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Resumo 
 

As abordagens de desenvolvimento mais recentes estão a estabelecer os microsserviços e a 

computação em nuvem como tendências importantes para benefício da comunidade tecnológica. No 

entanto, estas tecnologias são frequentemente propensas a vários problemas relacionados com o 

desenvolvimento paralelo por várias partes, estratégias de entrega de software desenvolvido e 

afetação de recursos. Este artigo propõe uma nova arquitetura para o desenvolvimento de 

microsserviços autoadaptativos, utilizando Kubernetes através do Azure Container Apps, incluindo 

uma estratégia que complementará a arquitetura para melhorar o seu desenvolvimento, visando 

alcançar uma solução que permita aos leitores entregar software mais rapidamente, com mais 

resiliência, mais escalável e mais económico, dependendo o menos possível da intervenção humana 

para manter e escalar. O autor irá aplicar os conhecimentos adquiridos para propor e testar uma 

arquitetura para um caso de uso real, construindo um serviço de notificações integrado com um 

sistema complexo de aplicações web hospedado na nuvem. 

 

Palavras-chave: Arquitetura de microsserviços; Computação em nuvem; Virtualização; Sistemas 

autoadaptativos; Kubernetes; Azure Container Apps; 
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Abstract 

 
The modern development approaches are establishing microservices and cloud computing as major 

trends to benefit the technological community. However, these technologies are often prone to 

multiple issues regarding parallel development by numerous parties, delivery strategies and resource 

allocation. This paper proposes a novel architecture for developing self-adaptive microservices, using 

Kubernetes through the Azure Container Apps, including a strategy that will complement the 

architecture to enhance the development of microservices and aiming to achieve a solution that allows 

the readers to deliver software faster, with more resilience, more scalable, and more cost-effective, 

depending as low as possible from human intervention to maintain and scale. The author will apply 

the acquired knowledge to propose and test an architecture for a real use case scenario, building a 

notifications service integrated with a complex cloud-based web application system.  

 

Keywords: Microservices architecture; Cloud computing; Virtualization; Self-adaptive systems; 

Kubernetes; Azure Container Apps; 
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CHAPTER 1 

Introduction 
 

Developing and delivering software code to the real world can be challenging. Software applications 

are more complex than ever, and the users are extremely demanding. In 2018, the author of this thesis 

started his development career on a small startup, with the task of growing a cloud-based-platform 

used by multiple clients all over the world. As a junior developer, his main role was to deliver code, 

developing new features and maintaining the existing ones. Although this task was apparently simple, 

it didn't take long to apprehend the complexity that was involved.  

The first big difference is the number of people working in the same code base. During their 

academic development, students are used to participate in group projects, where the group size is very 

limited, and most of the times they share the code sending it on a compressed file by email or through 

a cloud drive when part of the project is done. This doesn’t work on a real industrial project, because 

the number of persons involved is higher, and the tasks should be done on a parallel way, to deliver 

faster. This leads to problems like merge conflicts or dependencies between tasks from different 

developers. Of course, there are ways to solve these, but it’s complicated and time consuming. These 

problems were also boosted by another point: the company’s application was composed all in one 

piece. Meaning that all the functionalities and components were tightly coupled, making it harder to 

split work across multiple teams or individuals, which is a common pattern in older software.  

The second divergence: multiple environments. Software companies that make use of a 

continuous delivery approach normally have multiple stages before dropping new code into 

production, to try to protect its customers from errors and unexpected behaviours. In this case, the 

code is first deployed on a development environment, that is only accessible by the developers and 

the quality assurance team, that performs the first tests. If the tests are accepted, the code is moved 

into a test environment, with different configuration and more stable than the previous one, and 

another round of tests is performed here. Finally, the code reaches production, distributed on different 

regions to improve latency across the world. But obviously, the workload on a production environment 

is completely different from the workload on a test or development environment. Even in production, 

there are differences between regions and the product performance is very dynamic throughout the 

day. When the software users are more active, the workload grows, and when they are sleeping, the 

workload is relative insignificant. Meaning that if we have the same power of resources all day long, 

we are not taking full advantage of it and we are overpaying. 
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The difficulty to manage many people working on the same code base is not the only problem 

faced when having the software composed all in one piece. When the team wants to deliver a new 

change into production, all the application needs to be deployed, which represents a high-risk 

operation. Very often the need to be sure that the version is stable enough, forces to delay the delivery 

and staying weeks without releasing into production. 

These problems, found in the referred startup company, are common and applicable to the 

general case and represent a major short come to development activities that needs to be tackled. The 

company, following the global trend started splitting its applications into multiple microservices, taking 

advantage of all the benefits that it comes with. By having an important role in this change for the 

company, the author was pushed to the need to cope with the latest technologies and techniques on 

this topic and was able to research and develop in a real business a novel approach regarding the 

architecture for microservice development, namely for self-adaptive microservices.  

 

1.1. Objectives 

Taking in consideration the challenges that were elicited, the main objective of this research is to 

propose an innovative approach and architecture of a self-adaptive system, using the latest 

technologies and best practices known at the time of this writing, that allows developers to deliver 

code faster, with more resilience, which is more scalable and cost-effective, and depending as least as 

possible from human intervention to maintain and scale. 

To exemplify and demonstrate these techniques, the author implemented a notifications service, 

which was developed for real production use in a real industrial scenario.  

 

1.2. Research Questions 

The methodology that was selected for this research (see section 1.3) advocates that the chased 

objectives should be tied to a set of research questions. In this case, a set of research questions for this 

research can be proposed: 

• How can a software system benefit from the inclusion of a microservices architecture 

combined with cloud and virtualization techniques such as Virtual Machines and Containers, 

in its development?  

• How can a system use self-adaptive techniques to adapt and optimize itself on different 

workload conditions to be cost effective and keep the desired performance? 

• How can we abstract the microservices from the underlying infrastructure and deal with the 

challenges of a distributed system running on the cloud? 
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1.3. Research Methodology 

The methodology used in this research was the Design Science Research (DSR). The DSR methodology 

aims to achieve “a new purposeful artefact to address a generalised type of problem and evaluates its 

utility for solving problems of that type” [1]. The main goal is to generate knowledge about relevant 

problems in the real-world environment and propose a way of how things should be done to achieve 

a desired set of goals [2]. In [2] the authors proposed 6 different sequential activities to follow when 

applying this type of methodology.  

The steps that concern this methodology are visually represented in Figure 1, that represents the 

Design Science Research process model proposed by Jan vom Brocke, Alan Hevner and Alexander 

Maedche in [2]. 

 

Figure 1 - Design Science Research process model [2] 

 

In the first phase of this methodology the objective is to identify the problem and the motivations 

that justifies the value and relevance of the solution. In this research, this step was accomplished on 

chapter 1, by enumerating the problems that motivated the research.  

The second phase aims to define the objectives of a solution. After identifying the problem on the 

previous step, it’s important to understand what a better artefact should accomplish. These objectives 

can be quantitative or qualitative and can be inferred from the phase one. In this case, the objectives 

were clearly defined in chapter 1 on the "Objectives” section.  

In the third phase, the objective is to design and create an artifact. This includes the determination 

of the desired functionalities and its architecture. This step was accomplished on chapter 3, after using 

chapter 2 to understand the state of the art. 
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On the fourth phase the researcher should demonstrate that his produced artifact solves one or 

more instances of the problem defined on the first phase, finding a suitable context, and using his 

solution. This was done by simulating a real-world environment, in the section “Load tests and metrics 

analysis” of chapter 3. 

The fifth phase is the evaluation. Here the research should observe how well the artifact can be 

used as a solution to the problem. At this point, if the researcher is not satisfied with the effectiveness 

of the artifact, he can return to the phase two or three to improve the outcome. This evaluation took 

place on chapter 4 - Results Discussion. 

The sixth and last phase of the process is the communication, where the problem and the designed 

artifact is communicated to the relevant stakeholders. This has been accomplished by the publication 

of an article in the International Conference on Industry 4.0 and Smart Manufacturing (ISM 20231). 

 

1.4. Structure 

This thesis is structured in the following way: The current chapter (1) introduces this research, 

presenting the main motivations, objectives, and research questions, as well as the methodology that 

conducted this research. Chapter 2 performs a literature review, analysing the most common software 

architectures to better understand the advantages and disadvantages of using Microservices, as well 

as understand complex concepts such as self-adaptive systems and cloud computing. Chapter 3 

proposes an implementation of a self-adaptive microservice. It presents multiple diagrams that will 

help the reader to understand the architecture and implementation of the microservice and the 

integration with the overall system. Chapter 4 presents a discussion on the obtained results, mapping 

them to the research questions elicited. Finally, Chapter 5 presents the draw conclusions and presents 

future work. 

 

  

 
1 https://www.msc-les.org/ism2023  
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 CHAPTER 2 

Literature Review 
This chapter elaborates a Literature review over the topics that are most relevant for this research, 

aligned with the methodology presented in 1.3. 

 

2.1. Software Architectures 

2.1.1. Overview 

A software architecture refers to the way that an application is built, including the code and the 

way that each functionality or component interacts and connects with each other. The software 

architecture will influence the way that a software evolves, as well as the performance, scalability, and 

security. Each software has different requirements and concerns, and choosing the proper architecture 

is a key factor to the project’s success, meaning that there’s no “one-size-fits-all”, and each case should 

be analysed and sometimes tested before commit to one. 

 

2.1.2. Monolithic Architecture (MA) 

The monolithic architecture (MA) has been for many years the main choice of the developers for 

modelling the design of software programs. The Cambridge Dictionary defines the word “monolithic” 

as “very large, united, and difficult to change”, which is appropriate to understand this type of software 

design. In a MA, all the functionalities and business logic are encapsulated in a single application that 

runs in a single process and uses a single code base for all [3], [4]. Figure 2 shows a conceptual model 

of the monolithic architecture and illustrates the coupling between the User Interface, the business 

logic, and the data access layer. 

 

Figure 2 - Conceptual model of the monolithic architecture 
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2.1.3. Microservices Architecture (MSA) 

Over the last years, the Microservices architecture (MSA) has increased importance to become the 

most popular way of developing applications [5]. Large companies like Netflix, Amazon, eBay, and 

many others have migrated their software systems from the old patterns (MA) to this architecture type 

[3].  

In an MSA, the key idea involves isolating business functionalities into microservices that interact 

through standardized interfaces [6] based on lightweight mechanisms such as HTTP or gRPC. Each 

microservice runs on its own process and should be responsible for a single business logic with well-

defined boundaries, normally managed and developed by a single team, hence it is independent from 

the other system components. Each microservice should be designed, developed, deployed, and 

administrated independently [7]. Figure 3 shows a conceptual model of a system composed for 

multiple independent microservices that communicate with each other and may or may not depend 

on a database component. 

 

 

  

Figure 3 - Conceptual model of the microservices architecture 
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2.1.4. Monolithic vs Microservices 

Each architecture has its advantages and disadvantages. The MA is simpler to design and has a better 

performance when we’re talking about a small scale, since all internal communications is done via 

intra-process mechanisms [8]. Multiple studies have shown that monolithic systems normally 

outperform the microservices architecture on small and medium systems [3], [8], [9]. But along the 

time, a monolithic software tends to evolve and increase its size and number of functionalities, and it 

gradually becomes too large for any developer to fully understand. In addition, these functionalities 

may require different types of resources, making it difficult to choose the right server configuration 

[10]. There are some more advantages of choosing the monolithic as software design, such as the 

simplicity of testing and deploying. On the other hand, microservices are emerging due to multiple 

reasons. In [3], the authors enumerated five main advantages:  

• Technology heterogeneity - each microservice can use its technology stack, accordingly to its 

needs and the characteristics that better suit him (e.g., in terms of performance), while in the 

monolith approach the larger the systems get, the harder it is to change [11].  

• Resilience - having in mind the fact that each microservice is an independent component, the 

failure of one of them will not affect the whole system, since the other services can still handle 

new requests. The MA lacks fault isolation, because all the application runs on a single process, 

and an unexpected error would crash the entire software [10].  

• Scaling - while in the MA scalability is difficult to achieve since it requires to be scaled as a 

whole, the MSA offers the possibility to only scale the components that need more resources. 

• Ease of deployment - in a monolith application, any change requires the whole application to 

be deployed, and this could represent a high-impact and a high-risk for the organizations. 

Microservices are deployed independently, allowing us to get our change in production faster 

and safer, since the rollback can be achieved more easily if anything goes wrong. 

• Organizational Alignment - microservices minimizes the number of people working on the 

same code base. This allows a better organization inside the development team, leading to 

more productive environments. 
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In [12], Sam Newman also brings to the table two more key advantages of using microservices. 

One of them is “Composability”, meaning that some functionality should be easily reused in different 

ways and perhaps for different consumers (e.g., Web and Mobile). The other one is mentioned as 

“Optimizing for Replaceability” and relies on the fact that microservices facilitates the task of replacing, 

refactoring, and even remove old system parts. On monoliths, this task is risky, and the effort is 

sometimes too high. However, designing a microservice architecture can be really challenging since 

there isn’t a well-defined algorithm for decomposing a system into multiple pieces. MA also increases 

the complexity of developing the software, introducing challenges such as distributed systems [10]. 

Beside of that, microservices also increase the complexity of the service governance, including 

monitoring, testing, discovery, and others [7]. 

 

2.2. Cloud Computing 

2.2.1. Overview 

Cloud computing can be seen as a business model. In the cloud it’s possible to store and access data 

and programs over the internet, instead of using our own local machines and hardware [13]. In fact, 

cloud computing clients can take advantage of the pay-per-use model, that is a payment model where 

you pay for what you use which fits the needs and allows to scale gradually, quickly, and as needed. A 

cloud client pays to use a small set of resources from a shared pool, and its billed considering its 

utilization. Cloud can be defined as a pool of virtualized and configurable computing resources, 

including hardware, storage, networks, interfaces, and services [13]–[15]. Its main characteristics 

include on demand self-service, scalability, and elasticity to increase or decrease usage demands by 

adding or removing resource power. The ability to “adapt to workload changes by provisioning and 

deprovisioning resources in an automatic manner” [16], avoiding under and over-provisioning with 

real-time monitoring. All of these are translated in a cost-effective system, more reliable and highly 

scalable. 

 

2.2.2. Cloud Service Models 

Cloud services can be provided in different model types and each one targets a different type of users 

and meets different requirements. 

• Infrastructure as a Service (IaaS) - delivers the physical hardware and infrastructure that 

supports cloud computing, including servers, storage, network components, etc. The providers 

are responsible for all the maintenance and the physical place where the components are 

stored (data centres).  
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• Platform as a Service (PaaS) – an application platform that allows clients to build, deploy and 

manage software, without the complexity of building and maintaining the underlying 

infrastructure. 

• Software as a Service (SaaS) – delivers software applications through the internet. Providers 

are responsible to host and maintain the software.  

When the user requires more control and flexibility over the infrastructure, the IaaS is the most 

suitable model. However, it requires more management and maintenance concerns that the other 

types. In the other hand, SaaS offers the least control over the underlying infrastructure. Figure 4 

visually represents this hierarchy. 

 

 

Figure 4 - Cloud service models 

2.2.3. Virtualization 

It’s the backbone technique of cloud computing [15]. Virtualization allows the system to run as an 

isolated system, but in a shared environment [17]. It creates an abstract layer of system resources, 

decoupling the software from the hardware. The three main characteristics of virtualization are [13], 

[14]: 

• Partitioning - the available physical system resources are shared by portioning it in multiple 

parts so it can be used by various applications and operating systems. 

• Isolation - each virtualized environment is independent from the host and other 

environments, meaning that they can’t share data and a failure on one element won’t affect 

the others. 



 
10 

• Encapsulation - stored or represented as a single file. 

Virtualization can be applied on different levels: Operating System (OS), Application-Server, 

Application, Administrative, Network, Hardware, and Storage.  

 

2.2.4. Virtual machines (VMs)  

Virtual machines are one of the most famous types of virtualizations. On the traditional architecture, 

the software application runs on top of an operating system (OS) that operates the hardware. The next 

figure represents a diagram of a traditional host architecture, with 3 different layers (as shown on 

Figure 5):  

• Application layer – the programs that are executed on the OS (e.g., Microsoft Word) 

• Operating System Layer – the OS installed on the host (e.g., Windows, Linux…) 

• Infrastructure/Hardware Layer – the physical resources from the host (e.g., Memory, Disk) 

 

 

Figure 5 - Traditional host architecture 

 

However, most of the times the programs and applications running on a host machine don’t take 

advantage of all the physical resources available, using only a small amount of the available power. 

Instead of having multiple machines with unutilized resources, it’s possible to take advantage of 

virtualization to distribute those physical resources for multiple virtual environments, using for 

example virtual machines.  

A virtual machine has its own operating system and shares a pool of resources (from the “host” 

machine) with another virtual environments. All the virtual machines running on a host are managed 

by the Virtual Machine Manager (VMM) also known as Hypervisor, which is a “program or combination 

of software, hardware or firmware that creates and executes various virtual machines” [15].  

The hypervisor can run directly on the host machine, and these are called native hypervisors or 

bare metal hypervisors (Figure 6). This type (Type I) is generally more efficiently and secure, 

considering that it works without the attack-prone operating system layer. 
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Figure 6 – Virtual Machine architecture running on a host machine (Type I / Bare-metal / Native Hypervisor) 

 

On the other hand, the hypervisor can also run on top of the host machine operating system, just 

like other programs do. However, the guest operating systems (from the VMs) are abstracted (isolated) 

from the host OS, and for this reason they can be different. This type of hypervisor is called Embedded 

or Hosted Hypervisor. Having this extra layer, the latency is bigger when compared to the Type I (Figure 

7). 

 

Figure 7 - Virtual Machine architecture running on a host machine (Type II / Embedded / Hosted Hypervisor) 

 

The use of virtual machines has many benefits, such as: 

• Cost effectiveness – it lets you share the same infrastructure to run multiple virtual 

environments, reducing maintenance and electricity costs, contributing to a green computing 

practice. 
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• Portability – A virtual machine is represented on a single file called “image”. This file 

encapsulates all the VM layers, including the programs, binaries/libraries, and operating 

system. For this reason, it’s very easy and fast to provide entire new environments, improving 

the availability and performance of applications. 

• Security – Being a virtualized environment, it is isolated from the host OS, protecting the host 

from potential treats as viruses and attacks.   

 

2.2.5. Containers 

Containers are also a virtualization technology that allows multiple applications to run on a single 

host machine. It virtualizes the operating system and they are more lightweight because, unlike virtual 

machines, containers do not run their own operating system. Instead, the container image contains 

only the application and its dependencies (libraries). It runs on top of a container engine, like Docker, 

which allows its users to create, maintain and deploy containers, providing an API to communicate 

with its core engine - Figure 8. 

 

 

Figure 8 - Container architecture 

 

2.2.6. Docker 

Docker is one of the most well-known and widely used platforms for developing, shipping, and running 

container applications with fastest and more consistent deliveries [18]. The docker architecture is built 

around three main components: the docker client, the docker host and the docker registry. The docker 

client allows the user interaction with the Docker daemon, through the Docker API. The Docker 

daemon is the core of the Docker platform, responsible for building, running, and distributing the 

docker containers, as well as manage other docker objects such as images, networks, and volumes. 

The registry is where the docker images are stored and it can be public, like the Docker Hub (used by 
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default), or private. When the user makes a request to push, pull or run a container image, the docker 

daemon uses the configured repository to upload or download the requested image. Figure 9 is a 

simple diagram of the Docker architecture that shows some of the interactions between the Docker 

Client, the Docker Host (where the Docker Daemon is running) and the different registries.   

 

 

Figure 9 – Docker architecture [18] 

 

The Docker containers are created from the Docker images pulled from the repository. Users can 

build up containers from public images from public repositories, or create their own using a 

“Dockerfile”, that contains simple instructions on how to build it. These instructions can be used to 

specify the base image to use as the starting point for the build (like an operating system or a 

framework), the files to be copied from the host, the working directory for subsequent instructions, 

commands to be executed, environment variables, the exposed ports that the applications listen on, 

etc. The Figure 10 and Figure 11 are snapshots from the Docker Desktop, an integrated development 

environment (IDE) application for Windows, Linux and macOS, which allows to manage images, 

containers, and applications through a Graphical User Interface (GUI). It shows three images locally 

stored, that were previously downloaded from the Docker Hub. Each of these images was used to 

launch a container that is running and reachable on a specific port. 
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Figure 10 – Docker images managed on the Docker Desktop (v4.16.2 on macOS) 

 

Figure 11 – Docker containers running on the docker platform and managed on the Docker Desktop (v4.16.2 on macOS) 

 

2.2.7. Virtual machines vs. Containers 

Both technologies allow their users to take advantage of the virtualization benefits. However, each 

one has its own advantages and more suitable tasks. Virtual machines use hardware virtualization, 

meaning that it is fully independent from the other virtual machines and host. On the other hand, a 

container uses operating system-level virtualization, sharing the host’s kernel and even some libraries. 

Having this in mind, we can consider that VMs are more isolated than containers, however it comes 

with the cost of requiring more resource power to run this full virtual copy of a normal host machine. 

Meaning that a virtual machine will normally use more memory, storage, and CPU than a container. In 

[19], the authors performed some tests to compare the performance between docker containers and 

virtual machines, considering many aspects such as CPU performance, memory throughput, storage 

read and writes measurements, load tests and operations speed. They observed that docker containers 

performed much better over virtual machines in every test. For example, in the load test the authors 
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used an Apache Benchmarking tool to evaluate the throughput of each one, and they concluded that 

a docker container can handle more than the double of the requests per second, as shown on the 

Figure 12 (retrieved from the paper). 

 

 

Figure 12 - Load tests to evaluate the No. of requests per second processed by each technology. Source: [19] 

 

In terms of CPU and memory levels, the tests were also very conclusive. The memory tests were 

executed using different operations to measure multiple aspects, and they have shown that it is more 

than twice as fast when using docker in every type of operation. These memory speed results are 

shown on Figure 13. 

 

 

Figure 13 - Memory speed tests results. Source: [19] 

 

The container’s CPU has taken approximately half of the time to resolve different computational 

problems. The following figure shows the completion times that each virtualization technology took to 

resolve the classic problem in computer science and mathematics: “the eight queens”. It’s a chess 

puzzle, where the objective is to place eight queens on a chess board, in a way that no two queens can 

attack each other. In other words, no two queens can be on the same row, column, or diagonal. One 

more time, the container’s benchmark was much better, because the execution time was much lower, 

as shown in Figure 14. 
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Figure 14 - Eight Queen problem resolution. Source: [19] 

 

Summing up, containers are more effective on the resource usage, which normally helps to 

improve performance and reduce costs even more than virtual machines. Considering that containers 

do not run their own operation system, they’re also highly portable and the start-up time is much 

faster when compared to VMs, making it well-suited to scale applications.  

 

2.3. Self-adaptive microservices 

2.3.1. Overview 

The scale of the system or system faults are some of the uncertainties that are not possible to 

anticipate before deployment. The only viable architecture management solution was proposed by 

Kephart and Chess: self-management [20]. Self-adaptive microservices should be able to 

autonomously adapt themselves to the current unpredictable circumstances to reach certain high-

level goals defined by the designers and administrators. In [21] the authors described self-adaptive 

systems as systems that are constantly monitoring their behaviour to modify themselves at run time 

to preserve or enhance their quality attributes.  

The Figure 15 is a conceptual model of a self-adaptive system presented by Danny Weyns [22]. 

The main actors are the “Managed System”, “Managing System” “Environment” and “Adaptation 

Goals”. 
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Figure 15 - Conceptual model of a self-adaptive system. Source: [22] 

 

 The managing system manages the managed element accordingly to the effects produced by 

the environment and felt on the managed system, to reach a group of adaptation goals [22]. 

 To make runtime changes on the system, the managing element usually has a control loop that 

consists in four different stages: Monitor, Analyse, Plan, and Execute. These elements share common 

Knowledge, and this is called MAPE-K [21], [22], represented on Figure 16. This loop monitors the 

managed system and gathers information on the environment (where the conditions are dynamically 

changing), analyses it to identify possible problems and divergencies from the desired goals, plans on 

how to act if necessary, and executes that plan [11], [22]. 

 

 

Figure 16 - The MAPE-K loop [20] 
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2.3.2. Self-management types 

There are four types of self-management objectives [11], [22], [23]: 

• Self-configuration - systems can configure and readjust themselves to meet the agreed 

objectives. 

• Self-optimization - continuously monitor themselves and seek opportunities to improve 

performance and costs. 

• Self-healing - ability to autonomously recover from failures and even predict them. 

• Self-protecting - against malicious attacks or cascading failures. 

 

2.3.3. Achieving self-adaptation: The Rainbow framework 

In [17], [24], the authors developed a framework that uses externalized control mechanisms. They 

called it the “Rainbow Framework” and the main objective is to achieve self-adaptation, monitoring, 

and adapting at run time, using an external “managing system”. This principle facilitates the task of 

reuse self-adaptive mechanisms across systems and its components and makes it possible to apply it 

to legacy systems with a low-cost approach. 

The framework’s infrastructure is divided in three layers [24], as shown in Figure 17: 

• System-layer infrastructure – is where the executing system is allocated, in other words, is the 

target of self-adaptation (managed system), the component that will be affected by the 

environment and changed at runtime. It must be equipped with a measurement mechanism – 

probes, to observe and monitor the system’s state – and effector mechanism to carry out the 

modification if needed.  

• Architecture-layer infrastructure – this is the layer responsible for receiving the information 

sent by the probes and constantly evaluate it to find possible constraint violations (Constraint 

evaluator). 

• Translation-layer infrastructure – mediates the mapping between the system and the 

architectural layers, keeping the abstraction between them to reuse as many components as 

possible. 
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Figure 17 - Rainbow framework [24] 

 

2.3.4. Kubernetes and container orchestration  

Kubernetes is an open-source project. It’s an orchestration system for automating the deployment, 

scaling, and management of containerized applications. This automated orchestration allows to 

achieve high levels of availability. It is capable of detect unhealthy containers, restarting or replacing 

them with new ones and detect host failures [25]. Kubernetes also provides load balance and scaling 

capabilities, to self-adapt on different workload conditions. 

A Kubernetes cluster is composed by two different types of nodes: the master node, and the 

worker nodes. Nodes are physical or virtual machines, with the necessary services to run Pods, “the 

smallest deployable unit in Kubernetes” [26] where the application container is running. Each Pod can 

be seen as an execution environment that can run multiple containers and share the same resources, 

such as the network stack, memory, and storage. All containers in a Pod run on the same node and are 

immutable – updating a Pod configuration requires replacing it with a new one [27]. 
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The master node is the control plane of the cluster and where multiple necessary Kubernetes 

processes are running. It’s responsible to monitor, scale and replace pods and nodes, to match the 

defined deployment configuration. The control plane is composed by an API Server, the “kube-

apiserver”, responsible for validating and forwarding of all the requests to the appropriate component. 

It allows the user to query and manipulate the state of Kubernetes objects, such as Pods. For example, 

if a user makes a request to create a new pod, he would use this API, which would forward that request 

to the “kube-controller-manager”. The controller manager is another component built-in the control 

plane, that runs multiple processes, each one representing a different controller to perform different 

tasks and jobs. These background processes are constantly running and trying to adjust the cluster to 

match as far as possible the desired state configuration (e.g., the minimum number of pods). After 

creating a new Pod, the scheduler component would be noticed and responsible to assign it to a node, 

considering many factors such as the hardware requirements or software and policy constraints. 

The API server also communicates directly with the “etcd”, another component that represents a 

distributed key-value store used to store the cluster’s configuration, as well as the current state.  

On the other hand, the worker nodes are composed by the "kubelet" and the “k-proxy”. The 

“kubelet” is responsible for monitoring the containers within the pods and ensuring they are running 

and healthy. It communicates with the control plane and receives instructions on what actions to take, 

while also reporting the overall status of the node. The Kube Proxy is responsible for providing network 

access to the pods within and from outside the cluster and acts as a load balancer [26], [27]. Figure 18 

shows the Kubernetes cluster architecture with all the components previously exposed. 

 

 

Figure 18 - Kubernetes cluster architecture. Source: [26] 
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However, in [25] the authors preformed some availability tests on Kubernetes services and 

concluded that its healing system by itself has some limitations when specific components start failing, 

especially the master node, which makes total sense considering that this node is responsible for 

maintaining all the cluster. To guarantee high Service Level Agreements (SLA), the Kubernetes’ healing 

capabilities should be reinforced with redundancy models, including configure the deployment 

configuration to have multiple replicas of the master node. 

 

2.3.5. Dapr (Distributed Application Runtime) 

Dapr (Distributed Application Runtime) simplifies the development, deployment, and management of 

microservices and cloud-native apps with its open-source, event-driven portable runtime. It provides 

a set of building blocks and eliminates (or at least reduces) the need for managing infrastructure, 

allowing developers to create scalable and portable distributed apps that can run in multiple 

environments. With a simple and consistent programming model, Dapr enables developers to 

concentrate on writing business logic rather than dealing with infrastructure.  It can be used with any 

developing language or any framework and run on any cloud or edge infrastructure.  The building 

blocks APIs allows its users’ code to remain simple, portable, and agnostic to any specific infrastructure 

implementation, encapsulating the industry’s best practices [28].  

At the time of this writing, Dapr offers 9 different types of building blocks [28]: 

• Service-to-service invocation – to eliminate the need of a service discovery to find out the 

other remote services locations, by simply call it by its unique name and communicating 

through encrypted TLS connection. 

• State management – pluggable component for storing and querying key/value pairs in a 

language-agnostic way and regardless of the underlying data store, including SQL databases, 

NoSQL databases or key-value store. It also provides the ability to manage the concurrency 

control and data consistency settings. This component has integrations with (but not only) 

Azure SQL Database, Azure CosmosDB, AWS DynamoDB, MongoDB, Redis, among many 

others. 

• Publish and subscribe – to send and receive messages using topics and queues regardless of 

the underlying message broker. It integrates with different message brokers and queuing 

systems, such as Azure Service Bus, RabbitMQ, AWS SNS/SQS, and others. This type of 

component is used on event-driven architectures, and it enables microservices communication 

with each other by sending (publisher) and subscribing (subscriber) messages on a message 

broker.  
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• Resource bindings – a component to be used on event-driven architectures to send and 

receive events from external resources. The incoming events can be listened on a HTTP 

endpoint or a gRPC proto library configured on the component’s YAML file and trigger code on 

the application when an event is received.  

• Actors – to implement the actor pattern, where actors are encapsulated units of code, that 

can receive and send messages to each other asynchronously. Each actor has its own private 

state, and each instance can only process one message at a time.  

• Observability – a built-in component to provide insight information that is not possible to 

collect on the infrastructure layer about the behaviour and performance of a distributed 

application. It allows to gather information such as traces, logs, or metrics, and be easily 

integrated with monitoring tools such as Zipkin, Jaeger or Datadog.  

• Secrets – to store sensitive application information like connections string, keys, or tokens, on 

dedicated secret stores such as AWS Secrets Manager or Azure Key Vault. The main objective 

of this pluggable building block is like the ones referenced previously for other building blocks: 

being agnostic to the underlying infrastructure. 

• Configuration – the configuration API allows to access application configuration items from 

state stores and databases returned as a read-only key/value pairs. An application can 

subscribe those items, to be notified of updates and load the new configuration at runtime. 

• Distributed lock – a distributed lock across all instances of an application, used to provide 

exclusive access to shared resources. It’s usually used on update operations (not reads), when 

only one instance should update a state at the same time, to avoid concurrency and 

consistency problems. 

 

2.3.6. Dapr and Kubernetes on a Cloud Platform 

On Kubernetes, the containers are deployed inside of pods, and each pod can have multiple containers. 

When we deploy an application or a service with Dapr enabled, it deploys a secondary container on 

the same pod, called “sidecar”. This sidecar container is used to communicate directly with other 

sidecars (from another services) and with the Dapr components. The application container and the 

sidecar can communicate with each other by HTTP and gRPC. For example, if an application wants to 

save a state using the building block that Dapr provides, it would make a HTTP or gRPC call to the side 

car, which would forward that the request to the building block API. 
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In Figure 19, we can have a look on the Dapr architecture on Kubernetes. When Dapr initializes, it 

starts by deploying four main services, each running on its own pod: the Dapr sidecar injector, the Dapr 

operator, the Dapr placement and the Dapr Sentry. 

The Dapr sidecar injector is the service responsible for watching for new pods on the cluster, checking 

if it contains the required Dapr annotations and inject the sidecar when needed. The Dapr Sentry is the 

certificate authority that manages the encrypted communication between services, using the mutual 

authentication TLS (mTLS) mechanism to build an encrypted channel after two-way authentication is 

established. The Dapr Placement stores the different locations of each actor’s instance, so it can be 

reached when required. 

 

Figure 19 – Dapr architecture when running on a Kubernetes hosting environment. Source: [28]  

 

2.3.7. KEDA 

KEDA (Kubernetes Event-Driven Autoscaling) allows the Kubernetes cluster’s containers scaling, based 

on event triggers and states. It scales horizontally (adding or removing pods), to and from zero (to be 

as much cost-efficient as possible) in conjunction with the Kubernetes Horizontal Pod Autoscaler (HPA) 

[29]. HPA scales based on memory and CPU metrics, but sometimes those are not the best metrics to 

base the scaling option. For example, a service that consumes messages from a queue may be very 

memory and CPU efficient and Kubernetes will assume that a single replica (with only one pod) is 

enough based on those metrics. However, if the message producer produces faster that the consumer 

consumes, the time that the messages spend waiting for processing will start to grow, and that can be 

a problem on some latency critical scenarios. 
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KEDA has a rich catalogue of scalers that can detect if the Kubernetes deployment should be 

activated or deactivated, including not only memory and CPU metrics, but also Cron schedules, SQL 

query results, queue lengths, topic subscriptions, custom metrics and many others specific event 

sources that can be found on the official website [29]. Figure 20 shows how KEDA works in conjunction 

with Kubernetes, the KEDA extends the HPA capabilities. While the HPA is responsible for scaling the 

cluster from 1 to N, and N to 1, the KEDA is responsible for scaling it from 1 to 0, and 0 to 1. 

 

 

Figure 20 – KEDA works in conjunction with the Kubernetes [29] 

 

2.4. Cloud providers and container services 

2.4.1. Overview 

A cloud provider is a company that provides computing services and infrastructure over the internet, 

including storage, servers, databases, networking, software, and others.  

 

2.4.2. Microsoft Azure as cloud provider 

At the time of this writing the 2 most popular cloud service providers (CSP) are the Microsoft Azure 

and the Amazon Web Services (AWS) [30]. As the Figure 21 shows, these 2 cloud providers combined 

are holding 55% of the market. Each CSP provides different services and platforms. As previously said, 

the author will implement a solution for a real problem, that will be used in a production scenario. The 

system where this solution will be integrated is already hosted on the Azure cloud. For this reason, to 
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have a more natural integration, this solution will also be deployed and implemented using the 

Microsoft technologies. Azure provides multiple ways of running a containerized application on the 

cloud. Azure Container Apps (ACA) is one of those services and provides multiple advantages when 

compared with the other type of services available. These advantages will be explored on the Chapter 

3 (section 3.5).  

 

 
Figure 21 - Cloud market share company wise [30] 

 

2.4.3. Other options from different cloud providers 

In some cases, the different cloud providers have a direct one-to-one equivalent service. For 

example, the Azure Kubernetes Services (AKS) and the Amazon Elastic Kubernetes Service (EKS) are 

very similar services that allows to orchestrate Docker containerized application deployments with 

Kubernetes. In this match, the services have a close feature-to-feature parity. But in other cases, a 

service on a specific cloud provider may not have an equivalent service on another cloud provider. This 

is the case of the Azure Container Apps. On AWS there’s no service that provides such abstraction over 

Kubernetes, neither the built-in integrations with Dapr and KEDA. To use a different cloud provider 

and implement this solution it would require more knowledge about container orchestration, and it 

would introduce the complexity of manually inject the Dapr framework in the cluster.  
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CHAPTER 3 

Proposed solution  
In this chapter the author proposes an implementation framework to be used to develop self-adaptive 

microservices. For a better understanding and for testing scenarios, the author chose to implement a 

real use case and develop a notifications service. The artifact produced in this chapter will be used by 

a real company that has a cloud-based-platform hosted on the Azure Cloud.  

 

3.1. Notifications overview 

The main core goal of this service is to deliver custom notifications to end-users. Notifications may 

have different types, and each type will probably have a different level of importance. For this reason, 

when the sender makes a request to create a new notification, the sender should be able to choose 

on what platforms the recipient should receive it (Web, Email, SMS, etc). In addition, each user should 

have total control to customize the type of notifications that he wants to receive, and to configure on 

what platforms he wants to receive them. These user preferences are important because most of the 

times the users are bothered with notifications that they have no interest on, which end up with the 

users ignoring most of them. 

Usually, the notification types are well known by the client applications (such as web) and the 

template to present each type is on the source code. But one of the requirements of the system is to 

allow users to create their own notifications with custom types, based on triggers and business logics 

that they consider relevant. Therefore, it must be possibly to define the template that should be used 

to display each notification. Additionally, each channel has a different User Interface (UI) and needs to 

display the notification in a different way, so it might be a different template per channel. These 

templates are saved on another microservice (out of the scope of this thesis). 

As previously said, this service is going to be used on a real production environment, and for that 

reason, it needs to address multiple functional and non-functional requirements.  

Functional requirements: 

• Create a new notification for a user or group of users. 

• Update a notification to mark it as read. 

• Get the unread notifications counter for a user since a specific datetime. 

• Get the list of notifications for a specific user. 

• Get the list of unread notifications for a specific user. 

• Group notifications that are related (for each user). 

• Support the sending for multiple platforms (Web Application, email, SMS, etc.) 
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• Each notification shall have a specific type, so each user can choose to receive it or not on the 

different platforms. 

• It should be possible to easily create new notification types and show them on the several 

platforms (without code required). 

Non-functional requirements: 

• Multi-tenant support 

• Decoupled from the main application. 

• Highly scalable without human intervention. 

• Easy extensible (easy to add integrations with new platforms). 

• The microservice shall probe and try to heal itself. 

 

3.2. System overview 

The Figure 22 is the first diagram of the author’s solution, and it shows the high-level architecture of a 

system composed by several microservices. Each micro-service can interact with another through 

endpoints exposed by each one. These APIs (Application Programming Interface) are private (or 

internal) and can only be reached by resources placed on the same Virtual Network – which means 

that the service does not have a static public IP address to be called over the public internet by external 

users or services. If any of these want to interact with an internal microservice, it must be done through 

the public API, which works as a gateway and knows how to discover the internal resources. Using a 

gateway as suggested on this diagram offers multiples benefits. It can be used as a protocol translator, 

allowing to use different communication protocols between different actors. In this case, the external 

subjects communicate with the public gateway through REST, and the public API communicates with 

the microservices through gRPC. This option relies on the fact that gRPC can be significantly faster than 

REST, with lower latency and higher throughput, since it uses binary serialization to exchange data 

between services, which is more memory efficient than other types of serialization, such as JSON and 

XML [31]. However, it still has low compatibility with the browsers making it more difficult to use, and 

for this reason, it makes sense to take advantage of both protocols, using the REST when exists 

interaction with users (through browsers) and the ease of use is a priority, and gRPC for internal 

communications, where the performance is a critical request. The gateway can also work as a security 

layer and include authentication and authorization mechanisms, as well as other features such as 

encryption and firewalls. In Figure 22 there are four microservices represented, but the Notifications 

Service is the focus of this project and is the one that the author will propose an architecture for, using 

basic implementations for the others. Beside of that microservice, there is also represented the API 

Gateway, that the author already explained its purpose, and the Users and Templates microservices. 
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These services are extremely simple, responsible for the CRUD operations for each entity and without 

any relevant logic beside of that. This diagram is a high-level view of the system and the interactions 

between them and the outside network. More ahead the author will introduce new concepts and 

technologies that will allow him to present a more complex and detailed view of the final solution. 

 

  

Figure 22 – Diagram of the system overview 
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3.3. Architecture proposal for the notifications service 

The Figure 23 represents a high-level view over the notifications API service components. The main 

objective of this microservice it’s to deliver notifications to the system end-users. These users shall be 

able to be updated on relevant events at real-time and on different channels, such as email, SMS, push 

notifications or just on the web application. It’s also important to keep this service completely 

decoupled from the business logic of the system that is using it. This microservice relies on multiple 

Microsoft Azure services, since Azure it’s the cloud service provider where the author’s company is 

hosted. However, all the main providers have an equivalent offer with similar performance and 

usability, and the architecture can be adapted to fit on each one. Figure 23 is the first diagram of the 

Notification Microservice. Just as the previous Figure 22, this is a basic overview that will further be 

improved with more detail.  

 

Figure 23 – First high-level diagram of the Notifications API microservice 
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The first important component of this architecture it’s the API. This interface will be used to 

communicate with the service’s external environment, to receive requests to create, update and 

retrieve notifications by other actors (such as other services or through the public API gateway, shown 

on the last figure and that will be called by end-users).  

After applying the user’s preferences, the notifications will be stored on a different Azure 

CosmosDB collection. Azure Cosmos DB is a NoSQL and relational database with high performance, 

high availability, and instant scalability. Cosmos is designed to handle large amounts of data and 

guarantees low latency and high throughput for read and write operations [32]. Then the notification 

is sent to an Azure Service Bus Topic. Azure Service Bus is a message broker with message queues and 

publish-subscribe topics [33]. While queues are used to deliver messages to a single consumer, topics 

allow a one-to-many form of communication in a publish and subscribe pattern [34]. When a message 

is added to a service bus topic, all the subscribers are notified. The author’s proposal is that each 

platform has its own subscriber that will be responsible for send the notification for that channel. This 

way, the implementation of each subscriber is cleaner, independent, and easier to extend. In addition, 

if a specific channel has any problem and the sending fails, the users will still be receiving notifications 

on the remaining channels. On this architecture plan, the subscribers are Azure Functions, a serverless 

Functions-as-a-Service (FaaS) solution that allows to implement event-driven logic, called “functions” 

that will run for limited amount of time. These functions can be triggered by specific events such as 

HTTP requests, timers, service bus events, and others [35]. Being serverless means that the developers 

do not have to worry about server scaling, resource’s computing power, maintenance, or availability, 

because all these concerns are handled by the cloud service provider [36]. We can see in the previous 

figure 4 different Azure Functions. When a notification is published on the topic, each required 

function (depending on the notification’s configuration) will be triggered, and each one will be 

responsible to send it to a specific channel using different technologies. For in-app notifications, the 

author proposes to use Azure SignalR, a service that offers real-time communications between the 

server and clients, without the need to keep polling for updates, enabling instant messaging delivery, 

collaborative features, streaming (and others) on web and mobile applications [37]. Azure Notifications 

Hub is a cross-platform support service designed to send push notifications to mobile devices 

(including iOS, Android, Windows, etc.) from the back-end service, removing the overload of dealing 

with multiple platform-specific integrations [38]. Twilio is a cloud communications platform that offers 

multiple types of communications, including SMS and email (with SendGrid), with very developer-

friendly APIs and extensive documentation. 
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3.4. Notification structure 

The Figure 24 represents an example of the model that the notifications API expects to receive to 

create a new notification. The “senderId” is the ID of the user that is sending the notification. On the 

other hand, the “recipientId” is the ID of the notification’s target. The “type” is self-explanatory, and 

the “channels” are the different platforms which the sender will try to use to deliver the notification. 

The “systemProperties” is metadata. 

 

 

Figure 24 – Notification POST model 

 

The “templateId” is the reference ID of the template that should be used to display the 

notification. Each template may have multiple placeholders, that will be replaced by the values sent 

on the “templateData”. The template may be different for each channel, so it is possible to override 

the default template. An example of a possible template is presented on the Figure 25. 
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Figure 25 – Template POST model 

 

Systems can generate a lot of notifications per second. Sometimes even a single action can 

generate multiple notifications for the same user. For example, if a popular user posts a photo on a 

social network, it will probably have a lot of engagement, resulting in multiple comments and reactions 

from other users. If this popular user receives a single notification for each user that commented or 

reacted, the user’s notifications list will grow instantly, becoming unreadable and increasing the risk 

of missing something important. For this reason, it’s usual to see the most famous social networks 

grouping the notifications by some context. People are used to see something like “John Doe and 30 

others liked your photo.” This is a lot more readable and useful that a list of 31 rows. Having this is 

mind, is critical for this service to have a way of correlate multiple notifications considering a given 

context. The author’s proposal is that each notification should have a correlation key defined on the 

moment of its creation. For the previous example, a possible correlation key could be 

“like_on_photo_12345”. Every notification that aims to notify the user from a new like on his photo 

should include this correlation key. In this manner, the service can understand that different 

notifications have the same context and that should be summarized on the same notification group 

information.  

The notification group information works like a persistent state and holds relevant information 

about a group of notifications that have the same correlation key, including the total counter, the 

unread counter, the date of the last notification received and an ordered small set of the last ones. On 

creation, the service verifies if the correlation key belongs to a new notification group or if it already 

exists, to understand if it must be created or updated with the latest information. All these details 

could be computed at runtime, but it wouldn’t be effective, and it would add a significant overload on 

the request performance. 
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With this approach the granularity of the context is also very flexible, and it transfers the onus of 

the definition to the notification sender, which is the best entity to define it considering that knows 

the context well. In the previous example, if the sender decides that the “like” notifications should also 

be grouped by day, it would be as simple as adding the date on the correlation key, to be something 

like “like_on_photo_12345_2023_01_01”. 

The Figure 26 helps to visually understand what the correlation key aims to achieve. On the left 

side, all the unread notifications are listed, without considering the correlation key. On the right side, 

each “row” represents a different notification group (which means a different correlation key). The 

service will support both versions, but it’s clear that the second approach is much more user friendly 

and useful. 

 

 

Figure 26 – Comparison between an extensive list of notifications and the listing of the notification groups 

   

The Figure 27 is a UML Activity Diagram that helps to better visualize the process flow when the 

notification API service receives a request to create a new notification.  
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Figure 27 – UML Activity Diagram for a notification creation 
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3.5. Azure Container Apps and Dapr integration 

3.5.1. Overview 

Azure Container Apps (ACA) provides an abstraction over Kubernetes. It is one of the many ways that 

Azure offers to run microservices and containerized applications on a serverless platform [39]. The 

main difference when compared to Azure Kubernetes Service (AKS) it’s that Azure Container Apps 

(ACA) doesn’t provide direct access to the Kubernetes API, meaning that it’s less flexible. However, 

ACA it’s easier to use and it encapsulates the best-practices to handle Kubernetes. As the reader will 

see forward, the ACA allows to set multiple declarative scaling rules so it can automatically scale 

horizontally. These rules may be driven from different source types, such as HTTP traffic (based on the 

number of concurrent HTTP requests), CPU and memory load, event-driven triggers with KEDA-

supported scalers, and others. Each container app may have 1 or more active revisions (immutable 

snapshot of a container app version [40]), and each revision may have many replicas (or instances) 

running at the same time. Inside each replica it’s possible to run one or more containers. When the 

application (revision) scales out, new replicas are created, and it can scale to a maximum of 300 

replicas. On the other hand, using specific scaling rules, it can also scale to 0 replicas, which is an 

important feature since it won’t be billed usage charges. The Figure 28 helps to understand the 

hierarchy between container apps, revisions, replicas, and containers. 

ACA provides built-in integration with Dapr. When Dapr is enabled, the ACA launches a secondary 

container alongside the application, often called as “Dapr sidecar”. 

 

Figure 28 - Azure Container Apps [40] 
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3.5.2. Zero downtime deployment 

Azure Container Apps automatically creates new revisions when any revision-scope change is made. A 

revision-scope change can be a change on the revision suffix, on the container configuration or on the 

scaling rules. So, when a new version of the application is deployed (using a different image version, 

for example), a new revision is created. While the latest revision isn’t ready, the container app keeps 

sending the traffic to the previous one. To be considered ready, a revision should have at least one of 

its replicas ready, that happens when all its containers start, and their configured probes are reporting 

as healthy. At this stage, the traffic starts to be forward to the new revision, avoiding any downtime 

during the deployment process [41]. Revisions also simplifies the task of rolling back to a previous 

version, since the ACA can retain inactive revisions, allowing to revert to an earlier version with a single 

click. 

 

3.5.3. Service-to-service invocation 

On section 2, the author explored the advantages of using Dapr to develop distributed applications. In 

this project, some of the Dapr building blocks were used. Service-to-service invocation was one of 

them, as it works as service discovery. The next figure shows how Dapr service invocation works. When 

the Service A wants to call the Service B, it does it by calling its own Dapr sidecar that is running locally 

on the same pod (when hosted on Kubernetes). Then the sidecar will find the Service B’s location using 

the name resolution component, and forward the request to the Service B’s sidecar, that will finally 

delivery it to the specified endpoint or method on Service B. Figure 29 shows the communication flow 

between two services when using service-to-service invocation. 

 

 

Figure 29 – Dapr service-to-service invocation [42] 
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Beside the service discovery feature, the Dapr service invocation offers other advantages, such as 

fault tolerance, including resiliency by retrying failed calls on transient errors. These automatic retries 

are performed with a backoff period between each one. 

The public gateway is one of the services that takes advantage of this feature. It forwards the 

requests to the other services using the Dapr SDK and the Dapr ID of the service that should be invoked. 

This Dapr ID is defined on the service deployment and should be immutable to avoid breaking changes. 

It’s possible to see in the Figure 30 that all communications between services are done through 

gRPC and between the sidecars of each service. Notice that all Azure Container Apps are running on 

the same Azure Container App Environment. All container apps in the same environment share the 

same virtual network and log to the same destination. Different container apps must be in the same 

environment to communicate via Dapr and use the same Dapr configuration as well.  

 

 

Figure 30 - Communication between the public gateway and the other microservices using Azure Container Apps and Dapr 

 

The ingress is what enables the Container Apps to communicate with the public web and other 

resources on the same virtual network or in the same environment. When the ingress is enabled, it 

can be configured to accept traffic from anywhere (external) or just internal (virtual network and 

Container Apps Environment). When enabling ingress, there is no need to create or manage any other 

resource to enable incoming traffic (such as a public IP address or a load balancer).  
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By default, Azure Container Apps uses Envoy as an edge network proxy. A network proxy (or proxy 

server) works as an intermediary between two entities that want to communicate with each other. 

This type of service can provide many features such as an extra layer of security, load-balancing, 

resiliency, or routing. In the specific case of Azure Container Apps, it is mainly used to achieve load-

balance capabilities (to distribute the requests across the multiple replicas of an application) and for 

allowing the applications to scale to zero [43]. Figure 30 is the evolution of the Figure 22 and shows in 

more detail how the communication flows between external network entities and the backed services 

running on ACA, using Dapr service-to-service invocation. The Envoy proxy receives REST requests from 

the public internet and forwards them to the most appropriate replica of the gateway (load balancing). 

Then, all the internal communications between services inside the cluster is done through each Dapr 

sidecar. While Envoy is responsible for load-balancing the external traffic, Dapr provides load balancing 

of service invocation requests. 

The Figure 31 shows how the Dapr SDK allows to use the service invocation feature. In this specific 

case, the gateway API is forwarding a notification creation request to the notifications service. At the 

notifications service deployment, the container app was configured to use “notifications” as the Dapr 

ID. That ID is known by the gateway, and it’s saved as a constant on the respective controller.  Along 

with the Dapr ID, the second argument that is necessary to define it's the method name that we want 

to invoke (or the route, in case of using HTTP). The “DaprClient” is a class provided by the 

“Dapr.AspNetCore” package (version 1.11.0) and its instance is provided via Dependency Injection (DI). 

DI is a design pattern that allows to manage and provide objects and services to other components 

that depend on it. Instead of creating themselves, the responsibility of creating these dependencies is 

normally centralized on a single place, and they are injected on a “container”, that is used by the 

dependents. This pattern can be useful to build modularized and loosely coupled applications. In this 

case, the class is injected via constructor and it’s available for all methods in the controller, but it can 

also be injected on each method instead. 
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Figure 31 – Public gateway invoking the notifications service through the Dapr SDK 

 

The service-to-service invocation are also used in other services. Every time that a service needs 

to call another service, Dapr is used. The subscribers for example are using this building block to make 

requests to the users’ service and the templates’ service as well. The Figure 32 shows the 

communications between the microservice that sends email notifications and the other microservices. 

Notice that the Azure Function is also running inside an Azure Container App (and in the same 

environment), because this is the only way to reach the other microservices using Dapr.  
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Figure 32 - Communication of the email notification service with the others microservices 

 

3.5.4. Publish and subscribe 

Dapr also provides an API to send and receive messages in a platform-agnostic way. It allows to use 

queues and topics from different message brokers, as seen on section 2. The Figure 33 shows how the 

notification service uses this Dapr building block to publish messages on an Azure Service Bus topic. 

 

 

Figure 33 - Message publishing with Dapr 

The notifications service makes the publish request to the Dapr sidecar, which will make a network 

call to the pub/sub building block API. This API will then use the publish/subscribe component that was 

chosen when calling the sidecar, that in this case encapsulates the Azure Service Bus as message 

broker. Figure 34 shows how the notifications service uses the DaprClient SDK to publish a new 

message (notification) on a topic. 
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Figure 34 – Dapr SDK to publish events 

 

Using this building block, the application is completely independent from the Azure Service Bus. It 

does not even know what message broker is using. If the application’s administrator decides to stop 

using the Azure Service Bus and start using Redis (for example), the code would remain the same. The 

only change would be on the Dapr component configuration, that instead of having the settings 

needed to connect to the Azure Service Bus would have the settings to connect to the Redis service. 
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As seen earlier in this article, Azure Functions allows to write event-driven code that runs for a 

limited time. In addition to all the built-in triggers that are available to use out of the box, Dapr added 

support for triggering functions on a Dapr service invocation, publish/subscribe events, or Dapr 

input/output bindings. The next figure shows how the email function is triggered. Instead of using the 

Azure Service Bus Topic trigger, that is obviously specific for this message broker, it uses the Dapr topic 

trigger to fire the function when a message is added to the defined topic. This way, the subscribers are 

kept agnostic from the infrastructure that is being used, just like the publishers. To use this type of 

trigger, the function app must be aware of the Dapr Publish/Subscribe component name that it should 

use, and the topic name as well. These names should match the ones that are being used on the 

publishing action, as shown in Figure 35. 

 

 

Figure 35 – Dapr topic trigger used to trigger the Azure Function 
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In the Figure 23 in section 3.1, the author has shown a high-level diagram of the proposed 

architecture. The Figure 36 is a more detailed version, after introducing new concepts that were used 

on the implementation, and that are consolidated in this following figure. In fact, the diagram shows 

multiple services. The Notifications API is only responsible for storing the notifications and sending 

them into a topic. Each topic subscriber is seen as separated service, since it makes sense to 

independently deliver, deploy and scale each one.  

 

Figure 36 - Detailed architecture of the Notifications API and subscribers 
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3.6. Build, deployment, and scaling 

3.6.1. Overview 

Since the Azure is the cloud provider of the author’s company and it’s where the application is hosted, 

he chose to use the Azure DevOps to manage this project due to the easy integration that it offers. 

Azure DevOps is a set of services to plan, develop, test, deploy and monitor software projects, such as 

Azure boards (to plan and track work), Azure Pipelines (to build, test and deploy software), Azure Repos 

(for Git hosting), Azure Test Plans (manual and exploratory DevOps testing tools) and Azure Artifacts 

(package repository) [44]. For this project, the only services used were the Azure Repos, Azure 

Pipelines and Azure Artifacts. 

 

3.6.2. Repositories 

Each service has its own GIT repository. The only repository that does not have an associated service 

is the “Infrastructure” repository. This repository holds the deployment files required to create the 

resources that are needed and common to more than one service, such as the azure cosmos account, 

the database, the virtual network, the service bus, and a few others. All these resources are shared 

among services. When a resource belongs to a single scope of a service, the deployment file is placed 

on the respective repository. The Figure 37 shows all the repositories on the Azure DevOps that the 

author used on this project. 

 

 

Figure 37 - Repositories on Azure DevOps 
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3.6.3. Build pipelines 

Each service has its own build pipeline. The build pipeline is defined on a YAML file that is stored on 

the corresponding repository, inside the “build” folder. YAML is human-readable data serialization 

language that is often used to create configuration files. In this file, we can configure multiple tasks 

that we want to execute on the build. On this project, all these YAML files are very similar, and the 

main tasks are:  

• Versioning 

• Build the projects 

• Execute the unit tests 

• Pack and publish the API client packages 

• Build the docker image and push it to the repository  

• Publish the build artifact 

Figure 38 is a print screen from the Notifications service repository, used to illustrate the files that 

compose a service build folder. 

 

 

Figure 38 – Notifications Service build folder 

 

3.6.4. Release pipelines 

The release pipelines are triggered by the build pipelines. When a build succeeds (from the main 

branch), a new release is automatically created and installed. Each service/build pipeline has its own 

release pipeline as well. These releases will deploy the actual resources on the cloud (or update them). 
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In this project, the author used an Infrastructure as code (IaC) approach. IaC is a way of automating 

the provisioning of the infrastructure (resources), that improves its consistency considering that it 

avoids the manual configurations that are error prone and hard to track over time. This way, all the 

environments are configured using well defined and versioned configuration files with a high-level 

descriptive coding language [45]. Azure provides support to IaC through the Azure Resource Manager 

(ARM), which has an API that allows to use ARM templates or bicep files to define the infrastructure 

that must be deployed. ARM templates are JavaScript Object Notation (JSON) files, while Bicep is a 

domain-specific language (DSL) that uses declarative syntax [46]. The author chose to use bicep 

because it provides a cleaner and more concise syntax. In addition, Microsoft has released an official 

extension for editing bicep files on Visual Studio Code, that includes syntax validation, intellisense, 

code navigation and some other features that are very helpful and improves the developing 

experience. The Figure 39 compares an ARM Template with a bicep file, where both are deploying the 

exact same sample resource.  

 

  
Figure 39 - ARM Template vs. Bicep template 

 

When the Azure Resource Manager receives a request to deploy a bicep, it will convert each 

resource into a REST API operation and forward it to the correct resource provider [47]. This resource 

provider is defined by the “type” attribute, and the “apiVersion” is used as the API version for the REST 

operation to avoid being exposed to possible breaking changes introduced in later versions.  
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The bicep file for each service is placed inside of a folder named “deployment” alongside a shell 

script and multiple parameter files (one for each environment). The parameters are JSON files allows 

to define different parameters for each environment to have different configurations considering the 

different requirements. For example, a production environment will normally have more resource 

power and more backup instances that a development environment. These types of differences are 

configurable through these files. The shell script contains a command from the Azure Command-Line 

(Azure CLI), that will deploy the bicep file using a parameters file. Figure 40 is a print screen from the 

Notifications service repository, used to illustrate the files that compose a service build folder. 

 

 

Figure 40 – Notifications Service deployment folder 

The job of these release pipelines is simply to execute the shell script for the desired environment 

and with the right parameters. In the Figure 41, we can see the release was deployed in the 

development environment and is now waiting for approval so it can be deployed in test, and then 

rolled out into production. 

 

 

Figure 41 - Notifications API release example 
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3.6.5. Deployment, Autohealing and Autoscaling 

For the scope of this project, there are two resources that are worth analysing to understand how the 

application will scale: the Azure Container App that is hosting the notification API and the Azure 

Container App that is hosting one of the subscribers (in this case the author has chosen the email 

subscriber). The Figure 42 is the first part of the notification API resource, that will be presented in 

three different parts. 

 

 
Figure 42 – Bicep template to deploy the Notifications API (PART I) 
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As previously said, the Azure Container App offers built-in integration with Dapr and for that 

reason, setting the “properties.configuration.Dapr.enabled” flag to “true” will automatically deploy 

the sidecar inside the same pod. Furthermore, the “properties.configuration.Dapr.appPort” and the 

“properties.configuration.Dapr.appProtocol” tells Dapr which port the application is listening on and 

which protocol (http or gRPC) it is using, respectively. The “properties.configuration.Dapr.appId” is the 

application identifier that will be used on service-to-service invocation calls. There are other 

configurable settings that weren’t used such as the log level, maximum size of the request body 

(default is 4MB) and the max size of the http headers (default is 65KB) [48]. 

The “properties.configuration.Dapr.appId” is the application identifier that will be used on service-

to-service invocation calls. There are other configurable settings that weren’t used such as the log 

level, maximum size of the request body (default is 4MB) and the max size of the http headers (default 

is 65KB) [48]. 

The ingress allows to expose the application to the public internet or not. In this case, the 

notifications API is an internal service that should only be invoked by the other services on the same 

environment. For this reason, the “properties.configuration.ingress.external” is set to “false”. On the 

other hand, the public gateway API would have this setting set to “true”, so it can have a public IP 

address to receive requests from the outside network. The 

“properties.configuration.ingress.allowInsecure” indicates whenever the HTTP connections are 

allowed or should be automatically redirected to HTTPS. The container port used for ingress traffic is 

defined on the “properties.configuration.ingress.targetPort” [48]. 

The “properties.configuration.registries” allows to define a collection of container registry 

credentials that will be used by the Azure Container App to get the container image, and the 

“properties.configuration.secrets” is a collection of sensitive configuration values, such as passwords, 

connections string or API keys, that can be referenced in the environment variables. Storing this 

sensitive information on the Container App secrets helps to protect the application from unauthorized 

access and data breaches. 

The Azure Container App Environment resource is defined on the “Infrastructure” deployment 

since it is used by several services. Because at least one of the container apps will need to receive 

external traffic, the “properties.vnetConfiguration.internal” must be set to “false”, as shown in the 

Figure 43. 
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Figure 43 - Bicep template to deploy the Azure Container App Environment 

The second part of the resource’s bicep template (Figure 44) includes configurations on the 

container level, such as its name and the image (that was pushed to the repository on the build 

pipeline). The “properties.template.containers.resources” are the resource power required, and it’s 

possible to set the CPU (in cores) and the required memory. These values are configured on the 

parameters file and may be different for each environment. In this specific case, on the development 

environment the container was configured to have 0.25 CPU and 0.5Gi of memory. 

 

Figure 44 - Bicep template to deploy the Notifications API (PART II) 
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Azure Container Apps also provide support for probes, that allows to regularly inspect the status 

of the container. These probes are based on Kubernetes health probes, which are divided into 3 

different types: startup, readiness, and liveness. The startup probes checks if the application has 

successfully started and disables other probes until it succeeds so that those probes don’t interfere 

with the application startup. After startup, the readiness probes are used to know when the application 

is ready to accept incoming requests. When the application is up and running, the liveness probes are 

used to periodically check if the container is still responsive, or if it needs to be restarted [49].  

Unfortunately, as the reader can see in previous figure, there is no probes defined on the 

notifications API. Although Kubernetes already supports gRPC health probes [50], the Azure Container 

App only supports setting probes using HTTP(S) and TCP, which is a significant drawback. The Figure 

45 shows the public gateway API probes, that in this case (being a REST API) uses HTTP. 

 

 
Figure 45 - Gateway API probes 
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The “properties.template.containers.probes.periodSeconds” defines how often the probe will be 

checked and the “properties.template.containers.probes.timeoutSeconds” defines the time that 

Kubernetes should wait for the probe reply before it times out. In addition to these options, it’s also 

possible to configure a success threshold (number of successful probe executions before marking the 

container as healthy again), a failure threshold (number of failed probe executions before marking the 

container as unhealthy) and an initial delay (before performing the first probe). 

Figure 46 is the third and last part of the bicep template used to deploy the Notifications API. In 

terms of scaling, the Azure Container Apps provides multiple options. Kubernetes offers out-of-the box 

horizontal scaling based on CPU and memory metrics. Scale horizontally means that the Azure 

Container App will add (or remove) replicas (or pods, in the Kubernetes language), to perform at a 

certain level and match the demand. In the next figure we can see that the template allows to define 

the range (minimum and maximum) of replicas that the container app is allowed to use. This is useful 

to control the billing, since the more replicas are running, the more expensive it is. It’s also important 

to notice that, just like the “resource power”, the minimum and maximum replicas are also 

configurable parameters for each environment.  

 

Figure 46 - Bicep template to deploy the Notifications API (PART III) 
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An Azure Container App will automatically scale on concurrent http requests. By default, it will 

add one replica to the cluster when a single revision is handling more than 10 concurrent requests, 

until it reaches the maximum number of replicas defined. From the figure above, it’s possible to see 

that in this case the author has defined two more rules for scaling, based on CPU and memory metrics. 

The first is the CPU utilization and is set to 60. This means that, when the average usage of CPU across 

all replicas reaches 60% or more of the provided capacity for a defined period, it will scale out the 

application. The Equation 1 calculates the average utilization performance of a resource, with n being 

the total number of replicas running. The summation goes through each replica represented by the i. 

 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 	
1
𝑛-.

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑃𝑜𝑤𝑒𝑟	𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛!
𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒	𝑃𝑜𝑤𝑒𝑟	𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑!
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Equation 1 - Resource utilization percentage for all replicas  

 

For example, if an Azure Container App is running with 2 replicas, assuming each replica requested 

0.5 CPU cores and the first replica is using 0.3 and the second is using 0.2, the current utilization would 

be calculated by  $
%
×	(	&.(

&.)
∗ 100 +	&.%

&.)
∗ 100	) = 50%. The second metric is the memory utilization, 

and it uses the same formula. 

Instead of using the “Utilization” metric type, it’s also possible to use the “AverageValue”. The 

average value is calculated by summing the average current usage across all replicas, as shown on the 

Equation 2.  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑉𝑎𝑙𝑢𝑒 = 	
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Equation 2 - Average utilization on all replicas 
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In some cases, the CPU and memory metrics may not be the best scalers to use when configuring 

autoscaling for an application. In fact, using these metrics as the only scaling rules won’t allow the 

application to scale in to zero [29]. As the author exposed on section 2, KEDA offers a way to scale 

based on events from various sources. One of these scalers is the Azure Service Bus trigger, that scales 

based on the number of messages on a queue or topic. On this project, this trigger was used to scale 

the subscribers that are listening on the notifications topic, such as the email dispatcher. This scaler 

helps to avoid accumulating messages in the topic if the producer sends messages faster than the 

subscribers can consume. Such effect would represent an increased delay on the notification delivery, 

which can be critical in some scenarios. In the Figure 47 it’s possible to see that in this case, the CPU 

and memory weren’t used as rule, because they are no reliable indicators of the load or demand, and 

scale them based on these metrics would make no sense.  

 

 

Figure 47 - Bicep template to deploy the Email subscriber 
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3.7. Load tests and metrics analysis  

3.7.1. Overview 

In this section, the author uses Azure Application Insights to capture important metrics under a load 

test to be analysed. A load test is a common exercise used to simulate real-world traffic to measure 

speed, capacity, scalability, and reliability of software systems. Such tests can help to identify issues 

such as bottlenecks before they reach production environments and affect possible clients. The Figure 

48 shows the load test that was executed using Postman. It simulates multiple users making concurrent 

requests to create notifications for 10 minutes. The number of virtual users will gradually be increased 

along the first 4 minutes of test until it reaches 30.  Along the 10 minutes, the load test produced 

12,420 requests to the gateway API that forwarded them to the notifications API. Considering that 

there is a direct relation between the number of virtual users and the number of requests per second, 

this second metric will obviously also increase gradually along the first minutes, causing more pressure 

on the services between the 4th minute and the 10th. 

 

 

Figure 48 - Performance test using Postman (v10.16.9) 

 

All the microservices in this system were configured to scale to 0 in the development environment, 

since most of the time there’s no traffic, making no sense to keep a replica running all day long for 

each service and paying for that. On other scenarios, where the warmup time can be a problem (like 

production), the trade-off might be worth it. Using the Azure Portal, the author confirmed that the 

only active revision is correctly scaling to 0, as shown in Figure 49. 
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Figure 49 - Notifications API Container App scaled to 0 

 

3.7.2. Scaling analyze  

The Figure 50 shows a dashboard with two graphics using the same timeline, that allows the reader to 

compare and relate the number of incoming requests with the number of replicas deployed on the 

cluster for each microservice. Before the load test, both services were scaled to 0 since no requests 

were received for a long time. When the requests started coming in, the gateway and notifications 

APIs were gradually scaled out. Both were configured to use a maximum of 5 replicas each, and the 

gateway reached that limit when the request rate reached its peak, while the notifications API handled 

the incoming traffic with only 3. When the load test ended and the services stopped receiving requests, 

both applications scaled in back to 0. 
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Figure 50 - Relation between incoming requests and number of replicas 

3.7.3. Load-balancing analysis 

In terms of load balancing, the Azure Application Insights allows to monitor the servers (or replicas, in 

this case) that are running with the “Live Metrics”. The Figure 51 is a screenshot of the replicas running 

when the incoming requests rate was on its peak. The number of requests per second on each replica 

of the same service is similar, which means that the load balancing is fairly distributing the workload. 

 

Figure 51 - Replicas running on a specific instant of the load test 
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CHAPTER 4 

Results Discussion 
 

In this chapter, the author will discuss the results and evaluate his solution, to better understand how 

the problems that were mentioned in the first chapter were addressed, and how effective his solution 

is. The author will answer the research questions raised. 

How can a software system benefit from the inclusion of a microservices architecture combined 

with cloud and virtualization techniques such as Virtual Machines and Containers, in its 

development? In this research the author used a microservices architecture to build his artifact. This 

decision was based on the fact that microservices are easier to manage when compared to less 

modularized solutions, such as monoliths. By having individual pipelines for builds and releases of each 

service, it’s very easy to deploy a new version, or rollback when problems that escaped the quality 

assurance stage are found on production. Running these microservices on containers reduces the 

startup time, that is extremely important for rapidly scale them horizontally when the workload 

increases, and the performance starts to degrade. Using Azure Container Apps to run these containers 

in the cloud the teams can take advantage of many features, such as zero downtime when deploying 

new versions. It also abstracts the complexity of exposing a service to the public internet, removing 

the weight of being responsible to manage all the resources needed to do so, such as public IPs and 

load balancers. Being powered by Kubernetes, Azure Container Apps is a fantastic solution to easily 

run a microservice without dealing to the complexity of Kubernetes deployments and multiple 

configurations.  

How can a system use self-adaptive techniques to adapt and optimize itself on different 

workload conditions to be cost effective and keep the desired performance? As previously said, 

microservices are designed to be scaled horizontally. Again, scale horizontally means adding or 

removing instances of the same service in order to meet the desired performance and goals on 

different workload conditions. Manually scale them is not feasible in most of the times, since it would 

require permanent attention and control on the metrics of each service, in each environment. For this 

reason, the service should be able to self-adapt itself, considering predefined rules. Using Azure 

Container Apps (powered by Kubernetes) it’s possible to define the minimum and maximum number 

of instances that the service can provide. It will scale in and out considering the scaling rules defined 

at the time of the version creation. These rules can be based on multiple inputs, such as CPU and 

memory metrics, or external triggers using KEDA. When talking about the scaling rules, the built-in 

integration with KEDA is actually the main advantage of using Azure Container Apps compared with 

the other ways of running container with Kubernetes orchestration. KEDA adds support to scale to and 
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from zero, that will be an important factor to reduce costs, since when the application is scaled to zero, 

the Azure Container App it is billed at zero cost. As seen on the load tests of the previous chapter, the 

application is scaled to a total of zero replicas before the test begins. When it starts, an instance is 

quickly raised and starts to respond to the requests. As the traffic intensifies, more instances are added 

to the cluster to keep the performance on an acceptable level, as shown on Figure 50. In the same 

figure, it’s also clear that when the load test ended, the application scaled back to zero, to improve 

costs. Having in mind that all this scaling was managed by the system itself, the author considers that 

the objective of self-adaption was successfully accomplished.  

How can we abstract the microservices from the underlying infrastructure and deal with the 

challenges of a distributed system running on the cloud? Azure Container Apps also offers a built-in 

integration with Dapr. Dapr allows to program in multiple languages and frameworks and use its APIs 

to abstract the application code from the underlying infrastructure. In this artifact, the author used 

Dapr to invoke different services in the same cluster. This way, a service doesn’t have to know the IP 

address of another service that it wants to call. In other words, Dapr worked as service discovery and 

load balancer.  Author also used Dapr to publish and subscribe messages from a message broker topic, 

which in this case was Azure Service Bus. But using Dapr, there’s no specific implementations coupled 

to this message broker, which give the teams the option to easily change the underlying type of 

resource, without having to change the code. In terms of abstraction from the underlying 

infrastructure, Dapr is a major ally. However, it stills in evolution and doesn't support all the needs yet. 

For example, in the artifact produced, there is still a dependency between the code and Azure Cosmos 

DB, the database used to store the notifications. Since Dapr doesn’t not fully support querying data 

stores and that’s a deal breaker.  
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CHAPTER 5 

Conclusions 
 

Cloud computing and distributed microservices introduces many complex concepts and sensible 

problems. However, the benefits that it offers outcomes the effort needed to build up a solution and 

making worth the trade-off in some case. It’s also important to understand that there’s no one-fit-all 

solution. Each case has its own details that define the best solution. 

Azure Container Apps is a very straightforward way of running a container application on the cloud 

and take advantage of the Kubernetes orchestration platform without dealing with its complexity. The 

built-in integrations with Dapr, KEDA and Envoy are extremely useful to deal with multiple complex 

problems such as external ingress, service discovery and load-balancing. However, it has its own 

limitations. Some situations might require more control and flexibility over the infrastructure that may 

not yet be supported. For example, the author failed to implement the correct probes on the 

Notification API, since gRPC probes are not configurable through the Azure Container Apps, despite 

the fact that is supported by Kubernetes. With other advantages such as the automatic version 

creation (the revisions) on new changes that offers quick rollbacks and zero downtime on 

deployments, this type of platform can offer powerful tools to develop distributed systems. 

From this research, the author concludes that designing and developing microservices using this 

framework can produce self-adaptive systems, capable of self-optimization and self-monitoring. 

Including a microservices architecture, in conjunction with independent pipelines for each service and 

with different stages for each environment, can significantly increase teams’ governance, as well as 

the confidence to release new versions into production, knowing that the rollback can be achieved 

with a low effort move. The proposed implementation framework applied in real production case 

resulted in more frequent releases and a faster and easier development process. The overall system 

availability, performance and cost were also positively affected.  

As said, the proposed technology still presents limitations. As future work, these limitations should 

be addressed in order to improve the overall solution quality. In particular, the health probes on gRPC 

communications are extremely important and a workaround should be implemented. 
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