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Resumo 

 

A poluição do ar representa um problema global, que afeta milhões de pessoas, podendo trazer graves 

consequências para a saúde pública, para a economia e também sociais. A constante emissão de 

poluentes em estado gasoso, resultante de operações industriais, combustão de combustíveis fósseis e 

fogos florestais, afetam a qualidade do ar e contribuem para o aumento deste tipo de poluição. A Internet 

das Coisas (IoT) emergiu como resposta para a criação de sistemas inteligentes de monitorização que 

podem ser usados para a gestão e identificação de fontes de poluição e para a proteção da saúde pública. 

O desenvolvimento de novos equipamentos e tecnologias de comunicação, têm vindo a permitir a 

criação de aplicações de monitorização da qualidade do ar, em tempo real. Esta dissertação apresenta 

uma implementação de um sistema IoT de monitorização de qualidade do ar exterior, baseado num 

sistema multisensor com capacidade de comunicação LoRa. O sistema incorpora sensores de baixo custo 

capazes de detetar diferentes poluentes atmosféricos, como também parâmetros atmosféricos, como 

temperatura e humidade relativa. De modo a ser obtida uma transmissão de leituras em longa distância 

e com baixo consumo energético, o uso da tecnologia LoRa foi adotado. A frequência do envio de 

leituras para a rede, é feita com base no nível de tráfego urbano, numa certa localização. Ainda é 

apresentada uma aplicação web/móvel, que permite ao utilizador acompanhar em tempo real e proceder 

a uma análise temporal, das medições efetuadas pelo sistema. 

 

Palavras-chave: Sensores inteligentes, Internet das Coisas (IdC), Qualidade do ar exterior, 

LoRaWAN, Monitorização inteligente, Aplicação web/móvel 
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Abstract 

 

Air pollution is a worldwide problem, which affects millions of people and can have serious 

consequences for public health, economy and for social issues. Constant emissions of gaseous 

pollutants, as a result of industrial operations, combustion of fossil fuels and forest fires, affect air quality 

and contribute to an increase in this type of pollution. Internet of Things (IoT) has emerged as a response 

to the creation of intelligent monitoring systems that can be used for management and identification of 

pollution sources, and for health protection. The development of new equipment and communication 

technologies has allowed the creation of real-time air quality monitoring applications. This dissertation 

presents an implementation of an IoT system for monitoring outdoor air quality, based on a multisensory 

system with LoRa communication capabilities. The system incorporates low-cost sensors capable of 

detecting different air pollutants, as well as atmospheric parameters, such as temperature and relative 

humidity. To achieve a long-distance transmission of readings with low energy consumption, the use of 

LoRa technology was adopted. The frequency of sending readings to the network is based on the level 

of urban traffic in a certain location. Furthermore, a web/mobile application is presented, which allows 

the user to monitor in real time and to carry out a temporal analysis of the measurements taken by the 

system. 

 

Keywords: Smart sensors, Internet of Things (IoT), Outdoor air quality, LoRaWAN, Smart monitoring, 

Web/Mobile app 
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CHAPTER 1 

Introduction 

 

The population's well-being is a crucial factor, both socially and economically. Air pollution is an aspect 

that has a major influence, not only on the economy, but mainly on public health, leading people to stop 

living a healthy lifestyle. To overcome this problem, measures have been imposed to decrease pollutants 

and systems have been used to monitor air quality. 

To introduce and address this problem, a motivation associated with the subject in discussion, will 

be given. The next part will present the context of the dissertation topic and will describe the developed 

project. The questions which led to the development of this project will also be presented. The goals of 

the project will be presented after the questions. The methodology that was used to carry out this project 

will be also presented, and finally, the organization of the chapters of the dissertation will be described. 

 

1.1. Motivation 

One of the world's biggest problems, which affects millions of people all over the world, is air pollution, 

which can come in two forms: indoor and outdoor pollution. The emission of chemical and physical 

substances from industrial operations, combustion-powered cars, certain domestic equipment, forest 

fires and the burning of fossil fuels are the leading causes of this type of pollution [1]. 

Long-term exposure to this kind of substances has negative impacts on public health and can lead 

to serious problems such as cardiovascular and respiratory diseases and even cancers. In 2019, around 

99% of the world's population breathed air that did not meet the requirements imposed by the WHO 

(World Health Organization) [1] and it was estimated that around 4.5 million people died prematurely 

due to outdoor air pollution [2]. Small particles, or particulate matter (PM), and ground-level ozone (O3) 

are the main causes of the high mortality rate [2]. In the case of particulate matter, there are several types 

according to their size. The most common are the particles with a diameter of 10 (PM10) and 2.5 (PM2.5) 

micrometres. Although these components are the main pollutants, gases such as carbon monoxide (CO), 

nitrogen dioxide (NO2) and sulphur dioxide (SO2) also contribute to air pollution [3]. 

This problem not only has serious consequences for human health, but also has negative economic 

and social impacts. As pollution increases, the costs associated with health increase and productivity in 

certain sectors, such as agriculture, decreases [4]. Air pollution also has an impact on people's well-

being and satisfaction and is associated with disorders in the cognitive development of young people 

and the appearance of mental problems such as depression, schizophrenia, and anxiety [5]. 

To tackle this type of pollution, several measures are implemented to reduce the level of pollutant 

concentration in the air. Within this set of measures, the most common are the use of renewable energies, 



2 

better management of urban and agricultural waste and opting for public transport methods [3]. With 

the implementation of this set of measures, mortality rates due to outdoor pollution have been falling 

over the years, as can be seen in Figure 1.1: 

 

Figure 1.1. Number of deaths associated with air pollution, per 100,000 people [2] 

In 2022, the European Commission proposed new measures to combat the concentration of 

pollutants, with the aim of achieving a cleaner ambient air by 2030, in Europe [6]. These measures 

involve strengthening plans and applying air quality monitoring models [6]. This monitoring can be 

conducted using monitoring station systems, which consist of a physical construction containing various 

components, including sensors capable of measuring the concentration of pollutants, such as carbon 

monoxide, particulate matter, ground-level ozone, nitrogen oxides and sulphur dioxide. 

 

 

 

 

 

 

 

 

 

These types of stations can be used to obtain data on the concentrations of various pollutants 

and can be used to later analyse and build maps that make it possible to assess the concentrations 

of these pollutants, as can be seen in Figure 1.3. By accessing this information from monitoring 

stations and applications that allow their data to be visualised, anti-pollution measures can be 

imposed to reduce the concentration of pollutants in an outdoor context. 

(a) (b) 

Figure 1.2. Conventional monitoring stations in Portugal (QualAR, 2019) and in 

USA (The Port of Los Angeles, 2023) 
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Figure 1.3. Map of pollutant concentration, associated with PM2.5 concentration (IQAir, 2023) 

 

1.2. Context 

Conventional monitoring stations, as shown in Figure 1.2, offer a high degree of accuracy in their 

readings because they use a combination of techniques and some calibrated analytical instruments, like 

gas chromatograph-mass spectrometers [7], to measure several air pollutants, present in an air sample. 

Although they are expensive to build, require a high level of energy consumption and some of them take 

up a lot of physical space [7].  

With progress in the areas of electronics, there are now low-cost, energy-efficient, and small sensors 

capable of detecting several types of pollutants, with a high response time (in the order of seconds or 

minutes) [8], [9].  

The IoT landscape has made it possible for sensors of this type to interact with each other and, using 

certain communication technologies, build air quality monitoring systems. With these systems, the 

readings obtained by the set of sensors can be sent to a base station or gateway and then forwarded to a 

cloud service [10], giving the user easy access to the readings. 

In this kind of IoT monitoring applications, the requirement is for energy-efficient communication 

technologies, due to the continuous operation of these systems, which are accessible to implement and 

therefore have a low implementation cost, and since there may be clusters of monitoring nodes spread 

across several locations, a wide coverage of this type of technology is required. LPWAN’s (Low Power 

Wide Area Networks) were created to fill the requirements mentioned above [11], and therefore new 

technologies have emerged that can offer the characteristics required for this type of monitoring 

applications, such as LoRa and Sigfox [12], [13]. 

These IoT air quality monitoring systems, capture information about the air quality, so it can be 

processed, analysed, and treated to be used to visualise and build maps of the level of pollutant 

concentration in each area. 

The aim of this project is to develop an IoT system for intelligent monitoring of outdoor air quality, 

but unlike conventional monitoring stations, this prototype aims to create a low-cost implementation 

with reduced energy consumption, using low-cost sensors to detect concentrations of certain pollutants, 

as well as the temperature and relative humidity level present in the air. These sensor readings will be 
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sent to a LoRaWAN server using LoRa technology, due the need for long-range communication, and 

then sent via MQTT to a development tool to help process the data and integrate API’s and online 

services, and finally inserted into a database. To avoid network congestion, the frequency at which the 

readings are sent considers the amount of urban traffic in each location in real time, using a traffic API. 

Finally, all the data obtained will be visualised and analysed using a web/mobile application. 

 

1.3. Research Questions 

The development of this project generates several questions that will be answered, based on the results 

obtained. Some of these questions are: 

1. Can the results obtained by low-cost IoT air quality monitoring systems be reliable, in such a 

way as to provide a reference for further measures to prevent outdoor air pollution? 

2. Is the use of LoRa technology, in this context of air pollution monitoring, viable and scalable 

enough to create a larger network with multiple monitoring nodes geographically spread over a 

larger area? 

3. Which advantages does the visualisation and analysis of sensor data, in real time, bring to 

stakeholders? 

 

1.4. Objectives 

The main goal of this project is the intelligent monitoring of air quality in an outdoor context, using 

LoRa technology to send the sensor readings, to a LoRaWAN server, for further data visualization and 

analysis on a web and android application.  

Another objective is the implementation of a mechanism, on the air quality monitoring system, that 

changes the frequency at which the data obtained from the sensors, is sent via LoRa, according to urban 

traffic conditions at the location where the monitoring is being conducted. 

Lastly, the project aims to verify whether LPWAN technologies, in this case LoRa technology, can 

be scaled up in the context of IoT monitoring systems. 

To achieve the above objectives, the following requirements were considered: 

1. Development of a monitoring node capable of measuring pollutant concentrations and other 

atmospheric parameters such as temperature and relative humidity; 

2. Implementation of long-range communication using LoRa technology; 

3. Storage of sensor readings in a cloud-hosted database; 

4. Processing the data obtained for later visualisation; 

5. Development of a web and android application to visualise and analyse the data. 
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1.5. Methodology 

The methodology used to develop this project was DSRM (Design Science Research Methodology). 

This methodology, presented by Peffers et al. [14], is characterized by a process of developing artefacts 

to address known research problems, contributing to the project's research, evaluating the 

implementations developed, and demonstrating the results to the public. These artefacts can be 

prototypes, models, or experimental procedures [14]. 

It is a methodology that works in a sequential and iterative way and is divided into seven activities: 

"problem identification and motivation", "definition of objectives for a solution", "planning and 

development", "demonstration", "evaluation" and "communication". Figure 1.4. shows the order flow 

of the activities, as well as the several "entry points": 

 

Figure 1.4. Structure of the DSRM methodology [14] 

The entry points make it possible to determine at which activity of this methodology the 

development process of the project will begin. Since in this case the project problem has been identified, 

it will start from the "Problem-Centred Initiation" point, which represents the "Problem identification 

and motivation" phase. This phase involves a literature study on the problem involved, which is 

presented in the motivation and context and then in the state of the art. 

When this first phase is over, the objectives for the solution in question will be defined, and these 

are presented in section 1.4. The design and creation of the artefact is the next phase, which represents 

the development of the solution to the problem. In the case of this project, it represents the development 

of an IoT monitoring system for outdoor air quality. Once the previous phase has been completed, in 

the "Demonstration" phase, the solution will be put into operation to measure the presence of pollutants 

in the air. 

In the following "Evaluation" phase, the prototype will be examined for its accuracy in taking 

readings. If all the previous phases have been completed, we proceed to the "Communication" phase, 

where all the research, development and results are presented to the public. During the "Evaluation" or 

"Communication" phase, if new objectives are to be set or the accuracy of the solution needs to be 

improved, a new iteration of some of the previously phases can be started, as shown in the Figure 1.4. 
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1.6. Dissertation Structure 

This dissertation is structured as follows: 

• Chapter 1 - Introduction: the motivation and context that gave rise to the development of this 

prototype, some questions to be answered, objectives to be achieved with this implementation 

and the methodology used in the development of this project are presented; 

• Chapter 2 – Literature Review: this chapter describes concepts related to outdoor pollution, 

LPWAN technologies, IoT architectures for this type of system and lastly, it provides a 

description and analysis of related work on the topic of the dissertation; 

• Chapter 3 - System Description: all the hardware and software used in the development of this 

IoT system is described, as well as a description of how the system works, its architecture and 

how communication between the different components is carried out; 

• Chapter 4 – Results and Discussion: this chapter analyses the data obtained by the IoT system, 

including a detailed discussion and remarks; 

• Chapter 5 - Conclusions and Future Work: finally, based on the results obtained, the conclusions 

and future work, regarding air quality monitoring and data analysis are considered, for this IoT 

system are described. 
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CHAPTER 2 

Literature Review 

This section describes the state of the art, related to all the research carried out on the topics covered in 

this dissertation. This chapter is separated into two sections. Section 2.1. is related to the background 

concepts associated with the project. Concepts such as outdoor air pollution, sensors for pollutants, 

Internet of Things (IoT), architectures used in IoT systems, communication technologies and cloud 

computing are presented and described. Section 2.2. presents work related to the dissertation topic. They 

are described and finally the choices made by the authors in implementing their IoT systems are 

examined. 

 

2.1. Background Concepts 

2.1.1 Outdoor Air Pollution 

To achieve public well-being, it is necessary to create the conditions to do so, from an economic and 

social level to health in general. In the case of health, a key factor in achieving well-being is the air we 

breathe, but this air is subject to pollution. One of the types of air pollution that has a major impact on 

human health is outdoor air pollution. This type of pollution is caused by human activities such as 

industrial operations, fossil fuel combustion, forest fires, construction, and agriculture [15], which emit 

a variety of pollutants into the atmosphere. Pollutants such as carbon monoxide (CO), nitrogen oxides 

(NOx), sulphur oxides (SOx), ground-level ozone (O3), particulate matter with diameters of 2.5 μm and 

10 μm (PM2.5 and PM10), are declared by the WHO as the main atmospheric pollutants [3].  

 Long-term exposure to this type of pollution can cause serious illness and, consequently, premature 

death. In 2019, the WHO estimated that heart-related diseases, such as strokes, were associated with 

37% of premature deaths worldwide [3]. Respiratory cancers, respiratory infections and other lung-

related diseases are also associated as major causes of premature death [15]. 

 To control the emission of these air pollutants and create a healthier environment in different 

countries, WHO created a list of guidelines [16] with the recommended concentrations of each pollutant. 

Table 2.1 shows these limits imposed by the WHO, where the different types of pollutants, that have the 

most impact on outdoor air pollution are listed, and for each of these pollutants, there is a limit 

concentration, over a certain period, that must be considered to achieve a cleaner outdoor environment, 

with a decrease in the emission of atmospheric pollutants. In this way, the governments of each country 

can manage the activities that contribute to pollution and take measures to reduce the emission of 

pollutants. 
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Table 2.1. WHO guidelines for each pollutant [16] 

 

 

2.1.2 Air Quality Index (AQI) 

The Air Quality Index is a measure designed to detect the level of air pollution, in a certain location 

[17]. It is a numerical indicator that depends on the concentration of various pollutants. The European 

Environment Agency (EEA) defines the pollutants considered for the AQI as being: microparticles 

(PM2.5 and PM10), ground-level ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) [17]. 

Table 2.2. AQI levels and respective colors, declared by Environmental Protection Agency (EPA) [18] 

AQI AQI Levels AQI Level Colors 

0-50 Good Green 

51-100 Moderate Yellow 

101-150 Unhealthy for Sensitive Groups Orange 

151-200 Unhealthy Red 

201-300 Very Unhealthy Purple 

301-500 Hazardous Maroon 

 

Table 2.2 shows the different AQI limits and their associated levels. This index is divided into 6 

levels and each level is represented by a different colour [18], [19]. The higher the AQI value, higher 

the level of pollution at a particular location and the values used for the limits of each AQI level are 

based on an equation that considers several parameters, presented in [19], one of these parameters being 

the concentration of the pollutant. AQI’s are calculated for each pollutant and the one with the highest 

AQI value is the one that has the greatest influence on atmospheric pollution, and consequently this will 

be the representative AQI value in the location under study. 
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2.1.3 Gas and Particulate Matter Sensors 

In IoT systems, the use of sensors has become increasingly important for collecting and processing data 

[20], for subsequent intervention by some service, actuator, or even human beings. 

In the context of air quality monitoring, gas and particulate matter sensors are used to measure the 

concentration of certain air pollutants and the concentration of particles suspended in the air. The 

following subsections describe some of the types of sensors used in this type of monitoring system and 

their operating principles. 

 

2.1.3.1.  Metal Oxide Semi-Conductors (MOS) Sensors 

In the implementations [21]–[24], Metal Oxide Semi-Conductors sensors are used to detect pollutants 

such as CO, NO2 and SO2. These sensors are known as MOS sensors and are very popular among the 

range of gas sensors [25]. They consist of an oxidisable metal (depending on the gas being detected), a 

heating filament, a substrate where the oxidisable metal is deposited and a set of electrodes [7]. Initially, 

when the sensor is powered on, the filament heats up to keep the sensor at a certain temperature and 

obtain more accurate results. The flow of electrons between the sensor's electrodes changes according 

to the gas it is exposed to. When the sensor is in the presence of fresh air, more electrons are accumulated 

on the surface of the oxidisable metal, resulting in a lower flow of electrons, and consequently, lower 

conductivity and higher resistance. If the sensor is exposed to polluting gases, propane, methane, carbon 

monoxide, among others, the electrons are gradually released from this surface, ensuring a greater flow, 

and resulting in a lower sensor resistance and greater conductivity between the electrodes. The 

concentration of the gas being measured can be obtained by measuring the electrical conductivity of the 

metal [7]. As the electrical conductivity increases, the resistance value decreases and the concentration 

of the studied gas increases. 

 

Figure 2.1. MOS sensors inside constitution 

 They are low-cost sensors, and are resilient to extreme conditions, making them reliable for long-

term deployments and implementations that are low budget. These sensors can detect a wide range of 

gases, but despite this property, they are not very selective, i.e. the presence of a certain gas can influence 

the concentration of another gas being measured by the sensor, which can lead to misinterpretations of 

the current concentration of a specific gas. Despite being robust, their sensitivity is affected by changing 

atmospheric conditions and to obtain more accurate readings they need to be recalibrated [25].  

Heating Filament 

Oxidisable Metal 

(Sensing Element) 

Substrate 

Electrodes  

Flow of Electrons 
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2.1.3.2.  Non-dispersive Infrared Radiation (NDIR) Sensors 

The CO2 detection in the implementations of [22], [26] is conducted using Non-dispersive Infrared 

Radiation (NDIR) Sensors. These types of sensors consist of an infrared light source, a sampling 

chamber containing the gas to be detected, an optical filter and an infrared detector [25]. 

 

Figure 2.2. NDIR sensors constitution and its operation [27] 

The infrared light beam travels through the entire gas chamber to the optical filter. The gas to be 

detected enters the sampling chamber and the infrared ray is absorbed by the gas molecules in the 

chamber. Since the gases that enter the sampling chamber have a certain absorption band in the infrared 

spectrum, the closer the radiation band produced by the infrared ray is to the absorption band of the gas, 

higher will be the absorption by these molecules, derived from the wavelengths of the infrared spectrum 

that are characteristic of the structure of the gas [27]. The wavelength of the infrared ray that has not 

been absorbed by the gas molecules is absorbed by the optical filter and subsequently by the detector, 

which measures the infrared laser intensity, after the absorption made by gas molecules. The detector 

calculates the gas concentration through the difference between the intensity of the radiation emitted by 

the infrared light source and the intensity of the infrared ray received by the detector [27]. 

 NDIR sensors are subject to spectral interference from other gases, which can affect the accuracy 

of the readings, but these sensors have a long service life and low energy consumption [25]. 

 

2.1.3.3.  Particulate Matter Sensors  

Particulate matter sensors detect microparticles in diverse ways, depending on the sensor used. There 

are a variety of techniques such as optical detection, gravimetry, microbalance oscillation [28] and beta 

attenuation to detect the concentration and quantity of microparticles [7], [29]. In the implementations 

presented in [21], [22] and [26], particulate matter sensors are used, based on the light scattering 

principle. Sensors using this technique consist of an infrared light source, a photo detector, and a 

detection chamber. 

 

Figure 2.3. Light Scattering PM sensors and its operation [7] 
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The infrared light beam is in continuous operation, and when a microparticle travels past the 

detection chamber and intercepts the infrared beam, the beam is scattered inside the detection chamber, 

and this scattering is detected by the photo detector [7]. Depending on the intensity of the scattered beam 

and the scattering patterns caused by this scattering, an electrical signal is produced, making it possible 

to determine the density and how many microparticles are contained in that air sample. Sensors using 

this technique can detect particulate matter with diameters around 2.5 μm, 10 μm or smaller [25]. 

 Parameters such as temperature and relative humidity can affect the reading of these sensors. 

Despite being susceptible to these parameters, they are suitable for long-term deployments because they 

don't require much maintenance [25]. 

 

2.1.4 Internet of Things (IoT) 

With the increasing number of electronic devices in society, there is a need for connectivity between 

them and to the internet. It is expected by 2030, 80 billion devices will be connected within a network 

and 20.5 billion will be connected per person [9]. 

To fulfil these needs, the Internet of Things has emerged. This concept is based on the idea of a 

large network of physical devices with integrated software, electronics, actuators, and sensors, which 

are connected to the internet, enabling communication between devices, collection, and exchange of 

data [26].  

The Internet of Things has become an aid in diverse areas, such as health, agriculture, industry, 

transport and combating certain global problems, such as the management of natural resources, the 

energy crisis and, air pollution [30].  

To obtain information about air pollution, IoT monitoring ecosystems have been created that allow 

data to be collected and analysed. With advances in the field of electronics, new sensors have emerged 

with low cost, consumption and size [8], [9], and in combination with certain communication 

technologies, it is possible to create IoT ecosystems for monitoring parameters, which collect and 

exchange information about the environment, for subsequent action by humans [31]. 

 

2.1.5 IoT Architectures 

There are numerous components that comprise an IoT system, from sensors and actuators to web 

platforms, and each of these has a function associated with it. The architecture of these systems includes 

different components that can be associated with different layers. The perception, network and 

application layers make up the three layers of the basic architecture model [32], [33]. In the works 

presented in section 2.2.1, the architecture used for their IoT systems follows the pattern of this IoT 

architecture model. 
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The perception layer, or sensing layer, is the first layer of this architectural model, and its primary 

function is to collect data about the surrounding environment. This layer includes sensors, actuators, and 

RFID tags, and is also responsible for interconnecting these physical components to the IoT network 

[26], [33]. 

The second layer is the network layer and is the layer just above the perception layer. It is 

responsible for processing and receiving data from the perception layer and forwarding this information 

via gateways to external services such as cloud platforms, databases, or visualisation platforms. 

Communication is achieved through technologies such as Wi-Fi, Bluetooth, mobile networks (3G or 

4G) or LPWANs [26], [33]. 

Finally, the last layer is the application layer. This receives all the information from the network 

layer and is used for specific applications (data visualisation, database storage, cloud storage, intelligent 

action), acting as an interface between users and applications or services [26]. 

Depending on the user's needs and specific use cases, other models for IoT system architecture have 

started to emerge. Another example is the 5-layer model, composed by the perception, network, service, 

application, and business layer. Between the application and network layers, there is another layer, the 

service layer (or middleware layer). Similar to the 3-layer model, the perception layer is designed to 

collect data from the surrounding environment. The functions associated with processing, analysing, 

and storage of data, are part of the service layer, leaving the network layer only responsible for the data 

transmission. In this model, the application layer is only responsible for intelligent action and providing 

data and services when the user requests them. Finally, the business layer is designed for data analysis 

and model and chart construction for further interpretation [32]–[34]. 

 

 

 

 

 

 

 

 

 

Perception Layer (Sensors, Actuators, Edge Services) 

Network Layer (Data Transmission and Processing, Storage, 

Smart Objects and Servers linking) 

Application Layer (Software resources, Smart Apps and 

Management, Data Analysis) 

Perception Layer (Sensors, Actuators) 

Network Layer (Data Transmission) 

Application Layer (Software resources, Smart Apps and Management) 

Service Layer (Data Processing, Storage) 

Business Layer (Data Analysis, Model construction) 

Figure 2.4. 3-layer architecture model for IoT systems 

Figure 2.5. 5-layer architecture model for IoT systems 
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2.1.6 LPWAN (Low Power Wide Area Network) 

The emergence of IoT systems has overcome some of the problems of traditional systems based on 

cellular networks, such as 3G or 4G. Their objectives are to make a more efficient use of the frequency 

spectrum, to achieve lower latency, to reduce costs associated with hardware and its implementation, to 

achieve a greater range of coverage and reach lower energy consumption for longer battery life [9]. To 

achieve these objectives, Low Power Wide Area Networks (LPWAN’s) have been created. 

LPWAN’s use a star topology, where the devices connect directly to base stations. In this way, the 

cost of implementing gateways is minimised and devices don't have to waste energy "listening" to other 

devices that want to route traffic through them [30]. Unlike the traditional use of the 2.4 GHz band by 

technologies such as Wi-Fi, LPWAN’s use sub-GHz bands, allowing for less signal attenuation, reduced 

energy consumption and greater communication range [30]. 

LPWA networks consume less energy as they don't require much bandwidth to operate. Some IoT 

devices have a strong need for long-range communications and the use of LPWAN’s makes it possible 

to satisfy this need and find a less expensive solution. 

With the emergence of LPWAN’s, technologies have also begun to be developed that allow the 

characteristics required for IoT systems to be achieved. In accordance with this dissertation, the use of 

this type of technology is very much required, as the project is based on building an IoT ecosystem for 

monitoring air quality, which sends only sensor information over a long-range network. The following 

subsections describe the characteristics of some of these technologies. 

 

2.1.6.1.  Sigfox 

Sigfox is an LPWAN technology that was developed in France in 2010 by the Sigfox group. From 

proprietary base stations, it is possible to connect to backend servers via an IP-based network [30].  

It is a technology based on unlicensed bandwidth, i.e., it is isolated from costs and any organisation 

can use this frequency spectrum and communication medium [35], where it uses the 868.180 - 

868.220MHz bands in Europe, with 400 100Hz channels, 915MHz in North America and 433MHz in 

Asia [12]. It is also characterised by its very narrow bandwidth, which allows for efficient use of the 

spectrum and reduced noise and energy consumption [11], [12], [30]. As it has a very low data rate (100 

bps), Sigfox is very limited when it comes to sending information.  

Initially, only uplink communication was supported, but later downlink communication was 

implemented. The range associated with this technology is 30-50 kilometres in rural areas and 3-10 

kilometres in urban areas [11]. 

To fulfil the regional spectrum usage regulations, only 140 uplink 12-byte messages can be sent per 

day. From the 400 available channels, devices can choose any of the available channels to send their 

messages. These messages are sent several times to increase the probability of reception by the base 

stations [30]. 
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2.1.6.2.  Narrow-Band IoT (NB-IoT) 

NB-IoT is a narrowband-based technology developed by the Third-Generation Partnership Project 

(3GPP) group in 2016. Unlike Sigfox, NB-IoT uses a licensed frequency band, i.e., the user is subject 

to a cost if he wants to use the NB-IoT frequency band. This technology is compatible with LTE, since 

it is a technology that comes from LTE [30]. 

In uplink communication, NB-IoT uses the Single Carrier Frequency Division Multiple Access 

(SC-FDMA) method, where multiple sub-carriers carry the same symbol, and in the case of downlink, 

Orthogonal FDMA (OFDMA) is used, which has the same operating principle as FDMA, except that 

each symbol is carried by a sub-carrier [12], [30]. On the uplink, communication is limited to 20 kbps 

and on the downlink, it is limited to 250 kbps. In systems that have implemented NB-IoT, battery life 

can reach 10 years if an average of 200 bytes are transmitted per day. 

It's a technology that allows the interconnection of several devices within a cell, allowing the 

connectivity of 50 000 devices, and this number can be increased adding more NB-IoT carriers [30]. 

 

2.1.6.3.  Long Range (LoRa)/Long Range Wide Area Network 

LoRa is a technology developed by the company Semtech, which acts on the physical layer, where 

signals are modulated via unlicensed frequency sub-bands in the order of MHz. In Europe, LoRa works 

with the 868 MHz and the 463 MHz band [36], with these two, being divided in sub-bands. LoRa uses 

a chirp spread spectrum (CSS) technique, which consists on spreading the signal over a wide bandwidth, 

using a chirp signal, in which the frequency of the signal can increase or decrease over time, making the 

signal more difficult to be detected and with less interference [12], [36], and also, it enables the 

possibility of achieving long-range transmission with low energy consumption. 

This technology can change the binary rate of the data transfer, its range, the lifetime of the batteries 

and the sensitivity of the receiver, by using Spreading Factors (SF). The SF’s used in LoRa range from 

SF7 to SF12. The higher the SF, the greater the range and sensitivity of the receiver, but the data rate 

and the lifetime of the batteries, decreases [12], [30], [37]. The choice of SF’s is based on network 

conditions. The mechanism that allows the choice of SF's, and consequently, the adaptation of 

communication parameters, is called Adaptive Data Rate (ADR). ADR ensures an approach for 

optimizing data rates, the time that a message takes to arrive to a gateway, and energy usage in the 

network, automatically adapting communication parameters [38], in accordance with network 

conditions. This adjustment is performed by the LoRaWAN server or infrastructure. Throughout signal 

transmission, communication metrics (packet loss, signal strength, signal-to-noise ratio) are exchanged 

between the device, gateway and LoRaWAN server/infrastructure. The LoRaWAN server analyses 

these communication metrics, and based on this data, it uses the ADR mechanism, to dynamically adjust 

several communication parameters to optimise the device's performance on the network. 
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As LoRa acts on the physical layer, the technology responsible for communication is LoRaWAN. 

LoRaWAN it’s open-source technology, from the LoRa-Alliance association, that deals with the MAC 

(Medium Access Control) layer. 

 

Figure 2.6. Constitution of the physical and MAC layers, related to LoRa and LoRaWAN, respectively 

(LoRa and LoRaWAN – Semtech LoRa, 2023) 

 LoRaWAN operates between 0.3kbps and 50kbps [12] and is not a very desirable technology for 

transmitting content that requires higher binary rates, such as video or images. Two-way communication 

is available on all LoRa devices. However, there are some limitations associated with sending and 

receiving messages from the devices. Three classes of devices have therefore been created: Class A, 

associated with devices that are powered by batteries but have a high latency. Downlink messages can 

only be sent when an uplink message is first sent by the device, after which the device opens two small 

reception windows for downlink communication; class B, which has the same features as class A, except 

that has a lower latency and downlink messages are sent in scheduled reception windows at a predefined 

time interval. This feature is achieved by synchronising the devices with the base stations via signalling 

messages sent by the base station. Finally, class C, where devices are always listening, in exchange for 

minimal latency in receiving downlink messages and very high energy consumption, making this class 

more suitable for devices with their own power supply [11], [12], [30]. 

The architecture of a LoRaWAN network is characterised by having physical devices that send 

information via LoRa to gateways, and then the information from the gateways is sent via TCP/IP to a 

network server, and then forwarded to application platforms. The architecture diagram used in this type 

of technology is shown in the Figure 2.7: 

 

Figure 2.7. Architecture of a LoRaWAN network (LoRaWAN Architecture – TTN) 
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2.1.7 Cloud Computing 

IoT monitoring systems generate large amounts of data and use external services or tools for further 

analysis or processing. 

Cloud computing has made it possible to optimise these IoT systems by providing access to 

resources, applications, tools, and data storage integrated into remote servers over the Internet [39]. This 

allows entities to reduce the cost associated with installing and configuring infrastructures, such as 

physical servers, provides flexibility in accessing multiple services, without the need to install software 

on local devices and access to resources, like data or tools, and these tasks can be done from any location, 

as long as there is internet access.  

There are 3 types of cloud services: SaaS (Software-as-a-Service), in which entities access cloud 

software or applications (such as email applications) via their browser, with no need to maintain or 

manage the services; PaaS (Platform-as-a-Service), which offers access to remote servers, databases, 

operating system software, storage and tools for developing, managing and running applications; IaaS 

(Infrastructure-as-a-Service), which allows online access to computing resources/infrastructures, such 

as access to physical and remote servers, data storage and networks, without the need to implement this 

type of infrastructure locally [39]. 

 

2.2. Related Work 

With the emergence of these communication technologies and sensors capable of detecting different 

types of polluting gases and microparticles suspended in the air, several IoT implementations for 

monitoring air quality have started to appear. 

In a project carried out by Simitha K. M. and Subodh Raj M. S. [21], the concentration of pollutants 

in a city in India is studied using an IoT system that takes readings from sensors and uses the LoRa and 

Wi-Fi technology to transmit the data acquired. This system studies the concentration of pollutant gases 

like CO, NO2, SO2, using the MQ-7, MQ-135, MQ-136 sensors and also measures the concentration of 

particulate matter, with the usage of GP2Y1010AUF optical sensor. In this monitoring system, the 

sensors provide information about the pollutants levels, with these being connected to the analog inputs 

of the Arduino Mega board. An SX1278 RA-02 LoRa module is connected to this Arduino board to 

send the sensor readings via LoRa. A LoRa module is connected to a ESP32 Wi-Fi module to receive 

the readings sent, with the ESP32 module, acting as a LoRa gateway. It should be noted that the LoRa 

modules are separated by 1.5 kilometres. The values obtained by the sensors are sent through LoRa to 

the gateway and later sent over Wi-Fi, from the gateway to the ThingSpeak platform. Finally, a 

Raspberry Pi 3 Model B+ is used to read the pollutant readings from the ThingSpeak platform through 

a Python script and then visualized with a Photoshop CS6 template. 

The authors in [40] proposed a mobile monitoring system for detecting certain pollutants, such as 

carbon monoxide (CO), nitrogen dioxide (NO2) and sulphur dioxide (SO2), which can be placed in any 
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public transport vehicle. The monitoring node uses an array of sensors to detect the above-mentioned 

pollutants, a GPS module and a modem using General Packet Radio Service (GPRS) technology for 2G 

and 3G cellular communication. The measurements obtained by the sensors are then transmitted to a 

public GPRS base station and then forwarded to a Pollution server, defined by the author as a “an off-

the-shelf standard personal computer with accessibility to the Internet”, which provides a graphic 

interface for the user to access the pollution levels, air quality index and location of the monitoring node. 

Some programming made on the server, is made in PHP, with this server being connected to a MySQL 

database to store the readings. 

Aziz A. A. et al. [22] created a portable IoT air quality monitoring system that captures the 

concentration of certain pollutants (CO, CO2), particulate matter, and parameters such as temperature 

and relative humidity using sensors that are also connected to an Arduino UNO board with an integrated 

LoRa Shield, so that the readings can then be sent via LoRa to a gateway consisting of a WeMos D1R1 

board and a LoRa Shield.  The WeMos D1R1 board then sends the readings via Wi-Fi to the ThingSpeak 

platform so that the data can later be viewed. This implementation was conducted in Malaysia, and 

initially, two scenarios were carried out, measurements indoors and measurements outdoors, specifically 

at a construction site. The concentration of particulate matter was higher at the construction site, due to 

being a space that is heavily polluted by dust particles. The concentration of CO2 was also found to be 

much higher at the construction site than indoors. An experiment was also carried out with cigarettes in 

an indoor space to check the behaviour of the CO concentration. It was found that the more cigarettes 

that burned, the higher the CO concentration. To compare the concentration of pollutants with the pre-

defined values for the AQI (Air Quality Index), measurements were taken in two different locations in 

Malaysia, Ipoh and Kampung Jalan Kebun. Ipoh has a higher population density and several industries 

and Kampung Jalan Kebun is a rural location. AQI values are defined by calculating an equation based 

on the CO and particulate matter concentrations. It was found that the AQI is higher in an urban centre, 

such as Ipoh, meaning that there is a higher pollution in this location. 

The system proposed by Husein N. A. A. et al. [23] is based on a network of monitoring nodes that 

transmit readings from sensors that detect carbon monoxide (CO), carbon dioxide (CO2) and nitrogen 

oxides (NOx), using LoRa technology, to a gateway and then display the readings on a web interface 

created by the authors. The monitoring nodes are composed by an Arduino UNO R3 board, MQ-2, MQ-

7 and MQ-135 sensors to detect CO2, CO, and NOx respectively, a portable rechargeable battery and a 

LoRa Shield RFM module, attached to the Arduino board, for LoRa transmission. The gateway, on the 

other hand, is made up of an Arduino UNO R3 board and a LoRa Shield RFM module to receive the 

readings. In this IoT system, the data is updated every minute. Two outdoor scenarios and one indoor 

scenario were evaluated. In the first outdoor scenario, the nodes were placed in distinct locations within 

a Malaysian university campus (UKM campus). In the second scenario, the nodes were placed in the 

city centre of Kajang, in Malaysia. In the indoor scenario, the nodes monitored three areas of the 
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university campus library. A last study was carried out regarding the maximum coverage distance for 

LoRa transmission between the nodes and the gateway, carried out in the university campus stadium. 

Another implementation of IoT systems for monitoring air quality, created by Thu M. Y. et al. [26], 

collects pollutant readings from sensors, which are connected to a The Things Uno board. The sensor 

readings are transmitted using LoRa technology, and these readings are directed to a LoRaWAN 

gateway so that the data can then be sent to The Things Network (TTN) platform. Concentrations of 

CO2, particulate matter only between 1-2 μm in size and the level of temperature and relative humidity 

are measured using the T6713, SM-PWM-01C and T9602 sensors, respectively. From the TTN, the 

sensor values are sent to a database, InfluxDB, via the MQTT protocol, so that this data can be visualized 

on the Grafana platform. A machine learning algorithm written in Python is also applied to predict the 

temperature and humidity values, to be compared with the values obtained by the sensors. The tests were 

conducted in the Yangon region of Myanmar. 

An IoT air quality monitoring system [24] was built to measure just two parameters: carbon 

monoxide (CO), using an MQ-9 sensor, and air quality in general, using an MQ-135 sensor. Several 

monitoring nodes were built using an Arduino UNO board, a portable battery, a Bluetooth module (HC-

05) a LoRa module and MQ-9 and MQ-135 sensors. A gateway is also used, consisting of an Arduino 

Uno board, a LoRa receiver module, to receive the readings from the monitoring nodes, a SIM800L 

module, which allows communication via General Packet Radio Service (GPRS) technology and an 

ESP8266 module, which allows Wi-Fi connection. The readings are sent from the monitoring nodes to 

the gateway and then to the ThingSpeak platform. SMS warnings are sent to the user from the SIM800L 

module if the predefined air quality thresholds are exceeded. The user can also receive the sensor 

readings on his mobile device via Bluetooth by installing the "Arduino Bluetooth App". The user pairs 

his mobile device with the HC-05 module, and each time measurements arrive at the gateway, they are 

sent to the user via the Bluetooth module. Each monitoring node was placed in 5 different locations 

throughout a university campus in an Indian city to detect pollution levels. In a final study, it was 

compared the use of LoRa technology with Wi-Fi to send readings, with monitoring nodes placed along 

routes between the 5 locations of the university campus, in an outdoor and indoor scenario. 

NDIR sensors have been used to detect pollutants such as CO2 in implementations including [22], 

[26]. There are bands in the absorption spectrum of infrared radiation that make up the absorption 

spectrum of CO2 [41], so the characteristic wavelength of the infrared ray is easily absorbed by CO2 

molecules. This is why NDIR sensors are widely used for CO2 detection. As a result, the readings 

obtained are highly accurate, using NDIR sensors, compared to CO2 detection using MOS sensors, due 

to their different operating mode. 

MQ sensors can detect a large range of gases and are very affordable. In implementations [21], [23] 

and [24], where it is necessary to measure several pollutant gases concentrations, the adoption of these 

sensors in monitoring systems is suitable. Despite being able to detect multiple gases, the presence of 

different gases in the surrounding environment can affect the accuracy of the sensor's readings. 
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The sensors used for particulate matter detection in [21], [22], [26] are based on optical detection 

using the principle of light scattering. This type of technique achieves good precision and, as we are 

talking about small mobile deployments, it is appropriate to have sensors that do not require a great deal 

of maintenance. Techniques such as gravimetry, in this type of deployment, are not very suitable because 

they require constant maintenance due to the use of filters. 

In the systems presented, the systems' architecture follows the predefined pattern for an IoT system 

architecture, where the perception layer contains the physical devices, the network layer collects and 

forwards information to external platforms and the application layer uses external services and platforms 

provided by the user. 

In the implementation carried out by [24], in addition to LoRa technology, Wi-Fi was also used to 

communicate readings. In the case where the monitoring nodes were deployed in outdoor areas at 

distances of over 874-1130 metres from the gateway, it was found that using Wi-Fi required several 

nodes to communicate the readings to the gateway. Wi-Fi, as a short-range technology [34], is not very 

scalable in long-range systems. It is necessary to implement more nodes so that information can be 

exchanged via multiple hops to the gateway, which is something that is not very appropriate due to the 

additional costs of implementing more nodes and the excessive energy consumption. For the indoor 

deployment, the use of Wi-Fi was more reliable, achieving a lower implementation cost compared to 

the use of LoRa. In [40], GPRS technology was used to send sensor readings. GPRS is a cellular 

communication technology, which is why infrastructures such as base stations and sector antennas [42] 

are needed to enable communication between the monitoring node and the server. For a mobile 

implementation, using this technology is a viable option because, as it is an older technology, there are 

several infrastructures already installed for cellular communication, unlike LoRa, which requires its own 

gateways with LoRa reception modules to receive data. In terms of network coverage, GPRS can't 

achieve as much coverage as LoRa [42], due to the infrastructure of its cellular network. LoRa, on the 

other hand, is a long-range technology that offers greater coverage and is a practical choice for long-

range deployments. As the system is implemented in a vehicle in motion, the accuracy of the readings 

may not be very precise, resulting in unreliable data.  

In the implementation [23], the study conducted to test Lora transmission coverage showed that the 

further away from the gateway the monitoring node was, the less packets were received at the gateway. 

By choosing spreading factors (SF), LoRa can adapt various communication parameters [37], with the 

use of ADR mechanism. In this case, as the node moves further away from the gateway, it is necessary 

to increase the spreading factor to increase the communication range. In exchange for this increase in 

range, the data rate decreases, and the signal is more susceptible to interference. Between the gateway 

and the node, there were several buildings and trees, which interfered with signal propagation and, 

consequently, communication lost quality, leading to a packet loss and consequently, to a lower data 

reception rate. 
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In [21], [22], [24], the readings are sent to the ThingSpeak platform and in the case of  [26], the 

readings are sent to TTN, to be subsequently stored in InfluxDB and visualised in Grafana. These are 

two different approaches that depend on the user's needs. InfluxDB offers the possibility of being used 

by several services, giving the user great flexibility when it comes to retrieving data for use in other real 

time applications. Grafana platform has a wide range of options when it comes to data visualisation and 

allows data to be visualised in several dashboards from some databases [43]. ThingSpeak can offer real-

time data analysis, allows data visualisation and the user can also act on the data obtained. 
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CHAPTER 3 

System Description 

Considering the main objective of the research, which is to monitor outdoor air quality, a prototype of a 

monitoring node was created, made up of low-cost sensors, using LoRa technology, due to the need for 

long-range communication to send readings to a LoRaWAN server, and due to its low energy 

consumption. The readings are collected from various locations in the city of Lisbon, Portugal, and for 

this reason, the monitoring node integrates a GPS module to analyse where the readings were taken. To 

achieve an implementation to prevent network congestion, a feature is implemented which, depending 

on the level of urban traffic, changes the frequency of sending readings to the LoRaWAN server. A web 

and mobile application have been created so that the user can analyse the readings in real time and in 

specific time periods. 

Throughout this section, a description is given of the system's architecture, the components that 

make up the monitoring node, how the readings are sent, and all the software used to run this system. 

This section is subdivided as follows: 

• System Architecture; 

• Perception Layer; 

• Network Layer; 

• Application Layer. 

 

3.1. System Architecture 

This project mainly describes the creation of an outdoor air quality monitoring node prototype with the 

integration of LoRa technology. The architecture of this system is divided into three layers. In the 

perception layer, the node consists of several gas sensors, an air quality sensor, a temperature and 

humidity sensor, a particulate matter sensor, a GPS module, and a portable battery. A Raspberry Pi is 

also used to run a software instance that acts as a data receiver and processes the incoming data. 

In the network layer, readings are sent periodically from the monitoring node to a LoRa gateway. 

In this transmission, the data is sent regarding the concentration of certain pollutant gases obtained by 

the gas sensors, data on the temperature and humidity values, the air quality indicator, the concentration 

of microparticles, the latitude and longitude of the node's location, and finally the frequency at which 

the readings are sent to the LoRa gateway. This data then forwarded to a LoRaWAN server. The Things 

Network (TTN) platform is used to create an instance of a LoRa network that can run a server that 

receives the readings from the monitoring node. After receiving the readings on the TTN, they are sent 

via the MQTT protocol to an instance of a programmable tool, Node-Red, inside a Raspberry Pi 4 Model 

B. Besides receiving the readings from the TTN, via the MQTT integration with Node-Red, the data is 
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also filtered, some API’s and online services are integrated and the functionality for changing the 

frequency of the readings is implemented. 

Changing the frequency at which readings are sent is done by exchanging downlink messages (from 

Node-Red to the microcontroller). The frequency is changed when the level of urban traffic in the 

location under study changes. 

The readings obtained are stored in Firebase, a set of Google computing services that host a database 

in the cloud [44]. This stored data is used for later visualisation and analysis. 

In the application layer, a graphical interface was created in the form of a web and mobile 

application that allows the user to visualise all the readings obtained by the sensors in real time. Charts 

can also be generated by selecting fields such as location, date of measurement and the parameter to be 

studied. This application runs on web and Android platforms. Figure 3.1 shows a flowchart with all the 

system logic and in Figure 3.2 is shown a diagram summarising the communication of the entire IoT 

ecosystem created. 

 

Figure 3.1. Air Quality Monitoring System logic 
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Figure 3.2. Air Quality Monitoring System architecture and its components 

 

3.2. Perception Layer 

3.2.1. Gas Sensors 

Fuel combustion is one of the biggest contributors to outdoor pollution, releasing gases that are harmful 

to public health. In an urban context, some of these gases are released by the combustion of fuel inside 

the engine of vehicles when they are in circulation. 

To detect the presence of certain types of these pollutant gases, this system uses MQ sensors, based 

on Solid-State Metal Oxide Sensors. Figure 3.3 (a) shows an example of a MQ sensor and Figure 3.3 

(b) the circuit that constitutes this type of sensor: 

   

 

 

 

 

 

 

As explained in Section 2.1.3.1, this type of sensor consists of a metal filament (H - Heater), 

electrodes, an oxidisable metal, which is usually referred as sensing material, and a substrate on which 

these components are installed. The sensor also includes a potentiometer, used to adjust its sensitivity 

when detecting gases. The variation in electrical conductivity can be translated into a variation in 

resistance; the lower the resistance of the sensor, the higher the electrical conductivity and, 

consequently, the higher the concentration of the gas concerned [7]. These sensors have limitations in 

terms of their selectivity. Measurements of a particular gas concentration can be influenced by the 

presence of another gas, and it can sometimes be assumed that this gas is present when it was just the 

interaction between another gas and the sensor, leading to misleading interpretations. 

(a) (b) 

Figure 3.3. MQ sensor (a) and its schematic (b) 
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The voltage value (VOUT) of the Load Resistor (RL) is used to calculate the concentration of the 

gases concerned. To obtain the most accurate measurements, manufacturers recommend that the MQ 

sensors are switched on so that they enter a warm-up period of 48 hours [45], [46], [47]. 

 

3.2.1.1. Sensors Calibration 

In this system, the MQ-2, MQ-7, and MQ-9 sensors are used, and in their respective datasheets it can 

be found the gases that can be captured by the sensors [45]–[47]. These were manually calibrated to 

capture alcohol, carbon monoxide (CO) and liquefied petroleum gas (LPG), respectively.  

Each of the sensors is used to capture a different gas, so each sensor must go through a calibration 

process to be accurate in obtaining measurements according to the respective gas.  

By analysing the circuit diagram of the MQ sensors (Figure 3.3 (b)), and using Ohm's law (𝑉 =

𝐼 × 𝑅), the following formula is deduced: 

  

𝐼 =
𝑉

𝑅
 ⇔ 𝐼 =

𝑉𝐶𝐶

𝑅𝑆 × 𝑅𝐿
 

where RS is the resistance of the sensor which changes according to the concentration of the gas, 

VCC is the supply voltage of the sensor and RL is the load resistor. Considering the deduction from the 

previous formula, substituting the terms of Ohm's law gives the following expression:  

𝑉 = 𝐼 × 𝑅 ⇔ 𝑉𝑅𝐿 = [
𝑉𝐶𝐶

(𝑅𝑆 + 𝑅𝐿)
] × 𝑅𝐿 

From this expression, the value of the sensor's output voltage (VRL) can be calculated, and then the 

value of RS can be obtained. By solving Equation 1 in function of RS, the following formula is obtained: 

𝑅𝑆 = [(
𝑉𝐶𝐶

𝑉𝑅𝐿
) − 1] × 𝑅𝐿 

The VRL value is acquired by converting the analog value obtained by the sensor into a digital value. 

The Analog to Digital Converter (ADC) on the MKRWAN 1300 board has a resolution of 8/10/12 bits, 

and the higher the resolution, the more accurate the result. Therefore, the resolution chosen for the ADC 

was 12 bits, which results in a range of values that can be obtained via the ADC, between 0 and 4095 

(212 bits – 1 = 4095). To convert the value obtained by the ADC to a voltage value, in this case to calculate 

VRL, the following conversion is made: 

𝑉𝑅𝐿  [𝑉] =  
𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 × 𝑉𝑐𝑐

4095
 

To determine the gas concentration, the RS/R0 ratio must be considered. The value of R0 is calculated 

using Equation 3 to obtain the RS value and considering the value of the RS/R0 ratio in the presence of 

fresh air: 

𝑅0 =  
𝑅𝑆

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑓𝑟𝑒𝑠ℎ 𝑎𝑖𝑟
 

(1) 

(2) 

(3) 

(4) 

(5) 
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Using the datasheets [45]–[47] and the characteristic curves of the respective sensors, the values of 

the RS/R0 ratio in fresh air are taken to calculate R0. Figure 3.4 (a), (b) and (c) show that the values for 

this ratio for the MQ-2, MQ-7 and MQ-9 sensors are 9.7, 27 and 9.8 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on a study carried out by [48], the process described below was used to determine the best 

formula for calculating gas concentration as a function of RS/R0. The characteristic curves of the sensors 

are on a logarithmic scale, and to find a formula that linearly relates the value of the RS/R0 ratio to the 

concentration of a gas, points were extracted from these curves relating to the gases being studied. Each 

MQ sensor was assigned a gas to capture, as shown below: 

• MQ-2: Alcohol. 

• MQ-7: Carbon Monoxide (CO). 

• MQ-9: Liquefied petroleum gas (LPG). 

The points taken from the characteristic curves of the respective gases are shown in the 3.1 (a), (b) 

and (c) tables. 

 

 

 

 

RS/R0 = 27 

RS/R0 = 9.7 

RS/R0 = 9.8 

(a) (b) 

(c) 

Figure 3.4. MQ-2 (a), MQ-7 (b) and MQ-9 (c) characteristic curves, with the RS/R0 value for fresh air 
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Table 3.1. Extracted points on the MQ-9 LPG (a), MQ-2 Alcohol (b), MQ-7 CO (c) characteristic 

curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the points extracted from the characteristic curves, a trendline is created to find the equation 

that relates the gas concentration to the RS/R0 ratio, using the Excel tool. The choice of the best trendline 

is based on the R-Squared (R2) value. This value, between 0 and 1, measures how strong the relationship 

is between the data model and the model points [49]. The one with the highest R2 value is the power 

trendline. The curves and equations generated for each sensor are shown below: 

 

 

 

 

 

Extracted values from MQ-9 characteristic curves, 

related to LPG concentration 

RS/R0 Concentration [ppm] 

2,1 200 

1,4 500 

1,2 800 

1 1000 

0,82 1500 

0,72 2000 

0,59 3000 

0,47 5000 

0,33 10000 

Extracted values from MQ-2 characteristic 

curves, related to Alcohol concentration 

RS/R0 Concentration [ppm] 

2,8 200 

2,1 500 

1,7 800 

1,6 1000 

1,45 1550 

1,35 2000 

1,2 3000 

0,89 5000 

0,65 10000 

Extracted values from MQ-7 characteristic 

curves, related to CO concentration 

RS/R0 Concentration [ppm] 

1,7 50 

1 100 

0,38 400 

0,22 1000 

0,09 4000 

(a) (b) 

(c) 
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➢ MQ-9: Liquefied petroleum gas (LPG) 

 

Figure 3.5. Characteristic curve for LPG, related to MQ-9 sensor, in a linear scale 

𝐿𝑃𝐺 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚]  = 1013,7 × (
𝑅𝑆

𝑅0
)

−2,088

 

➢ MQ-2: Alcohol 

 

Figure 3.6. Characteristic curve for Alcohol, related to MQ-2 sensor, in a linear scale 

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚] = 3789,8 × (
𝑅𝑆

𝑅0
)

−2,72

 

➢ MQ-7: Carbon Monoxide (CO) 

 

Figure 3.7. Characteristic curve for CO, related to MQ-7 sensor, in a linear scale 

𝐶𝑂 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚]  = 103,16 × (
𝑅𝑆

𝑅0
)

−1,498

 

 

 

(6) 

(7) 

(8) 
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3.2.2. Air Quality Sensor 

For general air quality monitoring, the Grove v1.3 air quality sensor is used. This sensor monitors 

ambient air quality, being responsive to gases that are harmful to health (carbon monoxide, acetone, 

alcohol, among others), but due to its reading mechanism, it is not able to reproduce a quantitative result 

for each concentration of each gas. Instead, the sensor returns a qualitative result on the current air 

quality condition. This result is obtained by considering a quantitative result obtained by measuring the 

voltage measured by the sensor and the higher the value obtained, the lower is the air quality, and vice 

versa. The sensor is exposed to the surrounding environment, and when a pollutant gas comes directly 

into contact with the sensor, an electrical signal is generated which is subsequently processed by the 

microprocessor with the signal output being analog. This sensor is compatible with 3.3 and 5V and has 

low power consumption. Initially, to achieve good accuracy, the sensor needs to be exposed to fresh air 

for some time. One of the limitations of this sensor is the decrease in sensitivity if it is exposed to 

polluted air for a long period of time [50].  

 

 

 

 

3.2.3. Temperature and Relative Humidity Sensor 

Parameters such as temperature and relative humidity are obtained using the DHT22 sensor. This uses 

a capacitive humidity sensor and a thermistor, which measures the surrounding environment and 

produces a digital signal for the data collected. It is a digital sensor, where data is transmitted over a 

bidirectional single-bus interface, where the microcontroller sends a request to receive data that is 

subsequently sent by the sensor. When the initial connection between sensor and microcontroller is 

made, the signal on the data bus switches from a high voltage state to a low voltage state. When the 

DHT22 sensor detects this signal and is ready to send data (after a few microseconds), it switches the 

data bus from low-voltage to high-voltage, transmitting temperature and humidity data. At the end of 

this process, the sensor is released from the bus, causing the data bus to return to a low-voltage state. It 

has a reading range of 0 to 100% for relative humidity and -40ºC to 80ºC for temperature and can operate 

with a voltage of between 3 and 5V. It has low power consumption and better accuracy (around ±0.5°C 

and ±2%RH measurement error) compared to the DHT11 sensor [51], which is one of the factors for 

choosing this sensor over the DHT11. 

 

  

 

 

 

Figure 3.8. Grove Air Quality sensor v1.3 

Figure 3.9. DHT22 sensor 
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3.2.4. Particulate Matter Sensor 

Outdoor air pollution is also characterised by the presence of particulate matter, a mixture of solid 

particles and liquid droplets present in the air [52]. Among the existing types of microparticles, PM2.5 

μm and PM10 μm stand out. PM2.5 is one of the most dangerous types of microparticle for public health, 

due to its small size. PM10 also has a strong presence in outdoor air but is larger than PM2.5. These 

microparticles deposit in the lung area, causing serious lung diseases and even death [52]. These are the 

two types of microparticles being studied, and the SPS30 sensor is used to detect them. 

 

Figure 3.10. SPS30 Particulate Matter sensor 

The SPS30 is a particulate matter sensor that uses a detection technique based on the light scattering 

principle, as described in Section 2.1.3.3. The sensor consists of a photo detector, an infrared laser, a 

microparticle detection camera and a mini fan, as can be seen in Figure 3.11: 

 

Figure 3.11. SPS30 hardware components 

Measurement accuracy can be affected by variables such as temperature and humidity, and the 

manufacturer recommends that the sensor operates at a temperature between 10 - 40ºC and a humidity 

in the range of 20 - 80%, to obtain greater measurement accuracy [53]. It can detect microparticles of 

the following sizes: 1, 2.5, 4 and 10 μm.  

This module has three operating modes, idle, sleep and measurement. Idle and sleep modes are 

designed to reduce the sensor's energy consumption when microparticle detection is not required [54].  

When the sensor is in measurement mode, all its electronic components are switched on and the 

processing and measurement of new data is continuous [54]. In this mode, the laser is in continuous 

operation, and when microparticles enter the detection chamber, they intercept the laser beam, scattering 

it, which is then detected by the photo detector [7]. Depending on the intensity of the scattered beam 

and the patterns caused by this scattering, an electrical signal is produced by the photo detector. This 

signal is processed by the microcontroller/digital signal processor (DSP) and in this way, information is 

Infrared Laser 

Air Inlet 

Photodetector 

Air Outlet 

Fan 

Detection chamber 
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generated about the concentration and size of the microparticles present in the detection chamber. In the 

end, the microparticles are blown out of the sensor outlet through the fan [55]. 

The sensor has two communication interfaces, I2C and UART. Selecting one of the interfaces used 

for measurements is done by connecting the cables between the pins on the sensor and the 

microcontroller. In the case of this system, the interface used is I2C, and as indicated by the manufacturer 

in the datasheet, pins 4 and 5 from the SPS30 sensor, are connected to the microcontroller's GND to 

select this interface [53]. 

 

3.2.5. GPS Module 

A GPS module is used in this system to obtain the location associated with the measurements. This 

module is the AT6558 Mini GPS and provides the exact coordinates (latitude and longitude) of the 

respective location of the monitoring node. It has an AT6558 navigation chip that supports various 

satellite navigation systems, such as Global Positioning System (GPS), Global Navigation Satellite 

System (GLONASS), Beidou Satellite Navigation System (BDS), among others. It uses a UART 

interface to exchange data with the microcontroller and returns an NMEA (National Marine Electronics 

Association) string, which can be used to retrieve information about several parameters, such as latitude, 

longitude, time, date, number of satellites to be used for the GPS signal, among others. It also consists 

of a MAX2659 chip that amplifies the signal from its antenna. Initially, when the module is connected 

to the power supply, it takes between 32-35 seconds to obtain localisation data. It can operate at 

temperatures between -40 and 85ºC [56]. 

 

Figure 3.12. AT6558 Mini GPS module 

 

3.2.6. Microcontroller 

To build the monitoring node, the main component chosen for programming, interconnecting all the 

components (sensors, GPS module and battery) and LoRa communication was an Arduino board. Within 

the range available for this system, two different types of board were tested: Arduino UNO and Arduino 

MKRWAN 1300. The Arduino UNO board is a robust and simple board to program for various types 

of projects. It features an ATmega328P microcontroller, which integrates a microprocessor with a 

frequency of 16 MHz, 2 KB of SRAM memory, 32 KB of flash memory and 1 KB of EEPROM memory 

[57]. This board does not integrate LoRa communication, but to overcome this problem, a component 

that can be incorporated into the board was tested. This component is the Dragino LoRa Shield v1.4. It 

has an RF transmitter/receiver, with a high sensitivity of -148 dBm and through modulation modes such 
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as FSK, GFSK, MSK, GMSK and LoRaTM Modulation, it allows data communication over long 

distances, with low interference and low data rates through LoRa technology [58].  

 

 

 

 

Another board was tested for this implementation, the MKRWAN 1300 board. Unlike the Arduino 

UNO board, MKRWAN board has already a built-in module that allows communication via LoRa. It's 

a practical solution for IoT-related projects, it can establish connections with other boards, to its own 

LoRa network or to existing LoRaWAN infrastructures, and by using a library, it's possible to lower 

energy consumption and thus increase battery life [59]. It has a SAMD21 Cortex M0+ 32bit 

microcontroller, which incorporates a microprocessor that operates at a speed of up to 48 MHz and 

contains SRAM and Flash memory of 32 KB and 256 KB respectively, and a LoRaWAN Murata 

CMWX1ZZABZ module, also with SRAM memory of 20 KB and Flash memory of 192 KB, which has 

a receiver sensitivity, that can reach up to -135.5dBm and works with modulations such as FSK, OOK 

and LoRa™ Modulation [59]. 

 

Figure 3.14. Arduino MKRWAN 1300 board and an antenna for LoRa communication 

Table 3.2. Comparison between Arduino Uno + Dragino LoRa Shield and Arduino MKRWAN 1300 

boards 

 Arduino UNO + Dragino LoRa 

Shield v1.4 
Arduino MKRWAN 1300 

Microcontroller ATmega328P AMD21 Cortex-M0+ 32bit 

CPU Clock speed 16 MHz 48 MHz 

ADC Resolution 10 bits 8/10/12 bits 

UART interface Yes Yes 

I2C interface Yes Yes 

SPI interface Yes Yes 

SRAM Memory 2KB 32KB 

Flash Memory 32KB 256KB 

LoRa Connectivity 
Yes (only with the integration of 

the Dragino Shield) 
Yes 

LoRaWAN Module RFM95W (Dragino Shield) Murata CMWX1ZZABZ 

Carrier Frequency 433/868/915 MHz 433/868/915 MHz 

Figure 3.13. Arduino UNO R3 board (a) and Dragino LoRa Shield v1.4 (b) 

(a) (b) 
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Each one of the microcontrollers supports the Arduino IDE development environment, the software 

used to program communication via LoRa and collect data from all the components incorporated into 

the monitoring node. The Arduino IDE supports several libraries containing numerous functions that 

can be used to program the microcontroller. The use of library functions when programming the 

microcontroller takes up some memory and therefore it is necessary to have enough memory, in this 

case Flash and SRAM memory, to use these functions. This was the main criteria for choosing between 

Arduino boards, and so the MKRWAN 1300 board was chosen. The MKRWAN 1300 board's facility 

to integrate with existing LoRaWAN infrastructures (such as The Thing Network) was another factor 

that helped to choose between the two boards. The speed of the microprocessor is decisive for the 

execution of instructions, and when comparing the two boards, the microprocessor integrated on the 

MKRWAN 1300 board has a higher speed (48 MHz), which is a feature that allows for faster and more 

efficient system development.  

From the MKRWAN 1300 board, it was designed the system schematic between all the components 

which constitute the monitoring node. Figure 3.15 shows a schematic of the monitoring node circuit 

connections: 

 

Figure 3.15 Monitoring node circuit connections 

A 3D printed box was created to ensure better storage of the components that make up the 

monitoring node and to make it more accessible when taking readings outdoors.  

The monitoring node is powered by a power bank, made up of a lithium battery with a 10000 mAh 

(milliampere-hour) capacity. Figure 3.16 shows the box with all the components that make up the 

monitoring node: 
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3.2.7. Raspberry Pi 

The Node-Red tool is an important part of the operation of this IoT system and needs to be running 

continuously for this implementation to be scalable. To ensure that the Node-Red instance is always 

operating, a Raspberry Pi 4 Model B was utilized for this purpose. This component has a Broadcom 

BCM2711 quad-core Cortex-A72 (ARM v8) processor with a speed of 1.5 GHz, 4GB of RAM, 2.4 GHz 

and 5GHz Wi-Fi connectivity, Bluetooth 5.0 and Bluetooth Low Energy and has a Micro SD slot [60]. 

From this slot, and with a Micro SD card, it is possible to install the operating system, but also store 

some data. 

 

Figure 3.17. Raspberry Pi 4 Model B module 

 

3.2.8. Programming the microcontroller (Arduino MKRWAN) 

The microcontroller needs to be programmed to be able to take readings from all the components that 

make up this monitoring node and also to achieve communication via LoRa. As mentioned in section 

3.2.6, the microcontroller is compatible with the Arduino IDE software, which was chosen to do all the 

Portable Battery 

(connected via USB) 

GPS Module 

Arduino MKRWAN 1300 

(Microcontroller) 

SPS30 Particulate Matter 

sensor 

MQ-9, MQ-7, MQ-2 

sensors, respectively 

DHT22 – Temperature 

and Relative Humidity 

sensor (inside a protective 

piece) 

Antenna for LoRa 

transmission 

Figure 3.16. Monitoring node hardware components and arrangement, (a) and (b) 

(a) 

(b) 

Grove Air Quality 

sensor v1.3 
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microcontroller programming. The Arduino IDE is open-source software that allows programmes to be 

developed and then uploaded to the Arduino boards via a USB connection [61]. These programmes are 

called sketches and are implemented using a combination of languages, C/C++. In each one of the 

sketches, there are two main methods: setup() and loop(). Setup() is the first method to run in the sketch, 

it only runs once and is used to initialise certain objects or system conditions. The loop() method, on the 

other hand, runs continuously after the setup() method and this is where the main part of the code is 

inserted, such as logic for reading sensors, processing information, logic for communication with other 

devices/components. In addition to the manual programming done by the user, there is a wide range of 

libraries that provide extra functionalities/functions to help program the microcontroller. When 

programming this system, functions from some libraries were used to obtain data from the integrated 

components and allow the transmission of data through LoRa. 

 

3.2.8.1. Acquiring data from the monitoring node components 

Code created as microcontroller firmware is shown in Appendix A. The programming is based on the 

use of some libraries provided by the Arduino IDE. 

 Table 3.3 shows the libraries used to program the microcontroller, as well as the functions used and 

their respective descriptions, to retrieve the values from each monitoring node component: 

Table 3.3. Arduino libraries and functions used for the monitoring node programming with their 

respective description 

Used libraries Used functions Function description 

Sps30.h [62] sensirion_i2c_init() 
Hardware and software components 

initialisation 

 sps30_sleep() 
Sensor enters sleep mode, switching off most 

of its internal electronic components [54] 

 sps30_wake_up() 

Sensor "wakes up" from sleep mode and 

enters idle mode; it is ready to receive any 

command; most of its internal electronics are 

switched on [54] 

 sps30_start_measurement() 

Sensor switches to measurement mode and all 

its internal electronics are switched on; sensor 

is ready to take measurements [54] 

 sps30_read_measurement(&m) 
Particulate matter values read out and placed 

inside a structure (m) 

 sps30_stop_measurement() Sensor goes into idle mode [54] 

 m.mc_2p5 e m.mc_10p0 
Particulate matter values obtained (PM2.5 μm 

and PM10 μm respectively) 

DHT.h [63] dht.begin() 
Initialising the internal components of the 

DHT22 sensor 

 dht.readTemperature() Obtaining the temperature value 

 dht.readHumidity() Obtaining the relative humidity value 

Air_Quality_Sensor.h [64] sensor.init() 
Initialisation of the internal components of 

the Grove Air Quality sensor 

 sensor.getValue() 
Obtaining a voltage value associated with "air 

quality" 

TinyGPSPlus.h [65] gpsSerial.begin(GPSBaud) 

Initialising a Serial channel for data exchange 

between the GPS module and the 

microcontroller, with a baud rate of 

"GPSBaud" bits/s 

 gps.location.lat() Obtaining the latitude value 

 gps.location.lng() Obtaining the longitude value 
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Using methods such as sps30_stop_measurement() and sps30_sleep() allows the reduction in the 

SPS30 sensor energy consumption by switching operating modes, as mentioned in Section 3.2.4. 

As mentioned in section 3.2.1.1, to obtain the concentration values for the MQ sensors, it is 

necessary to calibrate the sensors to first obtain the sensor's resistance value without the presence of 

gases (R0). Once the R0 value has been obtained for each of the MQ sensors, the calculation of the gas 

concentration is performed. To obtain greater precision when capturing the readings, the ADC was 

configured to use a resolution of 12 bits, using the analogReadResolution(12) method. Once the sensor's 

analog value has been detected, it is converted to a voltage value using Equation 4. Next, the value of 

the sensor resistance that varies with the gas (RS) is calculated using Equation 3, and then the value of 

the RS/R0 ratio is calculated using Equation 5. To calculate R0, the MQ sensors were switched on for 48 

hours, as advised by the manufacturers, and were in continuous operation in a fresh air scenario during 

this period. The values used for R0 were obtained from the code shown in Appendix B. Table 3.4 shows 

the values obtained for R0 and used for the further calculation of the gas concentration: 

Table 3.4. R0 calculated values for each MQ sensor 

 MQ-2 MQ-7 MQ-9 

R0 [kΩ] 1.30 4.78 8.21 

 

Considering the value of R0 for each sensor, equations 5, 6 and 7 are used to calculate the gas 

concentration value for sensors MQ-9, MQ-2, and MQ-7, respectively. Appendix C shows the code for 

this gas concentration calculation process. 

 

3.2.8.2. Communication through LoRa 

Once the data has been collected by the sensors, it is then sent via LoRa to the gateways that are within 

communication range of the monitoring node. To achieve this communication, the MKRWAN library 

[66] is used. Using the methods provided by this library, it is possible to construct packets containing 

sensor readings, send and receive data via uplink and downlink messages, respectively, and adapt certain 

parameters characteristic of LoRa communication. Table 3.5 shows the methods used from this library: 

Table 3.5. Used functions from MKRWAN Arduino library and their description 

Used functions Function description 

modem.begin(EU868) 

Initialising the modem instance with the regional parameter 

EU868, assigned to each region where LoRa 

communication takes place [67]. 

modem.joinOTAA(appEui, appKey) 
Connection to the TTN platform, using the appEui and 

appKey parameters 

modem.beginPacket(); Initiating the process of sending the information packet 

modem.write(sensorData, dataSize); 

 

Inserting data into the packet to send via LoRa; sensorData 

represents the array with the data and dataSize, the size of 

this array. 

modem.endPacket(true); Ends the process of sending the information packet 

modem.available() Returns the number of bytes available for reading 

modem.read() Reading incoming downlink data sent by LoRa 

modem.sleep() Puts the microcontroller's LoRa module into a sleep state 
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Immediately after sending the data, the monitoring node waits for a predefined periodicity at the 

start of the code, in this case 5 minutes, before sending another packet. When this time interval is up, 

the modem.available() method checks for downlink messages. If there are no downlink messages, new 

readings are made and another packet is sent within the same time interval, otherwise the downlink 

message is decoded. The downlink messages that are received by the monitoring node are related to the 

new time interval that the node must wait after sending a packet. When the downlink message is 

decoded, the time interval is updated with the decoded value, and then the node's normal operating cycle 

is repeated, but with the new time interval. 

 

3.2.8.3. Low Power Mode 

The monitoring node prototype is powered by a portable battery. Continuous operation of this type of 

implementation can lead to excessive energy consumption and, consequently, reduce the battery's 

lifespan. To overcome this problem, a low energy consumption mode was introduced in the 

microcontroller. By using the Arduino MKRWAN 1300 board, the ArduinoLowPower.h library [68] 

can be employed. This library offers methods for putting certain internal components of the board into 

a low-power state. The method used to lower power consumption was LowPower.sleep(milliseconds). 

This method deactivates the microcontroller for a time defined by the user and only the digital 

peripherals chosen by the user are active. 

Despite using this method to put the microcontroller into sleep mode, the LoRa module, which is 

used for communication, is still active. Using the modem.sleep() method allows the LoRa module to 

switch to a sleep state, optimizing the consumption of the monitoring node. 

 

3.3. Network Layer 

This section describes all the software configured for this IoT system and the communication tasks 

between the various elements of the system's architecture. 

Once the data has been obtained by the sensors, it is sent via LoRa technology to the gateways that are 

within communication range, and from there it is forwarded via IP transport protocols (TCP or UDP) to 

the LoRaWAN server/infrastructure. The infrastructure used for this system is The Things Network 

(TTN). TTN is a community ecosystem that uses LoRaWAN technology to create IoT networks and 

applications. It is part of The Things Stack, a decentralised and free LoRaWAN infrastructure that allows 

users to register gateways and create applications in this ecosystem [69].  

 The monitoring node initially needs to be registered on the network. This task is achieved by 

creating an application, created by the user himself, where he can register any type of device that 

communicates via LoRa. In the case of this system, the MKRWAN 1300 board was registered in the 

TTN application. To establish communication between the board and the TTN, the application provides 

two identifiers: AppKey and AppEUI. AppEUI and AppKey are identifiers that can be generated 
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randomly, where AppEUI is the application identifier and AppKey is an identifier that allows the device 

to access the TTN application [70]. In addition to these two identifiers, another identifier is required to 

fully register the device in the application, the DevEUI. This is an identifier that recognises the device 

itself and is generated by the manufacturer. 

 By using the MKRWAN library when programming the microcontroller, it is only needed to declare 

the AppEUI and AppKey inside the script and then the access to the TTN platform is done. This access 

can be done in two ways, via the Over-The-Air-Activation (OTAA) or Activation By Personalisation 

(ABP) method. By default, the method used to register the monitoring node is OTAA. The device 

performs a procedure to join the TTN's LoRaWAN network, where security keys are generated and 

exchanged with the device [70]. Figure 3.18 shows the usual process of the device joining the network: 

 

Figure 3.18. Join process with OTAA, between end device and TTN LoRaWAN/Network server [70] 

To send data from the monitoring node to the TTN platform, LoRaWAN network coverage is 

required, and this coverage is achieved through the use of gateways. TTN offers the possibility for the 

any user, that is registered in TTN, to register gateways on the platform. As LoRaWAN operates in 

unlicensed bands, any user can install and register a gateway on TTN. These gateways are available for 

public access and can be used freely, under certain conditions, by other users. These conditions are 

related to the TTN Fair Use Policy. This policy declares limits to the number of uplink and downlink 

messages exchanged during the day, to create a fair communication environment for each user. There is 

a parameter called "consumed airtime" that indicates how long it took for the message to reach the 

gateway. Taking this parameter into consideration, the Fair Use Policy indicates the following limit: for 

the uplink messages, 30 seconds of airtime per day (24 hours), per node and for the downlink, 10 

messages per day, per node [71]. The users that want to use the public TTN LoRaWAN network, must 

try to meet these conditions. 

The main reason for selecting TTN as the LoRaWAN infrastructure to be used, is the number of 

gateways dispersed around the city of Lisbon, offering LoRaWAN coverage in several areas. A map of 

the gateways registered in the TTN can be found on the TTN website [72]. 

As mentioned in Section 2.1.6.3, the ADR mechanism allows control over certain parameters 

relating to LoRa communication (spreading factors, bandwidth, transmission power), depending on the 
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current network conditions. TTN uses ADR by default and in the present system this mechanism is being 

considered. This way, the parameters mentioned above are automatically adapted. 

The information that reaches the TTN comes in binary format and is decoded, by default, into 

hexadecimal format. To better understanding of the data, a customised JavaScript formatter has been 

created that can be inserted into TTN to decode the readings received and convert it into a structured 

and human-readable format. The code used for this task is in Appendix D. 

 

3.4. Application Layer 

This section describes the integration of a programmable tool, Node-Red, for using certain APIs that 

support the system, processing the readings from the monitoring node and storing them in a database. 

Finally, the web/mobile application used to visualise and analyse the data is presented. 

 

3.4.1. Node-Red 

Node-Red is a programmable tool based on flows, which allow the integration of APIs, online services, 

and the linking of physical devices with programmable nodes. It is built on Node.js and allows rules to 

be created from JavaScript scripts [73]. The Node-Red instance can run locally on a personal computer, 

on cloud platforms or on devices such as Raspberry Pi. In the system developed, Node-Red was installed 

on the Raspberry Pi 4 Model B, so that its instance can run continuously. One drawback of some cloud 

platforms is the need to pay after the trial period. As the Raspberry Pi is a personal component and easy 

to configure, it was the choice for running the Node-Red instance. The Node-Red instance running on 

the Raspberry Pi integrates a few APIs and online services for receiving, sending, and processing data 

and storing it in a Firebase database. 

Once the sensor readings have reached the TTN, they are forwarded to the Node-Red using the 

MQTT protocol. This is a lightweight protocol based on publish/subscribe messages that don't require 

a large amount of bandwidth [74]. Since the data coming from the monitoring node are only sensor 

values, they don't need much bandwidth to be transmitted, therefore, MQTT protocol is the ideal 

protocol for transmitting this data. There are two key elements for running this protocol, MQTT client 

and MQTT broker. The broker is responsible for forwarding messages from clients to other clients. 

Clients, on the other hand, can publish messages with a particular topic and if another client wants to 

receive that message, they must subscribe to that topic. 
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Figure 3.19. MQTT communication example between MQTT clients and MQTT broker 

In the Appendix E, is shown the workflow created in Node-Red for this system, and on the table 

3.6, there is a description about the “Function” nodes created in the workflow. The workflow is read 

from left to right and from top to bottom. 

Table 3.6. Description of each function node used in Node-Red workflow 

Function nodes in the workflow Description 

Set Sensor Topic 
Sets the propriety “topic” as a string with the devEUI from 

the Arduino MKRWAN board 

Get Values 

Creates payload fields for each value from the monitoring 

node (for example, msg.temperature, msg.humidity, 

msg.pm2_5, msg.lat,…) 

Formatting URL 
Formats a web URL to make a http request to the TomTom 

Traffic API 

Giving Thresholds for traffic 

Gathers the value from two payload fields retrieved from 

the traffic API, currentSpeed and freeFlowSpeed; with 

these two values, new frequency to send readings through 

LoRa, according to traffic levels, is set 

Setting String “Location” 

Gathers the location address obtained from “Getting 

location” node, and an address is made with some of the 

fields from the node “Getting location” 

Measure Timestamp 
Creates a separate time and date field from a timestamp 

field 

Send packet 
Creates a packet with the new sending readings frequency, 

to send via downlink to the monitoring node 

Insert on Firebase 

Creates a customized payload with the different fields 

associated with measurements of the monitoring node, 

location address, date, and time of measurement 

creating docID 

Creates a custom document ID, based on time and date 

fields, to store the payload created by “Inserto n Firebase” 

node, on the Firestore Database 

 

TTN supports the MQTT protocol, which makes communication between TTN and Node-Red 

easier. Two parameters are required to establish MQTT communication between TTN and Node-Red, a 

username and an api key. The username is related to the ID used in the TTN application and the api key 

can be generated automatically, in TTN. In Node-Red, the only thing required is to integrate an "MQTT 

IN" (with the label “Values from TTN”, on the workflow presented above) node into the workflow and 

insert the parameters mentioned above so that the sensor readings are received in that instance. Some 

APIs are used in this flow to convert coordinates to an exact address (Google Geolocation, represented 

in the workflow with the “Getting location” node), to obtain certain atmospheric parameters 

(OpenWeatherMap, represented with the “Get weather description” node) and acquire speed of urban 
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traffic on a certain section of a given location (TomTom Traffic API). From the TomTom API, the 

functionality of changing the frequency of sending sensor readings was created. This API returns the 

current average speed of the urban traffic flow and the speed expected under ideal conditions, on a 

section of a specific location. The further away the current average speed value is from the speed 

expected under ideal conditions, the more urban traffic there is at the location where the monitoring is 

happening. The flowchart shown in Figure 3.20 explains the logic behind the implementation of the 

mechanism for changing the periodicity of sending readings, inside the node “Giving Thresholds for 

traffic”: 

The possible periodicities for this system are 7, 8, 9 and 10 minutes. These values were chosen to 

fulfil the conditions of the TTN Fair Use Policy, mentioned in the Section 3.3. To calculate these values, 

an Airtime calculator for LoRaWAN [75] was used. For this calculation, it was considered a SF of 8 

and a payload size of 24 bytes (considering the amount of data to be sent from the monitoring node), 

plus 13 bytes for packet overhead. The number of uplink messages that could be sent was 8.7 messages 

per hour, which means that the minimum periodicity is every 7 minutes to send messages through LoRa. 

In other words, anything longer than 7 minutes fulfils the requirements of the Fair Use Policy, for the 

respective SF, and to create some interval levels for urban traffic, periodicities between 7 and 10 minutes 

were considered, associated with the highest and lowest levels of urban traffic, respectively. This value 

is then compared with the previous periodicity value, which is also sent together with the sensor readings 

to the TTN. This is carried out in the "Check interval" node. If the value of the old periodicity is different 

from the new periodicity, it means that there has been a change in the level of traffic, and a downlink 

message is sent to the monitoring node. 

Figure 3.20. Changing sending readings frequency flowchart 
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The "Send packet" function node creates the packet with the new frequency to send readings and 

the "Arduino MKR WAN 1300" node sends this packet to the TTN via the MQTT protocol, which is 

then sent to the available gateways within range, and finally to the monitoring node. By doing this, the 

node changes the frequency at which readings are sent. 

Sensor readings and other parameters (measurement site address, frequency of sending readings, 

weather conditions) are stored in Firebase. Firebase is a set of Google computing services that host 

databases and other services in the cloud [44]. There are two databases hosted by this platform, that 

were used, the Realtime Database and the Firestore Database. Realtime Database is used to store the 

most recent readings and Firestore is based on a document-organised database, where each document is 

a key-value pair that can be grouped into collections.  

In the "Insert on Firebase" node, the readings and other parameters obtained by the API's are 

combined to create the body of the payload, which is stored in the Realtime Database via the "UPDATE" 

node. Each time new readings arrive, the "UPDATE" node updates the value of the fields. From the 

"creating docID" node, an ID is created for the document of the readings, based on the time and date of 

the reading, which is then stored in the Firestore Database, inside “nodeMeasures” collection, via the 

"Add values in Firestore 2" node. Each document is associated with a set of readings at a given time. 

 

 

 

 

 

 

 

 

 

 

3.4.2. Web/Mobile Application 

The data obtained by the monitoring node is visualised and analysed using a web and Andoid 

application. The "SkySense" application was developed in Flutter, a framework produced by Google 

that allows applications to be built from a single code base and is based on the Dart programming 

language [76]. Another option considered when developing the application was using a combination of 

Javascript for the backend and React for the frontend. The fact that all the programming can be done 

from native code and the ease with which applications can be created on different platforms was the 

reason for choosing Flutter, over other options, to create this app. 

When the user accesses the application, they are asked to log in. If the user is not already registered, 

they can do so, but they also have the option of logging into the application with their Google account 

(if they have one), as can be seen in Figure 3.22: 

(a) (b) 

Figure 3.21. Monitoring node values in the RealTime database (a) and all the collected measures in 

Firestore database, inside de “nodeMeasures” collection (b) 
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As Firebase offers authentication services, these were used to create the login and user registration 

functionalities in the application. Gathering data from the Firebase databases, authentication and other 

functional and visual elements are achieved by installing packages, provided by Flutter, which allow 

diverse functionalities to be built. 

After logging in or signing up, the user enters the application's main page relating to the monitoring 

node's real-time data. This page shows data about an air quality indicator, temperature and relative 

humidity, the concentrations of different pollutants (carbon monoxide (CO), liquefied petroleum gas 

(LPG), alcohol), PM2.5 and PM10 concentration and the time and date of the last reading from the 

monitoring node. The numerical value displayed in the application, referring to “Air Quality Indicator”, 

relates to an analog value obtained by the Grove Air Quality sensor, and therefore can't be considered 

the true AQI value. It is merely an indicator of how polluted the air is, when monitoring is being 

conducted, and as mentioned in section 3.2.2, the higher the value displayed, the lower the air quality.  

All the data presented in this page is updated every time new readings arrive in the Realtime 

Database. 

 

Figure 3.23. "Real Time Data" page, from web application view 

(a) (b) 

Figure 3.22. Application Login page (a) and Register page (b) 
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From the drawer on the left-hand side of the application page (Figure 3.23), the user can navigate 

between the "Real Time Data", "Node Location" and "Data Analysis" pages. The "Node Location" page 

contains information on the location of the monitoring node, such as latitude, longitude, site address, 

city, and country. Just like the "Real Time Data" page, it is possible to see the date and time of the 

monitoring node's latest readings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map used to visualise the location is provided via the Google Maps API. The marker marks the 

exact location of the node and around it is a circle that updates its colour depending on the air quality 

level. If the user clicks on the marker, they can also get readings of some parameters such as temperature, 

relative humidity, and the air quality indicator value (Figure 3.24 (b)). 

 On the "Data Analysis" page, the user can choose to carry out a temporal analysis of the measured 

parameters based on the location and date at which the monitoring node has been taking measurements. 

Firstly, a location must be selected from the "Select a location" field, and only when this location has 

been selected, a second field, "Select a date", appears for the user to fill in the date on which the 

measurements were taken. Finally, the user chooses the parameter they want to analyse (temperature, 

relative humidity, CO, LPG, Alcohol, PM2.5, PM10, air quality value) from the "Select a measurement" 

field and only when this field is selected a chart is generated showing all the measurements taken by the 

monitoring node. Statistics such as the maximum, minimum and average values, and the time the node 

has been monitoring that location, can also be found on this page. 

(a) (b) 

Figure 3.24. "Node Location" page from web (a) and Android (b) view 
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Figure 3.25. "Data analysis" page from web view 

A final feature of this application is the display of warnings regarding the level of the air quality. 

The Grove Air Quality sensor library contains a file with thresholds for the quantitative value, used to 

return a qualitative value indicating the level of air quality (e.g., "Fresh Air", "Low Pollution", "High 

Pollution” ...). Some of the thresholds presented in the file, regarding the quantitative value obtained by 

the Grove Air Quality sensor, are similar to those imposed by EPA, and therefore the air quality levels 

presented on the application's "Real Time Data" page were based on the AQI levels declared by EPA 

[18]. Each time the air quality changes its level, the user receives a warning in the application with the 

current air quality level and the specific location where the level has changed. 

 

 

 

 

Figure 3.26. Air Quality Level Warning mechanism, from Android view 
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CHAPTER 4 

Results and Discussion 

This chapter presents the results obtained from the monitoring tests carried out by the monitoring node. 

Several tests were conducted, the first being associated with the calibration of the sensors when they are 

capturing the same gas inside a gas test chamber. Afterwards, measurements were taken outdoors, in 

different locations, for a later comparison between the readings obtained by the sensors and the 

surrounding environment. Finally, the energy consumption of the monitoring node is presented when it 

is in operation and in low energy consumption mode. 

 

4.1. Gas Test Chamber 

To test the calibration of the sensors, mentioned in Section 3.2.1.1, and their sensitivity when they are 

exposed to a particular gas, a test was conducted in a gas test chamber. The component used for this task 

was the Figaro SR-3 Bench Top Test Chamber. It is a box made of acrylic resin that allows the gas under 

study to be injected by inserting a syringe with the desired gas through a gas inlet in the chamber [77]. 

The sensor can be placed inside the chamber to measure the gas concentration being considered. Inside 

the box there is a fan which, when switched on, spreads the gas so that a uniform concentration is 

achieved throughout the test chamber [77]. This test chamber has a maximum capacity of 5,400 ml of 

injected gas. 

 

Figure 4.1. Figaro SR-3 Test Chamber 

 The MQ-2, MQ-7 and MQ-9 sensors were calibrated to detect concentrations of alcohol, carbon 

monoxide (CO) and liquefied petroleum gas (LPG), respectively. Short-term inhalation of CO and LPG, 

especially CO, is very dangerous and can cause death within a few moments. Ethanol (ethyl alcohol) is 

the only safer gas to test, so only the results from the MQ-2 sensor were considered for this experiment. 

 In the test chamber's datasheet, reference is made to the equation used to determine the volume of 

gas needed to be injected to reach a particular concentration of the gas being tested: 

 

𝑉𝑜𝑙𝑢𝑚𝑒 [𝑚𝑙] = 5,400 𝑚𝑙 ×
𝐺𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚]

1,000,000
 (9) 
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 The injected gas volume is given in millilitres (ml) and the gas concentration is given in parts per 

million (ppm). Three tests were carried out, both with different concentrations of injected alcohol. 

Equation 9 gives the expected concentration for the different amounts of alcohol: 

• 1st Test: 1 ml of alcohol ≈ 185.19 ppm; 

• 2nd Test: 1.5 ml of alcohol ≈ 277.78 ppm; 

• 3rd Test: 2 ml of alcohol ≈ 370.37 ppm. 

Both experiments lasted 15 minutes, and at the end of each test, more alcohol was added to the test 

chamber, except for the last case. The alcohol concentration obtained by the MQ-2 sensor is obtained 

by the process presented in section 3.2.1.1. The chart in Figure 4.2 shows the results obtained: 

 

Figure 4.2. Alcohol concentration behaviour, across the time regarding different alcohol volumes 

injected 

 During the test, it was noted that there was a change in the concentration obtained by the other MQ 

gas sensors. The presence of other gases, apart from the gas being studied (such as the presence of 

ethanol in the detection of CO and LPG), can affect the MQ sensors' reaction and cause incorrect 

inductions about the gas concentration. 

In the first instant, the alcohol was injected into the test chamber and for this reason, a very high 

concentration value was captured. The built-in fan was switched on for 2 minutes at the start of each test 

to disperse the alcohol throughout the chamber, which is why there was a sudden drop in concentration 

initially. From the third minute onwards, the alcohol was spread throughout the chamber and the sensor 

readings began to stabilise. At around 10-11 minutes, the concentration value was stabilised. Values 

obtained by the sensor were expected, considering the values obtained by equation 7. As soon as the 15 

minutes of a test were up, the volume associated with the next test was inserted, i.e., the volume injected 

into the test chamber was being accumulated. The total amount injected into the chamber was 4.5 ml, 

which corresponds to a concentration of approximately 833.33 ppm. As can be seen in the last test, the 

stabilised value is practically equivalent to the alcohol concentration mentioned above. 
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4.2. Outdoor Monitoring Tests 

Three different locations were chosen to test the monitoring node in an outdoor context, to understand 

what influence the surrounding environment has on the readings obtained by the sensors. The locations 

selected to carry out the tests are associated with Lisbon city centre, in Portugal. Figure 4.3 shows the 

locations chosen for the measurements: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first location (Av. da Liberdade 258, 1250-149 Lisboa, Portugal – Figure 4.3 (a)) relates to an 

avenue in the centre of Lisbon, more specifically, near the Marquês de Pombal roundabout. The second 

location (Av. de Berna 45, 1050-078 Lisboa, Portugal – Figure 4.3 (b)) is the garden of the Calouste 

Gulbenkian Foundation. Finally, the last location where tests were conducted was an avenue near the 

Mário Soares Garden, Campo Grande (Campo Grande C3, 1700-162 Lisboa, Portugal – Figure 4.3 (c)). 

It should be noted that the monitoring performed for each of the previously mentioned locations 

was carried out in different days, but the tests lasted the same amount of time, approximately 4 hours 

for each location. Due to the impossibility and lack of security in leaving the monitoring node in an 

outdoor location, measurements could not be taken over a long period of time. 

 

 

 

(c) 

(a) 

(b) 

Figure 4.3. Locations where the monitoring has taken place: Avenida da Liberdade (a), Jardim da 

Fundação Calouste Gulbenkian (b) and Campo Grande (c) 
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4.2.1. 1st Location – Avenida da Liberdade 

At this location, measurements were taken between 11:35 and 15:35. During the day, the weather was 

clear, sunny, with low wind intensity and there was no rainfall. The weather conditions can be obtained 

by the OpenWeatherMap API integrated on the Node-Red instance, but also on the OpenWeatherMap 

website. It should be noted that the measurements were taken on a weekday, which is favourable for 

urban traffic. 

 

 

 

 

 

 

 

 

 

  

 

 

 

During the morning, the relative humidity was above 60%, but from 12:39 onwards, the humidity 

level began to fall, with a significant drop from 13:38 onwards. From this moment on, there was a greater 

incidence of sunlight and, consequently, a gradual increase in temperature, reaching its maximum value 

at 14:36. It was between the period of 13:38 and 15:35 that the temperature showed the highest values 

and, consequently, the relative humidity showed the lowest ones. 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(a) 

(c) 

Figure 4.4. Temperature and Relative Humidity variation during the monitoring period (a), in the 1st 

location; statistics about Temperature (b) and Relative Humidity (c) 



 

49 

 

  

 

 

 

 

 

Particulate matter concentrations, PM2.5 and PM10, throughout the monitoring period showed 

practically the same behaviour. Near the location where the measurements were taken, there was a 

construction site, which may have influenced the concentration of these particles in the air, as well as 

the number of vehicles travelling along the avenue. At 13:30 and 14:04, the concentration of particulate 

matter showed the lowest values. At 12:47 and 14:52, the highest values were found. 

On this day, the wind speed was minimal, which might have contributed to the particles not being 

so widely spread through the air, resulting in an accumulation of particulate matter in certain places, 

thus increasing their concentration, although there were slight wind breezes present at certain times. As 

a result, the particles can disperse more easily through the air. Considering this fact and the density of 

traffic flow on the avenue, it can explain the large variations that occurred during the monitoring period. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The concentration of pollutant gases such as CO and LPG showed an increasing behaviour for most 

of the monitoring period. The variations found are related to the number of vehicles in circulation at the 

(b) 

(a) 

(b) 

(c) 

Figure 4.5. PM2.5 and PM10 variation across the monitoring period (a), in the 1st location; statistics 

about PM2.5 (b) and PM10 (c) concentration 

(c) 

Figure 4.6. CO and LPG variation across the monitoring period (a), in the 1st location; statistics about 

CO (b) and LPG (c) concentration 
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site, and since there is a traffic light at the top of the avenue, the spikes in values can be explained by 

this fact. The LPG values vary more than the CO values, but both have peak values at 13:38 and 14:36. 

 

4.2.2. 2nd Location – Jardim da Fundação Calouste Gulbenkian 

The monitoring in this location was conducted between 12:36 and 16:36. During the monitoring period, 

the weather was quite cloudy, with a tendency for precipitation. Figure 4.7 shows the temperature and 

relative humidity values obtained during the monitoring period: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The temperature shows an inverse behaviour to the relative humidity, which is expectable given the 

temperate climate in Portugal. Throughout the monitoring period, it became increasingly cloudy, and 

the wind speed also slowly increased, which contributed to a gradual decrease in temperature and an 

increase in relative humidity. Around 15:20, the relative humidity reached its maximum value at 

approximately 90%. At this point, very light raindrops were felt, which explains the high humidity value.

  

 

 

 

 

 

 

 

(a) 

(b) 

(a) 

(c) 

Figure 4.7. Temperature and Relative Humidity variation during the monitoring period (a), in the 2nd 

location; statistics about Temperature (b) and Relative Humidity (c) 
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During the measurements, there were some variations in the particulate matter concentration in the 

garden. These variations may be explained by the fact that there were several people walking around, 

and since there were some dirt trails within the garden, the concentration of particulate matter could 

vary depending on the number of people walking on these trails. The period between 12:42 and 12:51 

was when the highest increase in particulate matter concentration was observed, and it was during this 

period that most people were moving around inside the garden. Factors such as the presence of wind 

and vegetation can also influence the dispersion and concentration of these particles at the area. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Regarding the concentrations of pollutant gases, particularly CO and LPG, only CO showed a 

practically constant behaviour during the monitoring period, unlike LPG, which exhibited slight 

variations. The tests were conducted in the central area of the garden, but the garden itself is located 

between several avenues. Despite the presence of large amounts of vegetation, wind speed can influence 

the distribution of gases in the air and generate some variations. 

 

(b) 

(a) 

(b) 

(c) 

Figure 4.8. PM2.5 and PM10 variation across the monitoring period (a), in the 2nd location; statistics 

about PM2.5 (b) and PM10 (c) concentration 

(c) 

Figure 4.9. CO and LPG variation across the monitoring period (a), in the 2nd location; statistics about 

CO (b) and LPG (c) concentration 
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4.2.3. 3rd Location – Campo Grande 

The readings obtained by the monitoring node relate to the period between 12:53 and 16:56 and were 

conducted during the weekend. During this day, there was no precipitation, the sky was slightly cloudy 

and there were periods of high solar incidence. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

The chart shown in Figure 4.10 (a) demonstrates an almost symmetrical behaviour between 

temperature and relative humidity. Throughout the monitoring period, there were huge variations in the 

values of these two atmospheric parameters. Periods in which relative humidity showed higher values 

were related to periods when the weather was slightly cloudy. When sunlight was strongest, temperature 

values increased, peaking at around 15:20.  

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(a) 

(c) 

Figure 4.10. Temperature and Relative Humidity variation during the monitoring period (a), in the 3rd 

location; statistics about Temperature (b) and Relative Humidity (c) 
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 The concentration of particulate matter, both PM2.5 and PM10, at certain times, showed some 

variations during the monitoring period. In the chart shown in Figure 4.11 (a), there are two moments 

when the concentration of particulate matter increased significantly, specifically at 13:18 and 14:08. 

Since this location is near an avenue, there is a constant flow of vehicles. It should be noted that there is 

a traffic light controlling traffic at this location, and the spikes shown on the chart correspond to the 

times when traffic is most concentrated at the monitoring site, due to the action of the traffic light. As a 

result, the concentration of particulate matter is higher at the two instants mentioned above. 

The concentration over the rest of the monitoring period was dependent on the traffic conditions 

along the avenue, which led to some variations. It should be noted that the period between 16:01 and 

16:11 was the period when there was the least concentration of vehicles travelling, and therefore the 

least concentration of particulate matter. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

(b) 

(a) 

(b) 

(c) 

Figure 4.11. PM2.5 and PM10 variation across the monitoring period (a), in the 3rd location; statistics 

about PM2.5 (b) and PM10 (c) concentration 

(c) 

Figure 4.12. CO and LPG variation across the monitoring period (a), in the 3rd location; statistics about 

CO (b) and LPG (c) concentration 
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Similarly, to the second location, the CO concentration shows a practically constant behaviour 

throughout the monitoring period. On the other hand, the LPG concentration shows some variations, 

due to the traffic conditions mentioned above, with the maximum LPG concentration at 13:27. 

 

4.2.4. Air Quality Indicator values comparison 

The air quality indicator obtained by the Grove Air Quality sensor changed according to the 

concentration of polluting gases in the locations where the monitoring was conducted. From the 

developed application, statistics about this index can be observed. 

 

 

 

 

 

 

 

 

The measured air quality indicator value over the monitoring time at the first location (Avenida da 

Liberdade) had the highest average value. The fact that the monitoring on this avenue was carried out 

on a weekday was favourable for a higher urban traffic flow, which is a propitious factor for a higher 

concentration of pollutant gases and, consequently, an increase in the air quality indicator value. In the 

second location, the values were the lowest, mainly due to the nature of the environment where the 

monitoring was conducted. Regarding the third location, relating to the other avenue, the values obtained 

were lower compared to the first location, but higher when compared to the second location. Since this 

location is also an avenue, despite having some urban traffic, there wasn't as much when comparing it 

to the first location. The fact that the monitoring was carried out on a weekend contributed to less urban 

traffic, so it can be assumed that there wasn't as much concentration of pollutant gases, making the air 

quality indicator value a little lower compared to the first location. 

 

4.2.5. Frequency of Readings 

Over the monitoring period for the different locations, there were changes to the frequency at which 

readings were sent to the LoRaWAN server. Initially, a 5-minute interval was manually imposed 

between sending the first measurement and the second measurement. From the second measurement 

onwards, the sending frequency is adjusted according to urban traffic levels, by sending downlink 

messages from the Node-Red to the monitoring node, as explained in Section 3.4.1. In the second and 

third location, relating to the garden and one of the avenues, respectively, 25 measurements were taken, 

and the interval between them mainly ranged between 9 and 10 minutes, with some measurements also 

(a) (b) (c) 

Figure 4.13. Statistics about air quality indicator values in the 1st location (a), 2nd location (b) and 3rd 

location (c) 
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taken every 8 minutes. In the case of the 1st location, also referring to the other avenue, 29 measurements 

were taken.  

The tests were conducted at both locations for the same length of time (4 hours), but more 

measurements were taken at the first location. The tests that were conducted at the first location were 

carried out on an avenue that is usually characterised by heavy urban traffic on weekdays. In comparison 

to the test that was conducted at the third location, during a weekend, even though it was on an avenue 

where there is also a lot of traffic, there wasn't as much urban traffic going through it. The choice of day 

to perform monitoring tests had an influence on the number of measurements taken by the monitoring 

node. 

 

4.3. Monitoring Node Energy Consumption 

Since the monitoring node incorporates several sensors, its energy consumption can be quite high. A 

study was conducted to analyse its energy consumption. The node is powered by a battery with a 

capacity of 10000 mAh (milliampere-hour) and to optimise its consumption, a low power mode was 

implemented in the monitoring node to lower its energy consumption and increase battery life. 

Measurements were taken when the low consumption mode is not present and when it is activated. 

 

4.3.1. Monitoring Node Power Consumption 

With all the sensors connected to the monitoring node, the energy consumption related to normal cycle 

of operation, was measured, i.e., current measurements were taken during the period where the 

monitoring node was taking measurements, sending them through LoRa and waiting to repeat the cycle. 

 Current measurements were taken using a Keithley 2110 Digit Multimeter, with the selected option 

“DCI” to measure DC current. The results obtained can be seen in the table below: 

 

Table 4.1. Current consumption during the taking of measurements, measurements transmission 

through LoRa and delay period before sending other measurements, without and with Low Power 

Mode 

 Current Drawn (𝐴𝑚𝑝𝑠) 

 Sensors Measuring LoRa Transmission Delay Period 

Without Low Power 

Mode 
1.0582 A 1.1814 A 1.0422 A 

With Low Power Mode 0.85346 A 1.05636 A 0.69252 A 

 

With this low power mode active, it is possible to observe a decrease in the node's current draw, 

especially when the node is in the delay period. Initially, in low power mode, the node consumes 0.85346 

A, a lower value also due to the implementation of the low consumption mode for the SPS30 sensor, 
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described in Section 3.2.8.3. After the measurements taken by the sensors, the sensor reaches a value of 

1.05636 A, when information is sent via LoRa. When the node enters its delay period, sleep mode is 

activated, and its consumption remains at around 0.69252 A. 

Table 4.2. Monitoring node power consumption in measurement, transmission and sleep modes 

 Power Consumption (𝑃 [𝑊𝑎𝑡𝑡𝑠] = 𝑉 [𝑉𝑜𝑙𝑡𝑠] × 𝐼 [𝐴𝑚𝑝𝑠]) 

 Sensors Measuring LoRa Transmission Delay Period 

Without Low Power 

Mode 
5.291 W 5.907 W 5.211 W 

With Low Power Mode 4.267 W 5.282 W 3.463 W 

 

As the current decreases, so does the power consumption associated with the system. This is most 

evident when the monitoring node is in its delay period before sending another packet with sensor 

measurements, which is when the LoRa module and microcontroller are in sleep mode. 

The value of the battery's autonomy can be obtained from the quotient between the battery's capacity 

and the current drawn by the monitoring node. Table 4.3 shows the autonomy calculated for each period 

of activity of the monitoring node:  

Table 4.3. Battery autonomy during several periods of activity, without and with Low Power Mode 

 Battery autonomy ( Autonomy [hours] =  
Battery capacity (mAh)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 (𝑚𝐴)
 ) 

 Sensors Measuring LoRa Transmission Delay Period 

Without Low Power 

Mode 
9 hours and 27 minutes 8 hours and 27 minutes 9 hours and 35 minutes 

With Low Power 

Mode 
11 hours and 43 minutes 9 hours and 28 minutes 14 hours and 26 minutes 

 

The introduction of sleep mode in the moment when the monitoring node is waiting to send another 

data packet results in the highest autonomy value, but the autonomy of the system, considering a normal 

operating cycle, with the all the activities describes in the Table 4.3, can be obtained with the following 

formula: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 [ℎ𝑜𝑢𝑟𝑠] =  
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ)

𝐼𝑀 × 𝑇𝑀

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆
+

𝐼𝑇 × 𝑇𝑇

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆
+

𝐼𝑆 × 𝑇𝑆

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆

 

 

This formula considers the current values when measurements are being made by the sensors (IM), 

transmission via LoRa (IT) and when the node is in the delay period waiting to send another packet (IS). 

Additionally, the time when the node is taking measurements (TM), transmitting via LoRa (TT) and in 

the delay period (TS), is used. The values used for IM, IT and IS are shown in the Table 4.1. It is assumed 

(10) 
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3 seconds and 1 second for TM and TT, respectively. For TS the values it is assumed the worst case, where 

the information is sent via LoRa every 7 minutes. 

Table 4.4. System autonomy without and with Low Power mode 

 System autonomy [hours] 

Without Low Power Mode 9 hours and 35 minutes 

With Low Power Mode 14 hours and 24 minutes 

 

It can be observed that the introduction of methods to reduce the energy consumption of the 

monitoring node has a big influence on the autonomy of a battery, and in this type of systems it is 

important to conserve battery lifespan as much as possible to ensure a longer monitoring periods. 

 

4.3.2. MQ Sensors Power Consumption 

  MQ sensors have a metallic filament in their composition, which is heated when the sensor is 

switched on, and is used to maintain a high operating temperature. The constant operation of the sensor 

can result in high energy consumption. Measurements were carried out to see the impact that the constant 

operation of the MQ sensors has on the consumption of the monitoring node. The measurements were 

made only with the MQ sensors connected to the microcontroller. 

 

Table 4.5. Current consumption with 1, 2 and 3 MQ sensors connected to the microcontroller 

 1 MQ sensor 2 MQ sensors 3 MQ sensors 

Current Drawn [Amps] 0.20474 A 0.36455 A 0.71404 A 

  

Table 4.6. Power consumption for consumption for each MQ sensor connected to the microcontroller 

 1 MQ sensor 2 MQ sensors 3 MQ sensors 

Power Consumption 

[Watts] 
1.0237 W 1.82275 W 3.5702 W 

 

The results obtained are associated with one, two and three MQ sensors connected. Each time a MQ 

sensor was connected to the microcontroller, its current, and consequently, the power consumption 

increased. It can be said that the operation of each sensor in this system consumes around 160-350 mA 

(milliamps). When three MQ sensors are connected, the total consumption of the microcontroller is 

more than half the consumption observed in the first scenario, where low power mode is not used, which 

means that most of the system consumption is generated by the constant operation of the MQ sensors. 
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CHAPTER 5 

Conclusions and Future Work 

5.1. Conclusions 

A smart monitoring IoT system was proposed, consisting of several sensors to extract information about 

air quality condition in an outdoor context, across some places of Lisbon city. In this system, sensors 

were used to capture concentrations from some of pollutant gases like, carbon monoxide, liquefied 

petroleum gas, organic compounds like alcohol. Particulate matter, air quality and atmospheric factors 

such as temperature and humidity, were also measured to provide more data about the conditions at the 

monitoring site. The integration of a GPS module allowed the localization of the monitoring system, for 

later analysis of results.  

Initially, a test was carried out to check the sensors' calibration. Since it was only possible to use 

ethanol, only the MQ-2 sensor could be used to test its calibration. In this type of gas sensor, 

manufacturers advise that the sensor should be exposed to a defined gas concentration, for a certain 

period, so that the readings obtained are more accurate. The measurements taken by the MQ-7 and MQ-

9 sensors, to capture CO and LPG respectively, showed that the values obtained in the locations where 

the outdoor tests were conducted, varied somewhat depending on the surrounding environment. Despite 

their reactiveness to different conditions, it cannot be concluded that the concentrations obtained by the 

sensors are very precise. MOS sensors, like the MQ sensors, are sensitive to multiple gases, which means 

that the presence of other gases, around the monitoring environment, can have influence on the 

concentration of a gas that is being studied. Exposing the gas directly to the sensor is also an important 

step in obtaining accurate readings, but in the case of this system, this was not the possible with CO and 

LPG. Environmental conditions, like humidity and temperature, can also have an influence in the 

accuracy of readings from MQ and particulate matter sensors, like the SPS30 sensor. 

This system is designed for an outdoor scenario, where monitoring is conducted in several dispersed 

locations, with varying distances from the monitoring node to the gateways, requiring the adoption of a 

technology that offered long range communication and wide coverage. For this reason, LoRa technology 

was used. By spreading the signal over a wide bandwidth, it is possible to achieve transmission with 

wide coverage and low energy consumption, which is required for systems that need to monitor large 

areas. A basic LoRa communication network only requires gateways and LoRa modules for transmitting 

and receiving data, which also makes deployment costs lower when compared to cellular networks. The 

possibility of adding more components, such as gateways and monitoring nodes, to the LoRa network, 

makes the technology highly scalable in the monitoring context, allowing the network to expand to more 

geographical locations as well as ensuring that the technology is viable for large-scale deployments. The 

usage of LoRa technology fulfilled all the communication requirements, needed for the system present 

in this dissertation. 
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To obtain a smart implementation, allowing the change of readings sending frequency, via LoRa, 

an urban traffic API was used. With this API it was possible to set levels of traffic, manually and define 

thresholds for each of these levels, and every time the level of traffic changes, the Node-Red application 

sends a downlink message to the monitoring node, updating the frequency of sending readings. 

During transmission through LoRa, there were occasions in which parameters such data rate, the 

time taken for a message to reach the gateway and the receiver's sensitivity changed according to 

network conditions, due to the Adaptive Data Rate (ADR) mechanism that adapts these parameters 

automatically, and consequently, during the monitoring period, the limits imposed by the Fair Use Policy 

could not be complied with. ADR has its limitations, and the automatic adaptation of the communication 

parameters means that the Fair Use Policy limits are changed throughout the monitoring period, making 

it difficult to respect these limits when using ADR. 

A web and Android application were created for data visualisation, allowing the user to view real 

time data about the air quality, but also obtain historical data from measurements taken by the 

monitoring node. The creation of applications that allow the visualisation of data in real time and the 

integration of warnings associated with changes in the level of air quality, such as the one implemented, 

makes it possible to evaluate air quality conditions and in this way give people information about places 

to avoid when these are highly polluted. Analysing the historical data also makes it possible to 

understand certain trends or variations associated with air quality and pollutant concentrations. 

To conclude, by using a technology with a long range, low implementation cost and low energy 

consumption, like LoRa, the integration of low-cost sensors capable of monitoring pollutant gases, 

particulate matter, temperature and humidity and the use of LoRaWAN infrastructures and cloud 

services and platforms, it was possible to create an air quality monitoring system, fulfilling all the 

objectives established for this dissertation. 

The development of this work resulted in a scientific paper “Smart City Air Quality Monitoring 

supported by IoT ecosystem” (Appendix F) for 16th International Conference on Sensing Technology. 

 

5.2. Future Work 

Looking ahead, we hope to expand the air quality monitoring network by integrating more nodes spread 

across different geographical regions and gateways to create our own LoRa monitoring network. 

A system calibration using a variety of gases, exposed directly to the sensors to increase their 

accuracy, is required to make the system more reliable, and be less cross-sensitive and also the 

acquisition of sensors with lower energy consumption, to make the system more energy efficient. The 

integration of solar panels can also be considered, for better sustainability and lowering the costs. 

Ultimately, the creation of predictive models is another task for the future, which will make it 

possible to forecast pollutant gas and particulate matter concentrations and extending presentation of 

data to represent air quality conditions in the monitored areas. 
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APPENDIX A 

Arduino Microcontroller Code 

 

//Imported libraries 

#include <MKRWAN.h> 

#include <Wire.h> 

#include <TinyGPSPlus.h> 

#include <avr/dtostrf.h> 

#include <sps30.h> 

#include "DHT.h" 

#include "Air_Quality_Sensor.h" 

#include "ArduinoLowPower.h" 

#include "arduino_secrets.h"  // File with the TTN appEui and appKey 

 

#define gpsSerial Serial1 //Instance for UART communication between gps module 

and arduino board 

#define DHTPIN 2 //Declaring the pin which dht22 sensor is connected 

#define DHTTYPE DHT22 //Declaring the type of dht sensor used 

 

//Intances for gps module, dht22 and grove air quality sensors 

TinyGPSPlus gps; 

DHT dht(DHTPIN, DHTTYPE); 

AirQualitySensor sensor(A3);  

 

static const uint32_t GPSBaud = 9600; //GPS BaudRate 9600 bits/s 

 

//Declaring the pins for MQ sensor connection 

int gas_sensor_mq2 = A4;  

int gas_sensor_mq7 = A5; 

int gas_sensor_mq9 = A2; 

 

//R0 values used for MQ-2, MQ-7, and MQ-9, respectively 

float R0_mq2 = 1.30;  

float R0_mq7 = 4.78;  

float R0_mq9 = 8.21;    

 

//Gathering appEui and appKey from TTN application, stored in a private file 

String appEui = SECRET_APP_EUI; 

String appKey = SECRET_APP_KEY; 

 

//Instance for LoRa communication 

LoRaModem modem; 

 

//Default frequency of sending readings via LoRa (5 minutes) 
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int interval = 300;  

 

void setup() { 

  int16_t ret; 

  uint8_t auto_clean_days = 4;  

  uint32_t auto_clean; 

   

  Serial.begin(115200); 

  analogReadResolution(12); //Changing MKRWAN board bit resolution to 12 bits 

  delay(3000); 

 

  gpsSerial.begin(GPSBaud); //GPS module initialization with baud rate defined 

in "GPSBaud" variable 

   

  dht.begin(); //DHT22 sensor initialization 

 

  if (sensor.init()) { //Grove Air Quality v1.3 sensor initialization check 

        Serial.println("Sensor ready."); 

    } else { 

        Serial.println("Sensor ERROR!"); 

  } 

 

  //Declaring pins associated with MQ sensors, as INPUT (gathering values) 

  pinMode(gas_sensor_mq2, INPUT); 

  pinMode(gas_sensor_mq7, INPUT); 

  pinMode(gas_sensor_mq9, INPUT); 

 

  sensirion_i2c_init(); //SPS30 sensor initialization 

  while (sps30_probe() != 0) { //SPS30 sensor initialization check 

    Serial.print("SPS sensor probing failed\n"); 

    delay(500); 

  } 

 

  //Declaring a value for SPS30 sensor automatically cleaning interval (every 

4 days) 

  ret = sps30_set_fan_auto_cleaning_interval_days(auto_clean_days); 

  if (ret) { 

    Serial.print("error setting the auto-clean: "); 

    Serial.println(ret); 

  } 

 

  //Putting the SP30 sensor into sleep state 

  sps30_sleep(); 

 

  while (!Serial); 

  if (!modem.begin(EU868)) { //Checking LoRa module initialization (with 

regional parameter for the reagion where the communication is being made, in 

this case EU868) 

    Serial.println("Failed to start module"); 
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    while (1) {} 

  }; 

 

  Serial.println(modem.deviceEUI()); //Obtaining MKRWAN 1300 board DevEUI 

 

  int connected = modem.joinOTAA(appEui, appKey); //Connection to TTN 

platform, with user TTN application appEui and appKey  

  if (!connected) { //Checking connection to TTN platform 

    Serial.println("Something went wrong with connection"); 

    while (1) {} 

  } 

  delay(10000); 

} 

 

//Function to check if there is any available data on the GPS module 

static void gpsDelay(unsigned long ms) 

{ 

  unsigned long start = millis(); 

  do  

  { 

    while (gpsSerial.available()) 

      gps.encode(gpsSerial.read()); 

  } while (millis() - start < ms); 

} 

 

void loop() { 

  float sensor_volt_mq2, sensor_volt_mq7, sensor_volt_mq9;  

  float RS_gas_mq2, RS_gas_mq7, RS_gas_mq9;    

  float ratio_mq2, ratio_mq7, ratio_mq9;  

  struct sps30_measurement m; 

  uint16_t data_ready; 

  int16_t ret; 

  float pm2_5, pm_10; 

 

  //Checking for gps data 

  gpsDelay(2000); 

 

  // //Reading the analog MQ sensor values for later conversion 

  float sensorValue_mq2 = analogRead(gas_sensor_mq2);  

  float sensorValue_mq7 = analogRead(gas_sensor_mq7);   

  float sensorValue_mq9 = analogRead(gas_sensor_mq9);  

 

  //Analog sensor readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12 

bits) 

  sensor_volt_mq2 = (sensorValue_mq2*3.3)/4095.0; 

  sensor_volt_mq7 = (sensorValue_mq7*3.3)/4095.0; 

  sensor_volt_mq9 = (sensorValue_mq9*3.3)/4095.0; 

 

  //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL) 
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  RS_gas_mq2 = ((3.3/sensor_volt_mq2)-1)*5.0; 

  RS_gas_mq7 = ((3.3/sensor_volt_mq7)-1)*10.0; 

  RS_gas_mq9 = ((3.3/sensor_volt_mq9)-1)*10.0; 

 

  //Rs/R0 ratio calculation for each MQ sensor 

  ratio_mq2 = RS_gas_mq2/R0_mq2;  

  ratio_mq7 = RS_gas_mq7/R0_mq7;  

  ratio_mq9 = RS_gas_mq9/R0_mq9;   

 

  //Gas concentration calculation 

  double ppm_mq2 = 3789.8 * pow(ratio_mq2, -2.72); //Alcohol 

  double ppm_mq7 = 103.16 * pow(ratio_mq7, -1.498); //CO 

  double ppm_mq9 = 1013.7 * pow(ratio_mq9, -2.088); //LPG 

    

  Serial.println(ppm_mq2); 

  Serial.println(ppm_mq7); 

  Serial.println(ppm_mq9); 

 

  //SPS30 sensor wake up from sleep mode to idle mode 

  ret = sps30_wake_up(); 

  if (ret < 0) { 

    Serial.print("Error waking UP"); 

  } else { 

    Serial.println("SUCESS WAKING UP"); 

  } 

 

  //SPS30 sensor change from idle mode to measurement mode 

  ret = sps30_start_measurement(); 

  if (ret < 0) { 

    Serial.print("error starting measurement\n"); 

  } 

 

  //Delay to obtain more accuracy readings before the taking of PM2.5 and PM10 

readings in measurement mode 

  delay(30000); 

 

  //Loop tp check available data on the SPS30 sensor 

  do { 

    ret = sps30_read_data_ready(&data_ready); 

    if (ret < 0) { 

      Serial.print("error reading data-ready flag: "); 

    } else if (!data_ready) 

      Serial.print("data not ready, no new measurement available\n"); 

    else 

      break; 

    delay(100);  

  } while (1); 

 

  //Gathering measurements and store them in a structure "m" 
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  ret = sps30_read_measurement(&m); 

  if (ret < 0) { 

    Serial.print("error reading measurement\n"); 

  } 

   

  //Store PM2.5 and PM10 values in variables 

  pm2_5 = m.mc_2p5; 

  pm_10 = m.mc_10p0; 

 

  //SPS30 change from measurement mode to idle mode 

  ret = sps30_stop_measurement(); 

  if (ret < 0) { 

    Serial.print("Error STOPPING"); 

  } else { 

    Serial.println("SUCESS STOPPING"); 

  } 

 

  //SPS30 change from idle mode to sleep mode 

  ret = sps30_sleep(); 

  if (ret < 0) { 

    Serial.print("Error Sleeping"); 

  } else { 

    Serial.println("SUCESS Sleeping"); 

  } 

   

  Serial.println(pm2_5); 

  Serial.println(pm_10); 

 

  //Gathering temperature and relative humidity values and store them in 

variables 

  float temp = dht.readTemperature(); 

  float hum = dht.readHumidity(); 

   

  Serial.println(temp); 

  Serial.println(hum); 

 

  //Gathering latitude and longitude values and store them in variables 

  float latitudeValue = gps.location.lat(); 

  float longitudeValue = gps.location.lng(); 

 

  Serial.println(latitudeValue); 

  Serial.println(longitudeValue); 

   

  ////Gathering air condition value store it in variable 

  int aqi = sensor.getValue(); 

  Serial.println(aqi); 

 

  //Storing all the measures in unsigned 16-bit and 32-bit integer varibles 

for packet size otimization 
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  uint16_t pm2_5_x = pm2_5 * 100; 

  uint16_t pm_10_x = pm_10 * 100; 

  uint16_t temperature = temp * 100; 

  uint16_t humidity = hum * 100; 

  uint32_t latitudeBinary = ((latitudeValue + 90) / 180) * 16777215; 

  uint32_t longitudeBinary = ((longitudeValue + 180) / 360) * 16777215; 

  uint16_t ppm_mq2_x = ppm_mq2 * 100; 

  uint16_t ppm_mq7_x = ppm_mq7 * 100; 

  uint16_t ppm_mq9_x = ppm_mq9 * 100; 

      

  //Unsigned 8-bit array to store all the measurements and its size   

  uint8_t sensorData[28]; 

  size_t dataSize = sizeof(sensorData); 

 

  //Storing all the measurements in the "sensorData" array 

  sensorData[0] = temperature >> 8; 

  sensorData[1] = temperature; 

  sensorData[2] = humidity >> 8; 

  sensorData[3] = humidity; 

  sensorData[4] = pm2_5_x >> 8; 

  sensorData[5] = pm2_5_x; 

  sensorData[6] = pm_10_x >> 8; 

  sensorData[7] = pm_10_x; 

  sensorData[8] = ppm_mq2_x >> 8; 

  sensorData[9] = ppm_mq2_x; 

  sensorData[10] = ppm_mq7_x >> 8; 

  sensorData[11] = ppm_mq7_x; 

  sensorData[12] = ppm_mq9_x >> 8; 

  sensorData[13] = ppm_mq9_x; 

  sensorData[14] = aqi >> 8; 

  sensorData[15] = aqi; 

  sensorData[16] = interval >> 8; 

  sensorData[17] = interval; 

  sensorData[18] = latitudeBinary >> 24; 

  sensorData[19] = latitudeBinary >> 16; 

  sensorData[20] = latitudeBinary >> 8; 

  sensorData[21] = latitudeBinary; 

  sensorData[22] = longitudeBinary >> 24; 

  sensorData[23] = longitudeBinary >> 16; 

  sensorData[24] = longitudeBinary >> 8; 

  sensorData[25] = longitudeBinary; 

 

  int err; 

  //Initializing packet sending via LoRa 

  modem.beginPacket(); 

  modem.write(sensorData, dataSize); 

  err = modem.endPacket(true); 

 

  //Checking if the packet was correctly sent 
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  if (err > 0) { 

    Serial.println("Binary message sent correctly!"); 

  } else { 

    Serial.println("Error sending binary message"); 

    Serial.println(err); 

  } 

 

  //Putting LoRa module into sleep mode to conserve energy 

  modem.sleep(); 

  //Putting microcontroller and some internal peripherals into sleep mode to 

conserve energy, during frequency of sending readings 

  LowPower.sleep(interval*1000); 

  //Delay introduced for wake up time of the microcontroller 

  delay(15000); 

 

  Serial.println("Avaliação de DW"); 

  //Checking if there is any downlink messages available 

  if (!modem.available()) { 

    Serial.println("No downlink message received at this time."); 

    return; 

  }  

  //If there is a downlink message available, decode that message 

  char rcv[64]; 

  int i = 0; 

  while (modem.available()) { 

    rcv[i++] = (char)modem.read(); 

  } 

  rcv[i]=0; 

  Serial.print("Received: "); 

  for (unsigned int j = 0; j < i; j++) { 

    Serial.println(rcv[j], DEC); 

  } 

  int number = (int)rcv[0]; 

  Serial.println(number); 

  int new_delay = number*60; 

  Serial.print("New delay: "); 

  Serial.println(new_delay); 

      

} 
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APPENDIX B 

Arduino Code for R0 calculation of each MQ sensor 

 

//Imported libraries 

#include <SPI.h>  

#include <Wire.h>  

 

void setup() { 

  Serial.begin(9600);  

  analogReadResolution(12); //Changing MKRWAN board bit resolution to 12 bits 

  delay(10000);  

} 

  

void loop() {  

  float sensor_volt2, sensor_volt7, sensor_volt9;  

  float RS_air2, RS_air7, RS_air9;  

  float R0_2, R0_7, R0_9;  

  float sensorValue2, sensorValue7, sensorValue9;  

 

  for(int x = 0 ; x < 500 ; x++) //Reading the analog MQ sensor values for 

later conversion 

  { 

    sensorValue2 = sensorValue2 + analogRead(A4); 

    sensorValue7 = sensorValue7 + analogRead(A5);   

    sensorValue9 = sensorValue9 + analogRead(A2); 

  } 

 

  //Average of readings for each MQ sensor 

  sensorValue2 = sensorValue2/500.0; 

  sensorValue7 = sensorValue7/500.0; 

  sensorValue9 = sensorValue9/500.0; 

 

  //Average of readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12 

bits) 

  sensor_volt2 = (sensorValue2*3.3)/4095.0;  

  sensor_volt7 = (sensorValue7*3.3)/4095.0; 

  sensor_volt9 = (sensorValue9*3.3)/4095.0; 

 

  //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL) 

  RS_air2 = ((3.3/sensor_volt2)-1)*5.0; 

  RS_air7 = ((3.3/sensor_volt7)-1)*10.0; 

  RS_air9 = ((3.3/sensor_volt9)-1)*10.0; 

    

  //Getting RS value for each MQ sensor (R0=RS/(RS/R0 in fresh air))  

  R0_2 = RS_air2/9.7; 
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  R0_7 = RS_air7/27.0;  

  R0_9 = RS_air9/9.8; 

 

  //Displaying R0 values 

  Serial.print("R0_2 = ");  

  Serial.println(R0_2);  

  Serial.print("R0_7 = ");  

  Serial.println(R0_7);  

  Serial.print("R0_9 = ");  

  Serial.println(R0_9);  

  Serial.println("-------------------------------"); 

  delay(60000);  

}  
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APPENDIX C 

Arduino script to calculate gas concentration 

 

 // //Reading the analog MQ sensor values for later conversion 

  float sensorValue_mq2 = analogRead(gas_sensor_mq2);  

  float sensorValue_mq7 = analogRead(gas_sensor_mq7);   

  float sensorValue_mq9 = analogRead(gas_sensor_mq9);  

 

  //Analog sensor readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12 

bits) 

  sensor_volt_mq2 = (sensorValue_mq2*3.3)/4095.0; 

  sensor_volt_mq7 = (sensorValue_mq7*3.3)/4095.0; 

  sensor_volt_mq9 = (sensorValue_mq9*3.3)/4095.0; 

 

  //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL) 

  RS_gas_mq2 = ((3.3/sensor_volt_mq2)-1)*5.0; 

  RS_gas_mq7 = ((3.3/sensor_volt_mq7)-1)*10.0; 

  RS_gas_mq9 = ((3.3/sensor_volt_mq9)-1)*10.0; 

 

  //Rs/R0 ratio calculation for each MQ sensor 

  ratio_mq2 = RS_gas_mq2/R0_mq2;  

  ratio_mq7 = RS_gas_mq7/R0_mq7;  

  ratio_mq9 = RS_gas_mq9/R0_mq9;   

 

  //Gas concentration calculation 

  double ppm_mq2 = 3789.8 * pow(ratio_mq2, -2.72); //Alcohol 

  double ppm_mq7 = 103.16 * pow(ratio_mq7, -1.498); //CO 

  double ppm_mq9 = 1013.7 * pow(ratio_mq9, -2.088); //LPG 
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APPENDIX D 

Javascript decoder formatter for TTN uplink messages 

 

function Decoder(bytes, port) { 

  var decoded = {}; 

 

  //Decoding temperature value 

  var celciusInt = (bytes[0] & 0x80 ? 0xFFFF<<16 : 0) | bytes[0]<<8 | 

bytes[1]; 

  decoded.temperature = celciusInt / 100; 

 

  //Decoding relative humidity value 

  var humInt = (bytes[2] & 0x80 ? 0xFFFF<<16 : 0) | bytes[2]<<8 | bytes[3]; 

  decoded.humidity = humInt / 100; 

 

  //Decoding PM2.5 μm value 

  var pm2_5_x = (bytes[4] << 8) + bytes[5]; 

  decoded.pm2_5 = pm2_5_x / 100; 

 

  //Decoding PM10 μm value 

  var pm_10_x = (bytes[6] << 8) + bytes[7]; 

  decoded.pm_10 = pm_10_x / 100; 

 

  //Decoding Alcohol value 

  var ppm_mq2_x = (bytes[8] << 8) + bytes[9]; 

  decoded.ppm_mq2 = ppm_mq2_x / 100; 

 

  //Decoding CO value 

  var ppm_mq7_x = (bytes[10] << 8) + bytes[11]; 

  decoded.ppm_mq7 = ppm_mq7_x / 100; 

 

  //Decoding LPG value 

  var ppm_mq9_x = (bytes[12] << 8) + bytes[13]; 

  decoded.ppm_mq9 = ppm_mq9_x / 100; 
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  //Decoding AQI value 

  decoded.aqi = (bytes[14] << 8) + bytes[15]; 

 

  //Decoding frequency of sending readings value 

  decoded.interval = (bytes[16] << 8) + bytes[17]; 

 

  //Decoding Latitude value 

  var lat = (bytes[18] << 24) + (bytes[19] << 16) + (bytes[20] << 8) + 

bytes[21]; 

  decoded.latitude = (((lat / 16777215.0) * 180.0) - 90).toFixed(6); 

 

  //Decoding Longitude value 

  var lon = (bytes[22] << 24) + (bytes[23] << 16) + (bytes[24] << 8) + 

bytes[25]; 

  decoded.longitude = (((lon / 16777215.0) * 360.0) - 180).toFixed(6); 

   

  return decoded; 

} 
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APPENDIX E 

Node-Red Flow 
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APPENDIX F 

Scientific Paper 
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