic potentials at the stock level (19).Hybrid models
combine the two approaches and are used to explore the impacts of resource constraints, tech-
nological choices, and building policies (19). They use optimization and simulation approaches,
including agent-based modeling (ABM) (20).

While most building sector models focus on energy demand, additional layers can support the
representation of key determinants and dynamics (13), including physical context and climate, so-
cioeconomics, stock turnover, and material flows, as well as behavior and practices (Figure 2b).
Additionally, we identify four model features (Figure 2c) that are crucial for evidence synthesis
(Section 6). Spatiotemporal resolution and coverage refer to the smallest unit of analysis (resolu-
tion) and scope (coverage) in space and time. Granularity indicates the level of detail in the model
concerning, for example, buildings, agents, and technologies, and strongly relates to the ability
of a model to represent heterogeneities (see the example above in this section). Model dynamics
describe the evolution of the modeled system over time and are characterized by exogenous or
endogenous variables depending on whether they represent influences external or internal to the
model. For instance, the building renovation rate can be modeled either exogenously, by assuming
externally given renovation rates, or endogenously, by modeling the decision process of renova-
tions within the model on the basis of other external variables. System boundaries define the scope
of the modeled system (e.g., which sectors or subsectors are represented). Typical model outputs
of building sector models (Figure 2d) include GHG emissions, energy and material demands,
and energy service or activity levels, such as floorspace (the surface area of floors in a building)
commonly used as an indicator of service levels for shelter and thermal comfort.
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a   Building sector modeling traditions

b   Model layers c   Model characteristics

d   Model outputs

Physical context

Behavior

Building stock

Material flows

Energy demand

Top-down
Economic

Technological

Assess impacts of resource 
constraints, technological 

choices, and building policies

Assess technoeconomic 
potentials for entire 

building stocks

Assess economy-wide 
responses of building 

policies

Hybrid
Optimization

Simulation
Agent-based

Bottom-up
Engineering

Statistical
Hybrid

Socioeconomics

Spatiotemporal resolution

Granularity 

Model dynamics

System boundaries

Energy and material demands

Greenhouse gas emissions

Energy service levels

Figure 2

Overview of building sector modeling for energy demand and greenhouse gas (GHG) emission assessments.
(a) Modeling traditions. (b) Model layers. (c) Model characteristics. (d) Model outputs. Part of the data is
from References 13 and 19.

In this review, we focus on bottom-up and hybrid building sector models using a variety of dif-
ferent approaches to project future energy and material demands and associated GHG emissions.
We disregard top-down building sector models due to their limitations in representing demand
transformations. Nevertheless, we discuss the key linkages with more aggregated large-scale and
economy-wide models [e.g., integrated assessment models (IAMs)] extensively used in the analysis
of climate change mitigation scenarios. We include models whose geographical coverage ranges
from subnational to global and that cover the individual building sector or multiple sectors.

3. MODELING LOW ENERGY DEMAND TRANSFORMATIONS

The LED scenario (12) assumes radical changes on the demand-side as a major driver of mit-
igating climate change and providing higher living standards without relying on risky negative
emissions in the future (21). The LED scenario narrative is similar to other long-standing
discourses on sustainable consumption corridors (22), energy efficiency and sufficiency (23, 24),
planetary boundaries and human well-being (25, 26), and sustainable lifestyles (27). The LED
narrative focuses on long-term drivers of energy end use, including higher quality of life, rapid
urbanization, novel energy services, diversified end-user roles, and information innovation. For
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each of the three dimensions of change (9)—socio-behavioral, infrastructural, and technological—
we introduce here the rationale, relevance for LED scenarios, and key interventions, and we
review existing modeling gaps and best practices.

3.1. Socio-Behavioral Intervention

Social practices in energy saving and behavioral and lifestyle changes, such as adaptive heating and
cooling by changing indoor temperature, can contribute approximately 15% to GHG emissions
reduction in the building sector by 2050 (9). Socio-behavioral mitigation strategies in the building
sector involve individuals’ choices, social norms and nudges, and participatory governance.

3.1.1. Individual behavioral and lifestyle changes. Individual energy decisions and behavioral
and lifestyle changes include changing energy-use habits (e.g., adjusting the set-point temperature
for heating, saving hot water); investing in energy-efficient appliances, buildings (e.g., thermal in-
sulation), and on-site renewable sources [e.g., photovoltaic (PV) panels]; and switching to better
services (e.g., green energy providers). Individual energy decisions can bemotivated bymarket and
nonmarket forces (e.g., regulations and policies, social norms, structural factors) and can reduce
energy demand directly and indirectly. Demand-side policies can use various behavioral tools that
complement regulations and monetary policies (e.g., subsidies and taxes). The provision of tar-
geted information, social advertisements, and the influence of trusted in-group members and role
models can be used to create better climate change knowledge and awareness (20, 28). Behavioral
interventions such as communicating changes in social norms can accelerate behavior change by
creating tipping points (29).

3.1.2. Social norms and nudges. Each individual’s energy behavior is influenced by the per-
ception of what other people commonly think, do, or expect (30). For instance, moral values and
political ideology influence human beliefs and the effectiveness of one’s actions. Several studies
provide strong empirical support for social comparison interventions (31, 32) and information
feedback (33–36), with energy and GHG emissions reductions between 0.8% and 2.6% for the
former and between 1% and 12% for the latter. The feedback mechanism becomes more effec-
tive when combined with goal setting or external incentive interventions such as pricing. Social
movements (e.g., advocating behavioral change) can open up windows of opportunity to unlock
behavioral and structural changes (37). Behavioral nudges promote behavior change, such as in-
vestments in energy efficiency actions. Policymakers have various tools, including prohibitions,
mandates, taxes, fees, subsidies, and nudges, to influence individual energy decisions and con-
sumption (38, 39).Nudges include choice-preserving interventions such as information, warnings,
reminders, uses of social norms, and default rules (40).

3.1.3. Participatory governance. Professionals, such as building managers, landlords, energy
efficiency advisers, and technology installers, influence patterns of energy consumption by acting
as middle actors in providing building services (41). Professionals can enable or obstruct improve-
ments in efficient service provision or shifts toward low-carbon technologies (e.g., heat pumps,
solar hot water, underfloor heating). Collective action has the potential to enable or constrain
societal shifts in emissions reduction. For instance, community energy initiatives can improve en-
ergy efficiency, ensuring a decent standard of living and increasing renewable energy uptake while
building on existing social trust (42). The famous Japanese behavioral change campaign Cool Biz
recommended office workers increase the temperature to 28°C during summer while relaxing the
dressing code (43). The campaign was a huge success thanks to the widespread acceptance of the
comfortable image of light clothing. The Positive Energy District (PED) innovation introduces
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the next generation of energy-efficient buildings with high coverage of renewables integration
(Sections 3.2 and 3.3). Bottom-up engagement, cooperation, and participatory governance are
crucial for implementing PEDs. Despite several successful cases, more consideration should be
given to the social dimension (e.g., energy poverty and energy justice) for new PED creation (44)
(Section 5).

3.1.4. State of the art and challenges in modeling. Building sector models still lack a
proper representation of socio-behavioral interventions as effective drivers of future energy
conservation opportunities. Due to the complex nature of human behavior and social dynamics,
current models (Section 2) mostly overlook heterogeneous individual behavior and diverse social
and institutional settings (28, 45–47). This comes mostly from insufficient model granularity
to enable explicit characterization of heterogeneous actors and individuals and an inability to
adequately represent complex human behavioral (decision-making process) and social dynamics
and learning.Most of the surveyed models (see Supplemental Figure 1) can integrate behavioral
strategies only through simplified exogenous assumptions, including changes in floorspace and
energy-saving practices (e.g., temperature set-points, telecommuting) (Sections 3.2 and 4.2) and
improving heating and cooling systems (Section 3.3). Some simulation and optimization models
(EDGE-Buildings, FORECAST, RTE model, STURM/CHILLED, TREES) have partial
endogenous coverage on specific aspects, such as energy-efficient appliances and technology
adoption, buildings renovation decisions, or rebound effects (Sections 3.2, 3.3, and 5), mostly
via dedicated discrete choice models or probability functions. Only two of the surveyed models
(BENCH and POTEnCIA) fully cover energy-saving practices endogenously, and only one
(BENCH) covers behavioral changes and social norms using ABM.

In reality, people make energy decisions in buildings on the basis of their diverse preferences,
socioeconomic conditions, behavioral and lifestyle biases, social peer influence, and technology
and infrastructure availability. Thus, new models are needed to reflect these complex decision
environments (48). One promising approach is ABM, which can represent heterogeneous indi-
vidual energy choices, behaviors, and lifestyles that fully reflect socioeconomic, behavioral, social,
infrastructural, and institutional settings, along with the spatial context. ABM is a frontrunner,
as it is designed to account for heterogeneous agents (e.g., individuals, firms), different lifestyles,
bounded rationality (heterogeneous rationalities and decision rules), and social influences (48–
53), going beyond the classical rational choice perspective, where homogeneous, perfectly rational
individuals act in a perfect market with complete information (54).

Various socio-behavioral interventions are already covered by building sector models
(Supplemental Table 6). Sufficiency is an emerging concept that refers to measures that avoid
the demand for energy and materials over the life cycle of buildings and appliances and related
GHG emissions driven by nontechnological solutions (5, 55). Sufficiency scenarios are captured
by translating qualitative lifestyle changes (e.g., sharing facilities) into quantified model parame-
ters (e.g., surface per capita and number of appliances per household) (Sections 3.2 and 4.2). The
community would benefit from more studies of sufficiency for both the Global North and the
Global South and of how sufficiency measures compare to minimum requirements to provide
DLS (Section 5). Other models capture behavioral and lifestyle changes and energy efficiency
interventions, from simple energy-saving practices to investment in solar PVs and building insu-
lation (Section 3.3). Yet to better understand the impact of social norms on energy decisions and
energy reduction potentials, it is critical to capture heterogeneity. Households’ heterogeneities
in sociodemographic characteristics (e.g., income, age, education), building characteristics (e.g.,
type, size), energy consumption patterns, behavioral factors (e.g., awareness, beliefs), social factors
(e.g., social norms, culture), and institutional settings influence household occupants’ energy
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decisions and behavioral and lifestyle changes (56). Social norms have an essential role in shaping
behavioral and lifestyle changes. For example, to inform demand projections on the basis of
smart meter data (Sections 3.3 and 4.1), to better characterize elasticity to prices on the basis
of previous experiments, and to introduce network effects on virtuous behaviors will be vital to
offering a complete assessment of available policy instruments for energy efficiency. It is also
useful to incorporate a plurality of perspectives on plausibility and desirability through iterative
participatory engagement and worldview-based scenario exploration. Finally, it is also valuable to
make projected futures more tangible and experiential so that diverse societal actor groups can
understand and genuinely engage with them.

3.2. Infrastructural Intervention

Buildings are an important part of the built environment, constituting the backbone of modern
societies, underpinning human activities and well-being (57), and driving material and energy
consumption (58). Key infrastructural interventions for low energy and material demands range
from the individual building to the city scale and include low-carbon building design andmaterials,
compact urban forms and floorspace rationalization, and community-centered approaches. Infras-
tructural interventions have the potential to reduce buildings’ GHG emissions by approximately
20% (9).

3.2.1. Low-carbon building design and materials. Building characteristics, design, and size
drive energy and material demands in all phases of a building’s life cycle. Material production as-
sociated with the construction of new buildings and infrastructures can become a major source of
GHG emissions under future growth and urbanization (59). Various material strategies (i.e., ma-
terial substitution, lifetime extension, longer use and reuse, renovation, and more intensive use)
(Sections 3.1, 3.3, 4.2, and 4.3) have been investigated on the demand-side (60–64). Engineered
wood has been proposed as a substitute for high-emitting mineral-based structural materials and
as a potential carbon sink (59). This option has a high mitigation potential but requires expan-
sion of timber plantations (65), resulting in complex trade-offs with other land uses for food,
feed, and fuels as well as ecosystem conservation (66). Novel materials, particularly engineered
cementitious composites, open a new avenue to make use of captured carbon dioxide for enhanced
infrastructure durability (67) and simultaneously address embodied carbon andmaintenance emis-
sions (68). Advances in construction processes enabled by digitalization (Section 4.1), including
building information modeling (BIM), automated construction, and 3D printing (69, 70), offer
novel opportunities to lower the environmental impact of building construction and stimulate
circularity practices (Section 4.3).

3.2.2. Compact urban forms and floorspace rationalization. Urban form strategies play a
critical role in reducing energy and material demands. Compact designs translate into lower aver-
age floorspace and correspondingly lower energy andmaterial demands (10). Floorspace reduction
(71) can be driven by new business models for house sharing and co-living initiatives; build-
ing reuse and repurposing (Section 4.2); financial constraints and housing prices; and land-use
and urban policies to manage the expansion of cities and regulate their densities, such as a shift
toward multifamily housing and reducing the average size of new single-family housing (72). Re-
lated to urban design, nature-based solutions, such as green roofs and green facades, and urban
green infrastructures can substantially reduce the operational energy demand of buildings while
contributing to climate change adaptation strategies and reducing the urban heat island effect
(73).
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3.2.3. Community-centered approaches. Communities are key in enabling systemic changes
toward LED (74), as they can concentrate activities, thus leading to economies of scale, access
to services, and faster diffusion of knowledge. Community-based energy services improve the
efficiency of demand and small-scale supply solutions, for example, through co-purchasing and
sharing (Section 4.2). Virtual communities go beyond the traditional system boundaries for trans-
formation and foster positive reinforcement (75). For example, virtual power plants are innovative
business models that aggregate decentralized, small-scale energy production with energy and sav-
ing potentials (76) (Section 4.1). One-stop shops, offering assistance in the energy renovation
supply chain, can bridge the gap between individual households and the construction supply-side
and therefore increase the rate and speed of renovation (77). Communities can help upscale and
roll out demand-side mitigation strategies through peer pressure, example setting, demanding so-
lutions, and replication (Section 3.1), thus making these solutions more available and cheaper (74).

3.2.4. State of the art and challenges in modeling. Several detailed bottom-up models
evaluate potential future trajectories of building stocks, focusing on materials and operational
energy demand (61–63, 78). Many of those studies model buildings with an increasing num-
ber of archetypes, achieving up to global coverage. Other studies focus on building-by-building
modeling (79), however, usually only for a single country. Comprehensive building sector mod-
eling for the whole globe, with regional resolution (62, 64), enables matching system boundaries
across countries and time, although at the expense of detail. Despite recent efforts to characterize
national and global building material stocks (80–82), challenges remain in representing hetero-
geneous building materials and construction types, including informal buildings (Section 5), and
building lifetimes and reuse (Section 4.3).

Representation of urban forms and urban-related strategies is currently limited in building
sector models (83), as they focus mostly on individual buildings while overlooking the broader
urban context. Our survey (Supplemental Figure 1) confirms that urban form–related aspects
are only partially represented in bottom-up models and mainly exogenously, for example, via per-
capita floorspace assumptions (HEB, STURM/CHILLED,RECC) or representation of different
building types (STURM/CHILLED, RECC,TREES).While data-driven floorspace projections
dependent on income and urban density are common in building sector models, only a few studies
consider floorspace reduction scenarios by introducing per-capita caps or convergence to norma-
tive values (12, 55, 71, 84, 85). Most of these projections are assumption based and overlook the
underlying dynamics, acceptability, and feasibility of reducing floorspace, which require further
empirical evidence (86). Considering floorspace heterogeneity across housing, household types,
and different building functions (including vacant buildings) is critical to further assess the po-
tential of sufficiency (Section 3.1) while ensuring minimum DLS (Section 5) and of floorspace
rationalization strategies, for example, by repurposing and reusing vacant buildings (Section 4.2).

More detailed representation of urban strategies is challenging, as they strongly depend on
local conditions, context, complex dynamics, and interlinkages with other sectors. It is critical
for models at scale to capture system-wide effects, bridging scales from individual buildings to
mesoscale (neighborhood, city) and large scale (country, global). Recent linkages of detailed global
building sector models with IAMs (87, 88) enable explicit consideration of building stock turnover
and demand-side interventions in combination with energy supply system transformations. How-
ever, IAMs are still limited in accounting for material cycles (Section 4.3) and complying with
thermodynamics, requiring more developments to properly integrate the stock–flow dynamics of
buildings into the overall social metabolism.More linkages with other sectoralmodels are required
to adequately represent transformation at the urban scales and community-centered approaches
(Section 6).
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3.3. Technological Intervention

Technology is a means to do things, consisting of technical artifacts (hardware) and a disem-
bodied element of knowledge (software) (89). The adoption of energy-efficient technologies and
small-scale renewables can contribute to 30–70% of the GHG emissions reduction potential in
buildings (9). The LED scenario narrative assumes a rapid and radical rollout of selected existing
low-demand technologies only possible with a systemic approach (12).Here,we review technolog-
ical LED interventions and their modeling representation, including energy-efficient appliances,
lighting, HVAC systems, energy-efficient buildings, and whole-building approaches.

3.3.1. Energy-efficient appliances, lighting, and HVAC systems. Accounting for one-third
of the energy consumed in buildings (90), appliances are among the fastest-growing energy end
uses in buildings. Many appliance types, such as refrigeration and lighting technologies (91), have
undergone major maturation and efficiency improvement in recent decades (92). However, these
have been counterbalanced by rapid adoption, increased size, and user behavior in the Global
North (93, 94), often resulting in rebound effects (95), and an insufficient penetration increase in
the Global South, which often relies on less-energy-efficient appliances. Continuous upgrading of
energy efficiency standards for appliances and HVAC technologies is a critical cost-effective ap-
proach to achieve LED globally. Heat pumps (96) and fuel cells (97, 98) are among the promising
decentralized technologies for decarbonization and integration of intermittent renewable energy.
While the adoption of high-efficiency HVAC systems is growing, penetration is slower due to
critical barriers related to costs, burden of renovations, clarity of decisions for homeowners, and
lack of reliable information. Further energy reduction is foreseen in LED through further elec-
trification (12), digital convergence (Section 4.1), sharing and centralization (Section 4.2), and
dematerialization (Section 4.3).

3.3.2. Energy-efficient buildings. Energy efficiency improvements of building envelopes are
key to reducing the energy demands of buildings. Passive strategies (99), as opposed to active
strategies, do not require the use of mechanical systems and additional energy use and include
building insulation, thermal mass, air tightness, advanced fenestration technologies, passive solar
systems, natural ventilation, and bioclimatic design (100). Passive strategies adapted to the lo-
cal climate and context can entail significant energy savings for thermal comfort. Passive houses
(101) require very low energy for space conditioning while providing high standards for ther-
mal comfort. In the Global North, the potential for energy demand reduction relies largely on
the renovation of older and inefficient buildings (87, 102). Both acceleration in renovation rates
(up to 2–3% yearly) and increased depth of renovation are needed to meet climate targets (6).
One promising direction is the wider rollout of prefabricated systems for new construction and
renovation (103) (Section 3.2). These measures could lead to an LED-relevant energy transfor-
mation leap and decrease the complexity of the technological solution while reducing the time
and investments needed to renovate homes or nonresidential buildings (77).

3.3.3. Whole-building approaches. A whole-building passive or energy-plus building design
combines both demand-side and supply-side solutions (104), including renewable energy sources,
with a focus on user comfort while making the user an active energy system player (prosumer)
(102). Given the automatization required in highly efficient buildings, smart buildings, and build-
ing systems, these changes are closely linked to digitalization (Section 4.1). Leaping to at least an
average passive design for new buildings is a key LED element. Previous studies (102) have shown
that it is possible to achieve high-efficiency performance in most building types and climates
with already existing technologies and skills and without major extra costs. However, significant
barriers still exist, limiting their penetration and thus requiring further policy interventions.
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3.3.4. State of the art and challenges in modeling. For modeling LED transformations, it
is critical to interpret the features of technological advancement that lead to major reductions
in energy demand beyond the direct or stylized representation of the individual technologies
(105). Doing so requires a shift in modeling practices to include an energy service perspective,
development and innovations, technology adoption, and user interaction (106, 107).

First, building sector models should represent access to and demand for energy services as
opposed to demand for energy in itself. Therefore, efficiency in buildings should be understood
as the input of energy, materials, or other resources to lead to a unit energy service, such as
shelter, thermal comfort, or lighting. Many of the surveyed models already represent energy
services via activity-related indicators (e.g., floorspace as an indicator for shelter and thermal
comfort) (Section 3.2). More interdisciplinary research is needed to understand what end users
value for their well-being and business benefits beyond the technologies and activity levels (such
as floorspace) and how these values can be provisioned in ways that require less energy input,
in consideration of historical and cultural contexts. In addition, modeling the relation between
innovative technologies and the changed activity levels can lead to more realistic LED-type
scenarios, including rebound effects (Sections 4.1–4.3).

Second, technology is dynamic and cumulative and follows nonlinear technological innova-
tion and readiness curves in its rollout (89, 108). Rapid technology development and uptake can
happen on a short diffusion timescale in a multiplicative and self-generating process (107). Due to
their modularity,more granular energy technologies are likely to develop faster and scale up faster
than lumpy technologies (107). Current models often use exogenous technology learning func-
tions but are limited in modeling disruptive technologies and leapfrogging, which are critical for
LED scenarios. Some of the more detailed bottom-up models already include fine technological
resolution and can endogenize technological learning, among other factors.

Third, the spread and operation of demand-side technologies are tightly linked to user knowl-
edge and interaction, possibility of adoption, and the underlying socioeconomic and institutional
contexts. In current models, the uptake of advanced energy-efficient solutions (e.g., passive build-
ings or deep renovations) is often modeled via exogenous adoption rates. Although effective for
showing the potential of technology uptake, this approach does not adequately represent the un-
derlying dynamics, barriers, and enablers, including policy levers and financing. Some of these
dynamics, particularly the investment decisions of households, have been represented by enriching
bottom-up approaches with microeconomic mechanisms (109) and increasing technological and
socioeconomic granularity.Many building sector models now represent technology-rich bottom-
up dynamics (e.g., POTEnCIA, RTEmodel, FORECAST), and other models represent buildings
or appliances in a largely heterogeneous way through lifetime distribution (e.g., RECC, HEB,
MESSAGE-Buildings, JCBSEM,EDGE-Buildings) and are supported by data-driven approaches
(ACCESS-E-USE). Agent-based models (e.g., BENCH) could further contribute to enriched
representation of technology adoption, accounting for social and behavioral aspects (Section 3.1).

4. MODELING LOW ENERGY DEMAND MEGATRENDS

Megatrends are tendencies that are transversal to the main dimensions surveyed in the LED
transformations (Figure 1b).We focus here on three main megatrends: digitalization, the sharing
economy, and the circular economy. In the following, we detail the contributions of these trends
to LED transformations and the state of the art in building sector models.

4.1. Digitalization

Digitalization refers to the widespread embedding of digital capabilities in appliances, homes,
workplaces, and utility infrastructures so that daily life becomes data rich with increasing
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potential for automation. Digitalization centers on information and communication technologies
and related applications such as cloud computing, data analytics, artificial intelligence, smart
Internet-connected technologies, and on-demand platforms and services (110). Collectively, these
technologies open up new services and possibilities across all domains of economic and social
activity (111). Digitalization is important for LED scenarios for three reasons (112). First, it is
a pervasive force shaping daily life, including the provision and consumption of energy services
in buildings. Second, digital services, platforms, and applications offer clear and significant
energy and GHG emissions reduction potential (113). Third, if left ungoverned and unchecked,
digitalization can lead to rebound effects that undermine LED future developments (114).

The influence and uncertain impact of digital solutions are demonstrated by the analysis of
trends in telecommuting during the COVID-19 pandemic. Studies quantifying the impacts of
energy and GHG emissions across demand sectors, and accounting for rebound effects (115–
117), found that telecommuting does not greatly affect net energy consumption due to offsetting
effects between increased household energy use and decreased transportation and commercial
building energy use. Studies of urban areas (116, 118) showed that the energy implications of
telecommuting are also uncertain, due to potential increases in housing unit size and home energy
consumption, and that energy reductions in office buildings are possible only if space is shared
among telecommuters.

Digitalization can support reductions in energy demand in buildings by twomain mechanisms:
control and integration. First, smart technologies and the Internet of things (IoT) provide new
control functionality with possibilities for algorithms or automated routines to manage heating,
lighting, or appliances to reduce bills or support the electricity and gas networks during times of
peak demand (119). Either by automatization and optimization or by supporting user decisions
and behavior change, these approaches can offer saving potentials between 10% and 40% for elec-
tricity, heating, and cooling (120, 121). Second, digitalization also enables distributed generation
(e.g., rooftop solar systems) and distributed storage (e.g., electric vehicle batteries) to be integrated
into electricity networks, so buildings can provide flexibility, trading, and balancing services back
to the grid (122). Real-time or marginal cost pricing during peak periods is one mechanism by
which electricity network operators can incentivize buildings and their occupants to reduce or shift
demand, avoiding the need for costly fossil fuel supply infrastructure (123). Besides operational en-
ergy demand, digitalization offers new opportunities to reduce the environmental impact of build-
ing construction through BIM, automated construction, and 3D printing (Sections 3.2 and 4.3).

Current building sector models rarely represent the adoption of digital technologies and their
effect on energy demand, requiring new methodological developments (124). Some aspects re-
lated to digitalization, such as telecommuting and related lifestyle changes, could be addressed
by current bottom-up models (e.g., EDGE-Buildings, JCBSEM, RECC), although only by us-
ing simplified approaches such as exogenously changing floorspace levels in housing and offices,
occupancy profiles, and building energy system operation levels. To do this, researchers need
more supporting data, for instance, to recalibrate sociodemographic parameterizations and en-
ergy demand functions, for example, by drawing on high-resolution smart meter data (71).Models
with higher temporal granularity that address electricity load profiles and renewable supply (e.g.,
TREES) can represent various changes induced by digitalization by exogenously modifying the
parameters related to building activities and appliance ownership and operation.Other bottom-up
models can readily represent smart appliances (e.g., FORECAST), demand-side flexibility (e.g.,
RTE model), and related energy consumption reduction potentials.

Modeling digitalization endogenously poses several challenges, requiring model structure
changes and further empirical backup, due to the uncertainty about the dynamics affecting
lifestyles, operation, and technology use. Model improvements may also lead to showing the
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diffusion of new technologies at the household level for both demand (e.g., smart metering)
and supply (e.g., PV panels), given the potential network and social norm effects as well as the
policy incentives in place. Digitalization also leads to more vector coupling and sector coupling
(e.g., between electricity, transport, and heat), which has been considered in some multisectoral
models (POTEnCIA) but is a major challenge for sector models in general. Future building
sector models will need to properly represent the changes in demand as more users become better
informed on and engaged in demand–response programs, dynamic pricing, and other types of
economic incentives and nudges that promote energy conservation or load shifting (Section 3.1).
Modeling complex systemic changes due to, for example, the wider spread of IoT is challenging
and requires further methodological developments (124).

4.2. Sharing Economy

Sharing refers to the case in which assets, such as vehicles, houses, or devices, are used by multiple
people as opposed to their ownership for exclusive individual consumption. The sharing economy
is at the crossroads of three more general trends: access over ownership, the circular economy,
and peer-to-peer exchange (125). Giving access to assets increases the use of underutilized devices
owned by an individual. Moving from owning to sharing presents several benefits, such as more
intensive use of the good or service and the minimization of waste (circular economy) andmaterial
needs (dematerialization) (Section 4.3). Peer-to-peer online platforms are at the core of many
sharing activities (126), such as short-term lodging (127).

Co-living and co-working are other types of flexible usage, encouraging the sharing of ameni-
ties such as space heating and cooling, living spaces, appliances, and other equipment (128–130).
Appliances and services sharing (rather than owning) and centralization of building equipment
(e.g., space and water heating, ventilation) reduce the number of devices required to serve the
same energy needs (e.g., lighting, entertainment, hygiene) and have the potential to reduce em-
bodied energy (129). In addition, devices can be used at a higher load factor, increasing efficiency
and lowering energy consumption and cost.

A long-standing line of research repeatedly shows the potentials of sharing in terms of
economies of scale at the household and urban levels using empirical methods (128, 130–132).
Adding one person to a one-member household can significantly reduce energy consumption and
material footprint; however, the marginal gains of further increases becomemuch smaller andmay
exhaust after some threshold. On the other hand, more densely populated and compact urban ar-
eas tend to offer more opportunities for sharing resources between households (133). But urban
areas also attract wealthier populations (134), which live in smaller size households (131), and this
might counterbalance the effects of density. Several empirical studies show lower potential for
further household economies of scale in urban contexts compared with rural areas, though with
lower emissions per capita in cities (128). We were unable to find estimates of carbon reduction
potentials obtained by sharing equipment, for example, heating and cooling or laundry rooms,
compared with owning. Moreover, flexible usage of buildings and synergies between commercial
and residential sectors have been largely overlooked in building sector models.

Despite these limitations, our survey results highlight that several models could represent as-
pects of the sharing economy, albeit in a simplified way. Having per-capita floorspace among the
main drivers, many of the surveyed models (RECC, TREES, STURM/CHILLED, JCBSEM,
EDGE-Buildings, FORECAST, RTE model) could represent space sharing in residential and
commercial buildings by exogenously providing modified floorspace projections. Part of these
models allows for introducing additional building archetypes, and their projected share in the
stock, to represent buildings with hybrid functions or shared spaces. Another way to represent co-
living would be to adapt projections of household size (TREES,RTEmodel).Other models could
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readily represent appliance and equipment sharing via modified appliance usage and ownership
(FORECAST, RTE model). However, challenges remain for available data to inform and support
such exogenous model parameterizations and more endogenous representations of aspects of the
sharing economy.

4.3. Circular Economy

The circular economy is an increasingly important concept for the construction industry and
in society (135, 136). Circularity measures aim to narrow, slow, and close material loops within
socioeconomic systems and also within ecological systems (137). These measures aim to reduce
overall resource use and conserve energy and emissions, although thermodynamic and biophysical
limits to circularity within environmental limits have to be understood (138), as there can be no
perpetual motion machine (139). For buildings, circularity measures address all life cycle stages
of the material stocks and flows that cater to the demand for building services, making circularity
highly relevant for LED scenarios.

To model circularity potentials for buildings, established methods and data are insufficient to
fully capture the benefits of circularity, but they do show inevitable trade-offs and problem shifts
(58, 136, 140, 141). To fully capture the benefits of circularity, it becomes necessary to dynam-
ically model the life cycle of the materials and components that constitute a building, for the
entire building stock at scale, to assess the upstream and downstream life cycle energy and emis-
sions implications of circularity measures for industry and energy supply, vis-à-vis operational
energy requirements of buildings (58, 140, 142). Importantly, this requires comprehensive system
boundaries on the GHG emissions due to material cycles across all life cycle stages of a building,
as well as intertemporal assessments of socioeconomic and natural carbon stocks and resulting net
emissions, for example, due to timber construction (136, 140, 142). The current life cycle liter-
ature usually is too narrow and selective (136, 140), while most material stock–flow analyses are
focused on modeling the building material stock at scale (58). Tackling this modeling challenge
is increasingly being done by combining prospective life cycle assessment, BIM, and dynamic
material stock–flow analysis.

State-of-the-art prospectivemodeling covers various supply- and demand-side circularitymea-
sures (Section 3.2). A recent bottom-up stock-driven study using the RECC model showed that
circularity measures can reduce global cumulative GHG emissions from the residential building
life cycle from 2016 to 2050 by 14–22% (62). These measures can make an important con-
tribution to reducing emissions from material production, which in 2015 were responsible for
23–35% of global total GHG emissions (143). This finding might become even more impor-
tant, as future buildings such as passive houses require slightly more and different materials
(102, 142).

Moving beyond biophysical modeling, some studies focus on the monetary costs and benefits
of circularity strategies (60, 61, 87), assess explicit policy variations (87), represent decisions and
effectiveness of measures with ABM of stakeholders and users (144), and either use results from
IAMs (64) or are coupled to these models themselves (88, 145), the latter of which enables the
evaluation of sectoral emissions, capital accumulation, and labor implications.

However, areas for further improvement include the following research frontiers. Spatially
explicit modeling is increasingly important, as many studies (58) (Section 3.2) conducted at the
national to global scales have assumed that circularity strategies can occur within the modeled
geographic boundaries (e.g., RECC), effectively ignoring transport constraints for large volumes
of construction materials. Recent efforts have started to explicitly model potential materials sup-
ply from deconstruction and demolition in a spatially explicit or highly regionalized manner to
understand region-specific demand potentials for secondary circulated materials (72, 146, 147).
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The aspect of spatiality is crucial for waste management planning, accounting for transport impli-
cations, and considering the full life cycle of GHG emissions from recycled secondary materials.

Detailed modeling of individual building structures at the subnational, national, and global
scales, for example, via BIM, would be required to accurately assess more ambitious circularity
strategies (e.g., more efficient design and component reuse instead of recycling), but this currently
is challenging on large scales. The modeling of building components (148, 149) in turn could
inform these circularity strategies about project-specific smaller scales (79, 150). The integration
of spatially explicit, high-resolution building-by-building modeling with large-scale national to
global assessments therefore constitutes an important research frontier.

Best-practice biophysical models like RECC primarily model high-potential circularity mea-
sures such as more intensive use, lifetime extensions, refurbishment, or recycling via exogenously
given changes in model parameters. Thus, they do not answer questions about the (policy) instru-
ments that can incentivize behavioral changes for uptake of these circularity measures. For this,
efforts to integrate the biophysical layer with socioeconomic layers such as stakeholders (144),
agents (151), and costs (61, 87) are required.

While the field of building sector modeling is rapidly expanding, its biophysically and ther-
modynamically correct integration into larger-scale macroeconomic modeling or IAMs is still
in its infancy (80, 82, 87, 88, 152). Currently, larger system models and IAMs lack consistent
representations of material cycles (153, 154).

Overall, more research is needed to assess which level of detail provides the best compro-
mise between the required modeling efforts, data availability, and resulting accuracy, specifically
in regard to representation of granular building types, coverage of materials, components, and
material quality, yielding more refined insights into reuse and recycling potentials. This would
provide important insights into model result uncertainty and future integration into large-scale
assessments.

5. MODELING DECENT LIVING STANDARDS

Quality of life, referring to the push for higher living standards, clean local environments, and
accessible services and end-use technologies, is a key driver of long-term change in energy demand
(12). DLS have been defined as a set of material conditions to support well-being (3), overlapping
with many SDGs. Several dimensions of DLS are closely related to buildings and the services they
provide, including shelter, thermal comfort, food preparation and storage, water, and sanitation.

The 1948Universal Declaration ofHumanRights already recognized a right to adequate hous-
ing for all. More recently, the SDGs included targets on safe and affordable housing (SDG 11)
and universal access to critical amenities within a house (SDGs 6 and 7). Access to adequate shel-
ter is an important prerequisite for well-being (3). Important elements of adequate housing that
relate to the structure of a habitat include sufficient space, durable housing materials and good
structural quality, and security of tenure (155). Approximately 1.26 billion people in emerging na-
tions are estimated to live in inadequate housing, and this number will rise to 3 billion people by
2030 (156). Among the approaches to model access to housing or shelter, demographic variables,
such as household formation, or economic variables, including aspects of housing markets and af-
fordability, are typically considered important drivers of changes in housing stocks and flows over
time (157–159). Recent studies (160) showed that provision of durable housing for all could result
in considerable energy footprints, even if the increase in energy provision for basic decent living
does not pose, in itself, a threat to climate change mitigation (160).

The provision of universal access to critical amenities within the house are also considered
key aspects of adequate housing. These amenities include sustainable and affordable access to
natural and common resources; clean drinking water; energy for cooking, heating, cooling, and
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lighting; sanitation and washing facilities; food storage facilities; refuse disposal; site drainage;
and emergency services. Recent research has assessed populations lacking access to these ameni-
ties, as well as global and regional gaps (161–164). Other research has assessed how access to
these services might improve, under either baseline scenarios of socioeconomic and demographic
change or normative scenarios that aim to provide universal access, and has estimated the asso-
ciated investments required, as well as the consequent energy and emissions for specific subsets
of these services (85, 165–167). Finally, some nascent research has analyzed how access to these
basic services might be affected under alternative climate change futures and has estimated the
distributional consequences of climate mitigation policies on access to these services (168, 169).

Cooling needs have been drawing attention as an important energy service and adaptation
measure to protect people’s health from an increasingly warmer climate (170). The global en-
ergy use for space cooling is predicted to triple by 2050 (171), with nearly 70% of the increase
from the residential sector and the Global South. Recent literature investigated current and fu-
ture gaps in access to cooling, related energy demand, and vulnerability to thermal discomfort and
heat-related health threats using mostly empirically based methods for different regions and glob-
ally (172–174). Fewer empirical studies investigated the cooling pattern of households in specific
countries (175, 176). More empirical work in different contexts is needed to support improved
representation of household preferences and cooling behavior in building sector modeling (177).

A large literature exists on residential cooking fuel transitions in the context of modern energy
access in theGlobal South.Recent studies (178, 179) found that connections to clean cooking fuels
such as liquified petroleum gas (LPG) do not translate to sustained use due to issues related to
affordability, availability, and other perceived co-benefits and energy services of traditional fuels.
In India, 40% of residential energy needs may still be met from solid biomass in 2030 (180), with
serious implications for household health and quality of life.Households that have shifted to LPG
for cooking might still be using biomass for water heating (181), and in urban areas LPG might
still be used even if electric or solar water heaters are available due to issues of reliability and
affordability.

Only a few of the surveyed models represent aspects related to DLS (Supplemental Figure 1).
National models for India (SAFARI and PIER) have detailed representation of access to household
energy services, linked to energy and material demands (SAFARI). STURM/CHILLED accounts
for access to shelter and to thermal comfort globally via empirically based models. In ACCESS-
E-USE, access to appliances and clean cooking, and associated final energy demands, is modeled
endogenously using structural econometrics and capturing heterogeneities in households and
housing characteristics.More broadly, existing approaches that relate aspects of adequate housing
to energy and emissions have been top-down and aggregated, with fewer studies accounting for
population and spatial heterogeneities.Thus, less is known about inequalities in access to adequate
housing and associated amenities within nations, particularly in the Global South. Furthermore,
aspects related to quality of services are less explored. Finally, in addition to energy requirements,
the material demands needed to provide these services are not well understood.

6. KEY MODELING GAPS

The analysis of current and emerging building sector modeling practices allowed us to identify key
gaps in representing LED transformation, megatrends, and DLS (Sections 3 and 4). Supported
by the literature review, survey of model features (Figure 3), and expert elicitation process, we
discuss four main areas of critical modeling gaps that need to be addressed by future research,
based on four key model features (Section 2; Figure 2): spatiotemporal resolution and coverage,
granularity, model dynamics, and system boundaries.
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Figure 3

Results from surveyed building sector models. (a) Spatiotemporal resolution. (b) Model dimensions considered in building
sector and multisectoral models. (c) Representation of model dynamics related to the three dimensions of low energy demand (LED)
transformations. (d) Implementation of cross-sectoral linkages. Results in panel a are based on 16 survey responses received. Results in
panel b are based on 11 survey responses available. Results in panels c and d are based on 13 survey responses received. Data are from our
own survey of building sector model features (see Section 1.2 in the Supplemental Text).The underlying data are available in Section 2.1
of the Supplemental Text. Abbreviations: energy eff. std., energy efficiency standard; HVAC, heating, ventilation, and cooling.

6.1. Spatiotemporal Resolution and Coverage

Spatiotemporal resolution and coverage are important aspects of building sector modeling, influ-
encing the ability of a model to represent LED transformations. Geographical resolution in the
surveyed models broadly varies from subnational to national and global (Table 1). Models with
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global coverage (EDGE-Buildings, HEB, STURM/CHILLED, RECC) often rely on simplified
regional or country representation, depending on available input data. More granular spatial res-
olution is necessary to further represent LED transformation, including changes in urban form
and decentralized service provision (Section 3.2), and spatial matching of demand–supply to eval-
uate the transport implications of circularity measures (Section 4.3). Coarse aggregation could
risk masking aspects related to climate variability, available fuels, and economics, with higher
uncertainty (16). In terms of geographical coverage, some regions are still not adequately rep-
resented in current building sector models. While an increasing number of models focus on
developing countries, either from a national (PIER, SAFARI) or global (HEB, ACCESS-E-USE,
STURM/CHILLED) perspective, data gaps still represent a challenge for modeling the building
sector and its dynamics in the Global South (88), particularly in rural areas, and DLS (Section 5).

Building sector models used for long-term energy demand scenarios at scales larger than na-
tional have mostly annual or multi-annual temporal resolution (Figure 3a). Subannual timesteps
(5 minutes to hourly) are already used in several subnational and national level models but are less
used in larger-scale modeling. Finer temporal resolution is needed to capture seasonal and sub-
daily variations and to adequately represent LED transformations, including demand–response
management and prosumers (Section 3.3) and behavior profiles (Section 3.1). Combining long-
term projection of energy demand with finer temporal resolution is challenging due to intensive
data and computation requirements and data availability.

6.2. Granularity

The building sector is characterized by large heterogeneity in characteristics of both the building
stock and the actors involved in its development and operation. Capturing these dimensions of
heterogeneity is critical for representing LED transformations but also challenging due to both
data availability and limitations in model granularity.

The potential to represent these heterogeneities is strongly related to modeling approaches,
modeling units and granularity, and underlying data structures. Recent model developments have
substantially broadened the range of dimensions of heterogeneity that are considered (Figure 3b).
Bottom-up engineering approaches typically have more granular representation of building char-
acteristics and technologies, enabling improved representation of heterogeneities in building
types, vintage, energy efficiency standards, and technical systems that are essential for assess-
ing technological and infrastructural LED interventions. Other bottom-up approaches, including
economic models and ABM, have enhanced socioeconomic granularity, which is necessary to
represent different actors of change and household types that are critical for socio-behavioral
LED interventions and megatrends. Accounting for combined buildings, technological and so-
cioeconomic heterogeneity is important to further represent distributional aspects key to DLS
and other LED megatrends (Sections 4 and 5). Gaps persist in representing the socioeconomic
heterogeneities and actors of change (e.g., individuals, households, businesses, governments) and
in mapping with infrastructural and technological heterogeneities for improved accounting of dy-
namics of transformation and effects of policies. Differences also exist between subsectors, with
the commercial sector significantly underrepresented compared with the residential sector and of-
ten at an aggregated level despite even larger heterogeneities, for example, in building functions,
characteristics, and actors of change.

6.3. Model Dynamics

Existing building sector models can already account for some components of LED transfor-
mations, captured by a series of model dynamics and variables (Figure 3c). However, model
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implementations are diverse and often rely on simplified methods or assumptions. Dynamics and
variables can be exogenously or endogenously represented depending on themodel research ques-
tions and assumptions. Regarding socio-behavioral interventions, most of the surveyed models
can represent lifestyle changes (Section 3.1), though only partially and using mostly exogenous
parameters or via linkage with external models. One key example concerns reduction of building
size, where changes are commonly represented via exogenous floorspace projections (Section 3.2)
rather than the underlying dynamics. Conversely, energy-saving practices and behavior are cov-
ered by a smaller number of models but are mostly endogenously represented. Enhancing the
modeling of behavioral aspects could improve the accuracy of modeled energy demands and re-
duce discrepancies with energy consumption levels observed in the real world (102, 182), especially
for low-energy buildings.

Infrastructural changes related to building lifetime and stock turnover (Section 3.2) are largely
covered, partly represented by dedicated turnover models, but in most cases are exogenously
assumed. Urban form–related infrastructural interventions are covered by a smaller number of
building sectormodels and only exogenously, for instance, by imposing different shares of building
types in future scenarios. Most models cover either endogenously or exogenously technological
interventions related to energy-efficient new construction and renovations (Section 3.3). How-
ever, there is a gap in the coverage of smart buildings and the switch to renewables, as well as
technological innovation and business models.

6.4. System Boundaries

LED transformations are not contained in a certain sector, such as buildings, because LED sce-
narios incorporate restructuring of servicing systems throughout the entire economy, whereas
different sectors are integral parts. Thus, it becomes inevitable to understand and model
cross-sectoral linkages (Figure 3d), specifically with the energy supply systems, industry, and
transportation. Linkages with urban systems and social systems are also key and are further re-
viewed below. Linking the energy demand-side and supply-side is critical for representing LED
transformations. Some of the building sector models in this study have been designed to link with
large energy system models. For example, STURM/CHILLED and ACCESS-E-USE are linked
with MESSAGEix-GLOBIOM, EDGE-Buildings can be linked with REMIND and WITCH,
and UKHousehold Model is linked with UK TIMES. These linkages respond to the demand for
a more detailed representation of demand-side mitigation strategies in the context of IAMs, which
traditionally focus more on the supply-side (87).

Assessment of upstream and downstream energy demand and emissions requires improved
representation of material cycles and interlinkages with industry (Section 4.3). While building
sector models have been focusing largely on the operational energy assessment, an increasing
number of models consider material aspects. In particular, bottom-up engineering-based models
have been increasingly combined with industrial ecology methods, such as life cycle assessment
and material flow analysis, to assess all stages of the building life cycle, stock turnover dynamics,
and material aspects (EDGE-Buildings, STURM/CHILLED, SAFARI). Interlinkages with raw
material–producing sectors (mining, forestry, agriculture) are also important for LED transforma-
tion and insufficiently considered. For instance, substituting standard construction materials with
timber or other renewable resources needs to be assessed carefully vis-à-vis mounting pressures on
land systems and trade-offs with food, feed, fuel, natural carbon sinks, and biodiversity (137, 183).

Linkage with urban systems has been partially represented via exogenous floorspace and build-
ing type projections, relating to different urban forms (Section 3.2). Some multisectoral models
already incorporate linkages between buildings and transportation by considering vehicle-to-grid
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applications (POTEnCIA), common behavior models (TREES), and consistent definitions of
demand levels across sectors (SAFARI, RTE model). This is in line with urban-scale energy
modeling, assessing new strategies for urban development planning, energy supply–demand,
and distribution network stability (184). More fundamental linkages would be required to ade-
quately represent the implications of different urban forms on both building and transportation
infrastructure and operation, and associated energy and emission, in a more consistent way.

Finally, a clear gap exists in linking building sector models with social systems, including edu-
cation and health. Most of the surveyed models, except ABM (BENCH), currently cannot readily
represent such aspects. Linkages between building sector models and approaches offering richer
details on socio-behavioral dynamics (e.g., ABM) (Section 3.1) are currently limited.

7. CONCLUSIONS

In this article, we reviewed current practices in building sector modeling and contrasted themwith
the transformations required to achieve LED futures, in consideration of three megatrends (digi-
talization, the sharing economy, and the circular economy) that will mark the coming decades, and
DLS. In an LED future, higher levels of end-use services (such as thermal comfort and mobility)
can be provided with at least 40% lower final energy input than today while also reaching climate
mitigation and sustainable development targets without relying on large-scale negative emissions.
We used literature reviews, model surveys, and expert elicitation to describe the state of the art
and to identify best practices and key modeling gaps.

We found that modeling practices significantly vary across different LED transformations.
Current building sector models mostly lack appropriate representation of socio-behavioral
interventions as effective drivers of future energy conservation opportunities. Infrastructural in-
terventions are often represented with simplified approaches and exogenous projections, while in
some cases more detailed industrial ecology methods have been integrated for modeling the stock
turnover and life cycle of buildings. Technological interventions are more commonly assessed in
current building sector models, yet a shift toward modeling at the energy services level and a re-
vision of how technological development, drivers, and user interactions influence technology are
required to assess LED futures. Dynamics related to the three megatrends and DLS are mostly
not well integrated because of the complexity compared to current practices and methodologies.
Future improvements will require methodological developments and empirical data support to
advance modeling beyond exogenous representation of key dynamics.

Key gaps toward modeling LED transformations, megatrends, and DLS include insufficient
spatiotemporal resolution and coverage, granularity and heterogeneity, model dynamics, and
cross-sectoral linkages. To achieve more robust results, spatially explicit representation and con-
necting to existing building databases via geo-location are at the cutting edge of recent approaches
(79, 81, 185). Recent advances in using remote sensing (186–188), cadastral data (189), and
modeling of building components (148) could make building-by-building and spatially explicitly
modeling more feasible in the future. Improved data availability is critical for supporting consider-
ation of heterogeneities, including distributional aspects and equitable access to energy. In addition
to empirical data, newly available big data, such as social media (190), and machine learning tech-
niques (187) have the potential to greatly improve the representation of building heterogeneity at
regional or larger scales and their spatial and temporal resolutions.

More empirical research and availability of microdata are needed to support the endogenous
representation of LED transformations, megatrends, and DLS in building sector models, provid-
ing improved understanding of the role of different agents as drivers of change in combination
with technological innovation and infrastructure evolution, and of the impact of buildings and
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cross-sectoral policies and regulations, as well as business models. While endogenization allows
for representation of the underlying dynamics of specific interventions, it is usually not possible
or desirable to fully endogenize all aspects of LED transformations in a single model, nor should
it be a modeling aim. Linkages between models can offer an alternative to full endogenization.
Linkages of building sector models with the energy supply-side (e.g., via IAMs) were demon-
strated by recent studies. As the energy transition advances, it becomes increasingly important to
account for the whole life cycle of buildings and appliances, as energy use and impacts shift toward
upstream and downstream. Coupling with industrial ecology models is promising to better repre-
sent buildings–industry linkages and has been demonstrated in recent work (191). More research
is needed to fill current gaps and better assess linkages with industry, urban systems, and social sys-
tems. These modeling advancements could provide improved evidence of LED transformations
and their impacts to better support decision-making toward climate and sustainability targets.

SUMMARY POINTS

1. Modeling low energy demand (LED) transformations in the building sector is essential
to provide evidence for strategies to reduce greenhouse gas emissions in line with climate
targets while supporting human activities and well-being.

2. More knowledge and data on social and behavioral interventions, including individ-
ual behavioral and lifestyle changes, social energy-saving practices, and participatory
governance, are required in LED transformation modeling for the building sector.

3. Infrastructural interventions related to low-carbon building design, urban form and
floorspace rationalization, and community-centered strategies are represented mostly
with simplified approaches and exogenous projections, often overlooking the underlying
dynamics.

4. Demand-side technologies, from energy-efficient appliances to low-energy or passive
buildings, became an integral part of building sector modeling; however, a focus on en-
ergy services and improved representation of technology development, drivers, and user
interactions are needed to properly assess LED futures.

5. Dynamics related to megatrends, including digitalization, the sharing economy, and the
circular economy, and decent living standards (DLS) are not yet well understood in
relation to building sector modeling.

FUTURE ISSUES

1. Increased availability of datasets on sociodemographics, building characteristics, and en-
ergy consumption patterns and behaviors, including spatiotemporally explicit datasets,
is necessary for bridging gaps in representing the Global South, rural areas, and nonres-
idential buildings, enabling appropriate modeling of LED transformations in building
sector models.

2. Improved socioeconomic and technological granularity and heterogeneity are criti-
cal for adequately modeling LED transformations, megatrends, and DLS, including
distributional aspects and equitable access to energy, in building sector models.
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3. More empirical research and availability of microdata are needed to support the endoge-
nous representation of LED transformations, megatrends, and DLS in building sector
models, providing improved understanding of the role of different agents as drivers of
change in combination with technological innovation and infrastructure evolution, and
of the impact of policies and regulations.

4. Model interlinkages can support more systemic assessments of LED transformations
across the whole life cycle of buildings, bridging across different sectors and dimensions,
including energy-supply, industry, transportation, and social systems.
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