
CityIOT – Air Quality in the city supported by an IoT ecosystem

Gonçalo Franco Morgado

Master in Telecommunications and Computer Engineering

Supervisor:
Octavian Adrian Postolache, Associate Professor with aggregation
ISCTE - Instituto Universitário de Lisboa

Co-Supervisor:
José Miguel Costa Dias Pereira, Coordinating Professor
IPS - Instituto Politécnico de Setúbal

December, 2023

DCTI - Department of Information Sciences and Technologies

CityIOT - Air Quality in the city supported by an IoT ecosystem

Gonçalo Franco Morgado

Master in Telecommunications and Computer Engineering

Supervisor:
Octavian Adrian Postolache, Associate Professor with aggregation
ISCTE - Instituto Universitário de Lisboa

Co-Supervisor:
José Miguel Costa Dias Pereira, Coordinating Professor
IPS - Instituto Politécnico de Setúbal

December, 2023

i

Acknowledgements

I would like to start by expressing my gratitude to Professor Octavian Postolache and Prof. José Miguel

Dias Pereira who acted as supervisors and guided me throughout the development of this dissertation. I

would also like to thank him for the time he gave me to clarify and exchange truly relevant opinions

about the project.

A special thank you to invited assistant Bruno Mataloto, who despite not acting as supervisor or co-

supervisor, was an important support in this project. His ideas and opinions on certain topics helped me

a lot in the development of this project and in clarifying both theoretical and practical aspects.

 Special acknowledgements go to Instituto de Telecomunicações and ISCTE – Instituto

Universitátio de Lisboa, that supported the present research associated with my master thesis.

I would like to thank all my friends, both outside and inside the university. They were the primary

motivation for all the effort devoted to this project. In the not-so-good moments, they were always by

my side to support and encourage me, and they never gave up on me. They are the ones who make me

smile every day and would like to dedicate this dissertation mainly to them.

Lastly, a heartfelt thank you to my family, especially my mother and father. All the sacrifices they've

made for me means a lot and is something I'll never forget, and I hope one day I'll be able to return.

They were always the light at the end of the tunnel to guide me through challenging times and they have

taught me to never give up, no matter how difficult the path is, if we walk together, anything is possible.

Thank you for everything.

iii

Resumo

A poluição do ar representa um problema global, que afeta milhões de pessoas, podendo trazer graves

consequências para a saúde pública, para a economia e também sociais. A constante emissão de

poluentes em estado gasoso, resultante de operações industriais, combustão de combustíveis fósseis e

fogos florestais, afetam a qualidade do ar e contribuem para o aumento deste tipo de poluição. A Internet

das Coisas (IoT) emergiu como resposta para a criação de sistemas inteligentes de monitorização que

podem ser usados para a gestão e identificação de fontes de poluição e para a proteção da saúde pública.

O desenvolvimento de novos equipamentos e tecnologias de comunicação, têm vindo a permitir a

criação de aplicações de monitorização da qualidade do ar, em tempo real. Esta dissertação apresenta

uma implementação de um sistema IoT de monitorização de qualidade do ar exterior, baseado num

sistema multisensor com capacidade de comunicação LoRa. O sistema incorpora sensores de baixo custo

capazes de detetar diferentes poluentes atmosféricos, como também parâmetros atmosféricos, como

temperatura e humidade relativa. De modo a ser obtida uma transmissão de leituras em longa distância

e com baixo consumo energético, o uso da tecnologia LoRa foi adotado. A frequência do envio de

leituras para a rede, é feita com base no nível de tráfego urbano, numa certa localização. Ainda é

apresentada uma aplicação web/móvel, que permite ao utilizador acompanhar em tempo real e proceder

a uma análise temporal, das medições efetuadas pelo sistema.

Palavras-chave: Sensores inteligentes, Internet das Coisas (IdC), Qualidade do ar exterior,

LoRaWAN, Monitorização inteligente, Aplicação web/móvel

v

Abstract

Air pollution is a worldwide problem, which affects millions of people and can have serious

consequences for public health, economy and for social issues. Constant emissions of gaseous

pollutants, as a result of industrial operations, combustion of fossil fuels and forest fires, affect air quality

and contribute to an increase in this type of pollution. Internet of Things (IoT) has emerged as a response

to the creation of intelligent monitoring systems that can be used for management and identification of

pollution sources, and for health protection. The development of new equipment and communication

technologies has allowed the creation of real-time air quality monitoring applications. This dissertation

presents an implementation of an IoT system for monitoring outdoor air quality, based on a multisensory

system with LoRa communication capabilities. The system incorporates low-cost sensors capable of

detecting different air pollutants, as well as atmospheric parameters, such as temperature and relative

humidity. To achieve a long-distance transmission of readings with low energy consumption, the use of

LoRa technology was adopted. The frequency of sending readings to the network is based on the level

of urban traffic in a certain location. Furthermore, a web/mobile application is presented, which allows

the user to monitor in real time and to carry out a temporal analysis of the measurements taken by the

system.

Keywords: Smart sensors, Internet of Things (IoT), Outdoor air quality, LoRaWAN, Smart monitoring,

Web/Mobile app

vii

Contents

Acknowledgements i

Resumo iii

Abstract v

List of Tables ix

List of Figures xi

List of Acronyms xiii

Chapter 1. Introduction 1

1.1. Motivation 1

1.2. Context 3

1.3. Research Questions 4

1.4. Objectives 4

1.5. Methodology 5

1.6. Dissertation Structure 6

Chapter 2. Literature Review 7

2.1. Background Concepts 7

2.1.1 Outdoor Air Pollution 7

2.1.2 Air Quality Index (AQI) 8

2.1.3 Gas and Particulate Matter Sensors 9

2.1.3.1. Metal Oxide Semi-Conductors (MOS) Sensors 9

2.1.3.2. Non-dispersive Infrared Radiation (NDIR) Sensors 10

2.1.3.3. Particulate Matter Sensors 10

2.1.4 Internet of Things (IoT) 11

2.1.5 IoT Architectures 11

2.1.6 LPWAN (Low Power Wide Area Network) 13

2.1.6.1. Sigfox 13

2.1.6.2. Narrow-Band IoT (NB-IoT) 14

2.1.6.3. Long Range (LoRa)/Long Range Wide Area Network 14

2.1.7 Cloud Computing 16

2.2. Related Work 16

Chapter 3. System Description 21

3.1. System Architecture 21

3.2. Perception Layer 23

3.2.1. Gas Sensors 23

3.2.1.1. Sensors Calibration 24

3.2.2. Air Quality Sensor 28

3.2.3. Temperature and Relative Humidity Sensor 28

3.2.4. Particulate Matter Sensor 29

3.2.5. GPS Module 30

3.2.6. Microcontroller 30

3.2.7. Raspberry Pi 33

3.2.8. Programming the microcontroller (Arduino MKRWAN) 33

3.2.8.1. Acquiring data from the monitoring node components 34

3.2.8.2. Communication through LoRa 35

3.2.8.3. Low Power Mode 36

3.3. Network Layer 36

3.4. Application Layer 38

3.4.1. Node-Red 38

3.4.2. Web/Mobile Application 41

Chapter 4. Results and Discussion 45

4.1. Gas Test Chamber 45

4.2. Outdoor Monitoring Tests 47

4.2.1. 1st Location – Avenida da Liberdade 48

4.2.2. 2nd Location – Jardim da Fundação Calouste Gulbenkian 50

4.2.3. 3rd Location – Campo Grande 52

4.2.4. Air Quality Indicator values comparison 54

4.2.5. Frequency of Readings 54

4.3. Monitoring Node Energy Consumption 55

4.3.1. Monitoring Node Power Consumption 55

4.3.2. MQ Sensors Power Consumption 57

Chapter 5. Conclusions and Future Work 59

5.1. Conclusions 59

5.2. Future Work 60

References 61

Appendix A. Arduino Microcontroller Code 67

Appendix B. Arduino Code for R0 calculation of each MQ sensor 75

Appendix C. Arduino script to calculate gas concentration 77

Appendix D. Javascript decoder formatter for TTN uplink messages 79

Appendix E. Node-Red Flow 81

Appendix F. Scientific Paper 83

ix

List of Tables

Table 2.1. WHO guidelines for each pollutant [16] .. 8

Table 2.2. AQI levels and respective colors, declared by Environmental Protection Agency (EPA) [18]

 ... 8

Table 3.1. Extracted points on the MQ-9 LPG (a), MQ-2 Alcohol (b), MQ-7 CO (c) characteristic

curves .. 26

Table 3.2. Comparison between Arduino Uno + Dragino LoRa Shield and Arduino MKRWAN 1300

boards .. 31

Table 3.3. Arduino libraries and functions used for the monitoring node programming with their

respective description .. 34

Table 3.4. R0 calculated values for each MQ sensor ... 35

Table 3.5. Used functions from MKRWAN Arduino library and their description 35

Table 3.6. Description of each function node used in Node-Red workflow ... 39

Table 4.1. Current consumption during the taking of measurements, measurements transmission

through LoRa and delay period before sending other measurements, without and with Low Power

Mode.. 55

Table 4.2. Monitoring node power consumption in measurement, transmission and sleep modes 56

Table 4.3. Battery autonomy during several periods of activity, without and with Low Power Mode . 56

Table 4.4. System autonomy without and with Low Power mode .. 57

Table 4.5. Current consumption with 1, 2 and 3 MQ sensors connected to the microcontroller 57

Table 4.6. Power consumption for consumption for each MQ sensor connected to the microcontroller

 ... 57

xi

List of Figures

Figure 1.1. Number of deaths associated with air pollution, per 100,000 people [2] 2

Figure 1.2. Conventional monitoring stations in Portugal (QualAR, 2019) and in USA (The Port of

Los Angeles, 2023) ... 2

Figure 1.3. Map of pollutant concentration, associated with PM2.5 concentration (IQAir, 2023) 3

Figure 1.4. Structure of the DSRM methodology [14] .. 5

Figure 2.1. MOS sensors inside constitution ... 9

Figure 2.2. NDIR sensors constitution and its operation [27] ... 10

Figure 2.3. Light Scattering PM sensors and its operation [7] .. 10

Figure 2.4. 3-layer architecture model for IoT systems .. 12

Figure 2.5. 5-layer architecture model for IoT systems .. 12

Figure 2.6. Constitution of the physical and MAC layers, related to LoRa and LoRaWAN, respectively

(LoRa and LoRaWAN – Semtech LoRa, 2023) .. 15

Figure 2.7. Architecture of a LoRaWAN network (LoRaWAN Architecture – TTN) 15

Figure 3.1. Air Quality Monitoring System logic ... 22

Figure 3.2. Air Quality Monitoring System architecture and its components 23

Figure 3.3. MQ sensor (a) and its schematic (b) ... 23

Figure 3.4. MQ-2 (a), MQ-7 (b) and MQ-9 (c) characteristic curves, with the RS/R0 value for fresh air

 ... 25

Figure 3.5. Characteristic curve for LPG, related to MQ-9 sensor, in a linear scale 27

Figure 3.6. Characteristic curve for Alcohol, related to MQ-2 sensor, in a linear scale 27

Figure 3.7. Characteristic curve for CO, related to MQ-7 sensor, in a linear scale 27

Figure 3.8. Grove Air Quality sensor v1.3 .. 28

Figure 3.9. DHT22 sensor ... 28

Figure 3.10. SPS30 Particulate Matter sensor ... 29

Figure 3.11. SPS30 hardware components .. 29

Figure 3.12. AT6558 Mini GPS module ... 30

Figure 3.13. Arduino UNO R3 board (a) and Dragino LoRa Shield v1.4 (b) 31

Figure 3.14. Arduino MKRWAN 1300 board and an antenna for LoRa communication 31

Figure 3.15 Monitoring node circuit connections ... 32

Figure 3.16. Monitoring node hardware components and arrangement, (a) and (b) 33

Figure 3.17. Raspberry Pi 4 Model B module ... 33

Figure 3.18. Join process with OTAA, between end device and TTN LoRaWAN/Network server [70]

 ... 37

Figure 3.19. MQTT communication example between MQTT clients and MQTT broker 39

Figure 3.20. Changing sending readings frequency flowchart .. 40

Figure 3.21. Monitoring node values in the RealTime database (a) and all the collected measures in

Firestore database, inside de “nodeMeasures” collection (b) .. 41

Figure 3.22. Application Login page (a) and Register page (b) .. 42

Figure 3.23. "Real Time Data" page, from web application view ... 42

Figure 3.24. "Node Location" page from web (a) and Android (b) view .. 43

Figure 3.25. "Data analysis" page from web view .. 44

Figure 3.26. Air Quality Level Warning mechanism, from Android view ... 44

file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367759
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367759
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367765
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367766
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367771
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367772
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367772
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367776
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367777
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367781
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367784
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367788
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367789
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367789
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367790
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367792
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367794

Figure 4.1. Figaro SR-3 Test Chamber ... 45

Figure 4.2. Alcohol concentration behaviour, across the time regarding different alcohol volumes

injected .. 46

Figure 4.3. Locations where the monitoring has taken place: Avenida da Liberdade (a), Jardim da

Fundação Calouste Gulbenkian (b) and Campo Grande (c) .. 47

Figure 4.4. Temperature and Relative Humidity variation during the monitoring period (a), in the 1st

location; statistics about Temperature (b) and Relative Humidity (c) ... 48

Figure 4.5. PM2.5 and PM10 variation across the monitoring period (a), in the 1st location; statistics

about PM2.5 (b) and PM10 (c) concentration .. 49

Figure 4.6. CO and LPG variation across the monitoring period (a), in the 1st location; statistics about

CO (b) and LPG (c) concentration .. 49

Figure 4.7. Temperature and Relative Humidity variation during the monitoring period (a), in the 2nd

location; statistics about Temperature (b) and Relative Humidity (c) ... 50

Figure 4.8. PM2.5 and PM10 variation across the monitoring period (a), in the 2nd location; statistics

about PM2.5 (b) and PM10 (c) concentration .. 51

Figure 4.9. CO and LPG variation across the monitoring period (a), in the 2nd location; statistics about

CO (b) and LPG (c) concentration .. 51

Figure 4.10. Temperature and Relative Humidity variation during the monitoring period (a), in the 3rd

location; statistics about Temperature (b) and Relative Humidity (c) ... 52

Figure 4.11. PM2.5 and PM10 variation across the monitoring period (a), in the 3rd location; statistics

about PM2.5 (b) and PM10 (c) concentration .. 53

Figure 4.12. CO and LPG variation across the monitoring period (a), in the 3rd location; statistics about

CO (b) and LPG (c) concentration .. 53

Figure 4.13. Statistics about air quality indicator values in the 1st location (a), 2nd location (b) and 3rd

location (c) ... 54

file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367797
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367797
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367798
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367798
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367799
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367799
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367800
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367800
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367801
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367801
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367802
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367802
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367803
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367803
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367804
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367804
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367805
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367805
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367806
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367806
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367807
file:///C:/Users/Gonçalo%20Morgado/Desktop/Tese/Documentos%20da%20dissertação/Dissertação.docx%23_Toc153367807

xiii

List of Acronyms

3GPP - Third-Generation Partnership Project

API - Application Programming Interface

AQI - Air Quality Index

ADC - Analog to Digital Converter

ABP - Activation By Personalization

ADR – Adaptive Data Rate

BLE - Bluetooth Low Energy

BDS - Beidou Satellite Navigation System

CSS - Chirp Spread Spectrum

CSMA/CA - Carrier Sense Multiple Access with Collision Avoidance

CPU - Central Processing Unit

DSRM - Design Science Research Methodology

DSP - Digital Signal Processor

EEA - European Environment Agency

EPA - Environmental Protection Agency

EEPROM - Electrically Erasable Programmable Read-only Memory

FSK - Frequency Shift Keying

GFSK - Gaussian Frequency Shift Keying

GPRS - General Packet Radio Service

GPS - Global Positioning System

GLONASS - Global Navigation Satellite System

IoT - Internet of Things

ISM - Industrial, Scientific and Medical

IaaS - Infrastructure-as-a-Service

I2C - Inter-Integrated Circuit

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

LoRa - Long Range

LoRaWAN - Long Range Wide Area Network

LPWAN - Low Power Wide Area Network

LTE - Long Term Evolution

LPG - Liquefied Petroleum Gas

MQTT - Message Queuing Telemetry Transport

MOS - Metal Oxide Semi-Conductors

MAC - Medium Access Control

MSK - Minimum-Shift Keying

NB-IoT - Narrowband Internet of Things

NDIR - Non-dispersive Infrared Radiation

NMEA - National Marine Electronics Association

OFDMA - Orthogonal Frequency Division Multiple Access

OTAA - Over-The-Air-Activation

OOK - On-Off Keying

PM - Particulate Matter

PaaS - Platform-as-a-Service

PPM - Parts per Million

RFM - Radio Frequency Module

RSSI - Received Signal Strength Indicator

RFID - Radio-Frequency Identification

SC-FDMA - Single Carrier Frequency Division Multiple Access

SF - Spreading Factor

SaaS - Software-as-a-Service

SRAM - Static Random Access Memory

SPI - Serial Peripheral Interface

SNR - Signal-to-Noise Ratio

TCP/IP - Transmission Control Protocol/Internet Protocol

TTN - The Things Network

UNII - Unlicensed National Information Infrastructure

UART - Universal Asynchronous Receiver/Transmitter

USB - Universal Serial Bus

Wi-Fi - Wireless Fidelity

WHO - World Health Organization

1

CHAPTER 1

Introduction

The population's well-being is a crucial factor, both socially and economically. Air pollution is an aspect

that has a major influence, not only on the economy, but mainly on public health, leading people to stop

living a healthy lifestyle. To overcome this problem, measures have been imposed to decrease pollutants

and systems have been used to monitor air quality.

To introduce and address this problem, a motivation associated with the subject in discussion, will

be given. The next part will present the context of the dissertation topic and will describe the developed

project. The questions which led to the development of this project will also be presented. The goals of

the project will be presented after the questions. The methodology that was used to carry out this project

will be also presented, and finally, the organization of the chapters of the dissertation will be described.

1.1. Motivation

One of the world's biggest problems, which affects millions of people all over the world, is air pollution,

which can come in two forms: indoor and outdoor pollution. The emission of chemical and physical

substances from industrial operations, combustion-powered cars, certain domestic equipment, forest

fires and the burning of fossil fuels are the leading causes of this type of pollution [1].

Long-term exposure to this kind of substances has negative impacts on public health and can lead

to serious problems such as cardiovascular and respiratory diseases and even cancers. In 2019, around

99% of the world's population breathed air that did not meet the requirements imposed by the WHO

(World Health Organization) [1] and it was estimated that around 4.5 million people died prematurely

due to outdoor air pollution [2]. Small particles, or particulate matter (PM), and ground-level ozone (O3)

are the main causes of the high mortality rate [2]. In the case of particulate matter, there are several types

according to their size. The most common are the particles with a diameter of 10 (PM10) and 2.5 (PM2.5)

micrometres. Although these components are the main pollutants, gases such as carbon monoxide (CO),

nitrogen dioxide (NO2) and sulphur dioxide (SO2) also contribute to air pollution [3].

This problem not only has serious consequences for human health, but also has negative economic

and social impacts. As pollution increases, the costs associated with health increase and productivity in

certain sectors, such as agriculture, decreases [4]. Air pollution also has an impact on people's well-

being and satisfaction and is associated with disorders in the cognitive development of young people

and the appearance of mental problems such as depression, schizophrenia, and anxiety [5].

To tackle this type of pollution, several measures are implemented to reduce the level of pollutant

concentration in the air. Within this set of measures, the most common are the use of renewable energies,

2

better management of urban and agricultural waste and opting for public transport methods [3]. With

the implementation of this set of measures, mortality rates due to outdoor pollution have been falling

over the years, as can be seen in Figure 1.1:

Figure 1.1. Number of deaths associated with air pollution, per 100,000 people [2]

In 2022, the European Commission proposed new measures to combat the concentration of

pollutants, with the aim of achieving a cleaner ambient air by 2030, in Europe [6]. These measures

involve strengthening plans and applying air quality monitoring models [6]. This monitoring can be

conducted using monitoring station systems, which consist of a physical construction containing various

components, including sensors capable of measuring the concentration of pollutants, such as carbon

monoxide, particulate matter, ground-level ozone, nitrogen oxides and sulphur dioxide.

These types of stations can be used to obtain data on the concentrations of various pollutants

and can be used to later analyse and build maps that make it possible to assess the concentrations

of these pollutants, as can be seen in Figure 1.3. By accessing this information from monitoring

stations and applications that allow their data to be visualised, anti-pollution measures can be

imposed to reduce the concentration of pollutants in an outdoor context.

(a) (b)

Figure 1.2. Conventional monitoring stations in Portugal (QualAR, 2019) and in

USA (The Port of Los Angeles, 2023)

3

Figure 1.3. Map of pollutant concentration, associated with PM2.5 concentration (IQAir, 2023)

1.2. Context

Conventional monitoring stations, as shown in Figure 1.2, offer a high degree of accuracy in their

readings because they use a combination of techniques and some calibrated analytical instruments, like

gas chromatograph-mass spectrometers [7], to measure several air pollutants, present in an air sample.

Although they are expensive to build, require a high level of energy consumption and some of them take

up a lot of physical space [7].

With progress in the areas of electronics, there are now low-cost, energy-efficient, and small sensors

capable of detecting several types of pollutants, with a high response time (in the order of seconds or

minutes) [8], [9].

The IoT landscape has made it possible for sensors of this type to interact with each other and, using

certain communication technologies, build air quality monitoring systems. With these systems, the

readings obtained by the set of sensors can be sent to a base station or gateway and then forwarded to a

cloud service [10], giving the user easy access to the readings.

In this kind of IoT monitoring applications, the requirement is for energy-efficient communication

technologies, due to the continuous operation of these systems, which are accessible to implement and

therefore have a low implementation cost, and since there may be clusters of monitoring nodes spread

across several locations, a wide coverage of this type of technology is required. LPWAN’s (Low Power

Wide Area Networks) were created to fill the requirements mentioned above [11], and therefore new

technologies have emerged that can offer the characteristics required for this type of monitoring

applications, such as LoRa and Sigfox [12], [13].

These IoT air quality monitoring systems, capture information about the air quality, so it can be

processed, analysed, and treated to be used to visualise and build maps of the level of pollutant

concentration in each area.

The aim of this project is to develop an IoT system for intelligent monitoring of outdoor air quality,

but unlike conventional monitoring stations, this prototype aims to create a low-cost implementation

with reduced energy consumption, using low-cost sensors to detect concentrations of certain pollutants,

as well as the temperature and relative humidity level present in the air. These sensor readings will be

4

sent to a LoRaWAN server using LoRa technology, due the need for long-range communication, and

then sent via MQTT to a development tool to help process the data and integrate API’s and online

services, and finally inserted into a database. To avoid network congestion, the frequency at which the

readings are sent considers the amount of urban traffic in each location in real time, using a traffic API.

Finally, all the data obtained will be visualised and analysed using a web/mobile application.

1.3. Research Questions

The development of this project generates several questions that will be answered, based on the results

obtained. Some of these questions are:

1. Can the results obtained by low-cost IoT air quality monitoring systems be reliable, in such a

way as to provide a reference for further measures to prevent outdoor air pollution?

2. Is the use of LoRa technology, in this context of air pollution monitoring, viable and scalable

enough to create a larger network with multiple monitoring nodes geographically spread over a

larger area?

3. Which advantages does the visualisation and analysis of sensor data, in real time, bring to

stakeholders?

1.4. Objectives

The main goal of this project is the intelligent monitoring of air quality in an outdoor context, using

LoRa technology to send the sensor readings, to a LoRaWAN server, for further data visualization and

analysis on a web and android application.

Another objective is the implementation of a mechanism, on the air quality monitoring system, that

changes the frequency at which the data obtained from the sensors, is sent via LoRa, according to urban

traffic conditions at the location where the monitoring is being conducted.

Lastly, the project aims to verify whether LPWAN technologies, in this case LoRa technology, can

be scaled up in the context of IoT monitoring systems.

To achieve the above objectives, the following requirements were considered:

1. Development of a monitoring node capable of measuring pollutant concentrations and other

atmospheric parameters such as temperature and relative humidity;

2. Implementation of long-range communication using LoRa technology;

3. Storage of sensor readings in a cloud-hosted database;

4. Processing the data obtained for later visualisation;

5. Development of a web and android application to visualise and analyse the data.

5

1.5. Methodology

The methodology used to develop this project was DSRM (Design Science Research Methodology).

This methodology, presented by Peffers et al. [14], is characterized by a process of developing artefacts

to address known research problems, contributing to the project's research, evaluating the

implementations developed, and demonstrating the results to the public. These artefacts can be

prototypes, models, or experimental procedures [14].

It is a methodology that works in a sequential and iterative way and is divided into seven activities:

"problem identification and motivation", "definition of objectives for a solution", "planning and

development", "demonstration", "evaluation" and "communication". Figure 1.4. shows the order flow

of the activities, as well as the several "entry points":

Figure 1.4. Structure of the DSRM methodology [14]

The entry points make it possible to determine at which activity of this methodology the

development process of the project will begin. Since in this case the project problem has been identified,

it will start from the "Problem-Centred Initiation" point, which represents the "Problem identification

and motivation" phase. This phase involves a literature study on the problem involved, which is

presented in the motivation and context and then in the state of the art.

When this first phase is over, the objectives for the solution in question will be defined, and these

are presented in section 1.4. The design and creation of the artefact is the next phase, which represents

the development of the solution to the problem. In the case of this project, it represents the development

of an IoT monitoring system for outdoor air quality. Once the previous phase has been completed, in

the "Demonstration" phase, the solution will be put into operation to measure the presence of pollutants

in the air.

In the following "Evaluation" phase, the prototype will be examined for its accuracy in taking

readings. If all the previous phases have been completed, we proceed to the "Communication" phase,

where all the research, development and results are presented to the public. During the "Evaluation" or

"Communication" phase, if new objectives are to be set or the accuracy of the solution needs to be

improved, a new iteration of some of the previously phases can be started, as shown in the Figure 1.4.

6

1.6. Dissertation Structure

This dissertation is structured as follows:

• Chapter 1 - Introduction: the motivation and context that gave rise to the development of this

prototype, some questions to be answered, objectives to be achieved with this implementation

and the methodology used in the development of this project are presented;

• Chapter 2 – Literature Review: this chapter describes concepts related to outdoor pollution,

LPWAN technologies, IoT architectures for this type of system and lastly, it provides a

description and analysis of related work on the topic of the dissertation;

• Chapter 3 - System Description: all the hardware and software used in the development of this

IoT system is described, as well as a description of how the system works, its architecture and

how communication between the different components is carried out;

• Chapter 4 – Results and Discussion: this chapter analyses the data obtained by the IoT system,

including a detailed discussion and remarks;

• Chapter 5 - Conclusions and Future Work: finally, based on the results obtained, the conclusions

and future work, regarding air quality monitoring and data analysis are considered, for this IoT

system are described.

7

CHAPTER 2

Literature Review

This section describes the state of the art, related to all the research carried out on the topics covered in

this dissertation. This chapter is separated into two sections. Section 2.1. is related to the background

concepts associated with the project. Concepts such as outdoor air pollution, sensors for pollutants,

Internet of Things (IoT), architectures used in IoT systems, communication technologies and cloud

computing are presented and described. Section 2.2. presents work related to the dissertation topic. They

are described and finally the choices made by the authors in implementing their IoT systems are

examined.

2.1. Background Concepts

2.1.1 Outdoor Air Pollution

To achieve public well-being, it is necessary to create the conditions to do so, from an economic and

social level to health in general. In the case of health, a key factor in achieving well-being is the air we

breathe, but this air is subject to pollution. One of the types of air pollution that has a major impact on

human health is outdoor air pollution. This type of pollution is caused by human activities such as

industrial operations, fossil fuel combustion, forest fires, construction, and agriculture [15], which emit

a variety of pollutants into the atmosphere. Pollutants such as carbon monoxide (CO), nitrogen oxides

(NOx), sulphur oxides (SOx), ground-level ozone (O3), particulate matter with diameters of 2.5 μm and

10 μm (PM2.5 and PM10), are declared by the WHO as the main atmospheric pollutants [3].

 Long-term exposure to this type of pollution can cause serious illness and, consequently, premature

death. In 2019, the WHO estimated that heart-related diseases, such as strokes, were associated with

37% of premature deaths worldwide [3]. Respiratory cancers, respiratory infections and other lung-

related diseases are also associated as major causes of premature death [15].

 To control the emission of these air pollutants and create a healthier environment in different

countries, WHO created a list of guidelines [16] with the recommended concentrations of each pollutant.

Table 2.1 shows these limits imposed by the WHO, where the different types of pollutants, that have the

most impact on outdoor air pollution are listed, and for each of these pollutants, there is a limit

concentration, over a certain period, that must be considered to achieve a cleaner outdoor environment,

with a decrease in the emission of atmospheric pollutants. In this way, the governments of each country

can manage the activities that contribute to pollution and take measures to reduce the emission of

pollutants.

8

Table 2.1. WHO guidelines for each pollutant [16]

2.1.2 Air Quality Index (AQI)

The Air Quality Index is a measure designed to detect the level of air pollution, in a certain location

[17]. It is a numerical indicator that depends on the concentration of various pollutants. The European

Environment Agency (EEA) defines the pollutants considered for the AQI as being: microparticles

(PM2.5 and PM10), ground-level ozone (O3), nitrogen dioxide (NO2) and sulphur dioxide (SO2) [17].

Table 2.2. AQI levels and respective colors, declared by Environmental Protection Agency (EPA) [18]

AQI AQI Levels AQI Level Colors

0-50 Good Green

51-100 Moderate Yellow

101-150 Unhealthy for Sensitive Groups Orange

151-200 Unhealthy Red

201-300 Very Unhealthy Purple

301-500 Hazardous Maroon

Table 2.2 shows the different AQI limits and their associated levels. This index is divided into 6

levels and each level is represented by a different colour [18], [19]. The higher the AQI value, higher

the level of pollution at a particular location and the values used for the limits of each AQI level are

based on an equation that considers several parameters, presented in [19], one of these parameters being

the concentration of the pollutant. AQI’s are calculated for each pollutant and the one with the highest

AQI value is the one that has the greatest influence on atmospheric pollution, and consequently this will

be the representative AQI value in the location under study.

9

2.1.3 Gas and Particulate Matter Sensors

In IoT systems, the use of sensors has become increasingly important for collecting and processing data

[20], for subsequent intervention by some service, actuator, or even human beings.

In the context of air quality monitoring, gas and particulate matter sensors are used to measure the

concentration of certain air pollutants and the concentration of particles suspended in the air. The

following subsections describe some of the types of sensors used in this type of monitoring system and

their operating principles.

2.1.3.1. Metal Oxide Semi-Conductors (MOS) Sensors

In the implementations [21]–[24], Metal Oxide Semi-Conductors sensors are used to detect pollutants

such as CO, NO2 and SO2. These sensors are known as MOS sensors and are very popular among the

range of gas sensors [25]. They consist of an oxidisable metal (depending on the gas being detected), a

heating filament, a substrate where the oxidisable metal is deposited and a set of electrodes [7]. Initially,

when the sensor is powered on, the filament heats up to keep the sensor at a certain temperature and

obtain more accurate results. The flow of electrons between the sensor's electrodes changes according

to the gas it is exposed to. When the sensor is in the presence of fresh air, more electrons are accumulated

on the surface of the oxidisable metal, resulting in a lower flow of electrons, and consequently, lower

conductivity and higher resistance. If the sensor is exposed to polluting gases, propane, methane, carbon

monoxide, among others, the electrons are gradually released from this surface, ensuring a greater flow,

and resulting in a lower sensor resistance and greater conductivity between the electrodes. The

concentration of the gas being measured can be obtained by measuring the electrical conductivity of the

metal [7]. As the electrical conductivity increases, the resistance value decreases and the concentration

of the studied gas increases.

Figure 2.1. MOS sensors inside constitution

 They are low-cost sensors, and are resilient to extreme conditions, making them reliable for long-

term deployments and implementations that are low budget. These sensors can detect a wide range of

gases, but despite this property, they are not very selective, i.e. the presence of a certain gas can influence

the concentration of another gas being measured by the sensor, which can lead to misinterpretations of

the current concentration of a specific gas. Despite being robust, their sensitivity is affected by changing

atmospheric conditions and to obtain more accurate readings they need to be recalibrated [25].

Heating Filament

Oxidisable Metal

(Sensing Element)

Substrate

Electrodes

Flow of Electrons

10

2.1.3.2. Non-dispersive Infrared Radiation (NDIR) Sensors

The CO2 detection in the implementations of [22], [26] is conducted using Non-dispersive Infrared

Radiation (NDIR) Sensors. These types of sensors consist of an infrared light source, a sampling

chamber containing the gas to be detected, an optical filter and an infrared detector [25].

Figure 2.2. NDIR sensors constitution and its operation [27]

The infrared light beam travels through the entire gas chamber to the optical filter. The gas to be

detected enters the sampling chamber and the infrared ray is absorbed by the gas molecules in the

chamber. Since the gases that enter the sampling chamber have a certain absorption band in the infrared

spectrum, the closer the radiation band produced by the infrared ray is to the absorption band of the gas,

higher will be the absorption by these molecules, derived from the wavelengths of the infrared spectrum

that are characteristic of the structure of the gas [27]. The wavelength of the infrared ray that has not

been absorbed by the gas molecules is absorbed by the optical filter and subsequently by the detector,

which measures the infrared laser intensity, after the absorption made by gas molecules. The detector

calculates the gas concentration through the difference between the intensity of the radiation emitted by

the infrared light source and the intensity of the infrared ray received by the detector [27].

 NDIR sensors are subject to spectral interference from other gases, which can affect the accuracy

of the readings, but these sensors have a long service life and low energy consumption [25].

2.1.3.3. Particulate Matter Sensors

Particulate matter sensors detect microparticles in diverse ways, depending on the sensor used. There

are a variety of techniques such as optical detection, gravimetry, microbalance oscillation [28] and beta

attenuation to detect the concentration and quantity of microparticles [7], [29]. In the implementations

presented in [21], [22] and [26], particulate matter sensors are used, based on the light scattering

principle. Sensors using this technique consist of an infrared light source, a photo detector, and a

detection chamber.

Figure 2.3. Light Scattering PM sensors and its operation [7]

11

The infrared light beam is in continuous operation, and when a microparticle travels past the

detection chamber and intercepts the infrared beam, the beam is scattered inside the detection chamber,

and this scattering is detected by the photo detector [7]. Depending on the intensity of the scattered beam

and the scattering patterns caused by this scattering, an electrical signal is produced, making it possible

to determine the density and how many microparticles are contained in that air sample. Sensors using

this technique can detect particulate matter with diameters around 2.5 μm, 10 μm or smaller [25].

 Parameters such as temperature and relative humidity can affect the reading of these sensors.

Despite being susceptible to these parameters, they are suitable for long-term deployments because they

don't require much maintenance [25].

2.1.4 Internet of Things (IoT)

With the increasing number of electronic devices in society, there is a need for connectivity between

them and to the internet. It is expected by 2030, 80 billion devices will be connected within a network

and 20.5 billion will be connected per person [9].

To fulfil these needs, the Internet of Things has emerged. This concept is based on the idea of a

large network of physical devices with integrated software, electronics, actuators, and sensors, which

are connected to the internet, enabling communication between devices, collection, and exchange of

data [26].

The Internet of Things has become an aid in diverse areas, such as health, agriculture, industry,

transport and combating certain global problems, such as the management of natural resources, the

energy crisis and, air pollution [30].

To obtain information about air pollution, IoT monitoring ecosystems have been created that allow

data to be collected and analysed. With advances in the field of electronics, new sensors have emerged

with low cost, consumption and size [8], [9], and in combination with certain communication

technologies, it is possible to create IoT ecosystems for monitoring parameters, which collect and

exchange information about the environment, for subsequent action by humans [31].

2.1.5 IoT Architectures

There are numerous components that comprise an IoT system, from sensors and actuators to web

platforms, and each of these has a function associated with it. The architecture of these systems includes

different components that can be associated with different layers. The perception, network and

application layers make up the three layers of the basic architecture model [32], [33]. In the works

presented in section 2.2.1, the architecture used for their IoT systems follows the pattern of this IoT

architecture model.

12

The perception layer, or sensing layer, is the first layer of this architectural model, and its primary

function is to collect data about the surrounding environment. This layer includes sensors, actuators, and

RFID tags, and is also responsible for interconnecting these physical components to the IoT network

[26], [33].

The second layer is the network layer and is the layer just above the perception layer. It is

responsible for processing and receiving data from the perception layer and forwarding this information

via gateways to external services such as cloud platforms, databases, or visualisation platforms.

Communication is achieved through technologies such as Wi-Fi, Bluetooth, mobile networks (3G or

4G) or LPWANs [26], [33].

Finally, the last layer is the application layer. This receives all the information from the network

layer and is used for specific applications (data visualisation, database storage, cloud storage, intelligent

action), acting as an interface between users and applications or services [26].

Depending on the user's needs and specific use cases, other models for IoT system architecture have

started to emerge. Another example is the 5-layer model, composed by the perception, network, service,

application, and business layer. Between the application and network layers, there is another layer, the

service layer (or middleware layer). Similar to the 3-layer model, the perception layer is designed to

collect data from the surrounding environment. The functions associated with processing, analysing,

and storage of data, are part of the service layer, leaving the network layer only responsible for the data

transmission. In this model, the application layer is only responsible for intelligent action and providing

data and services when the user requests them. Finally, the business layer is designed for data analysis

and model and chart construction for further interpretation [32]–[34].

Perception Layer (Sensors, Actuators, Edge Services)

Network Layer (Data Transmission and Processing, Storage,

Smart Objects and Servers linking)

Application Layer (Software resources, Smart Apps and

Management, Data Analysis)

Perception Layer (Sensors, Actuators)

Network Layer (Data Transmission)

Application Layer (Software resources, Smart Apps and Management)

Service Layer (Data Processing, Storage)

Business Layer (Data Analysis, Model construction)

Figure 2.4. 3-layer architecture model for IoT systems

Figure 2.5. 5-layer architecture model for IoT systems

13

2.1.6 LPWAN (Low Power Wide Area Network)

The emergence of IoT systems has overcome some of the problems of traditional systems based on

cellular networks, such as 3G or 4G. Their objectives are to make a more efficient use of the frequency

spectrum, to achieve lower latency, to reduce costs associated with hardware and its implementation, to

achieve a greater range of coverage and reach lower energy consumption for longer battery life [9]. To

achieve these objectives, Low Power Wide Area Networks (LPWAN’s) have been created.

LPWAN’s use a star topology, where the devices connect directly to base stations. In this way, the

cost of implementing gateways is minimised and devices don't have to waste energy "listening" to other

devices that want to route traffic through them [30]. Unlike the traditional use of the 2.4 GHz band by

technologies such as Wi-Fi, LPWAN’s use sub-GHz bands, allowing for less signal attenuation, reduced

energy consumption and greater communication range [30].

LPWA networks consume less energy as they don't require much bandwidth to operate. Some IoT

devices have a strong need for long-range communications and the use of LPWAN’s makes it possible

to satisfy this need and find a less expensive solution.

With the emergence of LPWAN’s, technologies have also begun to be developed that allow the

characteristics required for IoT systems to be achieved. In accordance with this dissertation, the use of

this type of technology is very much required, as the project is based on building an IoT ecosystem for

monitoring air quality, which sends only sensor information over a long-range network. The following

subsections describe the characteristics of some of these technologies.

2.1.6.1. Sigfox

Sigfox is an LPWAN technology that was developed in France in 2010 by the Sigfox group. From

proprietary base stations, it is possible to connect to backend servers via an IP-based network [30].

It is a technology based on unlicensed bandwidth, i.e., it is isolated from costs and any organisation

can use this frequency spectrum and communication medium [35], where it uses the 868.180 -

868.220MHz bands in Europe, with 400 100Hz channels, 915MHz in North America and 433MHz in

Asia [12]. It is also characterised by its very narrow bandwidth, which allows for efficient use of the

spectrum and reduced noise and energy consumption [11], [12], [30]. As it has a very low data rate (100

bps), Sigfox is very limited when it comes to sending information.

Initially, only uplink communication was supported, but later downlink communication was

implemented. The range associated with this technology is 30-50 kilometres in rural areas and 3-10

kilometres in urban areas [11].

To fulfil the regional spectrum usage regulations, only 140 uplink 12-byte messages can be sent per

day. From the 400 available channels, devices can choose any of the available channels to send their

messages. These messages are sent several times to increase the probability of reception by the base

stations [30].

14

2.1.6.2. Narrow-Band IoT (NB-IoT)

NB-IoT is a narrowband-based technology developed by the Third-Generation Partnership Project

(3GPP) group in 2016. Unlike Sigfox, NB-IoT uses a licensed frequency band, i.e., the user is subject

to a cost if he wants to use the NB-IoT frequency band. This technology is compatible with LTE, since

it is a technology that comes from LTE [30].

In uplink communication, NB-IoT uses the Single Carrier Frequency Division Multiple Access

(SC-FDMA) method, where multiple sub-carriers carry the same symbol, and in the case of downlink,

Orthogonal FDMA (OFDMA) is used, which has the same operating principle as FDMA, except that

each symbol is carried by a sub-carrier [12], [30]. On the uplink, communication is limited to 20 kbps

and on the downlink, it is limited to 250 kbps. In systems that have implemented NB-IoT, battery life

can reach 10 years if an average of 200 bytes are transmitted per day.

It's a technology that allows the interconnection of several devices within a cell, allowing the

connectivity of 50 000 devices, and this number can be increased adding more NB-IoT carriers [30].

2.1.6.3. Long Range (LoRa)/Long Range Wide Area Network

LoRa is a technology developed by the company Semtech, which acts on the physical layer, where

signals are modulated via unlicensed frequency sub-bands in the order of MHz. In Europe, LoRa works

with the 868 MHz and the 463 MHz band [36], with these two, being divided in sub-bands. LoRa uses

a chirp spread spectrum (CSS) technique, which consists on spreading the signal over a wide bandwidth,

using a chirp signal, in which the frequency of the signal can increase or decrease over time, making the

signal more difficult to be detected and with less interference [12], [36], and also, it enables the

possibility of achieving long-range transmission with low energy consumption.

This technology can change the binary rate of the data transfer, its range, the lifetime of the batteries

and the sensitivity of the receiver, by using Spreading Factors (SF). The SF’s used in LoRa range from

SF7 to SF12. The higher the SF, the greater the range and sensitivity of the receiver, but the data rate

and the lifetime of the batteries, decreases [12], [30], [37]. The choice of SF’s is based on network

conditions. The mechanism that allows the choice of SF's, and consequently, the adaptation of

communication parameters, is called Adaptive Data Rate (ADR). ADR ensures an approach for

optimizing data rates, the time that a message takes to arrive to a gateway, and energy usage in the

network, automatically adapting communication parameters [38], in accordance with network

conditions. This adjustment is performed by the LoRaWAN server or infrastructure. Throughout signal

transmission, communication metrics (packet loss, signal strength, signal-to-noise ratio) are exchanged

between the device, gateway and LoRaWAN server/infrastructure. The LoRaWAN server analyses

these communication metrics, and based on this data, it uses the ADR mechanism, to dynamically adjust

several communication parameters to optimise the device's performance on the network.

15

As LoRa acts on the physical layer, the technology responsible for communication is LoRaWAN.

LoRaWAN it’s open-source technology, from the LoRa-Alliance association, that deals with the MAC

(Medium Access Control) layer.

Figure 2.6. Constitution of the physical and MAC layers, related to LoRa and LoRaWAN, respectively

(LoRa and LoRaWAN – Semtech LoRa, 2023)

 LoRaWAN operates between 0.3kbps and 50kbps [12] and is not a very desirable technology for

transmitting content that requires higher binary rates, such as video or images. Two-way communication

is available on all LoRa devices. However, there are some limitations associated with sending and

receiving messages from the devices. Three classes of devices have therefore been created: Class A,

associated with devices that are powered by batteries but have a high latency. Downlink messages can

only be sent when an uplink message is first sent by the device, after which the device opens two small

reception windows for downlink communication; class B, which has the same features as class A, except

that has a lower latency and downlink messages are sent in scheduled reception windows at a predefined

time interval. This feature is achieved by synchronising the devices with the base stations via signalling

messages sent by the base station. Finally, class C, where devices are always listening, in exchange for

minimal latency in receiving downlink messages and very high energy consumption, making this class

more suitable for devices with their own power supply [11], [12], [30].

The architecture of a LoRaWAN network is characterised by having physical devices that send

information via LoRa to gateways, and then the information from the gateways is sent via TCP/IP to a

network server, and then forwarded to application platforms. The architecture diagram used in this type

of technology is shown in the Figure 2.7:

Figure 2.7. Architecture of a LoRaWAN network (LoRaWAN Architecture – TTN)

16

2.1.7 Cloud Computing

IoT monitoring systems generate large amounts of data and use external services or tools for further

analysis or processing.

Cloud computing has made it possible to optimise these IoT systems by providing access to

resources, applications, tools, and data storage integrated into remote servers over the Internet [39]. This

allows entities to reduce the cost associated with installing and configuring infrastructures, such as

physical servers, provides flexibility in accessing multiple services, without the need to install software

on local devices and access to resources, like data or tools, and these tasks can be done from any location,

as long as there is internet access.

There are 3 types of cloud services: SaaS (Software-as-a-Service), in which entities access cloud

software or applications (such as email applications) via their browser, with no need to maintain or

manage the services; PaaS (Platform-as-a-Service), which offers access to remote servers, databases,

operating system software, storage and tools for developing, managing and running applications; IaaS

(Infrastructure-as-a-Service), which allows online access to computing resources/infrastructures, such

as access to physical and remote servers, data storage and networks, without the need to implement this

type of infrastructure locally [39].

2.2. Related Work

With the emergence of these communication technologies and sensors capable of detecting different

types of polluting gases and microparticles suspended in the air, several IoT implementations for

monitoring air quality have started to appear.

In a project carried out by Simitha K. M. and Subodh Raj M. S. [21], the concentration of pollutants

in a city in India is studied using an IoT system that takes readings from sensors and uses the LoRa and

Wi-Fi technology to transmit the data acquired. This system studies the concentration of pollutant gases

like CO, NO2, SO2, using the MQ-7, MQ-135, MQ-136 sensors and also measures the concentration of

particulate matter, with the usage of GP2Y1010AUF optical sensor. In this monitoring system, the

sensors provide information about the pollutants levels, with these being connected to the analog inputs

of the Arduino Mega board. An SX1278 RA-02 LoRa module is connected to this Arduino board to

send the sensor readings via LoRa. A LoRa module is connected to a ESP32 Wi-Fi module to receive

the readings sent, with the ESP32 module, acting as a LoRa gateway. It should be noted that the LoRa

modules are separated by 1.5 kilometres. The values obtained by the sensors are sent through LoRa to

the gateway and later sent over Wi-Fi, from the gateway to the ThingSpeak platform. Finally, a

Raspberry Pi 3 Model B+ is used to read the pollutant readings from the ThingSpeak platform through

a Python script and then visualized with a Photoshop CS6 template.

The authors in [40] proposed a mobile monitoring system for detecting certain pollutants, such as

carbon monoxide (CO), nitrogen dioxide (NO2) and sulphur dioxide (SO2), which can be placed in any

17

public transport vehicle. The monitoring node uses an array of sensors to detect the above-mentioned

pollutants, a GPS module and a modem using General Packet Radio Service (GPRS) technology for 2G

and 3G cellular communication. The measurements obtained by the sensors are then transmitted to a

public GPRS base station and then forwarded to a Pollution server, defined by the author as a “an off-

the-shelf standard personal computer with accessibility to the Internet”, which provides a graphic

interface for the user to access the pollution levels, air quality index and location of the monitoring node.

Some programming made on the server, is made in PHP, with this server being connected to a MySQL

database to store the readings.

Aziz A. A. et al. [22] created a portable IoT air quality monitoring system that captures the

concentration of certain pollutants (CO, CO2), particulate matter, and parameters such as temperature

and relative humidity using sensors that are also connected to an Arduino UNO board with an integrated

LoRa Shield, so that the readings can then be sent via LoRa to a gateway consisting of a WeMos D1R1

board and a LoRa Shield. The WeMos D1R1 board then sends the readings via Wi-Fi to the ThingSpeak

platform so that the data can later be viewed. This implementation was conducted in Malaysia, and

initially, two scenarios were carried out, measurements indoors and measurements outdoors, specifically

at a construction site. The concentration of particulate matter was higher at the construction site, due to

being a space that is heavily polluted by dust particles. The concentration of CO2 was also found to be

much higher at the construction site than indoors. An experiment was also carried out with cigarettes in

an indoor space to check the behaviour of the CO concentration. It was found that the more cigarettes

that burned, the higher the CO concentration. To compare the concentration of pollutants with the pre-

defined values for the AQI (Air Quality Index), measurements were taken in two different locations in

Malaysia, Ipoh and Kampung Jalan Kebun. Ipoh has a higher population density and several industries

and Kampung Jalan Kebun is a rural location. AQI values are defined by calculating an equation based

on the CO and particulate matter concentrations. It was found that the AQI is higher in an urban centre,

such as Ipoh, meaning that there is a higher pollution in this location.

The system proposed by Husein N. A. A. et al. [23] is based on a network of monitoring nodes that

transmit readings from sensors that detect carbon monoxide (CO), carbon dioxide (CO2) and nitrogen

oxides (NOx), using LoRa technology, to a gateway and then display the readings on a web interface

created by the authors. The monitoring nodes are composed by an Arduino UNO R3 board, MQ-2, MQ-

7 and MQ-135 sensors to detect CO2, CO, and NOx respectively, a portable rechargeable battery and a

LoRa Shield RFM module, attached to the Arduino board, for LoRa transmission. The gateway, on the

other hand, is made up of an Arduino UNO R3 board and a LoRa Shield RFM module to receive the

readings. In this IoT system, the data is updated every minute. Two outdoor scenarios and one indoor

scenario were evaluated. In the first outdoor scenario, the nodes were placed in distinct locations within

a Malaysian university campus (UKM campus). In the second scenario, the nodes were placed in the

city centre of Kajang, in Malaysia. In the indoor scenario, the nodes monitored three areas of the

18

university campus library. A last study was carried out regarding the maximum coverage distance for

LoRa transmission between the nodes and the gateway, carried out in the university campus stadium.

Another implementation of IoT systems for monitoring air quality, created by Thu M. Y. et al. [26],

collects pollutant readings from sensors, which are connected to a The Things Uno board. The sensor

readings are transmitted using LoRa technology, and these readings are directed to a LoRaWAN

gateway so that the data can then be sent to The Things Network (TTN) platform. Concentrations of

CO2, particulate matter only between 1-2 μm in size and the level of temperature and relative humidity

are measured using the T6713, SM-PWM-01C and T9602 sensors, respectively. From the TTN, the

sensor values are sent to a database, InfluxDB, via the MQTT protocol, so that this data can be visualized

on the Grafana platform. A machine learning algorithm written in Python is also applied to predict the

temperature and humidity values, to be compared with the values obtained by the sensors. The tests were

conducted in the Yangon region of Myanmar.

An IoT air quality monitoring system [24] was built to measure just two parameters: carbon

monoxide (CO), using an MQ-9 sensor, and air quality in general, using an MQ-135 sensor. Several

monitoring nodes were built using an Arduino UNO board, a portable battery, a Bluetooth module (HC-

05) a LoRa module and MQ-9 and MQ-135 sensors. A gateway is also used, consisting of an Arduino

Uno board, a LoRa receiver module, to receive the readings from the monitoring nodes, a SIM800L

module, which allows communication via General Packet Radio Service (GPRS) technology and an

ESP8266 module, which allows Wi-Fi connection. The readings are sent from the monitoring nodes to

the gateway and then to the ThingSpeak platform. SMS warnings are sent to the user from the SIM800L

module if the predefined air quality thresholds are exceeded. The user can also receive the sensor

readings on his mobile device via Bluetooth by installing the "Arduino Bluetooth App". The user pairs

his mobile device with the HC-05 module, and each time measurements arrive at the gateway, they are

sent to the user via the Bluetooth module. Each monitoring node was placed in 5 different locations

throughout a university campus in an Indian city to detect pollution levels. In a final study, it was

compared the use of LoRa technology with Wi-Fi to send readings, with monitoring nodes placed along

routes between the 5 locations of the university campus, in an outdoor and indoor scenario.

NDIR sensors have been used to detect pollutants such as CO2 in implementations including [22],

[26]. There are bands in the absorption spectrum of infrared radiation that make up the absorption

spectrum of CO2 [41], so the characteristic wavelength of the infrared ray is easily absorbed by CO2

molecules. This is why NDIR sensors are widely used for CO2 detection. As a result, the readings

obtained are highly accurate, using NDIR sensors, compared to CO2 detection using MOS sensors, due

to their different operating mode.

MQ sensors can detect a large range of gases and are very affordable. In implementations [21], [23]

and [24], where it is necessary to measure several pollutant gases concentrations, the adoption of these

sensors in monitoring systems is suitable. Despite being able to detect multiple gases, the presence of

different gases in the surrounding environment can affect the accuracy of the sensor's readings.

19

The sensors used for particulate matter detection in [21], [22], [26] are based on optical detection

using the principle of light scattering. This type of technique achieves good precision and, as we are

talking about small mobile deployments, it is appropriate to have sensors that do not require a great deal

of maintenance. Techniques such as gravimetry, in this type of deployment, are not very suitable because

they require constant maintenance due to the use of filters.

In the systems presented, the systems' architecture follows the predefined pattern for an IoT system

architecture, where the perception layer contains the physical devices, the network layer collects and

forwards information to external platforms and the application layer uses external services and platforms

provided by the user.

In the implementation carried out by [24], in addition to LoRa technology, Wi-Fi was also used to

communicate readings. In the case where the monitoring nodes were deployed in outdoor areas at

distances of over 874-1130 metres from the gateway, it was found that using Wi-Fi required several

nodes to communicate the readings to the gateway. Wi-Fi, as a short-range technology [34], is not very

scalable in long-range systems. It is necessary to implement more nodes so that information can be

exchanged via multiple hops to the gateway, which is something that is not very appropriate due to the

additional costs of implementing more nodes and the excessive energy consumption. For the indoor

deployment, the use of Wi-Fi was more reliable, achieving a lower implementation cost compared to

the use of LoRa. In [40], GPRS technology was used to send sensor readings. GPRS is a cellular

communication technology, which is why infrastructures such as base stations and sector antennas [42]

are needed to enable communication between the monitoring node and the server. For a mobile

implementation, using this technology is a viable option because, as it is an older technology, there are

several infrastructures already installed for cellular communication, unlike LoRa, which requires its own

gateways with LoRa reception modules to receive data. In terms of network coverage, GPRS can't

achieve as much coverage as LoRa [42], due to the infrastructure of its cellular network. LoRa, on the

other hand, is a long-range technology that offers greater coverage and is a practical choice for long-

range deployments. As the system is implemented in a vehicle in motion, the accuracy of the readings

may not be very precise, resulting in unreliable data.

In the implementation [23], the study conducted to test Lora transmission coverage showed that the

further away from the gateway the monitoring node was, the less packets were received at the gateway.

By choosing spreading factors (SF), LoRa can adapt various communication parameters [37], with the

use of ADR mechanism. In this case, as the node moves further away from the gateway, it is necessary

to increase the spreading factor to increase the communication range. In exchange for this increase in

range, the data rate decreases, and the signal is more susceptible to interference. Between the gateway

and the node, there were several buildings and trees, which interfered with signal propagation and,

consequently, communication lost quality, leading to a packet loss and consequently, to a lower data

reception rate.

20

In [21], [22], [24], the readings are sent to the ThingSpeak platform and in the case of [26], the

readings are sent to TTN, to be subsequently stored in InfluxDB and visualised in Grafana. These are

two different approaches that depend on the user's needs. InfluxDB offers the possibility of being used

by several services, giving the user great flexibility when it comes to retrieving data for use in other real

time applications. Grafana platform has a wide range of options when it comes to data visualisation and

allows data to be visualised in several dashboards from some databases [43]. ThingSpeak can offer real-

time data analysis, allows data visualisation and the user can also act on the data obtained.

21

CHAPTER 3

System Description

Considering the main objective of the research, which is to monitor outdoor air quality, a prototype of a

monitoring node was created, made up of low-cost sensors, using LoRa technology, due to the need for

long-range communication to send readings to a LoRaWAN server, and due to its low energy

consumption. The readings are collected from various locations in the city of Lisbon, Portugal, and for

this reason, the monitoring node integrates a GPS module to analyse where the readings were taken. To

achieve an implementation to prevent network congestion, a feature is implemented which, depending

on the level of urban traffic, changes the frequency of sending readings to the LoRaWAN server. A web

and mobile application have been created so that the user can analyse the readings in real time and in

specific time periods.

Throughout this section, a description is given of the system's architecture, the components that

make up the monitoring node, how the readings are sent, and all the software used to run this system.

This section is subdivided as follows:

• System Architecture;

• Perception Layer;

• Network Layer;

• Application Layer.

3.1. System Architecture

This project mainly describes the creation of an outdoor air quality monitoring node prototype with the

integration of LoRa technology. The architecture of this system is divided into three layers. In the

perception layer, the node consists of several gas sensors, an air quality sensor, a temperature and

humidity sensor, a particulate matter sensor, a GPS module, and a portable battery. A Raspberry Pi is

also used to run a software instance that acts as a data receiver and processes the incoming data.

In the network layer, readings are sent periodically from the monitoring node to a LoRa gateway.

In this transmission, the data is sent regarding the concentration of certain pollutant gases obtained by

the gas sensors, data on the temperature and humidity values, the air quality indicator, the concentration

of microparticles, the latitude and longitude of the node's location, and finally the frequency at which

the readings are sent to the LoRa gateway. This data then forwarded to a LoRaWAN server. The Things

Network (TTN) platform is used to create an instance of a LoRa network that can run a server that

receives the readings from the monitoring node. After receiving the readings on the TTN, they are sent

via the MQTT protocol to an instance of a programmable tool, Node-Red, inside a Raspberry Pi 4 Model

B. Besides receiving the readings from the TTN, via the MQTT integration with Node-Red, the data is

22

also filtered, some API’s and online services are integrated and the functionality for changing the

frequency of the readings is implemented.

Changing the frequency at which readings are sent is done by exchanging downlink messages (from

Node-Red to the microcontroller). The frequency is changed when the level of urban traffic in the

location under study changes.

The readings obtained are stored in Firebase, a set of Google computing services that host a database

in the cloud [44]. This stored data is used for later visualisation and analysis.

In the application layer, a graphical interface was created in the form of a web and mobile

application that allows the user to visualise all the readings obtained by the sensors in real time. Charts

can also be generated by selecting fields such as location, date of measurement and the parameter to be

studied. This application runs on web and Android platforms. Figure 3.1 shows a flowchart with all the

system logic and in Figure 3.2 is shown a diagram summarising the communication of the entire IoT

ecosystem created.

Figure 3.1. Air Quality Monitoring System logic

23

Figure 3.2. Air Quality Monitoring System architecture and its components

3.2. Perception Layer

3.2.1. Gas Sensors

Fuel combustion is one of the biggest contributors to outdoor pollution, releasing gases that are harmful

to public health. In an urban context, some of these gases are released by the combustion of fuel inside

the engine of vehicles when they are in circulation.

To detect the presence of certain types of these pollutant gases, this system uses MQ sensors, based

on Solid-State Metal Oxide Sensors. Figure 3.3 (a) shows an example of a MQ sensor and Figure 3.3

(b) the circuit that constitutes this type of sensor:

As explained in Section 2.1.3.1, this type of sensor consists of a metal filament (H - Heater),

electrodes, an oxidisable metal, which is usually referred as sensing material, and a substrate on which

these components are installed. The sensor also includes a potentiometer, used to adjust its sensitivity

when detecting gases. The variation in electrical conductivity can be translated into a variation in

resistance; the lower the resistance of the sensor, the higher the electrical conductivity and,

consequently, the higher the concentration of the gas concerned [7]. These sensors have limitations in

terms of their selectivity. Measurements of a particular gas concentration can be influenced by the

presence of another gas, and it can sometimes be assumed that this gas is present when it was just the

interaction between another gas and the sensor, leading to misleading interpretations.

(a) (b)

Figure 3.3. MQ sensor (a) and its schematic (b)

24

The voltage value (VOUT) of the Load Resistor (RL) is used to calculate the concentration of the

gases concerned. To obtain the most accurate measurements, manufacturers recommend that the MQ

sensors are switched on so that they enter a warm-up period of 48 hours [45], [46], [47].

3.2.1.1. Sensors Calibration

In this system, the MQ-2, MQ-7, and MQ-9 sensors are used, and in their respective datasheets it can

be found the gases that can be captured by the sensors [45]–[47]. These were manually calibrated to

capture alcohol, carbon monoxide (CO) and liquefied petroleum gas (LPG), respectively.

Each of the sensors is used to capture a different gas, so each sensor must go through a calibration

process to be accurate in obtaining measurements according to the respective gas.

By analysing the circuit diagram of the MQ sensors (Figure 3.3 (b)), and using Ohm's law (𝑉 =

𝐼 × 𝑅), the following formula is deduced:

𝐼 =
𝑉

𝑅
 ⇔ 𝐼 =

𝑉𝐶𝐶

𝑅𝑆 × 𝑅𝐿

where RS is the resistance of the sensor which changes according to the concentration of the gas,

VCC is the supply voltage of the sensor and RL is the load resistor. Considering the deduction from the

previous formula, substituting the terms of Ohm's law gives the following expression:

𝑉 = 𝐼 × 𝑅 ⇔ 𝑉𝑅𝐿 = [
𝑉𝐶𝐶

(𝑅𝑆 + 𝑅𝐿)
] × 𝑅𝐿

From this expression, the value of the sensor's output voltage (VRL) can be calculated, and then the

value of RS can be obtained. By solving Equation 1 in function of RS, the following formula is obtained:

𝑅𝑆 = [(
𝑉𝐶𝐶

𝑉𝑅𝐿
) − 1] × 𝑅𝐿

The VRL value is acquired by converting the analog value obtained by the sensor into a digital value.

The Analog to Digital Converter (ADC) on the MKRWAN 1300 board has a resolution of 8/10/12 bits,

and the higher the resolution, the more accurate the result. Therefore, the resolution chosen for the ADC

was 12 bits, which results in a range of values that can be obtained via the ADC, between 0 and 4095

(212 bits – 1 = 4095). To convert the value obtained by the ADC to a voltage value, in this case to calculate

VRL, the following conversion is made:

𝑉𝑅𝐿 [𝑉] =
𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 × 𝑉𝑐𝑐

4095

To determine the gas concentration, the RS/R0 ratio must be considered. The value of R0 is calculated

using Equation 3 to obtain the RS value and considering the value of the RS/R0 ratio in the presence of

fresh air:

𝑅0 =
𝑅𝑆

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 𝑓𝑟𝑒𝑠ℎ 𝑎𝑖𝑟

(1)

(2)

(3)

(4)

(5)

25

Using the datasheets [45]–[47] and the characteristic curves of the respective sensors, the values of

the RS/R0 ratio in fresh air are taken to calculate R0. Figure 3.4 (a), (b) and (c) show that the values for

this ratio for the MQ-2, MQ-7 and MQ-9 sensors are 9.7, 27 and 9.8 respectively.

Based on a study carried out by [48], the process described below was used to determine the best

formula for calculating gas concentration as a function of RS/R0. The characteristic curves of the sensors

are on a logarithmic scale, and to find a formula that linearly relates the value of the RS/R0 ratio to the

concentration of a gas, points were extracted from these curves relating to the gases being studied. Each

MQ sensor was assigned a gas to capture, as shown below:

• MQ-2: Alcohol.

• MQ-7: Carbon Monoxide (CO).

• MQ-9: Liquefied petroleum gas (LPG).

The points taken from the characteristic curves of the respective gases are shown in the 3.1 (a), (b)

and (c) tables.

RS/R0 = 27

RS/R0 = 9.7

RS/R0 = 9.8

(a) (b)

(c)

Figure 3.4. MQ-2 (a), MQ-7 (b) and MQ-9 (c) characteristic curves, with the RS/R0 value for fresh air

26

Table 3.1. Extracted points on the MQ-9 LPG (a), MQ-2 Alcohol (b), MQ-7 CO (c) characteristic

curves

Using the points extracted from the characteristic curves, a trendline is created to find the equation

that relates the gas concentration to the RS/R0 ratio, using the Excel tool. The choice of the best trendline

is based on the R-Squared (R2) value. This value, between 0 and 1, measures how strong the relationship

is between the data model and the model points [49]. The one with the highest R2 value is the power

trendline. The curves and equations generated for each sensor are shown below:

Extracted values from MQ-9 characteristic curves,

related to LPG concentration

RS/R0 Concentration [ppm]

2,1 200

1,4 500

1,2 800

1 1000

0,82 1500

0,72 2000

0,59 3000

0,47 5000

0,33 10000

Extracted values from MQ-2 characteristic

curves, related to Alcohol concentration

RS/R0 Concentration [ppm]

2,8 200

2,1 500

1,7 800

1,6 1000

1,45 1550

1,35 2000

1,2 3000

0,89 5000

0,65 10000

Extracted values from MQ-7 characteristic

curves, related to CO concentration

RS/R0 Concentration [ppm]

1,7 50

1 100

0,38 400

0,22 1000

0,09 4000

(a) (b)

(c)

27

➢ MQ-9: Liquefied petroleum gas (LPG)

Figure 3.5. Characteristic curve for LPG, related to MQ-9 sensor, in a linear scale

𝐿𝑃𝐺 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚] = 1013,7 × (
𝑅𝑆

𝑅0
)

−2,088

➢ MQ-2: Alcohol

Figure 3.6. Characteristic curve for Alcohol, related to MQ-2 sensor, in a linear scale

𝐴𝑙𝑐𝑜ℎ𝑜𝑙 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚] = 3789,8 × (
𝑅𝑆

𝑅0
)

−2,72

➢ MQ-7: Carbon Monoxide (CO)

Figure 3.7. Characteristic curve for CO, related to MQ-7 sensor, in a linear scale

𝐶𝑂 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚] = 103,16 × (
𝑅𝑆

𝑅0
)

−1,498

(6)

(7)

(8)

28

3.2.2. Air Quality Sensor

For general air quality monitoring, the Grove v1.3 air quality sensor is used. This sensor monitors

ambient air quality, being responsive to gases that are harmful to health (carbon monoxide, acetone,

alcohol, among others), but due to its reading mechanism, it is not able to reproduce a quantitative result

for each concentration of each gas. Instead, the sensor returns a qualitative result on the current air

quality condition. This result is obtained by considering a quantitative result obtained by measuring the

voltage measured by the sensor and the higher the value obtained, the lower is the air quality, and vice

versa. The sensor is exposed to the surrounding environment, and when a pollutant gas comes directly

into contact with the sensor, an electrical signal is generated which is subsequently processed by the

microprocessor with the signal output being analog. This sensor is compatible with 3.3 and 5V and has

low power consumption. Initially, to achieve good accuracy, the sensor needs to be exposed to fresh air

for some time. One of the limitations of this sensor is the decrease in sensitivity if it is exposed to

polluted air for a long period of time [50].

3.2.3. Temperature and Relative Humidity Sensor

Parameters such as temperature and relative humidity are obtained using the DHT22 sensor. This uses

a capacitive humidity sensor and a thermistor, which measures the surrounding environment and

produces a digital signal for the data collected. It is a digital sensor, where data is transmitted over a

bidirectional single-bus interface, where the microcontroller sends a request to receive data that is

subsequently sent by the sensor. When the initial connection between sensor and microcontroller is

made, the signal on the data bus switches from a high voltage state to a low voltage state. When the

DHT22 sensor detects this signal and is ready to send data (after a few microseconds), it switches the

data bus from low-voltage to high-voltage, transmitting temperature and humidity data. At the end of

this process, the sensor is released from the bus, causing the data bus to return to a low-voltage state. It

has a reading range of 0 to 100% for relative humidity and -40ºC to 80ºC for temperature and can operate

with a voltage of between 3 and 5V. It has low power consumption and better accuracy (around ±0.5°C

and ±2%RH measurement error) compared to the DHT11 sensor [51], which is one of the factors for

choosing this sensor over the DHT11.

Figure 3.8. Grove Air Quality sensor v1.3

Figure 3.9. DHT22 sensor

29

3.2.4. Particulate Matter Sensor

Outdoor air pollution is also characterised by the presence of particulate matter, a mixture of solid

particles and liquid droplets present in the air [52]. Among the existing types of microparticles, PM2.5

μm and PM10 μm stand out. PM2.5 is one of the most dangerous types of microparticle for public health,

due to its small size. PM10 also has a strong presence in outdoor air but is larger than PM2.5. These

microparticles deposit in the lung area, causing serious lung diseases and even death [52]. These are the

two types of microparticles being studied, and the SPS30 sensor is used to detect them.

Figure 3.10. SPS30 Particulate Matter sensor

The SPS30 is a particulate matter sensor that uses a detection technique based on the light scattering

principle, as described in Section 2.1.3.3. The sensor consists of a photo detector, an infrared laser, a

microparticle detection camera and a mini fan, as can be seen in Figure 3.11:

Figure 3.11. SPS30 hardware components

Measurement accuracy can be affected by variables such as temperature and humidity, and the

manufacturer recommends that the sensor operates at a temperature between 10 - 40ºC and a humidity

in the range of 20 - 80%, to obtain greater measurement accuracy [53]. It can detect microparticles of

the following sizes: 1, 2.5, 4 and 10 μm.

This module has three operating modes, idle, sleep and measurement. Idle and sleep modes are

designed to reduce the sensor's energy consumption when microparticle detection is not required [54].

When the sensor is in measurement mode, all its electronic components are switched on and the

processing and measurement of new data is continuous [54]. In this mode, the laser is in continuous

operation, and when microparticles enter the detection chamber, they intercept the laser beam, scattering

it, which is then detected by the photo detector [7]. Depending on the intensity of the scattered beam

and the patterns caused by this scattering, an electrical signal is produced by the photo detector. This

signal is processed by the microcontroller/digital signal processor (DSP) and in this way, information is

Infrared Laser

Air Inlet

Photodetector

Air Outlet

Fan

Detection chamber

30

generated about the concentration and size of the microparticles present in the detection chamber. In the

end, the microparticles are blown out of the sensor outlet through the fan [55].

The sensor has two communication interfaces, I2C and UART. Selecting one of the interfaces used

for measurements is done by connecting the cables between the pins on the sensor and the

microcontroller. In the case of this system, the interface used is I2C, and as indicated by the manufacturer

in the datasheet, pins 4 and 5 from the SPS30 sensor, are connected to the microcontroller's GND to

select this interface [53].

3.2.5. GPS Module

A GPS module is used in this system to obtain the location associated with the measurements. This

module is the AT6558 Mini GPS and provides the exact coordinates (latitude and longitude) of the

respective location of the monitoring node. It has an AT6558 navigation chip that supports various

satellite navigation systems, such as Global Positioning System (GPS), Global Navigation Satellite

System (GLONASS), Beidou Satellite Navigation System (BDS), among others. It uses a UART

interface to exchange data with the microcontroller and returns an NMEA (National Marine Electronics

Association) string, which can be used to retrieve information about several parameters, such as latitude,

longitude, time, date, number of satellites to be used for the GPS signal, among others. It also consists

of a MAX2659 chip that amplifies the signal from its antenna. Initially, when the module is connected

to the power supply, it takes between 32-35 seconds to obtain localisation data. It can operate at

temperatures between -40 and 85ºC [56].

Figure 3.12. AT6558 Mini GPS module

3.2.6. Microcontroller

To build the monitoring node, the main component chosen for programming, interconnecting all the

components (sensors, GPS module and battery) and LoRa communication was an Arduino board. Within

the range available for this system, two different types of board were tested: Arduino UNO and Arduino

MKRWAN 1300. The Arduino UNO board is a robust and simple board to program for various types

of projects. It features an ATmega328P microcontroller, which integrates a microprocessor with a

frequency of 16 MHz, 2 KB of SRAM memory, 32 KB of flash memory and 1 KB of EEPROM memory

[57]. This board does not integrate LoRa communication, but to overcome this problem, a component

that can be incorporated into the board was tested. This component is the Dragino LoRa Shield v1.4. It

has an RF transmitter/receiver, with a high sensitivity of -148 dBm and through modulation modes such

31

as FSK, GFSK, MSK, GMSK and LoRaTM Modulation, it allows data communication over long

distances, with low interference and low data rates through LoRa technology [58].

Another board was tested for this implementation, the MKRWAN 1300 board. Unlike the Arduino

UNO board, MKRWAN board has already a built-in module that allows communication via LoRa. It's

a practical solution for IoT-related projects, it can establish connections with other boards, to its own

LoRa network or to existing LoRaWAN infrastructures, and by using a library, it's possible to lower

energy consumption and thus increase battery life [59]. It has a SAMD21 Cortex M0+ 32bit

microcontroller, which incorporates a microprocessor that operates at a speed of up to 48 MHz and

contains SRAM and Flash memory of 32 KB and 256 KB respectively, and a LoRaWAN Murata

CMWX1ZZABZ module, also with SRAM memory of 20 KB and Flash memory of 192 KB, which has

a receiver sensitivity, that can reach up to -135.5dBm and works with modulations such as FSK, OOK

and LoRa™ Modulation [59].

Figure 3.14. Arduino MKRWAN 1300 board and an antenna for LoRa communication

Table 3.2. Comparison between Arduino Uno + Dragino LoRa Shield and Arduino MKRWAN 1300

boards

 Arduino UNO + Dragino LoRa

Shield v1.4
Arduino MKRWAN 1300

Microcontroller ATmega328P AMD21 Cortex-M0+ 32bit

CPU Clock speed 16 MHz 48 MHz

ADC Resolution 10 bits 8/10/12 bits

UART interface Yes Yes

I2C interface Yes Yes

SPI interface Yes Yes

SRAM Memory 2KB 32KB

Flash Memory 32KB 256KB

LoRa Connectivity
Yes (only with the integration of

the Dragino Shield)
Yes

LoRaWAN Module RFM95W (Dragino Shield) Murata CMWX1ZZABZ

Carrier Frequency 433/868/915 MHz 433/868/915 MHz

Figure 3.13. Arduino UNO R3 board (a) and Dragino LoRa Shield v1.4 (b)

(a) (b)

32

Each one of the microcontrollers supports the Arduino IDE development environment, the software

used to program communication via LoRa and collect data from all the components incorporated into

the monitoring node. The Arduino IDE supports several libraries containing numerous functions that

can be used to program the microcontroller. The use of library functions when programming the

microcontroller takes up some memory and therefore it is necessary to have enough memory, in this

case Flash and SRAM memory, to use these functions. This was the main criteria for choosing between

Arduino boards, and so the MKRWAN 1300 board was chosen. The MKRWAN 1300 board's facility

to integrate with existing LoRaWAN infrastructures (such as The Thing Network) was another factor

that helped to choose between the two boards. The speed of the microprocessor is decisive for the

execution of instructions, and when comparing the two boards, the microprocessor integrated on the

MKRWAN 1300 board has a higher speed (48 MHz), which is a feature that allows for faster and more

efficient system development.

From the MKRWAN 1300 board, it was designed the system schematic between all the components

which constitute the monitoring node. Figure 3.15 shows a schematic of the monitoring node circuit

connections:

Figure 3.15 Monitoring node circuit connections

A 3D printed box was created to ensure better storage of the components that make up the

monitoring node and to make it more accessible when taking readings outdoors.

The monitoring node is powered by a power bank, made up of a lithium battery with a 10000 mAh

(milliampere-hour) capacity. Figure 3.16 shows the box with all the components that make up the

monitoring node:

33

3.2.7. Raspberry Pi

The Node-Red tool is an important part of the operation of this IoT system and needs to be running

continuously for this implementation to be scalable. To ensure that the Node-Red instance is always

operating, a Raspberry Pi 4 Model B was utilized for this purpose. This component has a Broadcom

BCM2711 quad-core Cortex-A72 (ARM v8) processor with a speed of 1.5 GHz, 4GB of RAM, 2.4 GHz

and 5GHz Wi-Fi connectivity, Bluetooth 5.0 and Bluetooth Low Energy and has a Micro SD slot [60].

From this slot, and with a Micro SD card, it is possible to install the operating system, but also store

some data.

Figure 3.17. Raspberry Pi 4 Model B module

3.2.8. Programming the microcontroller (Arduino MKRWAN)

The microcontroller needs to be programmed to be able to take readings from all the components that

make up this monitoring node and also to achieve communication via LoRa. As mentioned in section

3.2.6, the microcontroller is compatible with the Arduino IDE software, which was chosen to do all the

Portable Battery

(connected via USB)

GPS Module

Arduino MKRWAN 1300

(Microcontroller)

SPS30 Particulate Matter

sensor

MQ-9, MQ-7, MQ-2

sensors, respectively

DHT22 – Temperature

and Relative Humidity

sensor (inside a protective

piece)

Antenna for LoRa

transmission

Figure 3.16. Monitoring node hardware components and arrangement, (a) and (b)

(a)

(b)

Grove Air Quality

sensor v1.3

34

microcontroller programming. The Arduino IDE is open-source software that allows programmes to be

developed and then uploaded to the Arduino boards via a USB connection [61]. These programmes are

called sketches and are implemented using a combination of languages, C/C++. In each one of the

sketches, there are two main methods: setup() and loop(). Setup() is the first method to run in the sketch,

it only runs once and is used to initialise certain objects or system conditions. The loop() method, on the

other hand, runs continuously after the setup() method and this is where the main part of the code is

inserted, such as logic for reading sensors, processing information, logic for communication with other

devices/components. In addition to the manual programming done by the user, there is a wide range of

libraries that provide extra functionalities/functions to help program the microcontroller. When

programming this system, functions from some libraries were used to obtain data from the integrated

components and allow the transmission of data through LoRa.

3.2.8.1. Acquiring data from the monitoring node components

Code created as microcontroller firmware is shown in Appendix A. The programming is based on the

use of some libraries provided by the Arduino IDE.

 Table 3.3 shows the libraries used to program the microcontroller, as well as the functions used and

their respective descriptions, to retrieve the values from each monitoring node component:

Table 3.3. Arduino libraries and functions used for the monitoring node programming with their

respective description

Used libraries Used functions Function description

Sps30.h [62] sensirion_i2c_init()
Hardware and software components

initialisation

 sps30_sleep()
Sensor enters sleep mode, switching off most

of its internal electronic components [54]

 sps30_wake_up()

Sensor "wakes up" from sleep mode and

enters idle mode; it is ready to receive any

command; most of its internal electronics are

switched on [54]

 sps30_start_measurement()

Sensor switches to measurement mode and all

its internal electronics are switched on; sensor

is ready to take measurements [54]

 sps30_read_measurement(&m)
Particulate matter values read out and placed

inside a structure (m)

 sps30_stop_measurement() Sensor goes into idle mode [54]

 m.mc_2p5 e m.mc_10p0
Particulate matter values obtained (PM2.5 μm

and PM10 μm respectively)

DHT.h [63] dht.begin()
Initialising the internal components of the

DHT22 sensor

 dht.readTemperature() Obtaining the temperature value

 dht.readHumidity() Obtaining the relative humidity value

Air_Quality_Sensor.h [64] sensor.init()
Initialisation of the internal components of

the Grove Air Quality sensor

 sensor.getValue()
Obtaining a voltage value associated with "air

quality"

TinyGPSPlus.h [65] gpsSerial.begin(GPSBaud)

Initialising a Serial channel for data exchange

between the GPS module and the

microcontroller, with a baud rate of

"GPSBaud" bits/s

 gps.location.lat() Obtaining the latitude value

 gps.location.lng() Obtaining the longitude value

35

Using methods such as sps30_stop_measurement() and sps30_sleep() allows the reduction in the

SPS30 sensor energy consumption by switching operating modes, as mentioned in Section 3.2.4.

As mentioned in section 3.2.1.1, to obtain the concentration values for the MQ sensors, it is

necessary to calibrate the sensors to first obtain the sensor's resistance value without the presence of

gases (R0). Once the R0 value has been obtained for each of the MQ sensors, the calculation of the gas

concentration is performed. To obtain greater precision when capturing the readings, the ADC was

configured to use a resolution of 12 bits, using the analogReadResolution(12) method. Once the sensor's

analog value has been detected, it is converted to a voltage value using Equation 4. Next, the value of

the sensor resistance that varies with the gas (RS) is calculated using Equation 3, and then the value of

the RS/R0 ratio is calculated using Equation 5. To calculate R0, the MQ sensors were switched on for 48

hours, as advised by the manufacturers, and were in continuous operation in a fresh air scenario during

this period. The values used for R0 were obtained from the code shown in Appendix B. Table 3.4 shows

the values obtained for R0 and used for the further calculation of the gas concentration:

Table 3.4. R0 calculated values for each MQ sensor

 MQ-2 MQ-7 MQ-9

R0 [kΩ] 1.30 4.78 8.21

Considering the value of R0 for each sensor, equations 5, 6 and 7 are used to calculate the gas

concentration value for sensors MQ-9, MQ-2, and MQ-7, respectively. Appendix C shows the code for

this gas concentration calculation process.

3.2.8.2. Communication through LoRa

Once the data has been collected by the sensors, it is then sent via LoRa to the gateways that are within

communication range of the monitoring node. To achieve this communication, the MKRWAN library

[66] is used. Using the methods provided by this library, it is possible to construct packets containing

sensor readings, send and receive data via uplink and downlink messages, respectively, and adapt certain

parameters characteristic of LoRa communication. Table 3.5 shows the methods used from this library:

Table 3.5. Used functions from MKRWAN Arduino library and their description

Used functions Function description

modem.begin(EU868)

Initialising the modem instance with the regional parameter

EU868, assigned to each region where LoRa

communication takes place [67].

modem.joinOTAA(appEui, appKey)
Connection to the TTN platform, using the appEui and

appKey parameters

modem.beginPacket(); Initiating the process of sending the information packet

modem.write(sensorData, dataSize);

Inserting data into the packet to send via LoRa; sensorData

represents the array with the data and dataSize, the size of

this array.

modem.endPacket(true); Ends the process of sending the information packet

modem.available() Returns the number of bytes available for reading

modem.read() Reading incoming downlink data sent by LoRa

modem.sleep() Puts the microcontroller's LoRa module into a sleep state

36

Immediately after sending the data, the monitoring node waits for a predefined periodicity at the

start of the code, in this case 5 minutes, before sending another packet. When this time interval is up,

the modem.available() method checks for downlink messages. If there are no downlink messages, new

readings are made and another packet is sent within the same time interval, otherwise the downlink

message is decoded. The downlink messages that are received by the monitoring node are related to the

new time interval that the node must wait after sending a packet. When the downlink message is

decoded, the time interval is updated with the decoded value, and then the node's normal operating cycle

is repeated, but with the new time interval.

3.2.8.3. Low Power Mode

The monitoring node prototype is powered by a portable battery. Continuous operation of this type of

implementation can lead to excessive energy consumption and, consequently, reduce the battery's

lifespan. To overcome this problem, a low energy consumption mode was introduced in the

microcontroller. By using the Arduino MKRWAN 1300 board, the ArduinoLowPower.h library [68]

can be employed. This library offers methods for putting certain internal components of the board into

a low-power state. The method used to lower power consumption was LowPower.sleep(milliseconds).

This method deactivates the microcontroller for a time defined by the user and only the digital

peripherals chosen by the user are active.

Despite using this method to put the microcontroller into sleep mode, the LoRa module, which is

used for communication, is still active. Using the modem.sleep() method allows the LoRa module to

switch to a sleep state, optimizing the consumption of the monitoring node.

3.3. Network Layer

This section describes all the software configured for this IoT system and the communication tasks

between the various elements of the system's architecture.

Once the data has been obtained by the sensors, it is sent via LoRa technology to the gateways that are

within communication range, and from there it is forwarded via IP transport protocols (TCP or UDP) to

the LoRaWAN server/infrastructure. The infrastructure used for this system is The Things Network

(TTN). TTN is a community ecosystem that uses LoRaWAN technology to create IoT networks and

applications. It is part of The Things Stack, a decentralised and free LoRaWAN infrastructure that allows

users to register gateways and create applications in this ecosystem [69].

 The monitoring node initially needs to be registered on the network. This task is achieved by

creating an application, created by the user himself, where he can register any type of device that

communicates via LoRa. In the case of this system, the MKRWAN 1300 board was registered in the

TTN application. To establish communication between the board and the TTN, the application provides

two identifiers: AppKey and AppEUI. AppEUI and AppKey are identifiers that can be generated

37

randomly, where AppEUI is the application identifier and AppKey is an identifier that allows the device

to access the TTN application [70]. In addition to these two identifiers, another identifier is required to

fully register the device in the application, the DevEUI. This is an identifier that recognises the device

itself and is generated by the manufacturer.

 By using the MKRWAN library when programming the microcontroller, it is only needed to declare

the AppEUI and AppKey inside the script and then the access to the TTN platform is done. This access

can be done in two ways, via the Over-The-Air-Activation (OTAA) or Activation By Personalisation

(ABP) method. By default, the method used to register the monitoring node is OTAA. The device

performs a procedure to join the TTN's LoRaWAN network, where security keys are generated and

exchanged with the device [70]. Figure 3.18 shows the usual process of the device joining the network:

Figure 3.18. Join process with OTAA, between end device and TTN LoRaWAN/Network server [70]

To send data from the monitoring node to the TTN platform, LoRaWAN network coverage is

required, and this coverage is achieved through the use of gateways. TTN offers the possibility for the

any user, that is registered in TTN, to register gateways on the platform. As LoRaWAN operates in

unlicensed bands, any user can install and register a gateway on TTN. These gateways are available for

public access and can be used freely, under certain conditions, by other users. These conditions are

related to the TTN Fair Use Policy. This policy declares limits to the number of uplink and downlink

messages exchanged during the day, to create a fair communication environment for each user. There is

a parameter called "consumed airtime" that indicates how long it took for the message to reach the

gateway. Taking this parameter into consideration, the Fair Use Policy indicates the following limit: for

the uplink messages, 30 seconds of airtime per day (24 hours), per node and for the downlink, 10

messages per day, per node [71]. The users that want to use the public TTN LoRaWAN network, must

try to meet these conditions.

The main reason for selecting TTN as the LoRaWAN infrastructure to be used, is the number of

gateways dispersed around the city of Lisbon, offering LoRaWAN coverage in several areas. A map of

the gateways registered in the TTN can be found on the TTN website [72].

As mentioned in Section 2.1.6.3, the ADR mechanism allows control over certain parameters

relating to LoRa communication (spreading factors, bandwidth, transmission power), depending on the

38

current network conditions. TTN uses ADR by default and in the present system this mechanism is being

considered. This way, the parameters mentioned above are automatically adapted.

The information that reaches the TTN comes in binary format and is decoded, by default, into

hexadecimal format. To better understanding of the data, a customised JavaScript formatter has been

created that can be inserted into TTN to decode the readings received and convert it into a structured

and human-readable format. The code used for this task is in Appendix D.

3.4. Application Layer

This section describes the integration of a programmable tool, Node-Red, for using certain APIs that

support the system, processing the readings from the monitoring node and storing them in a database.

Finally, the web/mobile application used to visualise and analyse the data is presented.

3.4.1. Node-Red

Node-Red is a programmable tool based on flows, which allow the integration of APIs, online services,

and the linking of physical devices with programmable nodes. It is built on Node.js and allows rules to

be created from JavaScript scripts [73]. The Node-Red instance can run locally on a personal computer,

on cloud platforms or on devices such as Raspberry Pi. In the system developed, Node-Red was installed

on the Raspberry Pi 4 Model B, so that its instance can run continuously. One drawback of some cloud

platforms is the need to pay after the trial period. As the Raspberry Pi is a personal component and easy

to configure, it was the choice for running the Node-Red instance. The Node-Red instance running on

the Raspberry Pi integrates a few APIs and online services for receiving, sending, and processing data

and storing it in a Firebase database.

Once the sensor readings have reached the TTN, they are forwarded to the Node-Red using the

MQTT protocol. This is a lightweight protocol based on publish/subscribe messages that don't require

a large amount of bandwidth [74]. Since the data coming from the monitoring node are only sensor

values, they don't need much bandwidth to be transmitted, therefore, MQTT protocol is the ideal

protocol for transmitting this data. There are two key elements for running this protocol, MQTT client

and MQTT broker. The broker is responsible for forwarding messages from clients to other clients.

Clients, on the other hand, can publish messages with a particular topic and if another client wants to

receive that message, they must subscribe to that topic.

39

Figure 3.19. MQTT communication example between MQTT clients and MQTT broker

In the Appendix E, is shown the workflow created in Node-Red for this system, and on the table

3.6, there is a description about the “Function” nodes created in the workflow. The workflow is read

from left to right and from top to bottom.

Table 3.6. Description of each function node used in Node-Red workflow

Function nodes in the workflow Description

Set Sensor Topic
Sets the propriety “topic” as a string with the devEUI from

the Arduino MKRWAN board

Get Values

Creates payload fields for each value from the monitoring

node (for example, msg.temperature, msg.humidity,

msg.pm2_5, msg.lat,…)

Formatting URL
Formats a web URL to make a http request to the TomTom

Traffic API

Giving Thresholds for traffic

Gathers the value from two payload fields retrieved from

the traffic API, currentSpeed and freeFlowSpeed; with

these two values, new frequency to send readings through

LoRa, according to traffic levels, is set

Setting String “Location”

Gathers the location address obtained from “Getting

location” node, and an address is made with some of the

fields from the node “Getting location”

Measure Timestamp
Creates a separate time and date field from a timestamp

field

Send packet
Creates a packet with the new sending readings frequency,

to send via downlink to the monitoring node

Insert on Firebase

Creates a customized payload with the different fields

associated with measurements of the monitoring node,

location address, date, and time of measurement

creating docID

Creates a custom document ID, based on time and date

fields, to store the payload created by “Inserto n Firebase”

node, on the Firestore Database

TTN supports the MQTT protocol, which makes communication between TTN and Node-Red

easier. Two parameters are required to establish MQTT communication between TTN and Node-Red, a

username and an api key. The username is related to the ID used in the TTN application and the api key

can be generated automatically, in TTN. In Node-Red, the only thing required is to integrate an "MQTT

IN" (with the label “Values from TTN”, on the workflow presented above) node into the workflow and

insert the parameters mentioned above so that the sensor readings are received in that instance. Some

APIs are used in this flow to convert coordinates to an exact address (Google Geolocation, represented

in the workflow with the “Getting location” node), to obtain certain atmospheric parameters

(OpenWeatherMap, represented with the “Get weather description” node) and acquire speed of urban

40

traffic on a certain section of a given location (TomTom Traffic API). From the TomTom API, the

functionality of changing the frequency of sending sensor readings was created. This API returns the

current average speed of the urban traffic flow and the speed expected under ideal conditions, on a

section of a specific location. The further away the current average speed value is from the speed

expected under ideal conditions, the more urban traffic there is at the location where the monitoring is

happening. The flowchart shown in Figure 3.20 explains the logic behind the implementation of the

mechanism for changing the periodicity of sending readings, inside the node “Giving Thresholds for

traffic”:

The possible periodicities for this system are 7, 8, 9 and 10 minutes. These values were chosen to

fulfil the conditions of the TTN Fair Use Policy, mentioned in the Section 3.3. To calculate these values,

an Airtime calculator for LoRaWAN [75] was used. For this calculation, it was considered a SF of 8

and a payload size of 24 bytes (considering the amount of data to be sent from the monitoring node),

plus 13 bytes for packet overhead. The number of uplink messages that could be sent was 8.7 messages

per hour, which means that the minimum periodicity is every 7 minutes to send messages through LoRa.

In other words, anything longer than 7 minutes fulfils the requirements of the Fair Use Policy, for the

respective SF, and to create some interval levels for urban traffic, periodicities between 7 and 10 minutes

were considered, associated with the highest and lowest levels of urban traffic, respectively. This value

is then compared with the previous periodicity value, which is also sent together with the sensor readings

to the TTN. This is carried out in the "Check interval" node. If the value of the old periodicity is different

from the new periodicity, it means that there has been a change in the level of traffic, and a downlink

message is sent to the monitoring node.

Figure 3.20. Changing sending readings frequency flowchart

41

The "Send packet" function node creates the packet with the new frequency to send readings and

the "Arduino MKR WAN 1300" node sends this packet to the TTN via the MQTT protocol, which is

then sent to the available gateways within range, and finally to the monitoring node. By doing this, the

node changes the frequency at which readings are sent.

Sensor readings and other parameters (measurement site address, frequency of sending readings,

weather conditions) are stored in Firebase. Firebase is a set of Google computing services that host

databases and other services in the cloud [44]. There are two databases hosted by this platform, that

were used, the Realtime Database and the Firestore Database. Realtime Database is used to store the

most recent readings and Firestore is based on a document-organised database, where each document is

a key-value pair that can be grouped into collections.

In the "Insert on Firebase" node, the readings and other parameters obtained by the API's are

combined to create the body of the payload, which is stored in the Realtime Database via the "UPDATE"

node. Each time new readings arrive, the "UPDATE" node updates the value of the fields. From the

"creating docID" node, an ID is created for the document of the readings, based on the time and date of

the reading, which is then stored in the Firestore Database, inside “nodeMeasures” collection, via the

"Add values in Firestore 2" node. Each document is associated with a set of readings at a given time.

3.4.2. Web/Mobile Application

The data obtained by the monitoring node is visualised and analysed using a web and Andoid

application. The "SkySense" application was developed in Flutter, a framework produced by Google

that allows applications to be built from a single code base and is based on the Dart programming

language [76]. Another option considered when developing the application was using a combination of

Javascript for the backend and React for the frontend. The fact that all the programming can be done

from native code and the ease with which applications can be created on different platforms was the

reason for choosing Flutter, over other options, to create this app.

When the user accesses the application, they are asked to log in. If the user is not already registered,

they can do so, but they also have the option of logging into the application with their Google account

(if they have one), as can be seen in Figure 3.22:

(a) (b)

Figure 3.21. Monitoring node values in the RealTime database (a) and all the collected measures in

Firestore database, inside de “nodeMeasures” collection (b)

42

As Firebase offers authentication services, these were used to create the login and user registration

functionalities in the application. Gathering data from the Firebase databases, authentication and other

functional and visual elements are achieved by installing packages, provided by Flutter, which allow

diverse functionalities to be built.

After logging in or signing up, the user enters the application's main page relating to the monitoring

node's real-time data. This page shows data about an air quality indicator, temperature and relative

humidity, the concentrations of different pollutants (carbon monoxide (CO), liquefied petroleum gas

(LPG), alcohol), PM2.5 and PM10 concentration and the time and date of the last reading from the

monitoring node. The numerical value displayed in the application, referring to “Air Quality Indicator”,

relates to an analog value obtained by the Grove Air Quality sensor, and therefore can't be considered

the true AQI value. It is merely an indicator of how polluted the air is, when monitoring is being

conducted, and as mentioned in section 3.2.2, the higher the value displayed, the lower the air quality.

All the data presented in this page is updated every time new readings arrive in the Realtime

Database.

Figure 3.23. "Real Time Data" page, from web application view

(a) (b)

Figure 3.22. Application Login page (a) and Register page (b)

43

From the drawer on the left-hand side of the application page (Figure 3.23), the user can navigate

between the "Real Time Data", "Node Location" and "Data Analysis" pages. The "Node Location" page

contains information on the location of the monitoring node, such as latitude, longitude, site address,

city, and country. Just like the "Real Time Data" page, it is possible to see the date and time of the

monitoring node's latest readings.

The map used to visualise the location is provided via the Google Maps API. The marker marks the

exact location of the node and around it is a circle that updates its colour depending on the air quality

level. If the user clicks on the marker, they can also get readings of some parameters such as temperature,

relative humidity, and the air quality indicator value (Figure 3.24 (b)).

 On the "Data Analysis" page, the user can choose to carry out a temporal analysis of the measured

parameters based on the location and date at which the monitoring node has been taking measurements.

Firstly, a location must be selected from the "Select a location" field, and only when this location has

been selected, a second field, "Select a date", appears for the user to fill in the date on which the

measurements were taken. Finally, the user chooses the parameter they want to analyse (temperature,

relative humidity, CO, LPG, Alcohol, PM2.5, PM10, air quality value) from the "Select a measurement"

field and only when this field is selected a chart is generated showing all the measurements taken by the

monitoring node. Statistics such as the maximum, minimum and average values, and the time the node

has been monitoring that location, can also be found on this page.

(a) (b)

Figure 3.24. "Node Location" page from web (a) and Android (b) view

44

Figure 3.25. "Data analysis" page from web view

A final feature of this application is the display of warnings regarding the level of the air quality.

The Grove Air Quality sensor library contains a file with thresholds for the quantitative value, used to

return a qualitative value indicating the level of air quality (e.g., "Fresh Air", "Low Pollution", "High

Pollution” ...). Some of the thresholds presented in the file, regarding the quantitative value obtained by

the Grove Air Quality sensor, are similar to those imposed by EPA, and therefore the air quality levels

presented on the application's "Real Time Data" page were based on the AQI levels declared by EPA

[18]. Each time the air quality changes its level, the user receives a warning in the application with the

current air quality level and the specific location where the level has changed.

Figure 3.26. Air Quality Level Warning mechanism, from Android view

45

CHAPTER 4

Results and Discussion

This chapter presents the results obtained from the monitoring tests carried out by the monitoring node.

Several tests were conducted, the first being associated with the calibration of the sensors when they are

capturing the same gas inside a gas test chamber. Afterwards, measurements were taken outdoors, in

different locations, for a later comparison between the readings obtained by the sensors and the

surrounding environment. Finally, the energy consumption of the monitoring node is presented when it

is in operation and in low energy consumption mode.

4.1. Gas Test Chamber

To test the calibration of the sensors, mentioned in Section 3.2.1.1, and their sensitivity when they are

exposed to a particular gas, a test was conducted in a gas test chamber. The component used for this task

was the Figaro SR-3 Bench Top Test Chamber. It is a box made of acrylic resin that allows the gas under

study to be injected by inserting a syringe with the desired gas through a gas inlet in the chamber [77].

The sensor can be placed inside the chamber to measure the gas concentration being considered. Inside

the box there is a fan which, when switched on, spreads the gas so that a uniform concentration is

achieved throughout the test chamber [77]. This test chamber has a maximum capacity of 5,400 ml of

injected gas.

Figure 4.1. Figaro SR-3 Test Chamber

 The MQ-2, MQ-7 and MQ-9 sensors were calibrated to detect concentrations of alcohol, carbon

monoxide (CO) and liquefied petroleum gas (LPG), respectively. Short-term inhalation of CO and LPG,

especially CO, is very dangerous and can cause death within a few moments. Ethanol (ethyl alcohol) is

the only safer gas to test, so only the results from the MQ-2 sensor were considered for this experiment.

 In the test chamber's datasheet, reference is made to the equation used to determine the volume of

gas needed to be injected to reach a particular concentration of the gas being tested:

𝑉𝑜𝑙𝑢𝑚𝑒 [𝑚𝑙] = 5,400 𝑚𝑙 ×
𝐺𝑎𝑠 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚]

1,000,000
 (9)

46

 The injected gas volume is given in millilitres (ml) and the gas concentration is given in parts per

million (ppm). Three tests were carried out, both with different concentrations of injected alcohol.

Equation 9 gives the expected concentration for the different amounts of alcohol:

• 1st Test: 1 ml of alcohol ≈ 185.19 ppm;

• 2nd Test: 1.5 ml of alcohol ≈ 277.78 ppm;

• 3rd Test: 2 ml of alcohol ≈ 370.37 ppm.

Both experiments lasted 15 minutes, and at the end of each test, more alcohol was added to the test

chamber, except for the last case. The alcohol concentration obtained by the MQ-2 sensor is obtained

by the process presented in section 3.2.1.1. The chart in Figure 4.2 shows the results obtained:

Figure 4.2. Alcohol concentration behaviour, across the time regarding different alcohol volumes

injected

 During the test, it was noted that there was a change in the concentration obtained by the other MQ

gas sensors. The presence of other gases, apart from the gas being studied (such as the presence of

ethanol in the detection of CO and LPG), can affect the MQ sensors' reaction and cause incorrect

inductions about the gas concentration.

In the first instant, the alcohol was injected into the test chamber and for this reason, a very high

concentration value was captured. The built-in fan was switched on for 2 minutes at the start of each test

to disperse the alcohol throughout the chamber, which is why there was a sudden drop in concentration

initially. From the third minute onwards, the alcohol was spread throughout the chamber and the sensor

readings began to stabilise. At around 10-11 minutes, the concentration value was stabilised. Values

obtained by the sensor were expected, considering the values obtained by equation 7. As soon as the 15

minutes of a test were up, the volume associated with the next test was inserted, i.e., the volume injected

into the test chamber was being accumulated. The total amount injected into the chamber was 4.5 ml,

which corresponds to a concentration of approximately 833.33 ppm. As can be seen in the last test, the

stabilised value is practically equivalent to the alcohol concentration mentioned above.

47

4.2. Outdoor Monitoring Tests

Three different locations were chosen to test the monitoring node in an outdoor context, to understand

what influence the surrounding environment has on the readings obtained by the sensors. The locations

selected to carry out the tests are associated with Lisbon city centre, in Portugal. Figure 4.3 shows the

locations chosen for the measurements:

The first location (Av. da Liberdade 258, 1250-149 Lisboa, Portugal – Figure 4.3 (a)) relates to an

avenue in the centre of Lisbon, more specifically, near the Marquês de Pombal roundabout. The second

location (Av. de Berna 45, 1050-078 Lisboa, Portugal – Figure 4.3 (b)) is the garden of the Calouste

Gulbenkian Foundation. Finally, the last location where tests were conducted was an avenue near the

Mário Soares Garden, Campo Grande (Campo Grande C3, 1700-162 Lisboa, Portugal – Figure 4.3 (c)).

It should be noted that the monitoring performed for each of the previously mentioned locations

was carried out in different days, but the tests lasted the same amount of time, approximately 4 hours

for each location. Due to the impossibility and lack of security in leaving the monitoring node in an

outdoor location, measurements could not be taken over a long period of time.

(c)

(a)

(b)

Figure 4.3. Locations where the monitoring has taken place: Avenida da Liberdade (a), Jardim da

Fundação Calouste Gulbenkian (b) and Campo Grande (c)

48

4.2.1. 1st Location – Avenida da Liberdade

At this location, measurements were taken between 11:35 and 15:35. During the day, the weather was

clear, sunny, with low wind intensity and there was no rainfall. The weather conditions can be obtained

by the OpenWeatherMap API integrated on the Node-Red instance, but also on the OpenWeatherMap

website. It should be noted that the measurements were taken on a weekday, which is favourable for

urban traffic.

During the morning, the relative humidity was above 60%, but from 12:39 onwards, the humidity

level began to fall, with a significant drop from 13:38 onwards. From this moment on, there was a greater

incidence of sunlight and, consequently, a gradual increase in temperature, reaching its maximum value

at 14:36. It was between the period of 13:38 and 15:35 that the temperature showed the highest values

and, consequently, the relative humidity showed the lowest ones.

(a)

(b)

(a)

(c)

Figure 4.4. Temperature and Relative Humidity variation during the monitoring period (a), in the 1st

location; statistics about Temperature (b) and Relative Humidity (c)

49

Particulate matter concentrations, PM2.5 and PM10, throughout the monitoring period showed

practically the same behaviour. Near the location where the measurements were taken, there was a

construction site, which may have influenced the concentration of these particles in the air, as well as

the number of vehicles travelling along the avenue. At 13:30 and 14:04, the concentration of particulate

matter showed the lowest values. At 12:47 and 14:52, the highest values were found.

On this day, the wind speed was minimal, which might have contributed to the particles not being

so widely spread through the air, resulting in an accumulation of particulate matter in certain places,

thus increasing their concentration, although there were slight wind breezes present at certain times. As

a result, the particles can disperse more easily through the air. Considering this fact and the density of

traffic flow on the avenue, it can explain the large variations that occurred during the monitoring period.

The concentration of pollutant gases such as CO and LPG showed an increasing behaviour for most

of the monitoring period. The variations found are related to the number of vehicles in circulation at the

(b)

(a)

(b)

(c)

Figure 4.5. PM2.5 and PM10 variation across the monitoring period (a), in the 1st location; statistics

about PM2.5 (b) and PM10 (c) concentration

(c)

Figure 4.6. CO and LPG variation across the monitoring period (a), in the 1st location; statistics about

CO (b) and LPG (c) concentration

50

site, and since there is a traffic light at the top of the avenue, the spikes in values can be explained by

this fact. The LPG values vary more than the CO values, but both have peak values at 13:38 and 14:36.

4.2.2. 2nd Location – Jardim da Fundação Calouste Gulbenkian

The monitoring in this location was conducted between 12:36 and 16:36. During the monitoring period,

the weather was quite cloudy, with a tendency for precipitation. Figure 4.7 shows the temperature and

relative humidity values obtained during the monitoring period:

The temperature shows an inverse behaviour to the relative humidity, which is expectable given the

temperate climate in Portugal. Throughout the monitoring period, it became increasingly cloudy, and

the wind speed also slowly increased, which contributed to a gradual decrease in temperature and an

increase in relative humidity. Around 15:20, the relative humidity reached its maximum value at

approximately 90%. At this point, very light raindrops were felt, which explains the high humidity value.

(a)

(b)

(a)

(c)

Figure 4.7. Temperature and Relative Humidity variation during the monitoring period (a), in the 2nd

location; statistics about Temperature (b) and Relative Humidity (c)

51

During the measurements, there were some variations in the particulate matter concentration in the

garden. These variations may be explained by the fact that there were several people walking around,

and since there were some dirt trails within the garden, the concentration of particulate matter could

vary depending on the number of people walking on these trails. The period between 12:42 and 12:51

was when the highest increase in particulate matter concentration was observed, and it was during this

period that most people were moving around inside the garden. Factors such as the presence of wind

and vegetation can also influence the dispersion and concentration of these particles at the area.

Regarding the concentrations of pollutant gases, particularly CO and LPG, only CO showed a

practically constant behaviour during the monitoring period, unlike LPG, which exhibited slight

variations. The tests were conducted in the central area of the garden, but the garden itself is located

between several avenues. Despite the presence of large amounts of vegetation, wind speed can influence

the distribution of gases in the air and generate some variations.

(b)

(a)

(b)

(c)

Figure 4.8. PM2.5 and PM10 variation across the monitoring period (a), in the 2nd location; statistics

about PM2.5 (b) and PM10 (c) concentration

(c)

Figure 4.9. CO and LPG variation across the monitoring period (a), in the 2nd location; statistics about

CO (b) and LPG (c) concentration

52

4.2.3. 3rd Location – Campo Grande

The readings obtained by the monitoring node relate to the period between 12:53 and 16:56 and were

conducted during the weekend. During this day, there was no precipitation, the sky was slightly cloudy

and there were periods of high solar incidence.

The chart shown in Figure 4.10 (a) demonstrates an almost symmetrical behaviour between

temperature and relative humidity. Throughout the monitoring period, there were huge variations in the

values of these two atmospheric parameters. Periods in which relative humidity showed higher values

were related to periods when the weather was slightly cloudy. When sunlight was strongest, temperature

values increased, peaking at around 15:20.

(a)

(b)

(a)

(c)

Figure 4.10. Temperature and Relative Humidity variation during the monitoring period (a), in the 3rd

location; statistics about Temperature (b) and Relative Humidity (c)

53

 The concentration of particulate matter, both PM2.5 and PM10, at certain times, showed some

variations during the monitoring period. In the chart shown in Figure 4.11 (a), there are two moments

when the concentration of particulate matter increased significantly, specifically at 13:18 and 14:08.

Since this location is near an avenue, there is a constant flow of vehicles. It should be noted that there is

a traffic light controlling traffic at this location, and the spikes shown on the chart correspond to the

times when traffic is most concentrated at the monitoring site, due to the action of the traffic light. As a

result, the concentration of particulate matter is higher at the two instants mentioned above.

The concentration over the rest of the monitoring period was dependent on the traffic conditions

along the avenue, which led to some variations. It should be noted that the period between 16:01 and

16:11 was the period when there was the least concentration of vehicles travelling, and therefore the

least concentration of particulate matter.

(b)

(a)

(b)

(c)

Figure 4.11. PM2.5 and PM10 variation across the monitoring period (a), in the 3rd location; statistics

about PM2.5 (b) and PM10 (c) concentration

(c)

Figure 4.12. CO and LPG variation across the monitoring period (a), in the 3rd location; statistics about

CO (b) and LPG (c) concentration

54

Similarly, to the second location, the CO concentration shows a practically constant behaviour

throughout the monitoring period. On the other hand, the LPG concentration shows some variations,

due to the traffic conditions mentioned above, with the maximum LPG concentration at 13:27.

4.2.4. Air Quality Indicator values comparison

The air quality indicator obtained by the Grove Air Quality sensor changed according to the

concentration of polluting gases in the locations where the monitoring was conducted. From the

developed application, statistics about this index can be observed.

The measured air quality indicator value over the monitoring time at the first location (Avenida da

Liberdade) had the highest average value. The fact that the monitoring on this avenue was carried out

on a weekday was favourable for a higher urban traffic flow, which is a propitious factor for a higher

concentration of pollutant gases and, consequently, an increase in the air quality indicator value. In the

second location, the values were the lowest, mainly due to the nature of the environment where the

monitoring was conducted. Regarding the third location, relating to the other avenue, the values obtained

were lower compared to the first location, but higher when compared to the second location. Since this

location is also an avenue, despite having some urban traffic, there wasn't as much when comparing it

to the first location. The fact that the monitoring was carried out on a weekend contributed to less urban

traffic, so it can be assumed that there wasn't as much concentration of pollutant gases, making the air

quality indicator value a little lower compared to the first location.

4.2.5. Frequency of Readings

Over the monitoring period for the different locations, there were changes to the frequency at which

readings were sent to the LoRaWAN server. Initially, a 5-minute interval was manually imposed

between sending the first measurement and the second measurement. From the second measurement

onwards, the sending frequency is adjusted according to urban traffic levels, by sending downlink

messages from the Node-Red to the monitoring node, as explained in Section 3.4.1. In the second and

third location, relating to the garden and one of the avenues, respectively, 25 measurements were taken,

and the interval between them mainly ranged between 9 and 10 minutes, with some measurements also

(a) (b) (c)

Figure 4.13. Statistics about air quality indicator values in the 1st location (a), 2nd location (b) and 3rd

location (c)

55

taken every 8 minutes. In the case of the 1st location, also referring to the other avenue, 29 measurements

were taken.

The tests were conducted at both locations for the same length of time (4 hours), but more

measurements were taken at the first location. The tests that were conducted at the first location were

carried out on an avenue that is usually characterised by heavy urban traffic on weekdays. In comparison

to the test that was conducted at the third location, during a weekend, even though it was on an avenue

where there is also a lot of traffic, there wasn't as much urban traffic going through it. The choice of day

to perform monitoring tests had an influence on the number of measurements taken by the monitoring

node.

4.3. Monitoring Node Energy Consumption

Since the monitoring node incorporates several sensors, its energy consumption can be quite high. A

study was conducted to analyse its energy consumption. The node is powered by a battery with a

capacity of 10000 mAh (milliampere-hour) and to optimise its consumption, a low power mode was

implemented in the monitoring node to lower its energy consumption and increase battery life.

Measurements were taken when the low consumption mode is not present and when it is activated.

4.3.1. Monitoring Node Power Consumption

With all the sensors connected to the monitoring node, the energy consumption related to normal cycle

of operation, was measured, i.e., current measurements were taken during the period where the

monitoring node was taking measurements, sending them through LoRa and waiting to repeat the cycle.

 Current measurements were taken using a Keithley 2110 Digit Multimeter, with the selected option

“DCI” to measure DC current. The results obtained can be seen in the table below:

Table 4.1. Current consumption during the taking of measurements, measurements transmission

through LoRa and delay period before sending other measurements, without and with Low Power

Mode

 Current Drawn (𝐴𝑚𝑝𝑠)

 Sensors Measuring LoRa Transmission Delay Period

Without Low Power

Mode
1.0582 A 1.1814 A 1.0422 A

With Low Power Mode 0.85346 A 1.05636 A 0.69252 A

With this low power mode active, it is possible to observe a decrease in the node's current draw,

especially when the node is in the delay period. Initially, in low power mode, the node consumes 0.85346

A, a lower value also due to the implementation of the low consumption mode for the SPS30 sensor,

56

described in Section 3.2.8.3. After the measurements taken by the sensors, the sensor reaches a value of

1.05636 A, when information is sent via LoRa. When the node enters its delay period, sleep mode is

activated, and its consumption remains at around 0.69252 A.

Table 4.2. Monitoring node power consumption in measurement, transmission and sleep modes

 Power Consumption (𝑃 [𝑊𝑎𝑡𝑡𝑠] = 𝑉 [𝑉𝑜𝑙𝑡𝑠] × 𝐼 [𝐴𝑚𝑝𝑠])

 Sensors Measuring LoRa Transmission Delay Period

Without Low Power

Mode
5.291 W 5.907 W 5.211 W

With Low Power Mode 4.267 W 5.282 W 3.463 W

As the current decreases, so does the power consumption associated with the system. This is most

evident when the monitoring node is in its delay period before sending another packet with sensor

measurements, which is when the LoRa module and microcontroller are in sleep mode.

The value of the battery's autonomy can be obtained from the quotient between the battery's capacity

and the current drawn by the monitoring node. Table 4.3 shows the autonomy calculated for each period

of activity of the monitoring node:

Table 4.3. Battery autonomy during several periods of activity, without and with Low Power Mode

 Battery autonomy (Autonomy [hours] =
Battery capacity (mAh)

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤𝑛 (𝑚𝐴)
)

 Sensors Measuring LoRa Transmission Delay Period

Without Low Power

Mode
9 hours and 27 minutes 8 hours and 27 minutes 9 hours and 35 minutes

With Low Power

Mode
11 hours and 43 minutes 9 hours and 28 minutes 14 hours and 26 minutes

The introduction of sleep mode in the moment when the monitoring node is waiting to send another

data packet results in the highest autonomy value, but the autonomy of the system, considering a normal

operating cycle, with the all the activities describes in the Table 4.3, can be obtained with the following

formula:

𝑆𝑦𝑠𝑡𝑒𝑚 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑦 [ℎ𝑜𝑢𝑟𝑠] =
𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ)

𝐼𝑀 × 𝑇𝑀

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆
+

𝐼𝑇 × 𝑇𝑇

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆
+

𝐼𝑆 × 𝑇𝑆

𝑇𝑀 + 𝑇𝑇 + 𝑇𝑆

This formula considers the current values when measurements are being made by the sensors (IM),

transmission via LoRa (IT) and when the node is in the delay period waiting to send another packet (IS).

Additionally, the time when the node is taking measurements (TM), transmitting via LoRa (TT) and in

the delay period (TS), is used. The values used for IM, IT and IS are shown in the Table 4.1. It is assumed

(10)

57

3 seconds and 1 second for TM and TT, respectively. For TS the values it is assumed the worst case, where

the information is sent via LoRa every 7 minutes.

Table 4.4. System autonomy without and with Low Power mode

 System autonomy [hours]

Without Low Power Mode 9 hours and 35 minutes

With Low Power Mode 14 hours and 24 minutes

It can be observed that the introduction of methods to reduce the energy consumption of the

monitoring node has a big influence on the autonomy of a battery, and in this type of systems it is

important to conserve battery lifespan as much as possible to ensure a longer monitoring periods.

4.3.2. MQ Sensors Power Consumption

 MQ sensors have a metallic filament in their composition, which is heated when the sensor is

switched on, and is used to maintain a high operating temperature. The constant operation of the sensor

can result in high energy consumption. Measurements were carried out to see the impact that the constant

operation of the MQ sensors has on the consumption of the monitoring node. The measurements were

made only with the MQ sensors connected to the microcontroller.

Table 4.5. Current consumption with 1, 2 and 3 MQ sensors connected to the microcontroller

 1 MQ sensor 2 MQ sensors 3 MQ sensors

Current Drawn [Amps] 0.20474 A 0.36455 A 0.71404 A

Table 4.6. Power consumption for consumption for each MQ sensor connected to the microcontroller

 1 MQ sensor 2 MQ sensors 3 MQ sensors

Power Consumption

[Watts]
1.0237 W 1.82275 W 3.5702 W

The results obtained are associated with one, two and three MQ sensors connected. Each time a MQ

sensor was connected to the microcontroller, its current, and consequently, the power consumption

increased. It can be said that the operation of each sensor in this system consumes around 160-350 mA

(milliamps). When three MQ sensors are connected, the total consumption of the microcontroller is

more than half the consumption observed in the first scenario, where low power mode is not used, which

means that most of the system consumption is generated by the constant operation of the MQ sensors.

58

59

CHAPTER 5

Conclusions and Future Work

5.1. Conclusions

A smart monitoring IoT system was proposed, consisting of several sensors to extract information about

air quality condition in an outdoor context, across some places of Lisbon city. In this system, sensors

were used to capture concentrations from some of pollutant gases like, carbon monoxide, liquefied

petroleum gas, organic compounds like alcohol. Particulate matter, air quality and atmospheric factors

such as temperature and humidity, were also measured to provide more data about the conditions at the

monitoring site. The integration of a GPS module allowed the localization of the monitoring system, for

later analysis of results.

Initially, a test was carried out to check the sensors' calibration. Since it was only possible to use

ethanol, only the MQ-2 sensor could be used to test its calibration. In this type of gas sensor,

manufacturers advise that the sensor should be exposed to a defined gas concentration, for a certain

period, so that the readings obtained are more accurate. The measurements taken by the MQ-7 and MQ-

9 sensors, to capture CO and LPG respectively, showed that the values obtained in the locations where

the outdoor tests were conducted, varied somewhat depending on the surrounding environment. Despite

their reactiveness to different conditions, it cannot be concluded that the concentrations obtained by the

sensors are very precise. MOS sensors, like the MQ sensors, are sensitive to multiple gases, which means

that the presence of other gases, around the monitoring environment, can have influence on the

concentration of a gas that is being studied. Exposing the gas directly to the sensor is also an important

step in obtaining accurate readings, but in the case of this system, this was not the possible with CO and

LPG. Environmental conditions, like humidity and temperature, can also have an influence in the

accuracy of readings from MQ and particulate matter sensors, like the SPS30 sensor.

This system is designed for an outdoor scenario, where monitoring is conducted in several dispersed

locations, with varying distances from the monitoring node to the gateways, requiring the adoption of a

technology that offered long range communication and wide coverage. For this reason, LoRa technology

was used. By spreading the signal over a wide bandwidth, it is possible to achieve transmission with

wide coverage and low energy consumption, which is required for systems that need to monitor large

areas. A basic LoRa communication network only requires gateways and LoRa modules for transmitting

and receiving data, which also makes deployment costs lower when compared to cellular networks. The

possibility of adding more components, such as gateways and monitoring nodes, to the LoRa network,

makes the technology highly scalable in the monitoring context, allowing the network to expand to more

geographical locations as well as ensuring that the technology is viable for large-scale deployments. The

usage of LoRa technology fulfilled all the communication requirements, needed for the system present

in this dissertation.

60

To obtain a smart implementation, allowing the change of readings sending frequency, via LoRa,

an urban traffic API was used. With this API it was possible to set levels of traffic, manually and define

thresholds for each of these levels, and every time the level of traffic changes, the Node-Red application

sends a downlink message to the monitoring node, updating the frequency of sending readings.

During transmission through LoRa, there were occasions in which parameters such data rate, the

time taken for a message to reach the gateway and the receiver's sensitivity changed according to

network conditions, due to the Adaptive Data Rate (ADR) mechanism that adapts these parameters

automatically, and consequently, during the monitoring period, the limits imposed by the Fair Use Policy

could not be complied with. ADR has its limitations, and the automatic adaptation of the communication

parameters means that the Fair Use Policy limits are changed throughout the monitoring period, making

it difficult to respect these limits when using ADR.

A web and Android application were created for data visualisation, allowing the user to view real

time data about the air quality, but also obtain historical data from measurements taken by the

monitoring node. The creation of applications that allow the visualisation of data in real time and the

integration of warnings associated with changes in the level of air quality, such as the one implemented,

makes it possible to evaluate air quality conditions and in this way give people information about places

to avoid when these are highly polluted. Analysing the historical data also makes it possible to

understand certain trends or variations associated with air quality and pollutant concentrations.

To conclude, by using a technology with a long range, low implementation cost and low energy

consumption, like LoRa, the integration of low-cost sensors capable of monitoring pollutant gases,

particulate matter, temperature and humidity and the use of LoRaWAN infrastructures and cloud

services and platforms, it was possible to create an air quality monitoring system, fulfilling all the

objectives established for this dissertation.

The development of this work resulted in a scientific paper “Smart City Air Quality Monitoring

supported by IoT ecosystem” (Appendix F) for 16th International Conference on Sensing Technology.

5.2. Future Work

Looking ahead, we hope to expand the air quality monitoring network by integrating more nodes spread

across different geographical regions and gateways to create our own LoRa monitoring network.

A system calibration using a variety of gases, exposed directly to the sensors to increase their

accuracy, is required to make the system more reliable, and be less cross-sensitive and also the

acquisition of sensors with lower energy consumption, to make the system more energy efficient. The

integration of solar panels can also be considered, for better sustainability and lowering the costs.

Ultimately, the creation of predictive models is another task for the future, which will make it

possible to forecast pollutant gas and particulate matter concentrations and extending presentation of

data to represent air quality conditions in the monitored areas.

61

 References

[1] ‘Air pollution’. Accessed: Jul. 31, 2023. [Online]. Available: https://www.who.int/health-topics/air-pollution

[2] H. Ritchie and M. Roser, ‘Outdoor Air Pollution’, Our World in Data, Nov. 2019, Accessed: Jan. 24, 2023.

[Online]. Available: https://ourworldindata.org/outdoor-air-pollution

[3] ‘Ambient (outdoor) air pollution’. Accessed: Jan. 24, 2023. [Online]. Available: https://www.who.int/news-

room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

[4] OECD, The Economic Consequences of Outdoor Air Pollution. OECD, 2016. doi: 10.1787/9789264257474-

en.

[5] ‘The psychological, economic, and social costs of air pollution’, MIT Sloan. Accessed: Jan. 24, 2023.

[Online]. Available: https://mitsloan.mit.edu/ideas-made-to-matter/psychological-economic-and-social-

costs-air-pollution

[6] ‘Commission proposes rules for cleaner air and water’, European Commission - European Commission.

Accessed: Jan. 24, 2023. [Online]. Available:

https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6278

[7] W. Y. Yi, K. M. Lo, T. Mak, K. S. Leung, Y. Leung, and M. L. Meng, ‘A Survey of Wireless Sensor Network

Based Air Pollution Monitoring Systems’, Sensors, vol. 15, no. 12, Art. no. 12, Dec. 2015, doi:

10.3390/s151229859.

[8] J. Lozano et al., ‘Personal electronic systems for citizen measurements of air quality’, in 2019 5th Experiment

International Conference (exp.at’19), Jun. 2019, pp. 315–319. doi: 10.1109/EXPAT.2019.8876471.

[9] L. Chettri and R. Bera, ‘A Comprehensive Survey on Internet of Things (IoT) Toward 5G Wireless Systems’,

IEEE Internet of Things Journal, vol. 7, no. 1, pp. 16–32, Jan. 2020, doi: 10.1109/JIOT.2019.2948888.

[10] M. L. Liya and M. Aswathy, ‘LoRa technology for Internet of Things(IoT):A brief Survey’, in 2020 Fourth

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Oct. 2020, pp.

8–13. doi: 10.1109/I-SMAC49090.2020.9243449.

[11] M. Abbasi, S. Khorasanian, and M. H. Yaghmaee, ‘Low-Power Wide Area Network (LPWAN) for Smart

grid: An in-depth study on LoRaWAN’, in 2019 5th Conference on Knowledge Based Engineering and

Innovation (KBEI), Feb. 2019, pp. 022–029. doi: 10.1109/KBEI.2019.8735089.

[12] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, ‘Overview of Cellular LPWAN Technologies for IoT

Deployment: Sigfox, LoRaWAN, and NB-IoT’, in 2018 IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom Workshops), Mar. 2018, pp. 197–202. doi:

10.1109/PERCOMW.2018.8480255.

[13] F. Van den Abeele, J. Haxhibeqiri, I. Moerman, and J. Hoebeke, ‘Scalability Analysis of Large-Scale

LoRaWAN Networks in ns-3’, IEEE Internet of Things Journal, vol. 4, no. 6, pp. 2186–2198, Dec. 2017, doi:

10.1109/JIOT.2017.2768498.

62

[14] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, ‘A Design Science Research Methodology

for Information Systems Research’, Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77,

Dec. 2007, doi: 10.2753/MIS0742-1222240302.

[15] M. C. Turner et al., ‘Outdoor air pollution and cancer: An overview of the current evidence and public health

recommendations’, CA: A Cancer Journal for Clinicians, vol. 70, no. 6, pp. 460–479, 2020, doi:

10.3322/caac.21632.

[16] ‘What are the WHO Air quality guidelines?’ Accessed: Oct. 15, 2023. [Online]. Available:

https://www.who.int/news-room/feature-stories/detail/what-are-the-who-air-quality-guidelines

[17] ‘European Air Quality Index’. Accessed: Oct. 15, 2023. [Online]. Available:

https://airindex.eea.europa.eu/Map/AQI/Viewer/#

[18] O. US EPA, ‘Air Data Basic Information’. Accessed: Oct. 09, 2023. [Online]. Available:

https://www.epa.gov/outdoor-air-quality-data/air-data-basic-information

[19] "Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI)".

Accessed: Oct. 15, 2023. [Online]. Available: https://www.airnow.gov/sites/default/files/2020-05/aqi-

technical-assistance-document-sept2018.pdf

[20] D. Sehrawat and N. S. Gill, ‘Smart Sensors: Analysis of Different Types of IoT Sensors’, in 2019 3rd

International Conference on Trends in Electronics and Informatics (ICOEI), Apr. 2019, pp. 523–528. doi:

10.1109/ICOEI.2019.8862778.

[21] K. M. Simitha and M. S. Subodh Raj, ‘IoT and WSN Based Air Quality Monitoring and Energy Saving

System in SmartCity Project’, in 2019 2nd International Conference on Intelligent Computing,

Instrumentation and Control Technologies (ICICICT), Jul. 2019, pp. 1431–1437. doi:

10.1109/ICICICT46008.2019.8993151.

[22] A. A. Aziz et al., ‘Portable Outdoor Air Quality Monitoring Using A Wireless Sensor Network (WSN)’, in

2021 4th International Conference on Computing & Information Sciences (ICCIS), Nov. 2021, pp. 1–5. doi:

10.1109/ICCIS54243.2021.9676381.

[23] N. A. A. Husein, A. Hadi, and D. Putri, ‘Evaluation of LoRa-based Air Pollution Monitoring System’,

IJACSA, vol. 10, no. 7, 2019, doi: 10.14569/IJACSA.2019.0100753.

[24] S. Walling, J. Sengupta, and S. Das Bit, ‘A Low-cost Real-time IoT based Air Pollution Monitoring using

LoRa’, in 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems

(ANTS), Dec. 2019, pp. 1–6. doi: 10.1109/ANTS47819.2019.9117963.

[25] F. Concas et al., ‘Low-Cost Outdoor Air Quality Monitoring and Sensor Calibration: A Survey and Critical

Analysis’, ACM Trans. Sen. Netw., vol. 17, no. 2, p. 20:1-20:44, May 2021, doi: 10.1145/3446005.

[26] M. Y. Thu, W. Htun, Y. L. Aung, P. E. E. Shwe, and N. M. Tun, ‘Smart Air Quality Monitoring System with

LoRaWAN’, in 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS),

Nov. 2018, pp. 10–15. doi: 10.1109/IOTAIS.2018.8600904.

[27] ‘How does an NDIR CO2 Sensor Work?’, CO2 Meter. Accessed: Feb. 03, 2023. [Online]. Available:

https://www.co2meter.com/blogs/news/how-does-an-ndir-co2-sensor-work

[28] H. Patashnick and E. G. Rupprecht, ‘Continuous PM-10 Measurements Using the Tapered Element

Oscillating Microbalance’, Journal of the Air & Waste Management Association, vol. 41, no. 8, pp. 1079–

1083, Aug. 1991, doi: 10.1080/10473289.1991.10466903.

63

[29] ‘Method IO-1.2 Determination of PM10 in Ambient Air Using the Thermo Environmental Instruments

(formerly Wedding) Continuous Beta Attenuation Monitor’.

[30] U. Raza, P. Kulkarni, and M. Sooriyabandara, ‘Low Power Wide Area Networks: An Overview’, IEEE

Communications Surveys & Tutorials, vol. 19, no. 2, pp. 855–873, 2017, doi:

10.1109/COMST.2017.2652320.

[31] Ahmed. S. Elselini, Hamed. R. Eleribi, M. Sanaani, and A. Alwerfalli, ‘A Performance Study of an IoT

System Using LoRa Access Network Technology’, in Proceedings of the 6th International Conference on

Engineering & MIS 2020, in ICEMIS’20. New York, NY, USA: Association for Computing Machinery, Sep.

2020, pp. 1–7. doi: 10.1145/3410352.3410807.

[32] P. Sethi and S. R. Sarangi, ‘Internet of Things: Architectures, Protocols, and Applications’, Journal of

Electrical and Computer Engineering, vol. 2017, pp. 1–25, 2017, doi: 10.1155/2017/9324035.

[33] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘A Survey on Internet of Things: Architecture,

Enabling Technologies, Security and Privacy, and Applications’, IEEE Internet of Things Journal, vol. 4, no.

5, pp. 1125–1142, Oct. 2017, doi: 10.1109/JIOT.2017.2683200.

[34] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, ‘Internet of Things: A Survey on

Enabling Technologies, Protocols, and Applications’, IEEE Communications Surveys & Tutorials, vol. 17,

no. 4, pp. 2347–2376, 2015, doi: 10.1109/COMST.2015.2444095.

[35] ‘Difference between Licensed Band and Unlicensed Band’. Accessed: Jan. 30, 2023. [Online]. Available:

https://www.rfwireless-world.com/Terminology/Difference-between-Licensed-band-and-Unlicensed-

band.html

[36] W. Ayoub, M. Mroue, F. Nouvel, A. E. Samhat, and J. Prévotet, ‘Towards IP over LPWANs technologies:

LoRaWAN, DASH7, NB-IoT’, in 2018 Sixth International Conference on Digital Information, Networking,

and Wireless Communications (DINWC), Apr. 2018, pp. 43–47. doi: 10.1109/DINWC.2018.8356993.

[37] ‘Spreading Factors’, The Things Network. Accessed: Jan. 31, 2023. [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/spreading-factors/

[38] ‘Adaptive Data Rate’, The Things Network. Accessed: Oct. 27, 2023. [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/adaptive-data-rate/

[39] ‘What is cloud computing? | IBM’. Accessed: Feb. 03, 2023. [Online]. Available:

https://www.ibm.com/topics/cloud-computing

[40] A. R. Al-Ali, I. Zualkernan, and F. Aloul, ‘A Mobile GPRS-Sensors Array for Air Pollution Monitoring’,

IEEE Sensors Journal, vol. 10, no. 10, pp. 1666–1671, Oct. 2010, doi: 10.1109/JSEN.2010.2045890.

[41] ‘NOVT_Whitepaper_Alternative_CO2_Laser_Wavelengths.pdf’. Accessed: Feb. 06, 2023. [Online].

Available: https://novantaphotonics.com/wp-

content/uploads/2021/12/NOVT_Whitepaper_Alternative_CO2_Laser_Wavelengths.pdf

[42] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen, and M. Sorensen, ‘Coverage and

Capacity Analysis of Sigfox, LoRa, GPRS, and NB-IoT’, in 2017 IEEE 85th Vehicular Technology

Conference (VTC Spring), Sydney, NSW: IEEE, Jun. 2017, pp. 1–5. doi: 10.1109/VTCSpring.2017.8108666.

[43] ‘What is Grafana?’ Accessed: Feb. 06, 2023. [Online]. Available: https://www.redhat.com/en/topics/data-

services/what-is-grafana

64

[44] ‘Noções básicas | Documentação do Firebase’, Firebase. Accessed: Jul. 31, 2023. [Online]. Available:

https://firebase.google.com/docs/guides?hl=pt-br

[45] "MQ-2 Datasheet", Hanwei Eletronics. Accessed: Jul. 29, 2023. [Online]. Available:

https://www.mouser.com/datasheet/2/321/605-00008-MQ-2-Datasheet-370464.pdf

[46] "MQ-7 Datasheet", Hanwei Eletronics. Accessed: Jul. 29, 2023. [Online]. Available:

https://www.sparkfun.com/datasheets/Sensors/Biometric/MQ-7.pdf

[47] "MQ-9 Datasheet", Hanwei Eletronics. Accessed: Jul. 29, 2023. [Online]. Available:

https://www.electronicoscaldas.com/datasheet/MQ-9_Hanwei.pdf

[48] Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri

Jayewardenepura, N. Kobbekaduwa, W. R. De Mel, Department of Materials and Mechanical Technology,

Faculty of Technology, University of Sri Jayewardenepura, P. Oruthota, and Department of Materials and

Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, ‘Calibration and

Implementation of Heat Cycle Requirement of MQ-7 Semiconductor Sensor for Detection of Carbon

Monoxide Concentrations’, ait, vol. 1, no. 2, Aug. 2021, doi: 10.31357/ait.v1i2.5068.

[49] ‘R-Squared’, Corporate Finance Institute. Accessed: Oct. 09, 2023. [Online]. Available:

https://corporatefinanceinstitute.com/resources/data-science/r-squared/

[50] ‘Grove - Air Quality Sensor v1.3 | Seeed Studio Wiki’. Accessed: Jul. 29, 2023. [Online]. Available:

https://wiki.seeedstudio.com/Grove-Air_Quality_Sensor_v1.3/

[51] T. Liu, ‘Capacitive-type humidity and temperature module/sensor’.

[52] O. US EPA, ‘Particulate Matter (PM) Basics’. Accessed: Oct. 09, 2023. [Online]. Available:

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics

[53] "Datasheet SPS30 Particulate Matter Sensor for Air Quality Monitoring and Control", Sensirion, The Sensor

Company. Accessed: Jul. 20, 2023. [Online]. Available:

https://sensirion.com/media/documents/8600FF88/616542B5/Sensirion_PM_Sensors_Datasheet_SPS30.pdf

[54] "Low-Power Operation Of the SPS30 Particulate Matter Sensor", Sensirion, The Sensor Company. Accessed:

Oct. 09, 2023. [Online]. Available:

https://sensirion.com/media/documents/188A2C3C/6166F165/Sensirion_Particulate_Matter_AppNotes_SP

S30_Low_Power_Operation_D1.pdf

[55] ‘Teardown: Sensirion SPS30 Particle Matter Sensor | MistyWest’. Accessed: Oct. 09, 2023. [Online].

Available: https://www.mistywest.com/posts/teardown-sensirion-particle-matter-sensor/

[56] "Mini GPS/BDS Unit (AT6558)", M5Stack. Accessed: Oct. 09, 2023. [Online]. Available:

https://media.digikey.com/pdf/Data%20Sheets/M5Stack%20PDFs/U032_Web.pdf

[57] ‘UNO R3 | Arduino Documentation’. Accessed: Oct. 09, 2023. [Online]. Available:

https://docs.arduino.cc/hardware/uno-rev3

[58] "Long Range Wireless Transceiver for Arduino - Lora Shield", Dragino. Accessed: Oct. 09, 2023. [Online].

Available: https://www.dragino.com/downloads/downloads/LoraShield/Datasheet_LoraShield.pdf

[59] ‘MKR WAN 1300 | Arduino Documentation’. Accessed: Jul. 29, 2023. [Online]. Available:

https://docs.arduino.cc/hardware/mkr-wan-1300

[60] "Raspberry Pi 4 Model B - Datasheet", Raspberry Pi. Accessed: Oct. 09, 2023. [Online]. Available:

https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-datasheet.pdf

65

[61] ‘Overview of the Arduino IDE 1 | Arduino Documentation’. Accessed: Oct. 09, 2023. [Online]. Available:

https://docs.arduino.cc/software/ide-v1/tutorials/Environment

[62] ‘Arduino library for the SPS30 particulate matter sensor’. Sensirion AG, Jul. 04, 2023. Accessed: Oct. 09,

2023. [Online]. Available: https://github.com/Sensirion/arduino-sps

[63] ‘DHT sensor library’. Adafruit Industries, Oct. 08, 2023. Accessed: Oct. 09, 2023. [Online]. Available:

https://github.com/adafruit/DHT-sensor-library

[64] ‘Seeed-Studio/Grove_Air_quality_Sensor’. Seeed Studio, May 09, 2023. Accessed: Oct. 09, 2023. [Online].

Available: https://github.com/Seeed-Studio/Grove_Air_quality_Sensor

[65] M. Hart, ‘TinyGPSPlus’. Oct. 05, 2023. Accessed: Oct. 09, 2023. [Online]. Available:

https://github.com/mikalhart/TinyGPSPlus

[66] ‘MKRWAN’. Arduino Libraries, Aug. 23, 2023. Accessed: Oct. 09, 2023. [Online]. Available:

https://github.com/arduino-libraries/MKRWAN

[67] ‘LoRaWAN® Regional Parameters’.

[68] ‘Arduino Low Power library’. Arduino Libraries, Oct. 08, 2023. Accessed: Oct. 27, 2023. [Online]. Available:

https://github.com/arduino-libraries/ArduinoLowPower

[69] ‘The Things Network’. Accessed: Oct. 09, 2023. [Online]. Available:

https://www.thethingsindustries.com/docs/reference/ttn/

[70] ‘End Device Activation’, The Things Network. Accessed: Oct. 09, 2023. [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/end-device-activation/

[71] ‘Duty Cycle’, The Things Network. Accessed: Oct. 27, 2023. [Online]. Available:

https://www.thethingsnetwork.org/docs/lorawan/duty-cycle/

[72] T. T. Network, ‘Lisbon’, The Things Network. Accessed: Jul. 31, 2023. [Online]. Available:

https://www.thethingsnetwork.org/community/lisbon/

[73] ‘Node-RED’. Accessed: Oct. 09, 2023. [Online]. Available: https://nodered.org/#get-started

[74] ‘MQTT - The Standard for IoT Messaging’. Accessed: Oct. 09, 2023. [Online]. Available: https://mqtt.org/

[75] ‘Airtime calculator for LoRaWAN’. Accessed: Oct. 27, 2023. [Online]. Available:

https://avbentem.github.io/airtime-calculator/ttn/eu868

[76] ‘Flutter - Build apps for any screen’. Accessed: Oct. 09, 2023. [Online]. Available: //flutter.dev/

[77] "SR-3 - Bench Top Test Chamber", Figaro Accessed: Oct. 19, 2023. [Online]. Available:

https://www.figaro.co.jp/en/product/docs/sr-3_product%20information%28en%29_rev02.pdf

66

67

APPENDIX A

Arduino Microcontroller Code

//Imported libraries

#include <MKRWAN.h>

#include <Wire.h>

#include <TinyGPSPlus.h>

#include <avr/dtostrf.h>

#include <sps30.h>

#include "DHT.h"

#include "Air_Quality_Sensor.h"

#include "ArduinoLowPower.h"

#include "arduino_secrets.h" // File with the TTN appEui and appKey

#define gpsSerial Serial1 //Instance for UART communication between gps module

and arduino board

#define DHTPIN 2 //Declaring the pin which dht22 sensor is connected

#define DHTTYPE DHT22 //Declaring the type of dht sensor used

//Intances for gps module, dht22 and grove air quality sensors

TinyGPSPlus gps;

DHT dht(DHTPIN, DHTTYPE);

AirQualitySensor sensor(A3);

static const uint32_t GPSBaud = 9600; //GPS BaudRate 9600 bits/s

//Declaring the pins for MQ sensor connection

int gas_sensor_mq2 = A4;

int gas_sensor_mq7 = A5;

int gas_sensor_mq9 = A2;

//R0 values used for MQ-2, MQ-7, and MQ-9, respectively

float R0_mq2 = 1.30;

float R0_mq7 = 4.78;

float R0_mq9 = 8.21;

//Gathering appEui and appKey from TTN application, stored in a private file

String appEui = SECRET_APP_EUI;

String appKey = SECRET_APP_KEY;

//Instance for LoRa communication

LoRaModem modem;

//Default frequency of sending readings via LoRa (5 minutes)

68

int interval = 300;

void setup() {

 int16_t ret;

 uint8_t auto_clean_days = 4;

 uint32_t auto_clean;

 Serial.begin(115200);

 analogReadResolution(12); //Changing MKRWAN board bit resolution to 12 bits

 delay(3000);

 gpsSerial.begin(GPSBaud); //GPS module initialization with baud rate defined

in "GPSBaud" variable

 dht.begin(); //DHT22 sensor initialization

 if (sensor.init()) { //Grove Air Quality v1.3 sensor initialization check

 Serial.println("Sensor ready.");

 } else {

 Serial.println("Sensor ERROR!");

 }

 //Declaring pins associated with MQ sensors, as INPUT (gathering values)

 pinMode(gas_sensor_mq2, INPUT);

 pinMode(gas_sensor_mq7, INPUT);

 pinMode(gas_sensor_mq9, INPUT);

 sensirion_i2c_init(); //SPS30 sensor initialization

 while (sps30_probe() != 0) { //SPS30 sensor initialization check

 Serial.print("SPS sensor probing failed\n");

 delay(500);

 }

 //Declaring a value for SPS30 sensor automatically cleaning interval (every

4 days)

 ret = sps30_set_fan_auto_cleaning_interval_days(auto_clean_days);

 if (ret) {

 Serial.print("error setting the auto-clean: ");

 Serial.println(ret);

 }

 //Putting the SP30 sensor into sleep state

 sps30_sleep();

 while (!Serial);

 if (!modem.begin(EU868)) { //Checking LoRa module initialization (with

regional parameter for the reagion where the communication is being made, in

this case EU868)

 Serial.println("Failed to start module");

69

 while (1) {}

 };

 Serial.println(modem.deviceEUI()); //Obtaining MKRWAN 1300 board DevEUI

 int connected = modem.joinOTAA(appEui, appKey); //Connection to TTN

platform, with user TTN application appEui and appKey

 if (!connected) { //Checking connection to TTN platform

 Serial.println("Something went wrong with connection");

 while (1) {}

 }

 delay(10000);

}

//Function to check if there is any available data on the GPS module

static void gpsDelay(unsigned long ms)

{

 unsigned long start = millis();

 do

 {

 while (gpsSerial.available())

 gps.encode(gpsSerial.read());

 } while (millis() - start < ms);

}

void loop() {

 float sensor_volt_mq2, sensor_volt_mq7, sensor_volt_mq9;

 float RS_gas_mq2, RS_gas_mq7, RS_gas_mq9;

 float ratio_mq2, ratio_mq7, ratio_mq9;

 struct sps30_measurement m;

 uint16_t data_ready;

 int16_t ret;

 float pm2_5, pm_10;

 //Checking for gps data

 gpsDelay(2000);

 // //Reading the analog MQ sensor values for later conversion

 float sensorValue_mq2 = analogRead(gas_sensor_mq2);

 float sensorValue_mq7 = analogRead(gas_sensor_mq7);

 float sensorValue_mq9 = analogRead(gas_sensor_mq9);

 //Analog sensor readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12

bits)

 sensor_volt_mq2 = (sensorValue_mq2*3.3)/4095.0;

 sensor_volt_mq7 = (sensorValue_mq7*3.3)/4095.0;

 sensor_volt_mq9 = (sensorValue_mq9*3.3)/4095.0;

 //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL)

70

 RS_gas_mq2 = ((3.3/sensor_volt_mq2)-1)*5.0;

 RS_gas_mq7 = ((3.3/sensor_volt_mq7)-1)*10.0;

 RS_gas_mq9 = ((3.3/sensor_volt_mq9)-1)*10.0;

 //Rs/R0 ratio calculation for each MQ sensor

 ratio_mq2 = RS_gas_mq2/R0_mq2;

 ratio_mq7 = RS_gas_mq7/R0_mq7;

 ratio_mq9 = RS_gas_mq9/R0_mq9;

 //Gas concentration calculation

 double ppm_mq2 = 3789.8 * pow(ratio_mq2, -2.72); //Alcohol

 double ppm_mq7 = 103.16 * pow(ratio_mq7, -1.498); //CO

 double ppm_mq9 = 1013.7 * pow(ratio_mq9, -2.088); //LPG

 Serial.println(ppm_mq2);

 Serial.println(ppm_mq7);

 Serial.println(ppm_mq9);

 //SPS30 sensor wake up from sleep mode to idle mode

 ret = sps30_wake_up();

 if (ret < 0) {

 Serial.print("Error waking UP");

 } else {

 Serial.println("SUCESS WAKING UP");

 }

 //SPS30 sensor change from idle mode to measurement mode

 ret = sps30_start_measurement();

 if (ret < 0) {

 Serial.print("error starting measurement\n");

 }

 //Delay to obtain more accuracy readings before the taking of PM2.5 and PM10

readings in measurement mode

 delay(30000);

 //Loop tp check available data on the SPS30 sensor

 do {

 ret = sps30_read_data_ready(&data_ready);

 if (ret < 0) {

 Serial.print("error reading data-ready flag: ");

 } else if (!data_ready)

 Serial.print("data not ready, no new measurement available\n");

 else

 break;

 delay(100);

 } while (1);

 //Gathering measurements and store them in a structure "m"

71

 ret = sps30_read_measurement(&m);

 if (ret < 0) {

 Serial.print("error reading measurement\n");

 }

 //Store PM2.5 and PM10 values in variables

 pm2_5 = m.mc_2p5;

 pm_10 = m.mc_10p0;

 //SPS30 change from measurement mode to idle mode

 ret = sps30_stop_measurement();

 if (ret < 0) {

 Serial.print("Error STOPPING");

 } else {

 Serial.println("SUCESS STOPPING");

 }

 //SPS30 change from idle mode to sleep mode

 ret = sps30_sleep();

 if (ret < 0) {

 Serial.print("Error Sleeping");

 } else {

 Serial.println("SUCESS Sleeping");

 }

 Serial.println(pm2_5);

 Serial.println(pm_10);

 //Gathering temperature and relative humidity values and store them in

variables

 float temp = dht.readTemperature();

 float hum = dht.readHumidity();

 Serial.println(temp);

 Serial.println(hum);

 //Gathering latitude and longitude values and store them in variables

 float latitudeValue = gps.location.lat();

 float longitudeValue = gps.location.lng();

 Serial.println(latitudeValue);

 Serial.println(longitudeValue);

 ////Gathering air condition value store it in variable

 int aqi = sensor.getValue();

 Serial.println(aqi);

 //Storing all the measures in unsigned 16-bit and 32-bit integer varibles

for packet size otimization

72

 uint16_t pm2_5_x = pm2_5 * 100;

 uint16_t pm_10_x = pm_10 * 100;

 uint16_t temperature = temp * 100;

 uint16_t humidity = hum * 100;

 uint32_t latitudeBinary = ((latitudeValue + 90) / 180) * 16777215;

 uint32_t longitudeBinary = ((longitudeValue + 180) / 360) * 16777215;

 uint16_t ppm_mq2_x = ppm_mq2 * 100;

 uint16_t ppm_mq7_x = ppm_mq7 * 100;

 uint16_t ppm_mq9_x = ppm_mq9 * 100;

 //Unsigned 8-bit array to store all the measurements and its size

 uint8_t sensorData[28];

 size_t dataSize = sizeof(sensorData);

 //Storing all the measurements in the "sensorData" array

 sensorData[0] = temperature >> 8;

 sensorData[1] = temperature;

 sensorData[2] = humidity >> 8;

 sensorData[3] = humidity;

 sensorData[4] = pm2_5_x >> 8;

 sensorData[5] = pm2_5_x;

 sensorData[6] = pm_10_x >> 8;

 sensorData[7] = pm_10_x;

 sensorData[8] = ppm_mq2_x >> 8;

 sensorData[9] = ppm_mq2_x;

 sensorData[10] = ppm_mq7_x >> 8;

 sensorData[11] = ppm_mq7_x;

 sensorData[12] = ppm_mq9_x >> 8;

 sensorData[13] = ppm_mq9_x;

 sensorData[14] = aqi >> 8;

 sensorData[15] = aqi;

 sensorData[16] = interval >> 8;

 sensorData[17] = interval;

 sensorData[18] = latitudeBinary >> 24;

 sensorData[19] = latitudeBinary >> 16;

 sensorData[20] = latitudeBinary >> 8;

 sensorData[21] = latitudeBinary;

 sensorData[22] = longitudeBinary >> 24;

 sensorData[23] = longitudeBinary >> 16;

 sensorData[24] = longitudeBinary >> 8;

 sensorData[25] = longitudeBinary;

 int err;

 //Initializing packet sending via LoRa

 modem.beginPacket();

 modem.write(sensorData, dataSize);

 err = modem.endPacket(true);

 //Checking if the packet was correctly sent

73

 if (err > 0) {

 Serial.println("Binary message sent correctly!");

 } else {

 Serial.println("Error sending binary message");

 Serial.println(err);

 }

 //Putting LoRa module into sleep mode to conserve energy

 modem.sleep();

 //Putting microcontroller and some internal peripherals into sleep mode to

conserve energy, during frequency of sending readings

 LowPower.sleep(interval*1000);

 //Delay introduced for wake up time of the microcontroller

 delay(15000);

 Serial.println("Avaliação de DW");

 //Checking if there is any downlink messages available

 if (!modem.available()) {

 Serial.println("No downlink message received at this time.");

 return;

 }

 //If there is a downlink message available, decode that message

 char rcv[64];

 int i = 0;

 while (modem.available()) {

 rcv[i++] = (char)modem.read();

 }

 rcv[i]=0;

 Serial.print("Received: ");

 for (unsigned int j = 0; j < i; j++) {

 Serial.println(rcv[j], DEC);

 }

 int number = (int)rcv[0];

 Serial.println(number);

 int new_delay = number*60;

 Serial.print("New delay: ");

 Serial.println(new_delay);

}

74

75

APPENDIX B

Arduino Code for R0 calculation of each MQ sensor

//Imported libraries

#include <SPI.h>

#include <Wire.h>

void setup() {

 Serial.begin(9600);

 analogReadResolution(12); //Changing MKRWAN board bit resolution to 12 bits

 delay(10000);

}

void loop() {

 float sensor_volt2, sensor_volt7, sensor_volt9;

 float RS_air2, RS_air7, RS_air9;

 float R0_2, R0_7, R0_9;

 float sensorValue2, sensorValue7, sensorValue9;

 for(int x = 0 ; x < 500 ; x++) //Reading the analog MQ sensor values for

later conversion

 {

 sensorValue2 = sensorValue2 + analogRead(A4);

 sensorValue7 = sensorValue7 + analogRead(A5);

 sensorValue9 = sensorValue9 + analogRead(A2);

 }

 //Average of readings for each MQ sensor

 sensorValue2 = sensorValue2/500.0;

 sensorValue7 = sensorValue7/500.0;

 sensorValue9 = sensorValue9/500.0;

 //Average of readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12

bits)

 sensor_volt2 = (sensorValue2*3.3)/4095.0;

 sensor_volt7 = (sensorValue7*3.3)/4095.0;

 sensor_volt9 = (sensorValue9*3.3)/4095.0;

 //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL)

 RS_air2 = ((3.3/sensor_volt2)-1)*5.0;

 RS_air7 = ((3.3/sensor_volt7)-1)*10.0;

 RS_air9 = ((3.3/sensor_volt9)-1)*10.0;

 //Getting RS value for each MQ sensor (R0=RS/(RS/R0 in fresh air))

 R0_2 = RS_air2/9.7;

76

 R0_7 = RS_air7/27.0;

 R0_9 = RS_air9/9.8;

 //Displaying R0 values

 Serial.print("R0_2 = ");

 Serial.println(R0_2);

 Serial.print("R0_7 = ");

 Serial.println(R0_7);

 Serial.print("R0_9 = ");

 Serial.println(R0_9);

 Serial.println("-------------------------------");

 delay(60000);

}

77

APPENDIX C

Arduino script to calculate gas concentration

 // //Reading the analog MQ sensor values for later conversion

 float sensorValue_mq2 = analogRead(gas_sensor_mq2);

 float sensorValue_mq7 = analogRead(gas_sensor_mq7);

 float sensorValue_mq9 = analogRead(gas_sensor_mq9);

 //Analog sensor readings to voltage conversion (Vrl=(ADC value x Vcc)/2^12

bits)

 sensor_volt_mq2 = (sensorValue_mq2*3.3)/4095.0;

 sensor_volt_mq7 = (sensorValue_mq7*3.3)/4095.0;

 sensor_volt_mq9 = (sensorValue_mq9*3.3)/4095.0;

 //Getting RS value for each MQ sensor (RS=[(Vcc/Vrl)-1]xRL)

 RS_gas_mq2 = ((3.3/sensor_volt_mq2)-1)*5.0;

 RS_gas_mq7 = ((3.3/sensor_volt_mq7)-1)*10.0;

 RS_gas_mq9 = ((3.3/sensor_volt_mq9)-1)*10.0;

 //Rs/R0 ratio calculation for each MQ sensor

 ratio_mq2 = RS_gas_mq2/R0_mq2;

 ratio_mq7 = RS_gas_mq7/R0_mq7;

 ratio_mq9 = RS_gas_mq9/R0_mq9;

 //Gas concentration calculation

 double ppm_mq2 = 3789.8 * pow(ratio_mq2, -2.72); //Alcohol

 double ppm_mq7 = 103.16 * pow(ratio_mq7, -1.498); //CO

 double ppm_mq9 = 1013.7 * pow(ratio_mq9, -2.088); //LPG

78

79

APPENDIX D

Javascript decoder formatter for TTN uplink messages

function Decoder(bytes, port) {

 var decoded = {};

 //Decoding temperature value

 var celciusInt = (bytes[0] & 0x80 ? 0xFFFF<<16 : 0) | bytes[0]<<8 |

bytes[1];

 decoded.temperature = celciusInt / 100;

 //Decoding relative humidity value

 var humInt = (bytes[2] & 0x80 ? 0xFFFF<<16 : 0) | bytes[2]<<8 | bytes[3];

 decoded.humidity = humInt / 100;

 //Decoding PM2.5 μm value

 var pm2_5_x = (bytes[4] << 8) + bytes[5];

 decoded.pm2_5 = pm2_5_x / 100;

 //Decoding PM10 μm value

 var pm_10_x = (bytes[6] << 8) + bytes[7];

 decoded.pm_10 = pm_10_x / 100;

 //Decoding Alcohol value

 var ppm_mq2_x = (bytes[8] << 8) + bytes[9];

 decoded.ppm_mq2 = ppm_mq2_x / 100;

 //Decoding CO value

 var ppm_mq7_x = (bytes[10] << 8) + bytes[11];

 decoded.ppm_mq7 = ppm_mq7_x / 100;

 //Decoding LPG value

 var ppm_mq9_x = (bytes[12] << 8) + bytes[13];

 decoded.ppm_mq9 = ppm_mq9_x / 100;

80

 //Decoding AQI value

 decoded.aqi = (bytes[14] << 8) + bytes[15];

 //Decoding frequency of sending readings value

 decoded.interval = (bytes[16] << 8) + bytes[17];

 //Decoding Latitude value

 var lat = (bytes[18] << 24) + (bytes[19] << 16) + (bytes[20] << 8) +

bytes[21];

 decoded.latitude = (((lat / 16777215.0) * 180.0) - 90).toFixed(6);

 //Decoding Longitude value

 var lon = (bytes[22] << 24) + (bytes[23] << 16) + (bytes[24] << 8) +

bytes[25];

 decoded.longitude = (((lon / 16777215.0) * 360.0) - 180).toFixed(6);

 return decoded;

}

81

APPENDIX E

Node-Red Flow

82

83

APPENDIX F

Scientific Paper

84

85

86

87

88

