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Resumo

Esta dissertacao tem como objetivo principal explorar e analisar em detalhe o mod-
elo de dois fatores proposto por Eraker e Wu (2017) em diferentes contextos financeiros.
Inicialmente, apresentamos o modelo e sua configuragao de equilibrio sob a medida fisica.
Detalhamos a especificacao completa do modelo, incluindo os processos estocasticos en-
volvidos, e representamos as suas equagoes em notacgao matricial para facilitar a andlise.
Além disso, estudamos transformacoes afins que levam a uma simplificacdo e melhor com-
preensao do modelo. Posto isto, estendemos a nossa analise ao considerar o mesmo modelo
de dois fatores, mas sob a medida de risco neutro. Introduzimos o conceito de fator de
desconto estocastico, que é fundamental para avaliar os ativos financeiros, quando trabal-
hamos com a medida de risco neutro. Novamente, detalhamos a especificacao do modelo
sob esta medida, mantendo uma abordagem rigorosa e discutindo as transformacoes afins
envolvidas que simplificam a analise. Feita toda a analise, concentramos a nossa atengao
no prémio associado aos contratos de futuros do indice VIX (ao quadrado), um conceito
importante no que diz respeito a volatilidade dos mercados. Utilizando equagoes e re-
sultados derivados nos capitulos anteriores, exploramos de maneira aprofundada alguns
fundamentos subjacentes a este prémio, sendo o principal, demonstrar que estes con-
tratos tém retornos esperados negativos e como podem ser aplicados na gestao de risco e
estratégias de investimento.






Abstract

This dissertation has as its main objective to explore and analyze in detail the two-
factor model proposed by Eraker and Wu (2017) in different financial contexts. Initially,
we show the model and its equilibrium specification under physical measure. We detail the
full specification of the model, including the stochastic processes that are involved, and
represent the equations in matricial notation to facilitate the analysis. Moreover, we study
affine transformations, which allow us to simplify and better understand of the model.
That said, we extend our analysis to consider the same two-factor model, but now under
the risk-neutral measure. We then introduce stochastic discount factor concept, that is
fundamental to evaluate financial assets, when working on risk-neutral measure. Again,
the model specification is detailed under this measure, keeping a rigorous approach and
affine transforms are proposed to simplify the analysis. Later, we focus our attention in
the premium associated with futures contracts of the VIX (-squared) index, an important
concept as far as the volatility market is concerned. Using equations and results derived
on previous chapters, we explore in depth some underlying fundamentals to this premium,
being the main one, to prove that these contracts have negative expected values and how
they can be applied in risk management and investment strategies.
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CHAPTER 1

Introduction

Futures tied to the VIX volatility index made their debut in the financial markets
through the efforts of the Chicago Board Options Exchange (CBOE). Initially, their pri-
mary purpose was to gauge market fear (Bekaert and Hoerova (2014)) Bekaert, Hoerova
2014, and in their early days, these contracts were relatively unpopular among investors
due to a lack of understanding. However, as time passed, they gradually gained liquidity
and garnered greater interest from a wider range of investors (Eraker and Wu (2017))
Eraker, Wu 2017.

Hence, the popularity of investing in VIX futures contracts experienced a significant
increase, primarily fueled by the advantages they offer in terms of portfolio diversifica-
tion. Understanding the risks associated with financial markets is vital for investors and
analysts. One of the instruments used to evaluate market volatility is the VIX(-squared)
futures contracts. This contract has been the subject of increasing interest in the finan-
cial literature too, especially with regard to the risk premium associated with it. These
contracts are utilized as a means to hedge against market downturns and volatility spikes,
effectively safeguarding portfolios during unforeseen periods. Notably, these contracts
display a negative correlation with the performance of the Standard & Poor’s (S&P) 500
(Alexander and Korovilas (2012)) Alexander, Korovilas 2012, rendering them an appeal-
ing choice for risk management and hedging strategies.

So since the VIX has become substantially more volatile than the S&P 500, with a
CAPM-based analysis of the index and futures on this, we get negative market betas
(Eraker and Wu (2017)) Eraker, Wu 2017.

The main goal of this thesis is to explain the negative returns on the VIX futures. In
other words, is it expected that in a long term position on the VIX futures, we get losses
at maturity date "T°7

The intuition behind the negative premium is the investor’s willingness to pay in order
to avoid market volatility, even if they can probably lose that amount. This phenomenon
attracted the attention of researchers and raised questions about how the risk premium
behaves in the face of the increase in overall market risk. Previous studies, suggest that
the negative values of the VIX premium tends to ”fall or stay flat when risk rises” (Cheng
(2019)) Cheng 2019.

Interestingly, at first glance, it would be reasonable to assume that any premium
linked to volatility should increase as the overall market risk increases. However, this
assumption raises additional questions about the underlying factors that may influence
the risk premiums associated with volatility.






CHAPTER 2

Literature Review

The comprehension of financial models is fundamental to make decisions in investment
contexts and risk management. In this way, academic research is exploring a large variety
of approaches to modulating and analyse dynamics of financial assets. An important
model is the two-factor model proposed by Eraker and Wu (2017) Eraker, Wu 2017. This
model offers a structure that can capture crucial volatility events and evaluate financial
assets associated to them.

The objective of our dissertation is to show that VIX(-squared) futures have nega-
tive annualized returns, which is assumed by Alexander and Korovilas (2012) Alexander,
Korovilas 2012. To do that, we start to state equations, with help of Duffie, Pan and
Singleton (2000) Duffie, Pan, Singleton 2000, firstly in physical measure and then in the
risk-neutral measure, so that we can output the equilibrium stock market price. Still
within this theme, we will deduce a closed-form solution for the stochastic discount fac-
tor, that together with Eraker and Shaliastovich (2008) Eraker, Shaliastovich 2008, helps
in the study of the risk-neutral measure. Martin (2017) Martin 2017, offers a closed-form
for the VIX(-squared) and then, for the expected risk premium. We show, using Eraker
and Wu (2017) Eraker, Wu 2017, that the risk premium must be negative.






CHAPTER 3

Two-factor Eraker and Wu (2017) model under the physical
measure

We start by defining the two-factor model suggested by Eraker and Wu, under the
physical measure. A measure of physical risk seeks to assess the inherent risk in financial
assets based on the observation of real market prices. This approach presupposes that
prices adjust in accordance with fluctuations observed in the market, thus reflecting a
genuine value of the asset in question. It relies on the analysis of volatility and the
historical behavior of prices, thereby providing a robust assessment of the risk associated
with investments and financial assets.

3.1. Model specification

Let z be a random walk, which is a stochastic process that represents the stock market
prices. We assume that x7 is the terminal value of x, and 7 = x7. o, is the volatility
of process, which is driven by a Brownian motion, B}, and a compound Poisson process,
&dNy where {N,;u € [t,T]} has Poisson arrivals with intensity /. Doing the same as
Eraker and Wu (2017) Eraker, Wu 2017, at date ¢ the cash flow of z; satisfies Heston
(1993) Heston 1993 model:

d
Mt _ dt + 0,d BT, (3.1)

Xy

where 11 € R and By is a standard Brownian motion defined under the physical measure
P.

The instantaneous variance of asset returns (o?) is assumed to follow a square root

process with jumps:

do} = k(0 — of)dt + 0,0:dB} + &dNy, (3.2)

where k > 0 is the speed of mean reversion, 6 is the long term mean of the process and
0, is the volatility of the variance process. These parameters are assumed to satisfy the

Feller condition:
2K0
— > 1.

0y



The remaining parameters must adhere to the following conditions:

& ~ exp(pue) (3:3)
d(B*, B*); = 0 (3.4)
d(B*,N), =0 (3.5)
d(B*,N);, = 0. (3.6)

Note that, in this setup, the cash flow shocks (equation (3.1)) have stochastic volatility.
So, using [t0’s lemma,

2

0 10
d lnxt = a—xt(ln I‘t) d.flft + éa_:ﬁ(ln l‘t)d<l', .73>t

1 1 1
= (xipdt + x00dBY) + 3 <_P> (z7o7dt)

t

1
= (u - 50?) dt + o0,dBy. (3.7)

DEFINITION 3.1. The marginal utility function is defined by Eraker and Wu (2017)
Eraker, Wu 2017 as

u'(z) =277, (3.8)

PROPOSITION 3.1. The power utility function is
1—
x

u(zr) = : (3.9)

PROOF.




3.1.1. Model in matricial notation

In this section, we introduce on matricial notation the two-factor model proposed by
Eraker and Wu (2017) Eraker, Wu 2017 under physical measure. The matricial notation
simplify the equations and make easier the analysis in general. We built matricial nota-
tion from the equations presented in the previous section.

Defining X; := [In x, 0,52]/, then equations (3.2) and (3.7) yield

_|dinax| u—%af oo 0 | |dBf 0
X, = [ d o? } - [/1(9—0?) dt + 0 o,0¢| |dBY T & dN,

_ 1,2 _1
Since {M 2% ] = {HJ} + [O 2] : {lnéﬂt}, we can write
K ) o

t

_ dBy 0
dX; = (ko + K1 - Xp)dt + o(X;) - [dBf] + {&dNt] , (3.10)
where

Ko = :e] : (3.11)

0 1
K1 = 0 _;} , (3.12)

. —O't 0
o(Xy) = 0 UvUJ . (3.13)

Moreover,

/ (7152 0
O'(Xt)'O'(Xt) :H0+HXt: 2
0 0 0 0 1 0
— {O 0} + [O 0] X In x; + [0 0_2] X o7, (3.14)

where H = [Hl Hg], Hy = [8 8] , Hy = [8 8] and Hy = [1 002] .



3.2. Affine transform

Now, we go deeper on our research, and begin the study of two crucial functions that
will help, in the course of work.

Following Duffie, Pan and Singleton (2000, Proposition 1) Duffie, Pan, Singleton 2000,
for u € R?

W, X1, T) = Bp [ |
=exp [a(u;t,T) + ' (u;t,T) - Xy, (3.15)

where B(u;t,T) and a(u;t, T) solve the real-valued ordinary differential equations

O ot TV — . Bl VB (ust, T) - Hy - B(ust, T)

and

%a(u;t,T) = —/ﬁzf)-ﬁ(u;t,T)—%B’(u;t,T)-Ho-ﬁ(u;t,T)—lo lp (B (w;t,T)) — 1], (3.17)

with

(h) = ! (3.18)
subject to the boundary conditions

a(w; T,T)=0 (3.19)
and

Bw; T,T) = u. (3.20)



Combining equations (3.12), (3.14) and (3.16), then

9B i, 7) = — { oY } : {BI(U;t’T)} _% {ﬁf(u;t,T) +003ﬂ§(U;t,T)} ’

ot —% —K Bao(u;t,T)
ie.,
%(U; )| _ 0
%(U;t,T) T 3B8i(wst, T) + kBe(ust, T) — 33 (us t,T) — 1023 (us t,T) |
yielding
Bilu;t, T) = uy, (3.21)
and

0 1 1 1
%(u;t,T) = §u1 + kP (u; t,T) — éu% — 50363(1@1&, T).

PROPOSITION 3.2. The second component of the vector B is given by
K —d(uy) — (k + d(uy)) g(u)e w7

6. T) = 3.22
ﬁ?(ua ) ) 0_12) (1 . q(u)e—d(ul)T) 9 ( )
where
d(uy) = \/KZ + o2uy (1 — uy), (3.23)
and du) )
Kk —d(uy) — ugo
— v 3.24
alu) K+ d(uy) — ugo?’ (3:24)
with
7:=T—1. (3.25)

PRrROOF. Let’s start by factoring the equation of the fs.

952

1 1 1
E(u; t,T) = suy + 6fa(us t,T) — sui — 50353(% t,T)

2 2

1 1
= —éagﬂg(u;t,T) + kP (u;t, T) + §u1 (1 —uq).



Factorizing the equation above,

——0 2682 (u; t, T) + kBa(uyt, T) + ;ul (1—u)=0

and then solving in order to find SBo(u;t,T),

—Kk + /£2 _
Bo(u;t,T) \/

K+ /K2 + 02 ul(l—ul)
2

0y

Define

d(uy) = /K2 + 02uy (1 — uy).

In this way,
1 1
—50 2682 (u; t, T) + kBa(uyt, T) + e (1 —uy)

can be rewritten as

5ot (Batust, 1) = TS (s, 1) - B,

2
v 0y

Therefore, the expression for 652 2(u;t,T) is the same,

Fs ) = 5t (M“T) ) (e =)

and, hence,
1
1
“30 (Balust, T) — 80} (By(ust, T) — =25

0Bs(ust, T) = Ot

Putting the fraction as sum of simply fractions, we can solve the problem, and then
appears the question: For what values of a and b, the following sentence was satisfying?

9] b
BQ( 1.2 ) . Kk+d(u1) + Kk—d(u1) = Ot
17 \ Bt 1) — =0 " Byt 1) — e

10



We know that,

1= Byt ) - R A
(st 7) - =5

v

Therefore,

+ (Batut ) - 2

L’l(“”) b.

v

1= K ggm)a
0= apfa(u;t, T) + bPo(u;t,T)

The second equation produce a = —b.

The first one yields,

k—d(u), k-+d(u)
R B al
_d(ul) d( ) —Qd(ul)b
50— = 2
(O 0y
Solving in order to b,
2
b=
2d(u1)
and, hence,
2
‘= Qd(U1)
Going back,
) o2 a2
1, T u %
52(11 2 ) = rtd(uq) + = 1)m—d(u) = ot
—30% Po(ust,T) = =57 Po(ust, T) — =5~
02 0B (u; t,T) 0P (u; t,T)
T 1o rmd(u) sty ) =
—3002d(w) \ Bo(ust, T) — =32 Pa(u;t, T) —
1 OB(u; t,T) OBy(ui t,T)
k—d(u1) rtd(ui) = ot
d(wn) \ Bo(ust, T) = =30 Bolust, T) = =15
4T 6T
(952(“7 t? ) 852(’“7 t’ ) = d(ul) 875

ﬁQ(u7t7T) - %ﬁ%ul) 52(“7 tv T) - %1(2;“)

11



Integrate both sides:

In (52(16; t,T) - “%’i(ul)) —In (52(u; t,T) — %ﬁ)

v v

l Bo(u;t, T) — =)
n v
ﬁ2(u; t> T) - M

o3

) =d(u)t+C

/82<u7 ta T) - rdiu)

o _dut,C
Bofus, T) — e — ¢

Regrouping the terms to find By (u;t, T):

6xqu%—31ﬂEQ=€“”%CQ%wwﬂv—fiﬁgﬁ)

2 2
0y Oy

u Kk — d(u K+ d(u "
L T

k—d(uy) — (k + d(uy)) ed®teC
02 (1 — edlu)teC) '

Bo(u; t,T) = (3.26)

As we know that fo(u; T, T) = us,

K —d(uy) — (k4 d(uy)) e?)TeC
02 (1 — edu)TeC)

Ug =

up02 (1 — 7)) =k — d(uy) — (k + d(uy)) e e

(5 + d(ur) — uso?) eI = k — d(uy) — ugol.

Therefore,

Defining




then,

c

e = q(u)eid(ul)T_

Finally, combining the equations (3.23) - (3.27):

K —d(uy) — (k + d(uy)) q(u)e" )T |

62(u; t, T) = O.g (1 _ q(u)e—d(ul)(T—t))

In summary, and combining equations (3.21) and (3.22), we have:

Blust, T) =

Uy
H—d(uﬂ—(n—&—d(ul))q(u)efd(ul)(T*t)
o2 (1,q(u)67d(u1 T —t) )

and, hence,

] tT o
. irfmﬁ(u ) = r—du) | -

Concerning the function a(u;t,T):

PROPOSITION 3.3. Under the two-factor Eraker and Wu (2017) model,

K0 aalo
-+, T) = —l+—5(k—d p
a(u’ , ) (,uul o+ 012) (li (Ul)) + 0.3 — Jg (/{ — d('LL1))> !
2k0 1 —q(u)
— x
+ 0_3 X in <1 — q(u)e—d(u1)7>
207 p1elo

 (ne (m o+ d(w)) = 02) (02 — g (w — d(un))

s — pe (k= d(u1)) + (pe (5 +d(u1)) — 07) q(u)
< ( — i (K )

—d(w)) + (pe (6 + d(wr)) — 02) g(u)e=dw)

(3.27)

(3.28)

(3.29)

(3.30)

13



PROOF.
O

O it T) = s Bl T) = 580, T) - Ho - Blust, T) — lo [p (B2 (s, 7)) 1]

= —rgy - B(w;t,T) = lo [p (B2 (ust,T)) — 1]

s [ R s

1
1— pieBo(ust, T) 1)

= —ubi(u;t, T) — kOB (u; t, T) — Iy <

1
1= peBo(ut,T) — 1) . (3.31)

= —puy — K0P (u; 8, T) — lo (

Now, that we have a more simplified expression for the a(u;t,7T'), we integrate from t
to T

T da

E(U; s, T)ds=a(u;T,T) — a(u;t,T) = —a(u; t,T)
¢

and therefore

T 0a
it 1) = — —(u;s,T) ds.
a(u;t, T) /t T (u;8,T) ds

. . . . a . .
Thus, replacing in the above equation, the expression of &2 (u;s,T):

1
—1])ds
1 — pefBa(u;s,T) )

T
a(u;t, T) =/ MU1+/£052(U§57T)+10(
t

1
—lyds
1 — p1eBa (s S7T)) ’

T
:/ pruy + 5082 (u; s, T) + o (
t

T T
1
p— - ) T ‘
(pr — 1) 7+ 6 / Bals s, >d$“°/t = s, T)
(3.32)

14



Solving the following integrals (Corollary 3.1. and Corollary 3.2.), we achieve a closed-
form for a(u;t,T):

k0 o3lo
4, T) = —lo+ 5 (k—d p
a<u’ , ) <,uu1 0o+ 03 (:‘i (Ul)) + 03 — e (,{ — d(lh))) T
2k0 1 —q(u)
+ 0_—3 X In (1 — q(u)e—d(u1)7>
207 gl

(e (5 4 d(w)) — 02) (02 = pre (s — d(w)))
i (el dn e e din)) S ot
— pie (k = d(u1)) + (pe (5 + d(u1)) — 02) q(u)e=d)7 ) °

15



Let’s state two corollaries, each one dealing with integrals separately, then apply to
equation (3.32) and conclude.

COROLLARY 3.1. Under the two-factor Eraker and Wu (2017) model,

1—g(u)e” 4017

(k —d(uq)) T+ 2In <L(“)>

(3.33)

2
v

T
/ Po(u;s,T) ds =
t

g

PROOF.

T
/ Po(u; s, T) ds

-/ "= d(w) = (x4 d(w)) glu)e 1T

B 02 (1 — g(u)e— ) T=9)

/T K —d(ur) — (k —d(uy)) q(u)efd(ul)(Tfs) — 2q(u)d(u1)e*d(“1)(T*3) s
t

72 (1= g()e=T=7)

o 1 T (K} — d(ul)) [1 — q(u)e—d(m)(T—s)] _ 2q(u)d(u1)e_d(“1)(T_5) ;
T o2 t (1 — q(u)e—d(ul)(T—S)) §

1 [r —2q(u)d(uy e~ Mw)(T=s)

o2 J, 1 1 — q(u)edw)(T=s) ds

T —d(u1)(T—s)
q(u)d(uy e

_hm iy d(ul)T + % [ln (1 - q(u)e‘d(ul)(T_T)) —In (1 — q(u)e_d(ul)(T_t))}

:n—dwl)”gm( 1 - qu) )

o2 o2 1 — q(u)e—dw)(T-1)

(HZ — d(ul)) T+ 2ln (17(1(11:);1—9;)@1%)

2
gy

16



COROLLARY 3.2. Under the two-factor Eraker and Wu (2017) model,

T

/T 1 Js — Jg

¢ L= peBo(u;s,T) 02— pe (K —d(uy))
— 0224

(e (1 d(un)) — 02) (02 — jae (n — d(wn))

(e (s — dwm)) + (e (s + () — o) g(0)

< ( e (5 — d{un) + (g (5 + d(an) — 02) q(u)e—dwf) - B3

+

PROOF.
1

1- Mfﬁ?(uv S, T)

1

r—d(u1)—(k+d(u1))gq(u)e=4u1)(T—s)
1= pe ;g(kq(u);d(unms))

1

02 (1= q()e= DT =) e (n—d(ar)—(+ () g ()= 2D T=)
0'12) (1_q(u)€7d(ul>(T75))

7% (1= gluje 7))
02 (1 — q(u)e=@DT=9)) — e (k — d(uy) — (k + d(uy)) g(u)e=dw)(T=s)

_ 02 (1 — g(u)e~=)T=9)
02— e (k- (ul)) + (e (/@' Fd(w)) — 02) q(u)e-WuT=5) (3.35)

Separating equation (3.35) in sum of two terms, one of them its independent of s,
he—d(u1)(T—s)

a+ —5— pte (5 — d(u1)) + (pe (5 + d(uy)) — 02) q(u)e=dw)(T=s)"

But, for what values of a and b, the expression makes sense?
We know that,

o (1= glu)e T

=a o2 — pe (v — d(w))] + a [pe (5 + d(wy)) — 2] q(u)e™ ™D T=) 4 pedw)T=s),

17



Therefore,

{ﬁzawﬂw%m—ﬂmm

—02q(u) = alue (k+ d(uy)) — o2 q(u) + b

In the first equation we isolate the variable a and in the second equation we isolate
the variable b.

2

e
o2 —pe(k—d(u1))
b= —0o2q(u) — alue (k+d(w1)) — 7] q(u)

In this way, there is a closed-form for a, so replacing in the second equation to get a
closed-form for b:

__ﬁﬂw(yu%“+“m”‘ﬁ>

o (T g s ) | (s dw)) — o2
<)(3 sm—dwnY*ﬁ—uaH—ﬂm»)

Back to equation (3.35), we can rewrite as following:

0—12} 1 (u)e_d(ul)(T_s))

—4q
02 — pie (K — d(ur)) + (pe (5 + d(ur)) — 02) g(u)e= ) T=s)

2 2ped(uy) —d(u1)(T—s
_ o2 N —0,q(u) <—o-%7y,:(n7dl(u1))> e~ )=

02 — e (K —d(w)) 02 — pe (5 — d(wr)) + (pe (5 + d(wr)) — 02) g(u)e= )T

18



So,

T 1
/ ds
¢ 1= pefa(u;s,T)

_ 2ped(ua) e—d(u)(T—s)
Hg("@ d(ur)

"ﬁ—MAH—a »+u%m+w )~ R alu)e T ©

= e (s d(w)”
_ / ! o2q(u) (st ) el o
v 02— e (5 — d(u)) + (e (m + d(ur)) — %) glu)e AT
e ot ()
— e (K — d(uy)) (pe (k + d(ur)) — 02) q(u)d(u )
g (1e (5 + d(wy)) — 02) g(u)d(uy e~ T= )
% /t — e (k — d(ul)) + (M& (li + d(ul)) — ag) q(u)e*d(ul)(T*S) d

2 2pe
2 0f——F———
Oy v o5 —pe (h—d(uw1))

02—t (r—d(w1)) | (pe (k + d(wr)) — 02)
< In (03 — e (K — d(w)) + (ne (5 + d(w)) — 07) q(U)e‘d(“l’(T‘T))
02— pte (r — d(w)) + (jig (r + d(ur)) — 02) q(uw)e AT

0-12) T — 0'12)2/145
— e (k=d(ur))  (pe (k+d(ur)) = 03) (07 — pe (k5 — d(w1)))
xzn( 02 — g (1 — d(w1)) + (e (ks + d(u1)) — 02) qlu) )

— i (k5 — d(ur)) + (pe (5 + d(wr)) — 02) q(u)e= 4w

3.3. Equilibrium stock market price

The equilibrium asset price can be found by solving the optimal portfolio problem

(Eraker and Wu, Appendix A3) Eraker, Wu 2017:
max E; [u (sZr — (s — 1) Pte’"f(T’t))} : (3.36)

where s is the number of shares held by the representative agent, and P, is the price of
the risky asset at date t.
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From the first order condition, we take the derivative of equation (3.36) with respect
to s, and set it equal to zero, yielding

E, [(;%T — Pte’"f(T_t)) u (s.f:T —(s—1) Pterf(T_t))] =0.
With fixed supply s* =1,

E, [#7u (E7) — Pe T/ (@7)] =0,
ie.,

E, [fr (2r)] — P’ TOE, [u (7r)] = 0,
and, hence,

E/ [Fr - v’ (i7)]

P, = .
LB [ (Er)] et

(3.37)

Using equation (3.8), and equation (3.37) becomes

P, = —Ei@_q
E: [:BT } ersT

_ Ejfeap((1 =) Inir)]
E; [exp (—vIn T7)]e™r™

E; [exp (1 —~)in &7 + 0 x )]
E; [exp (—yln 7 + 0 x 0})] "7

_ U([1-v 0],X;t,7T)
T U ([ 0], X T) e (3.38)

where the last equality comes from the equation (3.15).
Defining
wy =[1—v 0] (3.39)

and

u_, = [=y 0], (3.40)
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we can rewrite equation (3.38) as

U (uy—y, X3¢, T)

P =
7 (Ury, Xy, T) €747
_ exp [Oé (ulf’y; t? T) + ﬁ/ (ulf'y; t? T) Xt]
expla (u_y; t,T) + B (u_y; t,T) Xy] et7
— eyt T) —au—yit, 7))+ ((1=7) = (=7))in z1+(B2 (w1 —5t,T) B2 (u—vit,T))o? (3.41)
Defining
M(t,T) =a(ui—y;t,T) —a(u_y;t,T), (3.42)
and

)\o-<t, T) = 62 (Ulffy; t, T) — 62 (U,,y; t, T) (343)

then equation (3.41) can be simplified into

Pt — efrf‘rJr)\o(t,T)Jrln a:tJr/\g(t,T)O't2

— mtefT‘fT%*)\()(t,T)‘F)\a(t:T)O't2' (344)

The equilibrium stock price is given by

_ 2
dPt _ dl’tG T+ (6,T)+Ao (t,T) 07

Xo(t, T A (t, T )
+ x4 [(Tf + 0 Oét, ) + 0 ét )Ut?> dt + Aa(t,T)daf} e P A0 (6T)+ Ao (4T) 02

P, No(t, T Ao (t, T
—dz,— + P, rf+a°(’ )+a ( >a§ dt + N\, (t, T)do?| ,
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ie.,

Bt () BoLT) , BT

- ot ot

P z + af) dt + N\, (t, T)do?,

and, hence,

a>\O (t> T)
ot

)ﬁ&+%@Tmﬁ. (3.45)

O\ (£, T
dt + o

dinP, = dinz, + rydt +

In order to reduce the effects of time passing, we have chosen to approach the model
by considering an infinite time horizon, thus addressing the issue in a more comprehensive
manner.

PROPOSITION 3.4. The equilibrium stock price can be expressed as

where
)\; = [1 )x,,] , (3.47)
. O o(t,T)
i i S (48
and
Ao = lim A\, (¢,T). (3.49)

T—o00

PRrROOF. To establish this, we are systematically examining the matter by progres-
sively extending the parameter "T” towards infinity (referred to as the infinite horizon
limit), and then performing integration over the interval from t to T.
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—a(u_;t,T)

==l wl] {gﬂiﬂ o (1 - uaﬁlz(ulw) - 1)
o) o e )

=—p(l—7)—kOB2(u1—y) — Iy (1 — ugﬁlz(ul_y) - 1)

1 1
= —p — k0 (Ba(u1—) — B2(u—y)) — o (1 — pefa(ui—y) 11— N£52(U—v))

Define DAoL T)
Ao = lim =2/
0 T—lg-loo (915

2.

N (t,T)

0 0
ot = aﬁQ (ul—% t, T) - EﬂZ (U—’Y’ i, T)

(1 =) (1= (1 =) + Kfalun ) — 502653 )

(500w - o))

N | —

2 2"

(1= )7+ 5 (147 + 5 Baltr ) = Balu ) — 507 (B y) = B3l )

N —

= %'7 (1 —v+1+ '7) + K (62@1—7) - 62(“—7)) - %Jg (/Bg(ul—“/) - Bg(u—w))

=4 R (Baluny) = Bafuuy)) — 207 (o) — B uy))
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2.1.

When we take the limit,

(i ) = =
and
: _ r—d(=y)
TETOO B2(u77) N O'g
po OA(t,T)
:wrﬁ(ff—d(l—v) 3 H—d(—v))
B 102 (Faz — ;Iid(l -7+ dg(l -7 k2 — 2kd(—7) + d*(—7)
2 ol o
=7+ = (d(=y) — d(1 = 7))
1 (—%d(l — ) + (1 =) +2rd(—) — dQ(—v))
2 o2
1 2 2
=7~ 5.3 (@1 =7) = d(=7))
== 5 [(# 4+ (1= )1 = (=) = (& + 0271~ (-1)]
=~ 53 [+ L=y = & = =)L+ )]
=7 - 2(172 (oL =)y + air(1+7)]

)

(3.50)



lim A\, (t,7T) :Tlim Ba(ur—q;t, T) — Tlim Ba(u_y;t,T)
—00 —00

T—o0

_k=dl-v) r—d(=y)

2
o o

d(—v) —d(1 —~)

= o =\
Back to the equation (3.45) and taking T" — oo,
ONo(t, T N (t, T
dinP, = dinx, + rpdt + lim Mdt + lim 92 (t,T)
T—o0 ot T—o0 t

Combining equations (3.48), (3.50) and (3.51)

dinP;, = dinz, + rpdt + Aodt + )\Jdaf.

Using equations (3.7), (3.48) and (3.49):

1
dinP, = <u — 503) dt + 0, d By + rydt + \,do}

+ [=p = KON, — 1o (p (B2 (u1-;00)) — p (B2 (u—ry; 00)))] dt

= rpdt + 0 dBf + A\ydo} + Ao(07)dt

that is equation (11) of Eraker and Wu Eraker, Wu 2017, where

Mo(0?) =~ 507 — K0 — Iy (p (2 (1)) — p (B ().

(3.51)

oldt + dim A, (¢, T)do?.

(3.52)

(3.53)
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Integrating equation (3.52) from t to T,

T T T T T
/ dinP, = / dinz, + / rpdu +/ o du + / A do?
t t t t t

which yields,

InPr — InP; = Inxr — Inx; + 157 + AT + A0 — A\y07.

Passing InP; to the right-hand side and reassembling the terms,

InPr = InP, — (Inxy + Ao07) + (rp + Xo) 7+ (Inxr + As07)

—InP,—[1 A [ZZ;;”] F(rr+ro) T+ [1 A [ZZZQT:T]

=InP,— X, - Xy + (ry+Xo) 7+ A, - X,

where

Ao=1[1 A].
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CHAPTER 4

Two-factor Eraker and Wu (2017) model under the risk-neutral
measure

In this chapter, we will analise the two-factor Eraker and Wu (2017) model under the

risk-neutral measure.

4.1. Stochastic discount factor

We present the mathematical formulation of the stochastic discount factor within the
framework of the two-factor Eraker and Wu (2017) model Eraker, Wu 2017 exploring its

practical applications.

We know from equation (3.38) that the price can be written as

E 77 ]

Pt_

= Et [ZZ‘;V} X erfT

E, [#577 x &7

K [ x e o]

(Ep (i7" x e ™7

Eqp (#7 x e77o7)

| Ei (@ x et

Er (277 x e7)

ET (i’;’y X G_TfT)

| B (377 x e7et)

]ET (i’;’y X e_’"fT)

Er (7" x e7"iT)

Ey (357 x ¢i7)

| E (:%;7 X e"’ft)

E, (Z77 x e7rt)

XPT

Er (i’;’y X e"’fT)

(4.1)

The term that multiplies Pr, on the equation above is called the stochastic discount

Mt

factor Y

and, hence,

M
P, =E, {ﬁTxPT]

t
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PROPOSITION 4.1. Under the two-factor Eraker and Wu (2017) model, M; can be
expressed as

M, = ea(u_%t,T)Jrﬁ’(u_A,,t,T)thrft‘ (42)
PROOF.
M, =E,; (7" x e7"'")
= ]Et (i;’y) X eirft
— ]Et (e—vxlniT) % e—rft
_ ]Et <6—7><ln5:T+0><0%> % e—rft
=E, (e" 7)) x e

and now using the information of equation (3.15):

/ —
Mt — ea(u_.y,t,T)Jrﬁ (u—n,t,T) X X e Tyt

_ ea(u_w,t,T)Jrﬁ’(u_ﬁ,,t,T)thrft

Applying the same approach as in the equilibrium stock price to obtain equation
(3.45), differentiation of equation (4.2) yields

AM; = (o (u_y;t, T) + ' (u_y; t,T) - X; —ryt) dt x M,

—
then,
th _ . . . 2
T (a(u_n;t,T) + Br (uns t, T) In ay + Bo (u_s; t, T) 07 — 1st) dt
t

= (a(u_;t,T) = vIn z; + B (u_y;t,T) 07 — ryt) dt

— %Oz (U—’y§ t, T) dt — Wdln Ty + %62 (U_»y; t, T) O‘?dt + ﬁg (u_,y; t, T) dCth _ det‘
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Therefore,

dinM; = — vdin x, — rydt + %a (u_y; t,T)dt

0
+ a& (u—y;t, T)opdt + B (u_r;t,T) doy. (4.3)

Now, just as we did in Chapter 3, let’s apply the infinite horizon limit to mitigate the
impacts of the time lapsing.

: K —d(—y)
lim By(u i, T) = ==,

0 1 1
lim —fy(u_y;t,T) = lim (—50353 + kB2 — =y (1 + ’y))

T—o0 at T—o0 2

102<ﬂ2—2/€d(—v)+d2(—7))+Hﬂ—d(—7) v(1+7)

v

Using equation (3.23):

N, = (P —ooy(1+7) ~(1+7)
i o Ba(uit, T) = 2072 T2

_+y) v+
2 2 '
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.0
A et

. . N - 1 -
- ’Ilgglo <_M61(u—7a t7T) - ReﬁQ(U_’Y’t’ T) lO (1 - MéﬁQ(U—% L, T) 1))

_ K —d(=7) 1 _

2
Ty

Now, by combining the previously calculated information, let’s consolidate it all, re-
sulting in the following:

—d(—
dinM; = —vy din x, — rpdt + wdt + K—g”dof.
O-’U

Integrating both sides from t to T, results in

T T T T . g
/ dinM, = / —v dln x, + / w—rfdu —I—/ w dcri,
t t t t o

ie.,
—d(—
InMr — InMy = —vy (Inxp — Inxy) + (W —715) T+ n g ) (oF —a7)
UU
Therefore,
—d(— —d(—
InMyp = InM,; + (fylna:t — K—gwgf) — <ylnxT — R—WU%) +(w—rp)T
o2 o2
= InM,; + [7 _%(277)} - Xy — [7 _Kii(zﬂ)] Xr+(w—rf)7T
=InM; + v, - Xy =7, Xo + (w—rp) 7, (4.5)
where
o=y =4, (46)
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4.2. Market Prices of Risk

The financial models used so far have a stochastic component that imparts randomness
to asset prices, and this component is the diffusion term. Eraker and Wu (2017, equation
(90)) Eraker, Wu 2017, define the diffusion term of stochastic process x as

— yodBy — no,0.dBy (4.7)

_ . |4B¢
- [Pyat navgt} |:dB;):|

o O¢ 0 dB?
- h 77] ' [O UUJt:| ) {de”]

= - ['Y 77] 0 (Xy) - dB;,

with o(X;) = [0 0.0,

or 0 } and dB, — [dBt}.

dB?

Since the diffusion terms are the same regardless of the authors, Eraker and Shalias-
tovich (2008, equation (2.22)) Eraker, Shaliastovich 2008 and Eraker and Wu (2017, equa-
tion (90)) Eraker, Wu 2017, this term are equal to —A} - dB; with Ay = o(X;)" - .

Thus,

and, hence,

4.3. Model Specification under the risk-neutral measure

Under the physical measure (P), equations (3.10) - (3.14) can be stated as

dXt = (/io + K1 - Xt) dt + O'(Xt) . dBt —+ |:£t6(l)Nt:| s

with

o(Xy)-o(Xy) = Ho+ ZHZ‘ - X,

=1

l(Xt) = l() + ll : Xt and

E (e®) = p(0).
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Thus, under the risk-neutral measure (Q), we have the same equation but with differ-
ent terms,

- - = 0
dXt:<I€0+I€1'Xt)dt+0'(Xt)'dBt+|: :|,

&dN,
where
Ko = Ko — Hy - A, (4.9)
fi= k1 — [HWA Hoh -+ H,)], (4.10)
I(X:) = UX0) - p (=) (4.11)
and
p(u)= plu—2A)./p(=}) (4.12)

using Eraker and Shaliastovich (2008, equations (2.24), (2.25), (2.27) and (2.28)) Eraker,
Shaliastovich 2008.

Then, solving in order to find the terms under measure Q,

Ko = Ko — m = Ky = {:9} , (4.13)

I€1 = K1 — [Hl)\ HQ)\}

L
0 —k—0oln
and
K+ o2n = k. (4.14)
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Then,

K= [8 _%_; 7] : (4.15)
I(x,) = {8 lﬂ | [ggjm _ Lopf_n)} (4.16)
with ]
lop(—) = lo (4.17)
L o] ot | T

The second component of this vector is given by

pluz—n)  14pn 1 _ -
- - e - 2<u2)7
p(=n) T+ pen —peuy 1 — izus
where .
e .
= g X ————— = j1ep(—1n) = fl¢. (4.19)
Ltpen 07 T—pe(=n) "¢ ¢

Simplifying, the model under measure Q can be finally written as

- ~ 0
dXt = (K/O"—Kll Xt) dt+U(Xt) dBt+ |:£th;| .

4.4. Affine Transform

As we did in the previous chapter, following Duffie et al. (2000) Duffie, Pan, Singleton
2000 and for u € R? |

U(u,t, T, X,) = Eqg [e“’Xt | ft}

= exp [&(u;t, T)+ B (u;t,T) ~Xt] , (4.20)

where a(u;t,T) and B (u;t,T) solved the real valued ordinary differential equations

9 5 . R A Y _1 B/(u7t7T)1£[13(uvt7T)
aﬁ(uath) = —hK B(U,t,T) 9 |:B/(U;t,T) . ]:'12 . ﬁN(u;t,T)] (421)
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and

2o?(u;t,T) = —%-B(u;t,T)—%B'(u;t,T)-I:IO-B(u;t,T)—l~0 [ﬁ

ot (Bz (u;t,T)> - 1} , (4.22)

subject to the boundary conditions

a(u;T,7T)=0 (4.23)
and

B(u; T, T) = u. (4.24)

To solve for B(u, t,T), let’s remember equations for £, H, and Hy:

P (u;t,T) __{ 0 o}_{@l(u;t,T)}_1[~ 0 ]
T i 0 i 17 0
LG ) Bulwt, T) + Ra(u; tﬂ)} 2 {ﬁf(umT) +o2f3(ust, T)}
J— [ ~ ~ O ~ ~
~ LG+ Bilwt, T) + FBs(ui t, T) = 352w t, T) — 30253 (ust, T)] ‘
(4.25)
Moreover,
Bi(u;t, T) = uy (4.26)
and
1 3 ~ 0 L L 5%
— (5 +’y) B1(u;t,T) + RBo(u;t, T) — 551 (u;t,T) — 501}52 (u;t,T)
= - %o—?,/?%(u; t.T) + ifBa(ust, T) + % 2741 — uy) u. (4.27)
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Factorizing:
0 ~
— t,T)=0
8t52(u’ ) )
is equivalent to

1, ) 1
—éagﬁg(u;t,T) + &P (ust, T) + 3 (2y+1—u)u =0.

In this way,
) i JR2 = 4 (—Lo?) (R + 1 —w)w)
/82<uat7T> = 2 1 2
(_5) 9%
—RENR2+ 22y +1—u)
CREVR 42 (27 +1—w)u 19
— = : (4.28)
Define
duy) = VR2+ 02 (27 + 1 — uy) uy. (4.29)

If v = 0, then d(u;) = d(uq).

Thus,
0 ~ 1 - P d N ~ —Ci
E&(“?@T) = _5012; (52(“?757T) - %ﬁtﬁ) <52(u;t,T) _ET o) Ug(u1)> .

v

Without loss of generality, repeating the same steps as we do in Section 3.2.1. to find
B(u;t, T), just replacing (k,d,l, p) by (R,J, l, ﬁ):

~ Uy i
Blu;t, T) = | k=d(ur)—(~+d(u))q(u)e 217 (4.30)
U%(l—d(u)e’d(“l)")
where
~ d" i 2
() = 2= dlm) = oy (4.31)
K+ d(ul) — UQO'?)
and
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Uy
Fd(un) (4.32)
o2

lim G(u;t,T) =

T—4o0

Now, to solve the ordinary differential equation concerning &(u;t,T"), we apply the

same method. The ODE is

—

At T) = iy Bt T) — (s, T) - Ho - Blust, ) —To [ (B ust, 7)) — 1]

— & Bust, T) — o [,3 (52 (u; t,T)) . 1}
= b (ust.T) = &0Ba(ust.T) Iy [ (B (it 7)) 1]

Without loss of generality and similarly to what was done to find a(u;t,T') in Section

3.2.1., replacing again (k,d, [, p) by (/%, d,l, ﬁ):

a; 1—@1()
202icly
(el )
[t i) o )
— fie ( J<D+Q%(+& ) = 02) lu)eion
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CHAPTER 5

VIX-squared futures premium

In this chapter, we will study the risk premium. The VIX, also known by volatility
index, is an indicator that represents the market expectation for future volatility. The
VIX-squared measure the future expected variance.

Martin (2017, Equation (25)) Martin 2017 shows that the time-T VIX-squared for a
time-to-maturity of  years is equal to

9 Pris
VIX:2=Zp5|—Ffr
r—s T(Pl(T,T+5))’

where LH(X) = In E4%(X) — E% In(X), Pr is the time-T SPX price, P(T,T + ) is the
time-T present value of a US$ 1 payable at time T + ¢ and its is assumed that the under-
lying asset does not pay dividends in the time interval [T, T + J].

Then,

9 r Prys Prys
IX2=2 B | 5t | —Epln | 5
VIXy =75 | Inkr (P—l(T,T+6)> O (P—l(T,T+5))

= 2 -ln ;E* Pres\\ _ E* In Prys

s \P YT, T+6) "\ Pr T\ PrP~Y(T,T +9)
_ 2 [ IE*T (PT+5) * PT+5
=5 | <PTP—1(T, T+9)) BT\ BT T 1 o)

2 | . Prys
i [ET n (PTP—1<T+,T+ 5>)]
= — 2 [E3 i (Prys)] — In (Pr) — In (P7AT, T+ 6))]

_ - ; [ [In (Pras)] — In (Pp) + In (P(T, T +8))], (5.1)

because the absence of dividends implies that E% (Prys) = PrP~ (T, T + 6).
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5.1. Cumulant generating function

The expectation ’contained’ on the right-hand side of equation (5.1) will be computed
through the cumulant generating function of inPr .

DEFINITION 5.1. The cumulant generating function of InPrys s
¢*(z;T,T + 6) = In B, [e*Fres] (5.2)

Now, using equation (3.46)
¢*(z; T, T +6) =InEl[exp (z x (InPpr — X, - Xp + (rg+ Xo) 0 + N\, - Xr45))]
=In |exp(z x (InPr — X, - Xp + (ry + Xo) 9)) x EX [ez"\;'XT””
= 2% (InPr — N, - Xp + (1 + Xo) 8) + In E [ez%'xw} ,
and adding the information of the equation (4.20), we have

o*(z;T,T + )

=2z X (lnPT—/\;-XT+(7"f—I—)\0)5)
+In (exp [07(2~/\;;T,T+5)+B’(z-)\;;T,T—|—5) .XTD

=2(InPp =X - Xp+ (rp + X)) 0) +alz- N T, T +6) + 3'(2- Ny T, T +6) - Xp

=z (InPr — In xp — X\o0] + (rp + Xo) 9)
+a(z - NioT, T +06) 4 Bi(z- Ny T, T + 6)in g + Bo(z - Nos T, T + 6) o2

=z (lnPT —In xp — M\eo7 + (rf+)\o)(5)
+a(z - NyT,T+0) 42 X Inap + folz- Ny T, T + 8)o2

= 2 (InPr + (ry + o) 8) + @z - No; T, T + 6) + [BQ(Z-A;;T,T+5)—2/\U o2 (5.3)
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If we differentiate ¢*(z;7,T + 9) of equation (5.2) in order to z and then take z = 0,
then

B [InPryse?nPr+s]
E% [ezlnPT+5] |Z:O

0
&gb*(z;T,T +9) =0 =

= E% [inPrq). (5.4)

Using equations (5.3) and (5.4):

0
E/} [lnPT+5] — %Qﬁ*(za T7 T + 6) |Z:0

9
— g[z (InPp + (ry + X)) + é(z - Ny T, T + 6)

+ [32(2 N T, T+ 8) — zko} 0%}

— InPp+ (ry + Xo) 6 + gé(z AT, T +6) |o=o
z

o -
+ [&ﬁz(z N T, T +6) |=0 _)\a':| 7. (5.5)

Combining equation (5.1) with equation (5.5),

2
VIX; = — < [E} [InPris) — InPr + InP (T, T + 6)]

o
2 0a
= — S InPr+ (rp+ M) 6+ oo (2 Nos T, T+ 6) |
0 0z
852 /. 2
+ a—(zAx,T,T +0) |.=0 =o' | 07 — InPp +InP (T, T +9)
z

2 oa, .,
g |:(7’f +/\0)(5+ &(ZAI,T,T—‘—(S) |z:0
+ % 07 +InP (T, T +9)

z

(AT, T +90) om0 — Ao : (5.6)

39



To simplify the notation, let’s denote

oo , oo
&(z AT, T4 96) |a=0 = a9 |.=0
and
85~2 /. o 832
E(Z ’ )‘m’ T7 T+ 6) |Z=0 - % |z:07
yielding
O dp.
VIXf = =5 |(rp+X0) 0+ o= oo+ | 2= |0 —=Aq [ 0F + InP (T, T +9)

5.2. The VIX-squared risk premium

(5.9)

To calculate the risk premium, we take the difference between the expected value
under the physical measure and the expected value under the risk-neutral measure:

Er [VIX%} —E} [VIX%}

95
0z

.= —A,,) o2+ InP (T, T + 6)

0z

|.=0 —)\0> Er [07] + InP (T, T + 0)

|.—0 —>\0> E} [0F] + InP (T, T + 9)

o
= E — = a_ =
T (Tf+)\0)5+ 02 |z-0+ (
o2 o
_]ET —5 (Tf—|->\0)(5+$ ‘z:O
2 [ o 02
_—5 (Tf—l-)\o)é“i‘%'zzo—i_(E
2 [ oo 0B
+5 (Tf+)\0)5+5’2=0+<g
2 (9P :
- 3% o) @A) - mi ).
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+ <% 0 —)\U> o2 + InP (T, T + 0)

(5.10)



We know the sign of the last term, Ez [0%] — E% [04], because Eraker and Wu (2017,
Appendix A7) Eraker, Wu 2017 shows that Er [02] < E% [04].

All that remains is to evaluate the signal of the function %—%(z Ae; T, T4 6) |0 — Ao

fi—d(2)— (Ftd(2))4(z- Ae)e )
U%(l—q(zv\z)eﬂi(ﬂts)

Remember that z - \, = [ N } and fa(z - Ap; T, T + 6) =

2Ny

Let’s simplify the expression to make the derivative more easily to do:

—2d(2) + i + d(z) — (ﬁ + &(Z)) G(z - Ayp)e U200
52(2 ' AmvTa T+ 6) =

o2 (1—q(z- )\x)e*J(z)‘s)

_ k+d(z) 2d(z)
o (1= A)e T (5.11)

v

To calculate the derivative of this function, we need to do some auxiliar calculations
and to make this more simple to understand, we are doing simplifications in notation that
are used in resolution:

= V&2 =k (if & > 0); (5.12)
, ad
d(0) = 5(2) =0
=—02(2 +1—2z)iy
2 v 7 d'(z) z=0
1, 1
=022y +1—-0) =
50 (27 )d<0)
a2 (2y+1)
_ % : 1
T (5.13)
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= — =0 (5.14)

and

q(0) = @(2 “Az) |z=0

[/% + J(z) — z)\gag} ’
) =d(0) = A0?] [+ d(0)| = [& = d(0)] |d(0) = Aoo?]
[N + J(o)] i
[%(22*;4&) + /\0012}} U
T 472
_ _4022 (2v + 1+ 2R\, ) . (5.15)

Back to the equation (5.12), doing the differentiation of fa(z - Ap; T, T + 6) and eval-
uating with z = 0,

.
O (2 AT, T4 8) |y

CZ’(O) 1 2&(0) 1-— (j(())e—d(())cs] _ QJ(O) [_g/(o)e—ci(o)a + CI(O) /(0)(56_62(0)5
-2 Ty . (5.16)




Replacing what we known:

o
%(z-/\x;T,T—i—é) o

2+l 1 [ o2(2y+1 2 ~
vt (2M + 2R (—& (27 + 1+ 27\, e“))

2% o2 2k 472
2v+1 1 . _is
= — — (227 +1) = 2y + 1+ 2R\, e "
o~ 37 22+ 1) = 2y 1428A) )
1

= T o (27 +1— (27 +1+2&\,) e ™)
K

1 —i —F
= -+ (1-e )+ Aoe ™

Finally,

%(2 A T, T +6) |m0 — Ao
- 272;2 ! (1—e) +Ape™™ =\,
= 2722 ! (I—e™) =X (1—e ™)

_ (=t 6
= (2/% +)\0>(1 e )

1 i
== 57 2y +1+27A) (1 - e ). (5.17)

1 —e ™ >0, if & > 0, but we can’t evaluate the ’global’ sign yet, because we don’t
know the sign of the second term.

To achieve this, we will return to the equation (3.51) in order to determine the sign
of 2y + 1+ 2k,
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_ VRt () A+ - VR o (-9 (1 - (1—7)

2
Oy

p) 2 -
_ \/KL 2(v2+7) \/“ (=) < 0 (because v > 0) (5.18)

Uv

Now, we have to change variable & by x and for this, we use equation (4.15):

—H—Ii_jg_wa =Kk —K+d(—)
= /K2 —02(12+7) (>0). (5.19)



Then, using equation (5.18) and equation (5.19)

1+ 2y 4 27\,

:1+27+2¢ﬁ—n%w1%w(V%I_ﬁoﬁ+7%—¢#—ﬂﬁwl—ﬂ)

=14+2y+4+2

K=oy (P +7) VR =t (P VR =0t (3P =)
0—2

2 24,2 2
R — 0,7 — 0,7Y

=142y +2 -
GV =120 (P =) — Ko (P + ) +oi (P +9) (7P )
_ £
L oo Ve — R — kPai? + o) (v — 97
—1428 " 7
O-'U O-’U

=142 v
g

=142 v

(5.20)

COROLLARY 5.1.
1+ 2v 4 28\, is positive.

PRrooF.

Since

V2 = 227 = (029)? < (2 = 22)? = 2 = 02,
then

i =012 029 > w2~ 022 = — (2~ o)
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Therefore,

K2 — 02 — [ (2 — 0292)? — (027) > 0

Multiplying both sides by %:

2o (62— 022) — (02)?

2
o o

2

Adding 1 to both sides,

142

The left-hand side is equal to equation (5.20), which is equal to 1 4 2y + 2R\,. 0]

Now, we have information to replace in into equation (5.17), and conclude that

%(2 ) )‘IaT7T + 5) |Z:0 -, <0, (521)
z

Finally, back to the equation (5.10) and using all this, we’ve enough to conclude that

long positions in VIX-squared futures must have negative returns.

46



CHAPTER 6

Conclusions

In this thesis, we explore the two-factor model proposed by Eraker and Wu (2017)
in various financial contexts. Throughout in this research our main goal was to examine
in detail the nuances of the model and understand the relevant implications to asset
valuation and risk management.

We start our research by presenting the model and outlining your configuration in the
physical measure domain. A detailed analysis of the model structure and the underlying
stochastic processes was crucial to our comprehension. The representation in matricial
notation fit well with our objectives, yielding a clearer and more concise analysis.

In the course of the study, we turn our attention to the risk-neutral measure, introduc-
ing the concept of stochastic discount factor. Again, we carefully detail the specification
of the model under this measure.

The apogee of our research was the in-depth analysis of the premium associated to
the futures contracts on the VIX (-squared) index, a relevant primordial concept in fi-
nancial market volatility. Through the equations and results obtained along this study,
we clarify the underlying fundamentals to this premium, thus demonstrating that such
contracts have negative expected returns. That discovery has significant implications to
risk management and hedging strategies, since it evidences the willingness of investors,
that have risk aversion, in paying that premium to protect their portfolios during high
volatility periods.

Conclusively, this thesis provides a deeper understanding of market fear, as the search
for protection mechanisms reflects the inherent risk aversion on the part of investors. The
evidence of this expected negative returns in specific contracts suggests that, over time,
the investors are willing to pay in order to avoid that unexpected market volatility.
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