

Intelligent System for Automation of Security Audits
(SIAAS)

João Pedro Delgado Seara

Masters in Telecommunications and Computer Engineering
Dissertation

Supervision:
PhD Carlos José Corredoura Serrão, Associate Professor,
ISCTE – Instituto Universitário de Lisboa

November, 2023

Department of Information Science and Technology (DCTI-ISTA)

Intelligent System for Automation of Security Audits
(SIAAS)

João Pedro Delgado Seara

Masters in Telecommunications and Computer Engineering
Dissertation

Supervision:
PhD Carlos José Corredoura Serrão, Associate Professor,
ISCTE – Instituto Universitário de Lisboa

November, 2023

Direitos de cópia ou Copyright

© Copyright: João Pedro Delgado Seara

O ISCTE – Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites

geográficos, de arquivar e publicitar este trabalho através de exemplares impressos

reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido

ou que venha a ser inventado, de o divulgar através de repositórios científicos e de

admitir a sua cópia e distribuição com objetivos educacionais ou de investigação,

não comerciais, desde que seja dado crédito ao autor e editor.

Aos meus pais

Intelligent System for Automation of Security Audits Acknowledgments

ix

Acknowledgments

First of all, I want to express my gratitude to Prof. Carlos Serrão for guiding me through the

development and writing of this dissertation.

Also, to Prof. Nuno Souto, for accepting my re-enrollment request in this master’s course, and

to Prof. Isabel Alexandre for providing me valuable advice in the earlier steps of this work.

To all the artifact testers: Matt Golden from Trilio Data (thank you also for reviewing this

dissertation), Ricardo Ramalho from Altice Portugal, and Jorge Teixeira from VTXRM.

To my company, for supporting me in my academic efforts. More exactly, my current manager,

Shin Horiuchi. This acknowledgment extends to my former companies and managers.

To the FOSS community.

And finally – above all – to my close family for always being there for me.

Thank you all for your support and input. None of this would be possible without you.

Intelligent System for Automation of Security Audits Acknowledgments

x

Intelligent System for Automation of Security Audits Abstract

xi

Resumo

Eventos relacionados com falhas de cibersegurança têm um elevado e crescente impacto

financeiro, operacional, e reputacional, em organizações por todo o mundo. Ao mesmo tempo,

há uma escassez de profissionais de cibersegurança. Além disso, a especialização de

profissionais com as competências necessárias na área da cibersegurança é dispendiosa e

morosa. Esta investigação adereça estes problemas ao desenvolver um rastreador de

vulnerabilidades que é gratuito para a comunidade, e não requer pré-especialização por parte

do operador. O artefacto foi testado por empresas de TI, por engenheiros de sistemas, na sua

maioria sem especialização específica na área de cibersegurança. Os resultados demonstram

que o artefacto foi fácil de instalar e reportou resultados que podem ser usados pelo operador

no contexto de uma securitização automática e proativa dos sistemas envolvidos.

Palavras-chave: cibersegurança, auditoria de segurança, rastreador de vulnerabilidades,

software de código livre

Intelligent System for Automation of Security Audits Abstract

xii

Intelligent System for Automation of Security Audits Abstract

xiii

Abstract

Events related to cybersecurity failures have a high and growing financial, operational, and

reputational impact, on organizations around the world. At the same time, there is a shortage

of cybersecurity professionals. In addition, the specialization of professionals with the

necessary skills in the area of cybersecurity is expensive and time-consuming. Taking these

facts into consideration, this research has focused on the automation of cybersecurity

processes, specifically those related to continuous vulnerability detection. To address this

problem, a cybersecurity vulnerability scanner that is free to the community and requires no

pre-expertise on the part of the operator, was developed. The artifact was tested by companies

in the IT business, by systems engineers, most without cybersecurity background. The results

demonstrated that the artifact was easy to install and that the reported results can be used by

the operator in the context of an automatic and proactive securitization of the systems involved.

Keywords: cybersecurity, security auditing, vulnerability scanner, free open-source software

(FOSS)

Intelligent System for Automation of Security Audits Abstract

xiv

Intelligent System for Automation of Security Audits Indexes

xv

Contents

Acknowledgments ... ix

Resumo ... xi

Abstract ... xiii

Contents ... xv

List of Figures, Tables, Equations, and Technical Notes .. xvii

Glossary .. xix

Chapter 1. Introduction ... 1

1.1. Context and Motivation .. 1

1.2. Research Questions .. 6

1.3. Methodology ... 7

Chapter 2. State-of-the-Art ... 9

2.1. Systematic Review .. 9

2.2. Background Concepts ..12

2.2.1. Security Vulnerabilities ..12

2.2.2. Vulnerability Normalization and Standards ..13

2.2.3. Vulnerability Scanner ..15

2.2.4. Penetration Testing ...20

2.3. Related Works and Projects ...22

2.3.1. Community and Commercial Tools ..22

2.3.2. Literature Review ..26

2.3.3. Conclusions ..28

Chapter 3. System Design and Deployment ..31

3.1. Goals and Design Aspects ...31

3.2. Architecture Overview ..33

3.3. Tooling Choices ...36

3.4. Agent ...38

3.4.1. Platform Module ..40

3.4.2. Neighborhood Module ...41

3.4.3. Portscanner Module ..43

3.4.4. Data Transfer Module..46

3.4.5. Local API ...49

3.4.6. System Scripts, Logs, and Configuration ...51

Intelligent System for Automation of Security Audits Indexes

xvi

3.5. Server ..53

3.5.1. API and Database ...54

3.5.2. Platform Module ..58

3.5.3. DB Maintenance Module ...58

3.5.4. Mailer Module ...59

3.5.5. System Scripts, Logs, and Configuration ...61

3.6. Command Line Interface (CLI) ...63

3.6.1. System Scripts and Environment Variables ...65

Chapter 4. Validation and Tests ...67

4.1. Methodology ..67

4.2. Performance and Security Tests ..70

4.2.1. Laboratory Specifications ..70

4.2.2. Reliability ...72

4.2.3. Accuracy ...77

4.2.4. Security ...83

4.3. User Tests ..84

4.3.1. Trilio Data (US Company) ...84

4.3.2. Altice Portugal ...85

4.3.3. VTXRM (Portuguese Company) ..87

4.3.4. David Negreira (IT Freelancer, Ubuntu Community) ..88

4.3.5. Aggregated Results and Considerations ...89

Chapter 5. Conclusions ...93

5.1. Final Considerations...93

5.2. Known Issues ...95

5.3. Future Work ...95

5.4. Project Availability, Credits, and Contributions ...97

References ...99

Appendix A – Agent Configuration Reference ... A

Appendix B – Server Configuration Reference .. C

Appendix C – CLI Environment Variables Reference .. E

Appendix D – Local API Guide (Agent) .. G

Appendix E – API Guide (Server) ... I

Appendix F – Local Tests ..M

Appendix G – Survey Responses from Testers .. CC

Intelligent System for Automation of Security Audits Indexes

xvii

List of Figures, Tables, Equations, and Technical Notes

Figures

Figure 1 - Summary of aggregate loss estimates due to cybersecurity incidents [3] 2

Figure 2 - Security Orchestration, Automation, and Response [17] 6

Figure 3 - The DSRM process model [18].. 7

Figure 4 - PRISMA information flow [23] ...10

Figure 5 - WannaCry ransomware’s CVE page screenshot from the MITRE’s website13

Figure 6 - TCP SYN Scan technique [44] ...17

Figure 7 - Architecture of Nessus agent-based scanning versus traditional scanning [66]25

Figure 8 - A Raspberry Pi 3 Model B+ board (2017) [83] ..32

Figure 9 - SIAAS high-level architecture ...34

Figure 10 - SIAAS Agent architecture and data flow ...39

Figure 11 - SIAAS Agent’s Platform module architecture and data flow40

Figure 12 - SIAAS Agent’s Neighborhood module architecture and data flow41

Figure 13 - SIAAS Agent’s Portscanner module architecture and data flow44

Figure 14 - SIAAS Agent’s Data Transfer module architecture and data flow47

Figure 15 - Graphical representation of the JSON object’s schema generated by the SIAAS

Agent ..48

Figure 16 - Screenshot of the output of the SIAAS Agent local API in Firefox50

Figure 17 - SIAAS Agent service being controlled using command lines52

Figure 18 - SIAAS Server architecture and data flow ..54

Figure 19 - Screenshot of the output of the SIAAS Server API in Firefox, showing active

agents ..55

Figure 20 - Screenshot of the output of the SIAAS Server API in Firefox, showing historical

data ..57

Figure 21 - SIAAS Server’s DB Maintenance module architecture and data flow..................59

Figure 22 - SIAAS Server’s Mailer module architecture and data flow60

Figure 23 - Screenshot of an e-mail sent by the SIAAS Server being read in a Gmail client .61

Figure 24 - SIAAS Server service being controlled using command lines62

Figure 25 - SIAAS CLI showing help and vulnerability report outputs65

Figure 26 - Local laboratory ..71

Figure 27 - CPU load in RPI1 versus number of workers ..73

Figure 28 - CPU usage in all the agents during local tests ..74

Figure 29 - Memory usage in all the agents during local tests ..75

Figure 30 - Scanning results before the VM upgrade during local tests78

Figure 31 - Scanning results after the VM upgrade during local tests80

Figure 32 - Scanning results for a Windows Server VM during local tests82

Intelligent System for Automation of Security Audits Indexes

xviii

Figure 33 - Graphical distribution of the agreeableness replies given by the testers90

Tables

Table 1 - Search criteria per database ..11

Table A1 - SIAAS Agent configuration reference ... A

Table B1 - SIAAS Server configuration reference .. C

Table C1 - SIAAS CLI environment variables reference .. E

Equations

Equation 1 - Logical overlap of local and published agent configurations48

Technical Notes

Technical Note D1 - SIAAS Agent local API guide ... G

Technical Note E1 - SIAAS Server API guide .. K

Technical Note F1 - Raw notes from the local tests ... AA

Technical Note G1 - Survey results from the testers of the artifact FF

Intelligent System for Automation of Security Audits Glossary

xix

Glossary

AAA - Authentication, Authorization, and Accounting

AI - Artificial Intelligence

AIO - All-In-One

AMQP - Advanced Message Queueing Protocol

API - Application Programming Interface

ARM - Advanced RISC Machine
ARP - Address Resolution Protocol
BSON - Binary JavaScript Object Notation

CA - Certificate Authority
CCE - Common Configuration Enumeration
CISA - Cybersecurity and Infrastructure Security Agency
CLI - Command Line Interface
CPE - Common Platform Enumeration
CPU - Central Processing Unit
CRUD - Create, Read, Update, and Delete
CSV - Comma-Separated Values
CVE - Common Vulnerabilities and Exposures
CVSS - Common Vulnerability Scoring System
CWE - Common Weakness Enumeration

DB - Database

DevSecOps - Development, Security, and Operations

DNS - Domain Name System

DR - Disaster Recovery

DSRM - Design Science Research Methodology

FOSS - Free and Open-Source Software

FS - File System

FTP - File Transfer Protocol

GB - Gigabyte

GHz - Gigahertz

GNU - GNU’s Not Unix

GPL - GNU’s General Public License

GPT - Generative Pre-Trained Transformer
HA - High Availability

HTTP - Hyper Text Transfer Protocol

HTTPS - Hyper Text Transfer Protocol Secure

I/O - Input/Output

ICMP - Internet Control Message Protocol

ICT - Information and Communications Technology (interchangeable with IT)

Intelligent System for Automation of Security Audits Glossary

xx

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineers

IP - Internet Protocol

IPv4 - IP version 4

IPv6 - IP version 6

ISCTE-IUL - ISCTE – Instituto Universitário de Lisboa (Portuguese translation of “University

Institute of Lisbon”)

ISO - International Organization for Standardization

IT - Information and Technology (interchangeable with ICT)

JSON - JavaScript Object Notation

KB - Kilobyte

KVM - Kernel-based Virtual Machine

LAN - Local Area Network

LXC - Linux Containers

MAC - Media Access Control

MB - Megabyte

MBSA - Microsoft Baseline Security Analyzer

MHz - Megahertz

MITRE - Massachusetts Institute of Technology Research and Engineering

ML - Machine Learning

NASL - Nessus Attacking Scripting Language

NDP - Neighborhood Discovery Protocol

NFS - Network File System

NIC - Network Interface Card

NIST - National Institute of Standards and Technology

NSE - Nmap Scripting Engine

NVD - National Vulnerability Database

NVT - Network Vulnerability Test

OOM - Out Of Memory

OS - Operating System

OVAL - Open Vulnerability and Assessment Language

OWASP - Open Worldwide Application Security Project

PenTesting - Penetration Testing

PEP - Python Enhancement Proposals

PnP - Plug and Play

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analysis

PTES - Penetration Testing Execution Standard

R&D - Research and Development

RAM - Random Access Memory

REST - Representational State Transfer

RFC - Request For Comments

RISC - Reduced Instruction Set Computer

SaaS - Software as a Service

SBC - Single-Board Computer

SCAP - Security Content Automation Protocol

SIAAS - Sistema Inteligente para Automação de Auditorias de Segurança (Portuguese

translation of “Intelligent System for Automation of Security Audits”)

SIEM - Security Information and Event Management

Intelligent System for Automation of Security Audits Glossary

xxi

SMB - Small and Medium Business

SOAR - Security Orchestration, Automation and Response

SOC - Security Operations Center

SQL - Structured Query Language

SSH - Secure Shell

SSL - Secure Sockets Layer (interchangeable with TLS)

TCP - Transmission Control Protocol

TLS - Transport Layer Security (interchangeable with SSL)

UDP - User Datagram Protocol

UI - User Interface

UID - Unique Identifier

URI - Uniform Resource Identifier (interchangeable with URL)

URL - Uniform Resource Location (interchangeable with URI)

US - United States (of America)

USD - US Dollar

UTC - Universal Coordinated Time

UUID - Universally Unique Identifier

UX - User Experience

VM - Virtual Machine

Wi-Fi - Wireless Fidelity

WLAN - Wireless Local Area Network

x86 - 8086 microprocessor family

XCCDF - Extensible Configuration Checklist Description Format

XML - Extensible Markup Language

XSS - Cross-Site Scripting

XXE - XML External Entity

Intelligent System for Automation of Security Audits Glossary

xxii

Intelligent System for Automation of Security Audits 1. Introduction

1

CHAPTER 1

Introduction

An introductory contextualization of the presented work. The context and motivation for this

work will be explained. This motivation emerges from a specific problem needing to be solved,

and specific research question(s) will be formulated taking into consideration if and how this

problem can be solved. Finally, the methodology for research and the planning of all the

phases of work – from problem formulation to development of an artifact and its

results/documentation/communication – will be detailed.

1.1. Context and Motivation

Cybersecurity-related occurrences are often in the news. The number of global attacks keeps

increasing in recent years [1]. Two of the most impactful recent occurrences that raised

awareness for the importance of proper security auditing were the WannaCry and Petya global

ransomware outbreaks of 2017 [2].

Back in 2020, a study by the US Cybersecurity and Infrastructure Security Agency (CISA)

was made to “to understand the impacts, costs, and losses from cyber incidents, to enable

cyber risk analysis and inform cybersecurity resource allocation decisions” [3]. This study

compiled a list of other studies from organizations and private companies. It was found that,

from 2013 onwards, the global average annual cost estimate of cybersecurity incidents ranged

from approximately 1.75 trillion to a projection for 2021 of 6 trillion (6.000.000.000.000) USD.

Figure 1 shows a summary of the studies that were condensed in this global study.

Intelligent System for Automation of Security Audits 1. Introduction

2

Figure 1 - Summary of aggregate loss estimates due to cybersecurity incidents [3]

Putting these values into perspective: the global expenditures in R&D (for all areas; not

only cybersecurity), for the year of 2020, were about 2.4 trillion (2.400.000.000.000) USD [4].

This means 2.5 (6 ÷ 2.4) times more is spent on security issues than with R&D efforts (this

ratio might not be exact as the used values do not refer to the same year, but consecutive

years (2020 vs 2021)).

Looking into the next years, the total amount of global costs with cybersecurity-related

events is expected to grow considerably, with a worldwide predicted value of 10.5 trillion

(10.500.000.000.000) USD, annually, by 2025 [5]. This will mean, roughly, 28.8 billion

(28.800.000.000) USD per day, or 333.000 USD per second!

Intelligent System for Automation of Security Audits 1. Introduction

3

There is a similar study that is important to refer (year of the study is not disclosed by the

authors, but it has data from at least 2015 onwards) which was made by Kaspersky – a private

cybersecurity company – in which more than 5.500 companies from 26 countries around the

world were surveyed [6]. This study contains more granular information, which provides

insights at the organizational level. Managers and professionals were the focus of this survey,

and they were asked about the cost of recovery when a security breach is experienced. This

study has shown that almost half of businesses lost sensitive data due to a security threat.

Financially, enterprises pay an average of 551.000 USD to recover from a single security

breach; small and medium businesses (SMB) pay an average of 38.000 USD. The indirect

costs add to this number: 69.000 USD for enterprises, 8.000 USD for SMBs. This study also

noted that security breaches are an increasing concern for companies.

When it comes to equipping organizations with expertise in the area of cybersecurity, the

difficulty lies not only in getting security professionals, but professionals with the right

experience. This makes hiring a challenge. [7],[8]

The issues above are especially impactful in poorer countries, as they have “weak

cybersecurity infrastructure, low inter-agency coordination and emergency responses as well

as weak institutional capacity, limited ICT skills and awareness, and limited protection of critical

national infrastructure” [9].

The conscience of the organizational need of getting the right expertise in cybersecurity is

not recent. Back in 2013, it was predicted that it could take more than 20 years to fill the

cybersecurity skills gap [10]. Shortage was mainly attributed to the rapid evolution of IT itself.

The difficult legislative environment was also pointed out as a cause.

Automating security audits provides benefit in tackling the issues described before.

Automated systems do not require a knowledge ramp-up and provide a systematic approach

to these audits. The author of [11] starts by noting that not only the shortage of skills comes

from the factors already described previously, but as well from the slow learning curve of

professionals, as getting the necessary expertise to specific environments requires time,

resources, and knowledge. Author predicts that these automated tools will not completely

replace humans, but they will be the “cornerstones of cyber defense strategies”. Other authors,

like [12], go farther and predict that automation tools are a single step in the direction of

eventually achieving a state they call “cyber autonomy”, in which defensive systems will

leverage AI to the point their defensive strategies can be abstracted into human language.

Intelligent System for Automation of Security Audits 1. Introduction

4

Still regarding AI, it should be mentioned that, at the moment this document is being

written, AI tools like ChatGPT [13] are gaining rapid worldwide attention and adoption: there’s

already an intersection between automated cybersecurity mechanisms and AI, as outputs from

automation can be fed into AI algorithms, which will cross check them against data sets to

decide on the best course of remediation action [14].

It is also important to note that prioritizing what security flaws need to be addressed is an

important aspect of the automation process. The survey in [15] (performed by Ponemon

Institute, in 2022), notes that automation of security audits is an integral part of the DevSecOps

paradigm. More than half of the survey respondents (634 IT organizations/practitioners) report

that “automation significantly shortens the time to remediate vulnerabilities”. However, almost

half of them also note that “inability to prioritize what needs to be fixed is the primary reason

vulnerability backlogs exist”. This is an important aspect to note: information is important, but

too much information without proper practical context/priority might overwhelm system

administrators.

Finally, it is worth mentioning that a methodic cybersecurity auditing strategy is a core part

of the compliance with current standards, policies, and guidelines; ISO 27001/27002 being

such an example [16]. Even if an organization doesn’t have a comprehensive approach to

cybersecurity, it may conduct business with other organizations that might eventually require

compliance with cybersecurity standards.

By condensing the information above, it can be concluded that the impact of security

incidents affects organizations negatively in different ways. The costs are not only the

productive impact, the media buzz and the reputational costs that come with it, but also the

financial costs. Organizations might need to comply with cybersecurity norms to conduct their

business, and this requires a systematic approach to cybersecurity auditing. On top of this,

there’s also a difficulty to cope with the increasing need for professionals with cybersecurity

skills. Poorer countries are especially impacted by these problems, as they have less

resources to prevent and respond to cybersecurity-related incidents. Automation plays a big

part in helping conducting security audits, and it is important that the solutions provide outputs

that properly prioritize what needs to be addressed.

The motivation of this work goes in the direction of helping to solve the problems and

needs described above. To add value to the concerned efforts from academies and businesses

to automate security audits, as well as making the results available to the community.

Intelligent System for Automation of Security Audits 1. Introduction

5

The major contributions of this work are:

• Offering a free vulnerability scanning solution, which runs on low-cost hardware, for

anyone to use.

• Using a “plug and play” (PnP) philosophy, meaning that it is up and running right after

the installation, providing outputs that are easily interpreted, making clear for the

system administration what needs to be acted upon.

• Allowing technicians to be automatically reported about currently found vulnerabilities

even when the tool is not being actively monitored, via e-mail.

• Facilitating integration with other systems, by offering an interface which shows results

in a normalized format.

• Giving the flexibility to install the artifact in different hardware configurations: either in

an agent-server or AIO (all-in-one) architecture, on real or virtualized hardware.

The work presented in this document differs from existing solutions (detailed in Section

2.3) by condensing all the characteristics above in a single open-source artifact – named

Intelligent System for Automation of Security Audits (also referred to in its Portuguese

acronym: SIAAS) – that requires little to no specialized staff to enable its installation and

operation (thus contributing to solve the cybersecurity skills gap problem).

Finally, this work integrates in emergent DevSecOps paradigms. Such an example is an

operational concept that defines a stack of security-related technologies, called Security

Orchestration, Automation, and Response (SOAR) [17]. SOAR focuses on four main pillars:

security orchestration, automation, security incident response, and threat intelligence

platforms. The aim of SOAR is to help a Security Operations Center (SOC) in increasing speed

in vulnerability detection and reaction times, lower costs in security-related tasks, simplify

management efforts, and increase collaboration between teams by streamlining operations

and shared reporting.

Figure 2 gives a graphical representation of SOAR.

Intelligent System for Automation of Security Audits 1. Introduction

6

Figure 2 - Security Orchestration, Automation, and Response [17]

The concept of SOAR can be interpreted as an evolution of Security Information and Event

Management (SIEM), as SIEM is focused only on collecting security logs and events from

network elements. Therefore, in the SOAR context, SIEM is located under the “security

orchestration” pillar. The design aspects of this work can be framed within the “security

orchestration” and “automation” pillars of SOAR, and they provide an interface for both the

other pillars to obtain their data from, as detailed in Section 2.3.

1.2. Research Questions

The context and motivations above have been condensed into a single research question:

“Is it possible to create and use a “plug and play / install and forget” system that enables the

automation of continuous security auditing processes of organizations, using open-source

software and low-cost hardware?”

Intelligent System for Automation of Security Audits 1. Introduction

7

1.3. Methodology

There are several documented approaches to describe a research framework for information

systems. In this work, the framework Design Science Research Methodology (DSRM) is used

[18].

It starts by defining a problem to be solved, and it eventually ends by creating an artifact

(in this case, a software program) and then testing/documenting/communicating it. There is

also an iterative aspect to it, as it allows the author to go back to the design phase, if needed,

while developing the artifact. These aspects show that it is a model that adapts itself to the

technical and iterative aspects of the development of this work.

Figure 3 describes the blocks that constitute the DSRM process model.

Figure 3 - The DSRM process model [18]

DSRM allows the entry point to be flexible. It can be the initial formulation of the problem

to be solved, the definition of the required objectives to solve a problem already formulated,

the design of the artifact given an existing objective, or to demonstrate the use of the artifact

in a specific scenario. In this work, the starting point was identifying the problem to be solved

and the respective research question (Chapter 1). So, the entry-point is “Problem-centered

initiation”.

Intelligent System for Automation of Security Audits 1. Introduction

8

The next step in this model is to infer the objectives to be achieved, followed by designing

the artifact and implementing it (Chapter 3). Even though the model does not consider it,

there’s a preliminary task before this, which is studying the current state-of-the-art attempting

to solve the formulated problem (Chapter 2).

After this comes the “Demonstration” step, where the artifact must be running and showing

results (this document doesn’t have a specific chapter for this step. Showing that the artifact

was correctly functioning was a continuous process done across Chapters 3 and 4).

Finally, the results must be quantifiable in a scientific way, and then critically reviewed to

check if the initial problem can be solved using the developed artifact. In the context of software

development, this might be measured in different ways. Some methods suggested by the

authors of DSRM are user surveys, or measuring response times and availability. Regarding

security auditing, some specific verifications can be added, as per example: checking if the

artifact is correctly detecting hosts in the neighborhood, if it is correctly detecting the running

services in those hosts, or if it is positively finding a vulnerability that a certain service version

is known to have. This final step corresponds to the “Evaluation” phase (Chapters 4 and 5).

Intelligent System for Automation of Security Audits 2. State-of-the-Art

9

CHAPTER 2

State-of-the-Art

An analysis of the technological concepts that are used in this work, as well as a “state-of-the-

art” overview of current approaches attempting to solve the formulated problem for this work –

both from academic and commercial sources. A critical comparison between these software

artifacts and the developed work is also done, to substantiate its pertinency.

2.1. Systematic Review

Regarding the review of the existing works and studies, there must be a different focus from

existing commercial and academic solutions. In order to find commercial solutions and publicly

available information on the Internet, the search engine Google [19] was used. The search for

academic works was made both in the B-On portal [20] (a Portuguese online knowledge library

which provides access to scientific releases), and in IEEE [21]. Google Scholar [22], which is

a search engine focused on academic databases, was also used. A search in the Portuguese

language was done as well, to eliminate any language bias, but no relevant documents in this

language were found.

It was decided to use PRISMA (Preferred Reporting Items for Systematic Reviews and

Meta-Analysis) [23] as guidance to systematize the research.

Figure 4 describes the information flow through the phases of a systematic review

proposed by PRISMA.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

10

Figure 4 - PRISMA information flow [23]

For this work, the PRISMA methodology was boiled down to the following main steps:

1. Selection of databases (already described above);

2. Criteria and filters for searches;

3. Removal of duplicates;

4. Removal of non-related titles;

5. Removal of non-related abstracts.

It is important to note that, for commercial solutions, these steps could not be applied, so

a simpler approach was taken. A web search, followed by analyzing the solution from the

vendors website, and then excluding it if not exactly related to this work.

Table 1 summarizes the search criteria that was used per database.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

11

B-On / IEEE

Search in Title

Area of study “Computing” or “Engineering”

Date 2000 or newer

Resource type Any

Sort Relevance (more matches within the document) - 100 first entries

Queries

“(computer OR information OR it OR cyber) AND (security OR vulnerability OR
vulnerabilities) AND (automate OR automated OR automation OR automatic OR
scan OR scanner OR scanning OR audit) AND (system OR raspberry OR agent

OR unit OR tool OR artifact)”

“nmap AND (security OR vulnerability OR vulnerabilities OR audit OR intelligent
OR scanner OR scanning OR vulners OR vulscan)”

“(informática OR informação OR ti OR cyber) AND (segurança OR
vulnerabilidade) AND (automatizar OR automático OR automaticamente OR

automação OR rastreador OR inteligente OR auditoria) AND sistema”

“nmap AND (segurança OR vulnerabilidade OR auditoria OR inteligente OR
rastreador OR rastreio OR vulners OR vulscan)”

Google / Google Scholar

Date 2000 or newer

Sort Relevance (more matches within the document) - 100 first entries

Queries

“cost+cyber+incident+annual”

“cost+cyber+incident+report”

“cost+cyber+incident+review”

“cyber+security+artificial+intelligence”

“cyber+security+skills”

“cyber+security+skills+automation”

“cyber+security+skills+gap”

“cyber+security+skills+need”

“cyber+security+skills+workforce”

“enterprise+security+audit”

“enterprise+vulnerability+scan”

“open+source+security+audit”

“open+source+vulnerability+scan”

“security+audit”

“security+audit+automation”

“security+audit+solutions”

“vulnerability+scan”

“vulnerability+scan+automation”

“vulnerability+scan+solutions”

Table 1 - Search criteria per database

As stated above, from these results were then removed the duplicated and irrelevant

entries (after analyzing titles and abstracts).

Intelligent System for Automation of Security Audits 2. State-of-the-Art

12

In the end, were considered a total of 47 documents, being 18 from IEEE, 3 from B-On,

10 from Google Scholar, and 16 from Google. It is important to note that these numbers serve

as an approximation, and for the reader to have an idea how they were obtained. It might be

possible that not all these references are used in this document. The opposite applies as well:

this document might have some references that were not part of this specific systematic search

effort. The writing of this dissertation was a dynamic effort in which all the searches made

through the timespan of the research effort could not reasonably be recorded.

A final note to state that the searches involving the keyword “nmap” were done towards

the end of the research after it was decided this would be the tool to use, as discussed in

Section 3.1.

2.2. Background Concepts

Even though its capabilities go beyond that, the main goal of the artifact developed in this work

is to perform security audits in order to find security vulnerabilities in hosts. This piece of

software can therefore be categorized as a vulnerability scanner. In this section will be defined

what a security vulnerability is, and then what a vulnerability scanner is and what it does.

2.2.1. Security Vulnerabilities

Authors in [24] define vulnerability as a weakness that is present in the network stack, in a

network element, or in a host. A vulnerability is a potential threat, as it can be used by a person

– either manually or using automatic tools – to gain access, steal information, or create an

outage.

When a vulnerability can be exploited by an attacker, using a tool or code, to materialize

its threat, it is said to be “exploitable” or, simply, an exploit [25]. It is important to note that not

all vulnerabilities can be exploited. Some of these vulnerabilities are too complex to be

exploited in a real-world scenario [26]. Therefore, in a production environment, it might be more

efficient to just focus on exploits, instead of all vulnerabilities.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

13

Another important concept to understand is the one of attack vector. An attack vector is a

path that an attacker can use to penetrate a target system. An exploit is a type of attack vector.

Other examples of attack vectors are phishing, malware, or password brute-forcing [27].

The next section describes how vulnerabilities are cataloged and normalized, and also the

standards that exist to manage them.

2.2.2. Vulnerability Normalization and Standards

Vulnerabilities were collected and categorized over the years into databases. This type of

database is called a vulnerability database. The sources of information of these databases

include software vendors, researchers, and users. These databases organize vulnerabilities

by assigning a unique ID to each, as well as a description of it. A commonly used vulnerability

database is MITRE Corporations’ Common Vulnerabilities and Exposures, and vulnerabilities

in this database are commonly known as just CVEs [28],[29].

Figure 5 shows a snapshot with a frame from the MITRE’s website referring to the

WannaCry ransomware’s CVE 1 which hit worldwide systems in 2017. In this snapshot, a

unique vulnerability ID can be seen, as well as a description of the vulnerability.

Figure 5 - WannaCry ransomware’s CVE page screenshot from the MITRE’s website

1 https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-0144

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2017-0144

Intelligent System for Automation of Security Audits 2. State-of-the-Art

14

The figure also shows a clickable link to “learn more” at the National Vulnerability Database

(NVD) [30]. NVD is a database which feeds itself from the CVE database. However, it

enhances it, as it also includes information about patch availability, and severity scores

according to a scoring system named Common Vulnerability Scoring System (CVSS) which

measures the severity of a vulnerability from 0 to 10 [31]. Vulnerabilities that are easier to

exploit, or whose exploits have a worse impact, are considered more severe. NVD is

maintained by the US National Institute of Standards and Technology (NIST).

The NVD is not limited to being an extended version of the original CVE. It defines a whole

framework of specifications responsible for managing vulnerability data. This standard is

known as Security Content Automation Protocol (SCAP) [32].

The original 1.0 version of SCAP determines the backbone languages, scoring systems,

and enumeration tools, that compromise it. CVE (enumeration tool) and CVSS (scoring

system) are part of SCAP 1.0, and were already described above. The following components

complete the SCAP 1.0 standard [33]:

• Common Platform Enumeration (CPE) [34]: serves to identify platforms or services,

and respective versions, in a unique and standardized way. This format is used by

vulnerability scanners to enumerate running services and versions in target hosts, and

then crosscheck this normalized output against a vulnerability DB to find related

vulnerabilities (as explained in the next section).

• Common Configuration Enumeration (CCE) [35]: it describes recommended service

and software security-related configurations.

• Open Vulnerability and Assessment Language (OVAL) [36]: it is a declarative language

used to describe a security vulnerability, system state, or the configuration of a system

(example: the permissions that a certain configuration file for a certain service should

have).

• Extensible Configuration Checklist Description Format language (XCCDF) [37]: it is

another language, focused on generating security audit reports and benchmarking.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

15

Common Weakness Enumeration (CWE) [38] is not part of SCAP, but is also worth

mentioning. It might be confounded with CVE, as a vulnerability is equally a weakness. The

difference is that a CVE describes a vulnerability, whereas a CWE defines a design aspect

that can lead to a potential vulnerability. It is therefore a preventive indicator (examples: a

service that uses an obsolete encryption algorithm, or a product that uses hard-coded

credentials). It is relevant to note that, even though CWE is not part of SCAP, it is actually

contemplated by OpenSCAP [39], which is the open-source implementation of the SCAP

framework standard.

SCAP is currently at version 1.3 [32]. All the base components remain from version 1.0,

but it has new additions. Some examples of these new additions are scoring systems for

configurations, common enumerations for remediations, or new languages for generating

standardized reports with systems information [33].

Vulnerability assessment and management is an essential part of the effort from

organizations to perform security audits of their environment. This effort can be helped by an

information security tool that scans target hosts and then searches vulnerability IDs from

different databases that apply to them. This tool is called a vulnerability scanner [25], and the

next section drills-down on this concept.

2.2.3. Vulnerability Scanner

As the name implies, a vulnerability scanner is a piece of software responsible for vulnerability

scanning. Directly quoting the authors of [40], a vulnerability scanner is a “software application

that assesses security vulnerabilities in networks or host systems and produces a set of scan

results. Those vulnerabilities can be software bugs and backdoors, missing OS patches,

insecure configurations and vulnerable ports and services”.

Authors in [25] discuss the types and advantages/drawbacks of vulnerability scanners.

There are multiple types of vulnerability scanners according to the way they operate and

according to their target. However, two main types of vulnerability scanners can be identified.

The first type is the web vulnerability scanner. This type of scanner aims to detect

vulnerabilities in web-based applications by targeting the served website remotely.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

16

The second type is usually called the network vulnerability scanner, which has a more

generic scope. This type can be divided in two sub-types.

The first sub-type is the network-based scanner. It actively or passively tries to grab

information and vulnerability information from the target host. This sub-type operates in 3 main

steps [25],[41]:

1. Reconnaissance or Enumeration: In this phase, the target host is scanned for open

ports, and services running on them. Closed and filtered ports are also checked. This

process explores the characteristics and conventions of network protocols, like the TCP

3-way handshake 1, and their supported flags 2. Port scans can be of different types:

TCP connect scan (tests the full 3-way handshake process to identify open ports), SYN

scan (only the initial part of the 3-way handshake protocol is used), FIN scan (probes

for RST responses to FIN packets to identify closed ports), Null scan (similar to FIN,

but checks for RST responses to TCP packets with any flag configuration, even if

invalid 3), Xmas scan (similar to FIN and Null, except in this case all flags are set in the

sent packet), and UDP scan (checks for “ICMP Destination Unreachable” replies 4 to

identify closed UDP ports) [24]. Diving into the implementation specifics of all of these

methods is out of the scope of this document, so it’ll focus on SYN scan, which is the

default scan type for tools like Nmap [42], mainly because it is the most efficient method

in terms of speed and obtrusiveness [43].

It is also called “half-open scanning” because, as mentioned above, it doesn’t need to

perform the complete TCP 3-way handshake to identify the state of the remote port.

This results in an increase in performance, compared to the complete TCP connect

scan. Because it relies on the standard implementation of the TCP stack, it is supported

by default on any TCP/IP network. Other methods, like FIN, Null, or Xmas scans,

depend on the way the target replies to FIN or invalid packets, and this specific

implementation aspect might not be as consistent across TCP stack implementations

[43]. Per example, some systems send RST responses whether the port is open on not

5, meaning all ports will be incorrectly labeled as closed.

1 https://learn.microsoft.com/en-us/troubleshoot/windows-server/networking/three-way-handshake-via-
tcpip
2 https://www.howtouselinux.com/post/tcp-flags
3 https://www.rfc-editor.org/rfc/rfc793
4 https://www.ccexpert.us/interface-ethernet-2/destination-unreachable-icmp-message.html
5 https://medium.com/@niveet/how-to-hack-absolutely-anyone-part-1-r3c0n-2c691b2333f1

https://learn.microsoft.com/en-us/troubleshoot/windows-server/networking/three-way-handshake-via-tcpip
https://learn.microsoft.com/en-us/troubleshoot/windows-server/networking/three-way-handshake-via-tcpip
https://www.howtouselinux.com/post/tcp-flags
https://www.rfc-editor.org/rfc/rfc793
https://www.ccexpert.us/interface-ethernet-2/destination-unreachable-icmp-message.html
https://medium.com/@niveet/how-to-hack-absolutely-anyone-part-1-r3c0n-2c691b2333f1

Intelligent System for Automation of Security Audits 2. State-of-the-Art

17

Figure 6 shows how a SYN scan works [44].

Figure 6 - TCP SYN Scan technique [44]

It can be observed that the 3-way handshake never needs to be completed in order for

the scanner to define the port state of the target.

It is also worth noticing that the SYN scan will immediately understand if the port is

open or closed right after the first reply. Other methods compare an RST response to

an absence of response: this means that a port’s state might be incorrectly identified if,

for some reason, the RST packet is filtered along the way. Also, the origin must wait

for a while before confirming that the RST reply has not arrived, which implies an impact

in the time taken to perform the scan.

2. OS Detection: In this phase, the scanner tries to grab information about the OS that is

running on the remote target. Different OSes use different Kernels – and this difference

is important – as different methods are used to detect vulnerabilities in the next phase.

The most popular method to do this operation, is called fingerprinting.

The scanner uses a probing packet to get a specific reply from the host, and then

analyses it to detect the OS. As each OS replies with a packet containing specific

characteristics, these same unique characteristics can then be used to infer the remote

OS running in the target host. These characteristics difference appears because the

TCP/IP stack implementation also differs from operating systems implementations [44].

Per example, the default values for the TCP options “Window Size” and “Maximum

Intelligent System for Automation of Security Audits 2. State-of-the-Art

18

Segment Size” differ from OS to OS, and this can be used by the scanner to infer what

the remote OS is 1.

Instead of sending a probing packet, another technique of fingerprinting is just listening

to traffic from the target host passing by in the network, and then looking for

characteristics in the packets similar to the ones described above. This method is called

passive fingerprinting. When compared to the technique above (which can also be

called active fingerprinting), passive fingerprinting is less invasive, but it might also be

slower as it needs to wait for traffic to be captured. Also, active fingerprinting can craft

special packages with specific TCP header options (like “No Operation” or “Window

Scale”) 2 to achieve more precise replies, when compared with passive fingerprinting.

[45]

3. Vulnerability Scanning: The goal of the vulnerability scanning step is to obtain a list of

known vulnerabilities from vulnerability databases, in the target host. Similar to what

happens with OS fingerprinting, there are two main types of vulnerability scanning [46].

One is called active scanning, which involves sending packets or doing penetration

tests against the hosts to emulate an attacker behavior. The other is called passive

scanning, which implies sniffing for packets travelling within the network and analyze

them. Active scanning is more invasive as it generates more noise in the network, and

it might have an impact on the target host. However, it is way faster, and can detect

some aspects of the target host that the passive scanning can’t (e.g.: up/down status).

Within the active scanning type, there are two sub-types of scans: credentialed and

non-credentialed. In the credentialed sub-type, the scanner logs in in the remote

system (usually via SSH) and performs commands remotely to grab more data. This is

usually more invasive and more difficult to implement, but the results are mode detailed

and comprehensive [47]. This work implements a scanner of the sub-type “non-

credentialed”.

Vulnerability scanners usually implement the concept of scripts or plugins. These

extensions contain the necessary logic to generate the probe packets and then

interpret the results from the response to them. This also gives these tools the

necessary flexibility for developers to push their capabilities beyond vulnerability

1 http://www.misha.ro/2014/02/IP-MTU-vs-MSS.html
2 https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

http://www.misha.ro/2014/02/IP-MTU-vs-MSS.html
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml

Intelligent System for Automation of Security Audits 2. State-of-the-Art

19

scanning. These capabilities can therefore range from mere service version detection

to actual penetration tests [40]. Some examples of penetration tests are URL crawling

1, password brute-forcing 2, service-specific attacks and checks to detect vulnerabilities

like SQL injection 3 or XSS 4 on web servers, or perform fuzzing 5 tests against DNS

servers by manipulating DNS packets.

When it comes specifically to vulnerability detection, the process starts – still taking

Nmap as the example – by taking the information about the applications and respective

versions running on a certain port (first step of this list), and then parsing it into a

standardized format like NIST’s CPE [48] (described in the previous section). Then,

this string is crosschecked against online APIs of vulnerability databases, which by its

turn returns a list of known vulnerabilities for the reported application version [49].

Because these vulnerability databases are so big and constantly being updated, not

every script/plugin implementation downloads a local copy of them. When this is the

case, it is necessary that the scanner has access to the Internet, so it can access the

vulnerability DBs’ APIs [49].

It must be added that, apart from these main steps, there are two extra steps that are

optional for defining this concept but can add value to it. The first one comes before the 3 main

steps, and it involves automatically recognizing hosts in the neighborhood instead of the

human operator having to manually define them. The second one comes at the end, and it

involves generating vulnerability reports and sending them to a list of recipients (probably

system or security administrators) for further analysis.

1 https://secwiki.org/w/Nmap/Spidering_Library
2 https://linuxhint.com/passowrd_brute_force_nmap/
3 https://www.hackingloops.com/sql-injection-penetration-testing-using-nmap/
4 https://www.infosecmatter.com/nmap-nse-library/?nse=http-unsafe-output-escaping
5 https://www.imperva.com/learn/application-security/fuzzing-fuzz-testing/

https://secwiki.org/w/Nmap/Spidering_Library
https://linuxhint.com/passowrd_brute_force_nmap/
https://www.hackingloops.com/sql-injection-penetration-testing-using-nmap/
https://www.infosecmatter.com/nmap-nse-library/?nse=http-unsafe-output-escaping
https://www.imperva.com/learn/application-security/fuzzing-fuzz-testing/

Intelligent System for Automation of Security Audits 2. State-of-the-Art

20

The second sub-type of the network vulnerability scanner is the agent-based scanner. This

type of scanner implies that a piece of software – called the “agent” – is installed in the target-

host. It then scans for security breaches within system components, such as installed

packages, file permissions, firewall configuration, between others. An agent-based scanner is

harder to be implemented. Firstly, it needs to be adapted to different operating systems.

Secondly, it requires administrative level access to the system, which might be a complicated

bureaucratic process in large organizations. The obvious advantage of agent-based scanners

is that, having administrative access to the target hosts, they can fetch more and more precise

information.

Regarding again the two main types of scanners, the main difference that can be observed

is that a network vulnerability scanner has a more generic approach (it scans other services,

like SSH), whereas a web vulnerability scanner is a more specifically contextualized scanner.

Both these types require that network routes and inbound firewalling permissions are set in

place, so the scanner can reach the hosts or network elements to be analyzed (except for the

agent-based scanner sub-type).

As mentioned before, vulnerability scanners can perform penetration testing. The

references above refer to penetration testing from a purely technical point of view, as to

describe the capability of a vulnerability scanner to emulate an attack on the target host to

discover specific vulnerabilities. But the term penetration testing or, more simply, pentesting,

can be used to describe the complete theorical workflow of steps, from initial interactions with

system administrators of the target hosts, till the final reporting of the vulnerabilities found.

Vulnerability scanners and scanning are therefore a part of this workflow. The next section

dives deeper on this concept.

2.2.4. Penetration Testing

Even though there is no such formal standard at present time, authors of [50] attempt to create

a high-level standard to systemize the process of penetration testing, named Penetration

Testing Execution Standard (PTES).

This standard is mostly framed in a business perspective, and uses the word “client” to

refer to the organization that owns the target environment, and the word “tester” to the engineer

or team performing the penetration tests. This same terminology shall be used now, to describe

the main seven steps of penetration testing, proposed by this standard:

Intelligent System for Automation of Security Audits 2. State-of-the-Art

21

1. Pre-engagement Interactions: Mostly based on preparation tasks from a business and

operational perspective. It implies understanding things like in which hours the tests

can be performed in the client’s environment, which addresses will be targeted,

assessing any network elements that could affect the scanning (like firewalls), which

tests should be done (example: brute-forcing, or only mere vulnerability assessment

based on service banners).

2. Intelligence Gathering: It implies getting information from the list of addresses obtained

in the previous step, in regard to installed OS, port list and state, and services/versions

running. This step also refers to physical data, like physical places and people, but that

is not the focus of this work.

3. Threat Modeling: Involves identifying the assets of an organization, and organizing

them according to their importance. By assets it is meant, per example, financial

reports, employee data, credit information, trade secrets, or R&D data. By prioritizing

these items, it can be determined the type and order of importance of the tests to be

performed.

4. Vulnerability Analysis: In other words, vulnerability scanning. In its simpler form, this

means grabbing service banners and crosschecking them with vulnerability/exploit

DBs, but it might also imply searching for other vulnerabilities related to specific

services.

5. Exploitation: This step is meant to manually explore the potential exploits that were

obtained in the last step, with the end goal of assessing a machine, and then determine

which assets and information can be assessed in it (next step).

6. Post-exploitation: As said in the previous step, the goal of this step is to determine the

value of each compromised machine, as per the sensitivity of the data it contains. This

step potentially involves having direct access to client's data, so the PTES standard

defines that "rules of engagement" must be previously agreed between the client and

the tester, to determine what the tester can access and do inside the exploited machine.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

22

7. Reporting: As the name implies, this step concerns about reporting the results to the

client. PTES standard suggests a list of items that this report should contain. Some of

these items are vulnerabilities and scores, types of vulnerabilities found, which

machines were exploited, and potential impact on the organization.

A vulnerability scanner as defined in Section 2.2.3 is responsible for steps 2 (identifying

OS and running services in the target hosts) and 4 (performing vulnerability scanning and

identifying which of the results are known to be possibly exploited). The extended definition of

the scanner, defined in that same section, also considers extending step 2 to add automatic

host discovery and, by considering reporting/alarmistic, it can also be framed in step 7. There

are exploitation-specialized tools which focus on steps 5 and 6. These are not the scope of

this work, but such an add-on is suggested as future work in Section 5.3. Steps 1 and 3 focus

mostly on client-specific details like timelines, scope of operation, operational impact, and risk-

assessment, so they are not the focus of this work.

Existing vulnerability scanning solutions range from simple portable open-source tools to

academic/commercial solutions that help organizations automate the process of finding hosts,

scanning vulnerabilities, and performing reporting. These solutions might use and bundle the

previously mentioned open-source tools into the comprehensive solution that the final product

attempts to be. In the next sections, the current state-of-the-art tools and projects will be

analyzed.

2.3. Related Works and Projects

In this section, the current state-of-the-art scenario will be studied. This involves existing

scanning tools, and academic/commercial projects where these tools are condensed into a

comprehensive security auditing solution.

2.3.1. Community and Commercial Tools

There is a wide variety of vulnerability scanning tools that can be found through online

searches which are ready to be used. In the research made in this work, it was not realistically

possible to go into detail of them all.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

23

Based on the amount of hits returned from online searches, five were picked for an

analysis in more detail: Nmap [42], OpenVAS [51], Nessus [52], Nexpose [53], Faraday [54],

and Vuls [55].

Nmap is short for “network mapper”. It is a port and vulnerability scanner that is free, open-

source, and can be used in security auditing. It comes pre-installed in most of the Linux [56]

distributions and, when not pre-installed, usually available in the distribution’s repositories. Its

flexibility allows the operator to run parallel scans for multiple target hosts, by launching

multiple instantiations. It is also known for being very simple and portable, as it is just a binary

that is called per scan and not a service that needs to be constantly running. It uses IP packets

to determine the OS running in a host, and the state of the target ports and services running

in them (Nmap’s implementation is explored in Section 2.2.3). [57],[58]

Its capabilities do not end here. Nmap supports NSE scripts, using the Lua language 1,

allowing Nmap to perform enumeration, vulnerability scanning, and penetration testing 2 [40].

Nmap’s standard library of NSE scripts [59] comes bundled out-of-the-box when Nmap is

installed, and they are organized under “categories” [60]. These categories allow the operator

to easily select a set of scripts based on the description of the category. Per example, the

category called “intrusive” lets the operator know it will run brute-force and penetration related

scripts. The category “discovery” lets the operator know it will do tasks like crawling a website.

And the category “vulns” includes – among others – the vulners script [61], which returns a list

of CVEs, their CVSS score, link for more details, and whether if they’re an exploit or not.

External NSE scripts can also be downloaded and used. Another famous script is vulscan [62],

which also performs vulnerability scanning, using several of the most famous vulnerability DBs.

It also supports offline operation.

It is also worth mentioning that Nmap has solid library support for Python [63],[64].

Nmap still does not have the same number of scripts of Nessus or OpenVAS, as pointed

out in [40]. Despite that, these same authors found that Nmap performed significantly faster

and, in terms of vulnerability scanning, “the results showed that the scanners are not that far

in comparison”. Nessus was slightly better by detecting an extra vulnerability, while Nmap and

OpenVAS got the same scanning results.

1 https://www.lua.org/about.html
2 https://medium.com/@sushantkamble/how-to-use-nmap-effectively-for-web-application-penetration-
testing-cdf85f9222ea

https://www.lua.org/about.html
https://medium.com/@sushantkamble/how-to-use-nmap-effectively-for-web-application-penetration-testing-cdf85f9222ea
https://medium.com/@sushantkamble/how-to-use-nmap-effectively-for-web-application-penetration-testing-cdf85f9222ea

Intelligent System for Automation of Security Audits 2. State-of-the-Art

24

Nmap is natively a command-line tool, but there are projects that implement a dashboard

interface. The official project for this purpose is called Zenmap [65].

OpenVAS (Open Vulnerability Assessment System) is a free open-source vulnerability

scanner, which was originally forked from the previously-free version of Nessus (which went

proprietary in 2005). It also provides a Web-based dashboard for administration and reporting.

It is supported in multiple OSes. Like Nmap, it supports scripted plugins for vulnerability

assessment. These are called Network Vulnerability Tests (NVT), and are written in the NASL

language 1. [40],[58]

It is highly customizable and powerful, but this makes it also a relatively complex to install

and use [40]. Unlike Nmap, it requires a service to be running in order to perform vulnerability

assessment.

Nessus provides a comprehensive tool for discovery and vulnerability scanning of network

devices and hosts, OS detection, supporting different types of applications and IP versions

[58]. Like, OpenVAS, it supports scripts using the NASL language. As mentioned above,

OpenVAS is a forked version from Nessus (Nessus is currently owned by Tenable), so

OpenVAS can do most of the things Nessus can, with the difference being a smaller number

of plugins available [40].

Nessus has the concept of Nessus Agent available as part of their commercial offer [66].

Their agent is a software module that can be installed in a hardware host. This host performs

the scanning itself, and then send the metrics to the central server. The operator can then

access this server and review the scanned metrics. This allows bypassing many of the

administration efforts necessary to allow a centralized scanner to have access to all the target

hosts. This architecture, shown in Figure 7, has similarities to what is done in this work.

(Important note: this architectural concept must not be confused with the one similarly named

“agent-based scanner” from Section 2.2.3).

1 http://student.ing-steen.se/java/javacoding/toys/more_toys/nessus/txtfilez/nasl.html

http://student.ing-steen.se/java/javacoding/toys/more_toys/nessus/txtfilez/nasl.html

Intelligent System for Automation of Security Audits 2. State-of-the-Art

25

Figure 7 - Architecture of Nessus agent-based scanning versus traditional scanning [66]

Nexpose is a multi-OS network vulnerability scanner. It is currently owned by Rapid7, but

it still has a free community edition. The community edition has limitations, one of them having

a maximum limit of 32 target IP addresses [58]; these limitations also mean its interest in a

FOSS project is limited.

Faraday is a security auditing framework which has both commercial and community

editions. Faraday allows the deployment of an agent-based architecture, like described in

Figure 7. Faraday does not implement its own vulnerability scanner, but it allows the operator

to use or integrate with a comprehensive set of existing tools (like the already reviewed Nmap

or Nessus), via plugins. Faraday supports network discovery and a dashboard to trigger and

analyze vulnerability scanning results. Faraday does not support automatic reporting and

continuous audit in the free edition.

Vuls is a vulnerability scanner developed for Linux, completely free. It analyses the

installed packages and libraries existing in a system, matches them with vulnerability DBs, and

sends the results via e-mail. It can even integrate with existing instant messaging platforms,

for notification purposes. In order to perform remote scans, it requires SSH access to each of

the target hosts.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

26

Besides these tools, special note for a study from Russian origin [25] which compared a

set of famous Russian and international vulnerability scanners: Scanner-VS [67], Cybot [68],

XSpider [69], Nessus [52], and Qualys [70]. This study attempted to find the differences

between these scanners. An interesting point besides what was already written in the

paragraphs above, is that this study has noted that all these scanners need network inbound

permissions before scanning (towards the targets), and none of them has the ability to

automatically find and explore the network environment. Finally, it was noted that all these

tools involve an initial configuration process that requires a considerable amount of expertise.

Two other tools that also appeared in the conducted search were Retina CS and Microsoft

Baseline Security Analyzer (MBSA). Retina CS is a vulnerability scanner that performs OS

detection and port scanning, from a list of input target hosts. It also generates reports. MBSA

does local or remote security vulnerability scanning on Windows-based OSes, including

checking if latest patches are installed. It requires the software to be installed in the local or

remote targets. These tools are currently discontinued. [71],[72]

Some other tools, even though being on the higher end of the online search result count,

were not studied in detail due to having a too high-level scope (they are only focused on web

applications), and therefore not fitting in this work (more information in Section 2.3.3).

Examples of these are HCL AppScan [73] and Acunetix [74].

2.3.2. Literature Review

There were several academic efforts throughout the years to provide comprehensive security

auditing solutions.

Authors of [41] developed a security auditing solution using the libnet and libpcap libraries.

The first library allows to create and send network packets, and the second library performs

packet listening and analysis. This solution detects open ports, OS details, and vulnerabilities

(from the CVE DB).

Intelligent System for Automation of Security Audits 2. State-of-the-Art

27

In [75], authors have developed a vulnerability scanner in Python named “Net-Nirikshak”.

It does target enumeration (finding open ports and running services), and interfaces with NVD

to discover known vulnerabilities associated with them. Additionally, it has a SQL injection 1

exploitation module to detect this type of vulnerability in websites.

In [76] is described an implementation of a vulnerability scanner based on NVTs (the

plugins supported by OpenVAS/Nessus). It performs a vulnerability scan and generates a

report in the end, so the administrator can perform remediation activities.

Work in [77] describes a vulnerability scanner, focused on web servers and vulnerabilities,

namely SQL injection and XSS. It performs vulnerability assessment by leveraging pocsuite3

2, which is an open-source vulnerability scanning framework for web services. It has a web

interface for the end user.

Authors of [78] created a vulnerability scanner focused also on web servers. Contains a

web crawler and tests SQL injection, XSS 3, and directory traversal 4 vulnerabilities. No relevant

details are shared about the user interface. Supports reporting, but not continuous auditing.

Authors of [79] created a vulnerability scanner also focused on web servers, named

“FalconEye”. This artifact has an interesting design aspect: the scanning process is distributed

amongst servers that act as "workers". It leverages common messaging protocols like AMQP

5 to handle communication between the components. It focuses only on finding vulnerabilities

related to web applications, including XSS and XXE injection 6. No relevant details are shared

about the user interface.

The work in [80] implements a vulnerability scanner based on Nmap that supports target

enumeration, vulnerability scanning, and remote network mapping, focused on organizations

and professionals that have little cybersecurity expertise (relevant to this work). It has a web-

based interface.

1 https://owasp.org/www-community/attacks/SQL_Injection
2 https://github.com/knownsec/pocsuite3
3 https://owasp.org/www-community/attacks/xss/
4 https://owasp.org/www-community/attacks/Path_Traversal
5 https://www.rabbitmq.com/tutorials/amqp-concepts.html
6 https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing

https://owasp.org/www-community/attacks/SQL_Injection
https://github.com/knownsec/pocsuite3
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/Path_Traversal
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing

Intelligent System for Automation of Security Audits 2. State-of-the-Art

28

Artifact developed in [81] is named “SecuBat”, and is a very similar scanner to [78].

Focused on web applications, has a website crawler, and tests the target against SQL injection

and XSS vulnerabilities. Has a graphical user interface, and an API is provided that enables

the users to launch customized attacks. It implements reporting (but no continuous auditing)

and stores historical data.

Finally, the work in [82] is another high-level scanner focused on web vulnerabilities. It

performs URL crawling and attacks the resulting URLs, to detect XSS, SQL injection, between

other vulnerabilities. It has a web interface to launch scans, generating a report at the end.

None of these projects is prepared for automatic network discovery. In some of them,

problems with memory exhaustion were reported.

2.3.3. Conclusions

From the analysis conducted in this chapter, the following was possible to conclude:

• Some of the solutions are too high-level. In order words, they don’t have a generic

nature. They either focus exclusively on specific operating systems [72], or on specific

services [73],[74],[77],[78],[79],[81],[82].

• Most of the solutions require inbound network permissions to access the target hosts,

if run from outside of their network, to the exception of [54] and [66] which allow local

agents to be installed. Some of them also require that target host credentials are known

[55].

• Most of the solutions don’t automatically discover infrastructure information, except for

[51],[52],[54]. This means that information about target hosts must be obtained by

system administrators and manually configured in the tool, before scans are run.

• Some of these scanners require that a daemon is running [51],[52],[53],[54]. This

implies potential issues if a disruptive situation appears, like a filled disk or memory

exhaustion and, therefore, it requires the implementation of a watchdog to bring the

service back up if needed.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

29

• PnP philosophy is not adopted. No tool or framework that worked out of the box was

found. All of them require previous configuration before running.

• Some of them are paid, or have limitations in their community editions

[52],[53],[54],[70].

The fact that all the studied solutions have at least one of these shortcomings, means that

no studied artifact above solves the problem this work attempts to tackle. In other words, none

of them answers positively the research question (Section 1.2). The design and deployment

aspects of this work – detailed in the next chapter – implicitly address these shortcomings.

Intelligent System for Automation of Security Audits 2. State-of-the-Art

30

Intelligent System for Automation of Security Audits 3. System Design and Deployment

31

CHAPTER 3

System Design and Deployment

A detailed explanation of deployment-related aspects and decisions, and artifact architecture.

It starts by detailing the goals to be achieved, design aspects, architecture to be implemented,

and tooling choices. Then it details the development process of each of the three main modules

of the produced artifact (agent, server, CLI).

3.1. Goals and Design Aspects

Given the motivation behind this work, the formulated research question, and the findings from

the study of the current state-of-the-art (Chapters 1 and 2), the main goal of this work is to

develop a vulnerability scanning and reporting system that is free to use and does not require

any cybersecurity expertise to operate.

To achieve it, a set of characteristics – or sub-goals – that the solution must implement,

were defined:

• Agent-server architecture: This allows easy scalability (by adding or removing agents),

load distribution, and the flexibility of placing agents directly inside multiple LANs –

behind firewalls and proxies and therefore hitting target hosts directly – while the

operator can access all the metrics from all agents in one single server. It is also

possible to access metrics from agents independently from having a server, making it

possible for the operator to have a portable vulnerability scanner. These aspects will

be further detailed below.

• Low-cost hardware: The considered hardware platform, for the agents, is the

Raspberry Pi [83], which is a single-board computer (SBC) that uses the ARM

architecture. However, the solution should use an operating system flexible enough to

also run on any regular system with a x86 architecture.

Figure 8 shows the picture of a Raspberry Pi board.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

32

Figure 8 - A Raspberry Pi 3 Model B+ board (2017) [83]

• Free software: Only open-source software (FOSS) and tools – preferably portable and

low on resource requirements, due to the nature of the hardware used – must be used

for the implementation. Some choices made: Linux (OS) [56], Python (programming

language) [63], Nmap (open-source port scanning tool, already dissected in Section

2.2.3) [42], MongoDB (database) [84].

• Scalability: It should be easy to add resources and processing power to the solution,

as well as remove them. The approach is to use a multi-agent solution, where agents

can easily be added or removed from the environment.

• Modularity: Implementation details should be flexible enough to let users develop and

customize on top of it, whenever possible. The API-centric approach allows users to

interact directly with it by using the standard CLI, or even developing their own CLIs,

web frontends, mobile applications, or AI/ML systems for data treatment and

generation of remediation proposals. Agents should also be able to be used in isolation

if needed, independently from the backend server.

• Plug and play (PnP): Should be up and running after being installed, but highly

configurable at the same time, if needed. The operator can optionally define which

scans to run and hosts to target, but otherwise the application should automatically

enumerate hosts in its neighborhood and scan them without any operator’s

intervention. By “plug and play”, it is also meant that the connectivity for agent-server

communication should be established using as few ports as possible (only

Intelligent System for Automation of Security Audits 3. System Design and Deployment

33

HTTP/HTTPS), and only outbound (agent reaching out to the server, and not the other

way around). This makes it easier for agents to work behind firewalls and in air-gapped

environments where incoming connections are usually blocked, diminishing the chance

of having to manually configure network permissions across the organization. Finally,

the discovery and vulnerability scanning process should be a continuous process,

running periodically in the background, indefinitely, with no human intervention.

Another decision to support this design choice is that the artifact should be a “network

vulnerability scanner”, of the sub-type “network-based”. As explained in Section 2.2.3,

this is the type of scanner that is more generic, less invasive, and easier to set up, as

it scans a wide range of services and does not require software installation in the target

hosts.

• E-mail reporting: Automatic e-mails with security vulnerability reports should be sent to

configured recipients. The reporting granularity should also be configurable (as in,

having the possibility of filtering only the vulnerabilities that can be exploited, hence

needing to be fixed more urgently).

• Security: Communication between the solution’s elements and the final consumers,

should be authenticated and run over HTTPS (which uses SSL/TLS).

• Future-proofing: Consider the evolution of the technological environment (IPv6

capability).

With this set of goals, this work attempts to favorably answer the research question

formulated in Section 1.2, and solve the problems described in Section 1.1. Not only by building

from the current state-of-the-art but, as mentioned before, also by solving some of its current

shortcomings.

3.2. Architecture Overview

Figure 9 depicts a diagram of the SIAAS architecture, from a high-level perspective.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

34

Figure 9 - SIAAS high-level architecture

The central part of the diagram shows a multiple number of agents – these can be any

Linux machine or VM, but considering the paradigm proposed in this work it shall be assumed

they’re Raspberry Pi boards [83] – contacting the server. The connections between the agents

and the server are always started from the agent, hence the arrows point from the agents to

the server. All communications use HTTPS and HTTP password authentication, being

therefore secured.

To obtain metrics, agents start by scanning their surroundings to check which hosts exist

in the local network. The agents use these hosts, plus a list of manually configured hosts by

the system administrator (if existing), and then run a Nmap vulnerability scan against the

resulting list of hosts. All of this is configurable, giving the system administrator the option to

scan only the manually configured hosts, or allow the agents to automatically discover and

scan the surrounding hosts on their own (which is the default behavior). This last option allows

the operator to just disconnect the agent from one network switch and connect it to a different

network switch; the agent will scan the new network with no new configurations being needed.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

35

The collected metrics are then, periodically, sent to the server. At the same time, the

agents check if any new configurations are published to them. These consist of configurations

published specifically for a certain agent UID (which is based on their product or serial number,

or a randomly generated UUID if the former is not possible), and broadcasted configurations

for all agents. Then, these configurations are downloaded and applied locally. Just a few

possible examples of agent configurations might be the frequency of scans, Nmap scripts to

be run, or the list of manually configured target hosts to scan.

As mentioned above, agents write metrics into, and obtain their configurations from, the

server’s API. This API allows the agents and any other clients to read and write data from and

into the server’s database (these clients might be the CLI developed in this work, a command-

line HTTP client like cURL [85], a web browser like Firefox [86] (which has a JSON parser that

cascades the API data in a human-readable way, as shown in Figure 16), or any frontend that

can eventually be developed in the future for this matter; even an AI system that uses the API’s

outputs for further analysis). When it comes to the scanned metrics, it is the agents who write

the data, and the consumer that reads it (like a human operator using one of the clients

described before). When it comes to configurations, it is the operator who uploads them (again

possibly by using one of the clients described above), and the agents who read them. The API

also supports querying historical metric data from the agents. The maximum time range of this

historical data is configurable; the server uses this value to regularly clean the older records

from the DB.

The server also supports reporting via e-mail. The operator can configure the server to

send e-mails with the most recently discovered vulnerabilities, containing reports in CSV

format, to a list of recipients. The granularity of these reports can be configured. They can

contain all the vulnerabilities, or only the exploits that need urgent care. This is very useful for

system administrators to prioritize what needs to be actioned upon.

A convenient aspect of the designed architecture is that the agents’ data can be accessed

directly for read-only purposes, independently from the server. A local API that runs in the

agents (which is disabled by default) can be activated. This allows an operator to carry the

Raspberry Pi with oneself, and perform vulnerability scans in an isolated environment, even

when the server is not accessible. In this case, configurations can be changed locally by editing

the configuration file and then restarting the services. Obviously, this has the disadvantages

of the data not being uploaded to the server (and therefore data will not be available centrally)

and of e-mails not being sent.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

36

There’s even the possibility of both the agent and the server being installed in a single

machine, or virtual machine, in an AIO setup. In case of the latter, the operator now has a fully-

fledged vulnerability scanner in a single portable VM. However, in this case, the flexibility and

scaling benefits from a distributed architecture with multiple agents is lost.

The next section will drill down on specific choices that were made regarding the software

platforms and tools chosen for the deployment of the artifact.

3.3. Tooling Choices

Nmap [42] was chosen as the port and vulnerability scanner as it is a simple – yet powerful –

tool when it comes to vulnerability scanning. One advantage of Nmap is that it does not require

a daemon to operate. Furthermore, since it is portable, it can be installed and ready for use by

running a single installation command. It can also be easily parallelized, allowing multiple

instances to be run at the same time (useful to scan multiple targets simultaneously).

Although the focus of the presented work revolves around vulnerability scanning, there are

several other features that had to be implemented. The tools to implement these features were

not part of a systematic research; instead, the process involved searching online for the most

famous tools to meet each requirement, briefly studying each of them, and then making a

decision.

In terms of the language to be used, the decision was to use Python 3 [63]. Python is a

free high-level programming language and has a widespread community of developers and

maintainers around the world. It has a deep integration with the underlying OS (easily allowing

file manipulation, grabbing platform information (as exampled in [87]), and running commands

in the OS shell), and it has a vast collection of libraries and modules necessary to implement

the required features. Some of these Python libraries and modules are now discussed below.

Scapy [88] is a packet manipulation Python library. It is useful to perform ARP-related

operations, like scanning the neighborhood of a network adapter. This is especially useful to

implement an automated scanning of neighborhood hosts. Project in [89] implements such a

network scanner to find hosts in the same subnet.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

37

In terms of the REST API implementation on the server side, there are several solutions

based on Python. The solutions considered were Django [90], Flask [91], and FastAPI [92].

Django is the most versatile and complex. However, this makes it hard to learn. Flask and

FastAPI were the two remaining valid options and had all the required functionalities to

implement the API. Having FastAPI the smaller community and therefore less support, Flask

was the choice.

The server API runs behind an Apache web server reverse proxy [93]. It is responsible to

authenticate and encrypt HTTP connections between the agents/clients and the API, using its

SSL and HTTP authentication modules. Nginx could be an acceptable choice as well [94]. Both

these servers are available in the repositories of most Linux distributions. As the specific

advantages/disadvantages of each of these web servers do not play a crucial role in this work,

Apache was chosen due to the author’s familiarity with it.

For the database technology running on the server side, the main contenders were MySQL

[95] and MongoDB [84]. These solutions are fundamentally different, as MySQL is a structured

DB, whereas MongoDB is a document-oriented DB (usually known as a NoSQL DB 1). MySQL

allows for greater data integrity, as it must obey the fixed structure of SQL tables. MongoDB,

by its turn, is usually better suited for real-time analytics, and it has an easy integration with

Python (it recognizes out-of-the-box objects created in Python; for example, a Python

dictionary object can be uploaded to MongoDB directly as a DB document). Both have solid

Python client support [96],[97]. The flexibility and ease of integration with Python data

structures made MongoDB become the choice.

As mentioned in the previous section, a CLI (command-line interface; an accessory part

of this work) that consumes the API was also developed, making it easier to perform tasks like

consulting data, or adding or removing agent configurations. There’s a specialized module for

Python, for CLI implementation, called Click [98], which was used.

1 https://www.ibm.com/topics/nosql-databases

https://www.ibm.com/topics/nosql-databases

Intelligent System for Automation of Security Audits 3. System Design and Deployment

38

All of the development was done in Ubuntu 20.04 “Focal” [99], but it was also installed and

tested in Ubuntu 22.04 “Jammy” [99] (Server edition, or ARM edition in the agents), Debian 11

“Bullseye” [100] (main edition, or ARM edition in the agents), and Raspberry Pi OS (previously

known as “Raspbian”) 11 “Bullseye” [101] (exclusively in the agents), due to being the most

mature releases of these operating systems at current date, and all of the needed software

packages being available in their native repositories or made available by product owners for

them. All of them are Debian-based releases, so the installation scripts and source code are

the same for all; Python 3 (3.9 is the default for upstream Debian, at current date) is also

available on all [102].

SIAAS Agent and SIAAS Server are the two core software pieces of the developed work.

Details about their architecture and internal logic will now be detailed. Finally, the proposed

CLI that was developed as part of this work (SIAAS CLI) will also be presented.

3.4. Agent

The SIAAS Agent is divided in 4 main modules: the Platform module, which is responsible only

for grabbing system-level metrics regarding the agent itself (CPU load, memory and disk

usage, temperatures, general information like vendor and serial number, and others); the

Neighborhood module, which is responsible for scanning and keeping a record of the available

hosts in the agent’s surroundings (and manually configured target hosts, if any), as well as

their state; the Portscanner module, which is responsible for enumerating the hosts that were

found by the Neighborhood module (check which network ports are open) and then performing

actual vulnerability scans against them; and, finally, the Data Transfer module, which

periodically contacts the server’s API, in order to upload metrics and download configurations.

These modules do not directly talk with each other. They write into and read from the same

local database. This local database consists in local files – one per module (except for the

Data Transfer module), and another one for the applied configurations (local configuration file

contents merged with configurations downloaded from the server) – in the JSON format.

Figure 10 depicts the architecture of the SIAAS Agent. The arrows represent the flows of

data between the components. Orange arrows represent internal communication within the

agent’s boundaries, whereas blue arrows represent external network communication.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

39

Figure 10 - SIAAS Agent architecture and data flow

Apart from the four modules, this diagram also shows a local configuration block. This

block represents the local configuration file. This file has the configurations that the agent uses

at boot time (or when the service is restarted). When the service is started, the contents of this

file are immediately written in the configuration database. When there’s a connection available

to the server, any configurations downloaded from the server will overwrite the local

configurations. It is important to note that the original configuration file is never changed – the

overwriting happens only at the DB level.

The SIAAS Agent is completely stateless. When the service is restarted, all the local DBs

(including the configurations DB) are cleared up, and then the process of populating them

starts from the beginning. Also, while operating, the agent maintains no record of the results

of previous scans. It is up to the server to save a historical record.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

40

As mentioned previously, the local API is useful when using the SIAAS Agent

independently from the SIAAS Server. It acts as a read-only interface to the database contents.

It is disabled by default but can be activated by editing the local configuration file and restarting

the service.

In the next sections, the internals of the agent’s four main modules, as well of the local API

will be detailed. Finally, a summary of the existing auxiliary system scripts (for installing and

running the service), and logs, will be presented.

3.4.1. Platform Module

The Platform module has no active role in vulnerability scanning. The data it generates is

system and hardware information from the platform underlying the service. It might be useful

for the system administrator to monitor its state.

Figure 11 contains an architecture diagram of the Platform module.

Figure 11 - SIAAS Agent’s Platform module architecture and data flow

Intelligent System for Automation of Security Audits 3. System Design and Deployment

41

This module utilizes system-level tools such as dmidecode [103], and Python native

libraries and modules including psutil [104] and cpuinfo [105], to gather information related to

hardware, OS and architecture, CPU information and temperature, memory usage, I/O and

disk statistics, network and NIC information, as well as boot time and uptime. The information

is merged at the end of the iteration, and uploaded to the local Platform DB, being now ready

to be consulted via the local API and uploaded to the server’s API.

The Platform module reads configuration options from the configurations DB. The only

configuration available is the interval time between iterations.

3.4.2. Neighborhood Module

The Neighborhood module is responsible for grabbing information from all the hosts already

known by and discovered in the same network of the agent, plus information about manually

configured hosts.

Figure 12 contains an architecture diagram of the Neighborhood module.

Figure 12 - SIAAS Agent’s Neighborhood module architecture and data flow

Intelligent System for Automation of Security Audits 3. System Design and Deployment

42

As the diagram shows, the Neighborhood module implements three main functions. The

algorithm of the module merges the outputs from these functions at the end of each iteration,

and the local DB for the Neighborhood module is then updated. These functions are now

described below:

1. This function will search the operating system’s tables for ARP (IPv4) and NDP (IPv6)

entries 1. These tables contain Layer 2 hosts’ information that the agent’s underlying

OS already knows about; more exactly, they contain IP/MAC address pairs. To read

these tables, the agent leverages the OS-level command ip neigh [106]. Local link

addresses or reserved ranges are ignored. Also, for IPv6, all addresses other than

Global Unicast 2 are ignored, to avoid visual and processing pollution from ephemeral

addresses existing in the network.

2. This function performs automatic discovery. It will send ARP requests to all the IPs that

exist within all the local IPv4 subnets in all network interfaces, by leveraging the Scapy

module for Python [88]. This function will take note of all the positive ARP replies,

meaning they are available hosts in the surroundings. Only the IPv4 address spaces

with a subnet mask greater than /16 are scanned, or else the total number of addresses

becomes too big to scan in a reasonable amount of time (more than 50 thousand) 3.

Similarly, the IPv6 subnet spaces aren’t probed due to their size. As an example, the

standard /64 subnet space (which is the smallest IPv6 subnet that can be used locally)

supports more than 18 quintillion addresses 4.

3. This function will parse and use the contents of the configuration “manual_hosts”, which

is a string of comma-separated IPs (IPv4 or IPv6) and/or domain names. In case the

input is a domain name, the function will try to resolve it into IP address(es), using the

system’s configured DNS. If it can’t be resolved, it is ignored. In case the target host

happens to be in the local network, the MAC address is obtained using ARP and then

added to the host’s record. Unlike automatic discovery, this function adds the hosts to

the list of neighbors whether they’re online or offline.

1 https://lemp.io/the-difference-between-arp-and-ndp/
2 https://www.cidr-report.org/v6/as2.0/reserved-ipv6.html
3 https://docs.netgate.com/pfsense/en/latest/network/cidr.html#understanding-cidr-subnet-mask-
notation
4 https://docs.netgate.com/pfsense/en/latest/network/ipv6/subnets.html#ipv6-subnetting

https://lemp.io/the-difference-between-arp-and-ndp/
https://www.cidr-report.org/v6/as2.0/reserved-ipv6.html
https://docs.netgate.com/pfsense/en/latest/network/cidr.html#understanding-cidr-subnet-mask-notation
https://docs.netgate.com/pfsense/en/latest/network/cidr.html#understanding-cidr-subnet-mask-notation
https://docs.netgate.com/pfsense/en/latest/network/ipv6/subnets.html#ipv6-subnetting

Intelligent System for Automation of Security Audits 3. System Design and Deployment

43

All the functions will try to ping the found hosts, and also try to find their DNS names by

doing a reverse lookup. The complete merged output from all functions is finally uploaded to

the local Neighborhood DB, ready to be consulted via the local API, uploaded to the server’s

API, and used by the Portscanning module.

Besides the list of manual hosts to be scanned, the Neighborhood module reads other

configuration options that might exist in the configurations DB. These might include restricting

the list of neighborhood hosts to only the manually configured hosts, disabling automatic

discovery in the Wi-Fi ports (it was found that some network cards don’t behave correctly when

performing ARP discovery, as per the reliability test results described in Section 4.2.2 – it’s

important to note that none of the tested Raspberry Pi boards has shown this problem), or

changing the default time interval between the Neighborhood module’s runs.

3.4.3. Portscanner Module

Portscanner is the module responsible for performing the actual vulnerability scans against the

target hosts which were previously discovered and inventoried by the Neighborhood module

(Section 3.4.2). It will enumerate these hosts (grab OS and port/service information), then run

Nmap scripts to perform vulnerability scanning against each of those ports and, finally, the

resulting data is sorted and uploaded in the local Portscanner DB.

The enumeration and vulnerability steps are performed using Nmap. Nmap is available by

default in the operating systems used in this work [107] and the developed artifact interacts

with it through the python3-nmap module [64].

Figure 13 contains an architecture diagram of the Portscanner module.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

44

Figure 13 - SIAAS Agent’s Portscanner module architecture and data flow

The Portscanner module iteration starts by grabbing the list of the hosts to target, from the

Neighborhood DB. Then, this list used to launch multiple parallel workers – one per target host

– and, inside each of these workers, enumeration, scanning, and output parsing, are

performed. If the system administrator desires, the maximum number of parallel workers to

launch can be manually defined in the agent’s configuration. However, by default, the agent

will let Python’s native library concurrent.futures automatically handle this number, meaning in

it will depend on the number of cores available in the agent’s hardware [108]. It was opted to

use thread parallelization instead of process parallelization, as it has shown shorter computing

times for a single scan completion, as per the reliability test results described in Section 4.2.2.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

45

Enumeration is performed by invoking the OS detection function from the python3-nmap

module, together with an option to scan open ports (TCP and UDP). By its turn, this function

leverages the operating system’s “nmap” command with the flags that enable OS detection

[109] and also detection of open ports and running services [110]. When this function is

triggered, the most common 1000 ports are probed to check their state [111], and any eventual

banners are used to determine which service is running. When it comes to the OS detection,

agent sends a specially constructed packet towards the target hosts and analyses the reply,

and then tries to guess the most probable OSes that the target might be using. The underlying

process for grabbing this information was already detailed in the points 1 and 2 of the list

presented in Section 2.2.3. (Note: for UDP, only the 10 most famous ports/services are

scanned, as UDP port enumeration is especially slow [113]).

At the end of the enumeration function, the Portscanner module has now collected a list of

hosts, their OSes, and open ports/services. The next step is doing a vulnerability scan against

each of those ports.

A scan is triggered for all ports detected in the hosts, sequentially iterating all ports. If more

than one script is configured in the agent’s configuration, then multiple scans (one for each

script) are sequentially triggered during each port’s iteration. This vulnerability scan is done by

leveraging the capability of Nmap to run CPE scripts using its scripting engine [112]. The

command is called, once again, via the python3-nmap module. Vulnerability scanning and the

capability of Nmap to leverage CPE scripts were already detailed in point 3 of the list presented

in Section 2.2.3. The list of scripts to run can be configured by the operator, and these can be

a single script name, or a category of scripts [60]. More details in Section 2.3.1, in the Nmap

block. By default, the SIAAS Agent has the “vuln” category enabled [60].

At the end of the vulnerability scanning function, the Portscanner module has collected the

same information it had at the end of the enumeration function, plus a list of vulnerabilities

found per script, for each of the ports.

The next step is now parsing the vulnerability scanning outputs. The python3-module

returns the outputs in the XML format, so they must be parsed. The parser will apply a generic

parser (first getting multiple strings by slicing the output using newline special characters as a

reference, then removing spaces in the beginning and end of the lines, then replacing tab

special characters with vertical bars, and finally adding all the resulting strings in a single list),

except when the script being run is vulners [61] or vulscan [62].

Intelligent System for Automation of Security Audits 3. System Design and Deployment

46

When the output from one of these two scripts is parsed, a dictionary is created using the

CVE ID [29] of the vulnerabilities (or any other vulnerability ID if the DB is different) as keys.

The value of these keys is a list of strings, containing the CVSS [31], description, and

vulnerability link. Plus, if a vulnerability is exploitable, a tag named “siaas_exploit_tag” is also

added to its list.

The parser detects whether a vulnerability is exploitable if at least one of these is positive:

checking if the word “exploit” is part of the DB name (vulscan organizes the outputs per

vulnerability DB, and some of these DBs are exclusive to exploits), checking if the word

“exploit” is part of the vulnerability name or ID, and finally checking if this same word exists in

the vulnerability description.

Finally, statistical information is added to the data being collected: number of ports

scanned, number of scripts ran, number of vulnerabilities found, number of exploits found, and

the total duration of the scan. All the data is merged in a single dictionary object for this target

host, and this object is returned by the forked worker.

The last step of the main Portscanner module iteration is waiting that all forks end

(additional note: the Nmap commands’ timeout is configurable via the agent’s configuration,

so the module never hangs). Once all the forks end, all the outputs are merged into a single

dictionary object, and this object is then uploaded to the local Portscanner DB. The data from

this module is now ready to be uploaded to the server’s API or consulted via the local’s API.

Apart from the configuration options already described above, the Portscanner supports

some more customizations: targeting specific ports (regardless of their state) instead of

scanning for open ports, only scanning manually configured target hosts, configuring the time

interval between iterations, and even disabling port scans altogether.

3.4.4. Data Transfer Module

The Data Transfer module is responsible for downloading published configurations from, and

uploading agent data to, the SIAAS Server API.

Figure 14 contains an architecture diagram of the Data Transfer module.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

47

Figure 14 - SIAAS Agent’s Data Transfer module architecture and data flow

The Data Transfer module has two main phases (download and upload):

1. The download phase starts by locally obtaining the agent’s UID. This unique identifier

is one of three possibilities, the first that is found: serial number, board serial, product

UUID. If none is found, it creates a randomized UUID only for the current session, with

the string “temp-“ appended to the beginning. Then it sends a GET request to the

server’s API, asking for published configurations for this agent’s UID. It adds the

parameter “merge_broadcast=1” to this request. This parameter tells the server to

merge the configurations that are destined for all agents (broadcast configurations) with

the configurations for this specific agent’s UID (additional note: if the same

configuration key is used by both, the agent’s specific UID configurations take

precedence). The JSON object containing the configurations is received, and the local

configurations DB is overwritten with it. Only the configuration keys that are received

from the server are overwritten, the others will remain untouched (as in, they will remain

as per the local configuration file).

Equation 1 describes the logical overlap of the obtained agent configurations described

above.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

48

𝐴𝑔𝑒𝑛𝑡𝐶𝑜𝑛𝑓𝑖𝑔 = 𝐿𝑜𝑐𝑎𝑙𝐶𝑜𝑛𝑓𝑖𝑔𝐹𝑖𝑙𝑒 ∪ (𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝐶𝑜𝑛𝑓𝑖𝑔𝑠 ∪ 𝑃𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑𝐶𝑜𝑛𝑓𝑖𝑔𝑠)

Equation 1 - Logical overlap of local and published agent configurations

When reading this equation, the more to the right the variable is, the more precedence

it takes. The green part corresponds to the dictionary merging done in the server even

before the agent obtains it. Adding the red part, the complete equation – describing the

merge of the local configuration with the downloaded configurations – is obtained.

2. The upload phase starts, again, by grabbing the agent’s unique identifier (UID). Then,

it merges the local DBs (“config” (the configurations DB), “platform”, “neighborhood”,

“portscanner”) in a single JSON object. This object is then uploaded as the body of a

POST request against the entry point of the server’s API for this specific agent’s UID.

Password entries are anonymized in the “config” DB before the data is sent.

The JSON object above mentioned in step 2, is schematized graphically in Figure 15.

Figure 15 - Graphical representation of the JSON object’s schema generated by the SIAAS Agent

In the figure above, it can be observed that the root key is the agent’s UID. Then, there

are 4 sub-keys, one for each module. In this figure, for example purposes, only one IP exists

in the neighborhood: 192.168.122.51. Under the “portscanner” key, there are 3 sub-keys. One

named “system_info” with operating system and network information about the target host, one

named “scanned_ports”, with the list of detected services and respective vulnerability scan

results. Finally, there’s a sub-key named “stats”, with metadata information about the scan

performed in this target host (more information in the section 3.4.3).

Intelligent System for Automation of Security Audits 3. System Design and Deployment

49

The Data Transfer module allows, via configuration, the following settings: enabling silent

mode (only configuration and platform-related data is uploaded; data from the Neighborhood

and Portscanner modules is not uploaded), offline mode (no uploads or downloads), and

changing the time interval between iterations. Note that the offline mode is protected. This

means it is not configurable via the server’s API’s published configurations, it can only be

changed by editing the local configuration file and restarting the service. This mode is useful

when an operator wants to use an agent independently from a server. The reason this setting

is protected is to avoid enabling it by mistake, remotely, and then losing all contact with the

agent.

The Data Transfer module also reads, from the configuration DB, the API connection

details (URI, user, password, certificate path, SSL verification on/off). These are also protected

configurations, for the same reasons as the offline mode.

It is important to remember that, if the service running on the agent is restarted, the

configurations DB is cleared. Then, on boot, it is populated with the contents of the local

configuration file. After this, the published configurations – if any – are merged, but only after

the Data Transfer module runs once (which should happen right after the boot) and downloads

them.

The HTTP calls towards the API are leveraged by using the requests [114] Python module.

3.4.5. Local API

The local API is implemented using the Python module Flask [91] in debug mode (this mode

allows for human-readable “pretty” JSON output). When this API is accessed, it returns to the

HTTP client a JSON output with all the local DBs merged: Platform, Neighborhood,

Portscanner, and the configuration database. Passwords in the configuration output are

anonymized.

As this API is disabled by default, it must be activated by editing the local configuration file

(changing the “enable_internal_api” key to “true”) and then performing a service restart. This

setting is protected, so it can’t be activated via published configurations in the server. This is

done due to security reasons (not enabling the exposure of local agent data by mistake). After

this, data can be consulted by performing a HTTP GET request against the following address:

http://<SIAAS_Agent_IP>:5001/siaas-agent.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

50

Figure 16 shows a clipped screenshot of this API’s output, opened in Firefox.

Figure 16 - Screenshot of the output of the SIAAS Agent local API in Firefox

In this screenshot, the list of hosts that the agent found in its surroundings can be seen.

Also, it can be observed that this agent found at least two vulnerabilities in the target host with

the IP address 192.168.1.67 (which happens to be a different agent in the same network).

Platform and configuration database contents are not shown in this image, as they are

collapsed. The structure of this output respects the JSON’s schema presented in Figure 15

(section 3.4.4).

Intelligent System for Automation of Security Audits 3. System Design and Deployment

51

As a final note, it is worth mentioning that this API allows filtering the data from selected

DBs, by supporting the use of the parameter “module”. This parameter has as input a comma-

separated list of strings containing one or more of the keywords “platform”, “neighborhood”,

“platform”, and “config”. As an example, if the user wants to show the list of hosts in the

neighborhood and the port scanning results, and hide platform and configuration information,

the following URL can be used: http://<SIAAS_Agent_IP>:5001/siaas-

agent?module=neighborhood,portscanner.

A full web guide for the local API was written using a Swagger [115] implementation

provided by the Python module flask-swagger-ui [116]. It is available in the URL

http://<SIAAS_Agent_IP>:5001/docs. There’s also a simplified text formatted version of this

guide, seen in Technical Note D1 (Appendix D).

3.4.6. System Scripts, Logs, and Configuration

Together with the developed artifacts, system shell scripts were developed to automatize

service management.

An installation script is available. It installs the Python environment [102], and any other

necessary packages that contain needed tools (like the Nmap package [107]). It also

downloads the vulners [61] and vulscan [62] script repositories, and then creates a scheduled

job so they are refreshed at least once a day (if the agent has Internet connectivity). It finally

creates a system service (that calls the service run script) to start the service on boot and

monitor its state. This also makes it easier to start/stop/restart the agent.

The created system service calls a script to run the SIAAS Agent. This script will check it

the Python module environment is updated and update it, if necessary, then activate the

Python’s virtual environment [117], and finally run the main agent’s code. It will also refresh

the vulners and vulscan script repositories on each run.

Figure 17 shows the service for the SIAAS Agent being stopped, started, restarted, and

then the status being checked, using systemd [118].

Intelligent System for Automation of Security Audits 3. System Design and Deployment

52

Figure 17 - SIAAS Agent service being controlled using command lines

It can also be observed that, after the service was started, the script repositories were

refreshed, and the agent’s UID was generated.

Logs are generated using Python’s stock logging library [119], and a symbolic link for the

log output directory is created in the system’s default log location (/var/log/siaas-agent) when

the installation is done. The log level can be configured to enable debug logs. The logging level

configuration is protected. It cannot be changed via published configurations – only locally –

by editing the configuration file and restarting the service. As the logs can only be consulted

locally, and as the service must be restarted for the logging level to change, there is no point

in changing log verbosity remotely.

Finally, there’s a removal script removes the service from the operating system’s list of

services, and deletes the scheduled task that refreshes the Nmap scripts repositories.

There are two extra scripts: one for killing the service, and another one for archiving the

SIAAS Agent directory. These are mostly development-related, and should not be needed in

a normal day-to-day operation.

The configuration file for the SIAAS Agent is available in the directory

“./config/siaas_agent.cnf”. Full reference for this configuration file is available in Table A1

(Appendix A).

Intelligent System for Automation of Security Audits 3. System Design and Deployment

53

3.5. Server

The SIAAS Server is mostly responsible to implement the API (and the associated MongoDB

database [84]) to where the agents report to and obtain their configurations from, and to where

any clients – human or artificial – will obtain data from the agents, historical data, and also

where configurations are published. It is also responsible for sending e-mails with vulnerability

reports, if they’re enabled.

Apart from the core architectural aspect of the SIAAS Server (the API plus the database),

it has 3 main modules: like the SIAAS Agent, it has the Platform module, which is responsible

only for grabbing system-level metrics regarding the agent itself (CPU load, memory and disk

usage, temperatures, general information like vendor and serial number, and others); the DB

Maintenance module, which is responsible for deleting historical data which is older than a

defined threshold; and finally the Mailer module, which generates a CSV report with a list of

vulnerabilities and then sends it to a configured list of recipients via a SMTP server. The depth

of this report is configurable.

Figure 18 shows the architecture of the SIAAS Server. The arrows represent the flows of

data between the components. Orange arrows represent internal communication within the

server’s boundaries, whereas blue arrows represent external network communication.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

54

Figure 18 - SIAAS Server architecture and data flow

As with the agent’s architecture, the server also uses a local database consisting in local

files in the JSON format. One for the Platform module, and the other for the currently active

configurations. These configurations have settings to control the DB Maintenance module, the

Mailer module, and MongoDB connection settings for the API to use. This local DB works

mostly the same way the agent’s does. The original configuration file is never changed – the

overwriting happens only at the DB level. The difference is that, unlike the agent which waits

for the Data Transfer module to run once to download and merge upstream configurations, the

server instantly grabs the published configurations from MongoDB and merges them with the

local database.

In the next sections, the internals of the API and the database, as well as the prementioned

modules, will be detailed. Finally, a summary of the existing auxiliary system scripts (for

installing and running the service), and logs, will be presented.

3.5.1. API and Database

The API and the database where it stores data are the core part of the SIAAS Server

architecture. The API follows the CRUD philosophy (creating, reading, updating, and deleting),

Intelligent System for Automation of Security Audits 3. System Design and Deployment

55

providing a set of entry points that are used by the agents and clients to upload and download

data/configurations to/from the database.

The main API routes are described below. They are always prefixed with

https://<SIAAS_Server_API>/api:

• /siaas-server: shows information from the Platform module running in the SIAAS

Server, as well as the active configurations. Passwords in the configuration output are

anonymized.

• /siaas-server/configs: shows information about the published configurations destined

for the SIAAS Server. Also allows a client to post or delete configurations destined for

the server.

• /siaas-server/agents: shows a list of known agents, their origin IP address, last ping,

and any nicknames/descriptions that might be assigned (nickname and description

strings for an agent are taken from the published configuration keys “nickname” and

“description”, for its UID) (Figure 19).

Figure 19 - Screenshot of the output of the SIAAS Server API in Firefox, showing active agents

Intelligent System for Automation of Security Audits 3. System Design and Deployment

56

• /siaas-server/agents/data: shows the most recent data collected from all agents

(modules Platform, Neighborhood, Portscanner, and current configuration). The

structure of this output respects the JSON’s schema presented in Figure 15 (section

3.4.4).

• /siaas-server/agents/data/<SIAAS_Agent_UID>: shows the most recent data collected

from an agent UID (or more than one, comma-separated). Also allows the agents to

post new data for their specific UID. It also allows agent data older than a

parameterized number of days in the request to be deleted.

• /siaas-server/agents/configs: shows the published configurations for all agents.

• /siaas-server/agents/configs/<SIAAS_Agent_UID>: shows the published

configurations for an agent UID (or more than one, comma-separated). Also allows a

client to post or delete configurations destined for this specific agent UID. Agent’s

access this endpoint to get published configurations destined to them merged with

broadcasted configurations, as detailed in Equation 1.

• /siaas-server/agents/history: shows historical data collected from all agents (modules

Platform, Neighborhood, Portscanner, and current configuration) (Figure 20). Allows

parametrization like sorting by agent name or date, hiding empty results, filtering

modules, showing older records first, limiting the number of days in the past to show,

or limiting the number of outputs.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

57

Figure 20 - Screenshot of the output of the SIAAS Server API in Firefox, showing historical data

• /siaas-server/agents/history/<SIAAS_Agent_UID>: shows historical data collected

from an agent UID (or more than one, comma-separated).

The API is implemented using Python module Flask [91]. The underlying operating system

supports MongoDB from its third-party repository [120]. The API interacts with it using the

module pymongo [97].

Intelligent System for Automation of Security Audits 3. System Design and Deployment

58

An Apache web server with SSL support is responsible for exposing the API to the outside.

It protects the incoming connections by using HTTPS and HTTP password authentication.

Apache [121] and OpenSSL [122] are used for this purpose. Both technologies are natively

supported by the operating system.

The server obtains, from the configuration DB, the MongoDB connection details (IP

address, port, user, password, certificate path, DB name, and DB collection name). These are

protected configurations so, in case of change, the local configuration file for the server must

be edited and the service restarted. Restarting the service does not impact the MongoDB’s

status or contents.

A full web guide for the API was written using a Swagger [115] implementation provided

by the Python module flask-swagger-ui [116]. It is available in the URL

https://<SIAAS_Server_IP>/api/docs. There’s also a simplified text formatted version of this

guide, seen in Technical Note E1 (Appendix E).

3.5.2. Platform Module

The Platform module has the same underlying logic of the Platform module running in the

agents, and it is configured the same way. Like in the SIAAS Agent case, it collects system

and hardware information from the platform underlying the server service. Its details were

already described in Section 3.4.1.

3.5.3. DB Maintenance Module

The DB Maintenance is responsible to delete the agent’s metrics data records older than a

certain time interval threshold. This is needed to avoid the database growing indefinitely. The

default value is 2 weeks.

Figure 21 contains an architecture diagram of the DB Maintenance module.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

59

Figure 21 - SIAAS Server’s DB Maintenance module architecture and data flow

The DB Maintenance module reads configuration options from the configurations DB.

Apart from the number of days to keep in the database (already explained above), the only

configuration available is the interval time between iterations.

It uses the pymongo [97] module to connect to the MongoDB, and grabs the connection-

related options from the local configuration DB, just like detailed in Section 3.5.1.

3.5.4. Mailer Module

The SIAAS Server supports sending of vulnerability reports to a defined set of recipients. This

is the task of the Mailer module.

This module starts by generating a JSON object with a tree of vulnerabilities found by all

the agents known by the server. This JSON object might be more or less detailed, depending

upon configuration. It may include all the data (including, per example, scanning statistics and

OS detection information), it may include only the list of the vulnerabilities found per agent or,

finally, it may include only the list of vulnerabilities that can be exploited. This last option allows

the organization using this artifact to focus on only vulnerabilities that need an urgent fix.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

60

Then, it compares this generated object to the last object that was sent. If no changes are

observed, then no e-mail is sent. Otherwise, it will generate a CSV report with the grabbed

information, and then e-mails it to the configured list of recipients.

Figure 22 contains an architecture diagram of the Mailer module.

Figure 22 - SIAAS Server’s Mailer module architecture and data flow

The generation of the CSV report file is done by leveraging the module csv [124], whereas

the e-mail object is constructed using the module email [125]. Then this e-mail is sent using a

secure SMTP connection to the configured SMTP server, using the module smtplib [126].

In terms of configuration, this module reads from the local configuration DB everything it

needs to setup the SMTP connection: server address, port, account, password, a comma-

separated list of report recipients, and the report type (from one of the described above). The

time interval between the module’s iterations is also obtained from the configuration.

It uses the pymongo [97] module to connect to the MongoDB, and grabs the connection-

related options from the local configuration DB, just like detailed in Section 3.5.1.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

61

The Mailer module is meant to be “vendor-agnostic”, and should interface correctly with

any SMTP server. During the deployment of the artifact, both Google Gmail [127] and Microsoft

Outlook.com [128] were used for sending hundreds of e-mails, and therefore are considered

correctly validated. The official notes about SMTP integration for both these platforms 1 2 were

followed. There’s also a configuration example (for Gmail) in the “read me” notes of the SIAAS

CLI project archive [153] (more information on SIAAS CLI in Section 3.6).

Figure 23 shows the contents of one of these e-mails, from the perspective of the recipient.

Figure 23 - Screenshot of an e-mail sent by the SIAAS Server being read in a Gmail client

To be noted that the e-mail’s subject shows the report type, the hostname of the server,

and date/time; the body shows the server UID and IP; the report’s payload (CSV file) is

attached.

3.5.5. System Scripts, Logs, and Configuration

As it happened with SIAAS Agent (Section 3.4.6), together with the developed artifacts for the

server, system shell scripts were developed to automatize service management.

1 https://support.google.com/mail/answer/7126229
2 https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-
291d-42b8-9564-9c414e2aa040

https://support.google.com/mail/answer/7126229
https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040
https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040

Intelligent System for Automation of Security Audits 3. System Design and Deployment

62

There’s an installation script that installs the Python environment [102] and any other

necessary packages, like the MongoDB database [120] (older CPUs may not support the most

recent MongoDB versions due to missing mandatory instruction sets 1, so this script accepts

the installation of older MongoDB versions by passing an older version – like “4.4” – as the

argument), and other needed tools (like Apache [121] and OpenSSL [122]). It calls a secondary

script to create a set of self-signed SSL certificates to be used with Apache by default (after

the installation, these can be replaced by certificates signed by an external CA), and then it

creates the API-related virtual hosts [123] in Apache. Then, it calls another secondary script to

initialize MongoDB (creates the collection and the users used by the SIAAS Server), only if it

wasn’t already initialized before. It finally creates a system service (that calls the service run

script) to start the service on boot and monitor its state. This also makes it easier to

start/stop/restart the server.

The newly created system service calls a script to run the SIAAS Server. This script will

check it the Python’s module environment is updated and update it, if necessary, activate the

Python’s virtual environment [117], and finally run the main server’s code.

Figure 24 shows the system service for the SIAAS Server being stopped, started,

restarted, and then the status being checked, using systemd [118].

Figure 24 - SIAAS Server service being controlled using command lines

1 https://www.mongodb.com/docs/manual/administration/production-notes/

https://www.mongodb.com/docs/manual/administration/production-notes/

Intelligent System for Automation of Security Audits 3. System Design and Deployment

63

Logs are generated using Python’s stock logging library [119], and a symbolic link for the

log directory is created in the system’s default log location (/var/log/siaas-server). The log level

can be configured to enable debug logs. The logging level configuration is protected. It cannot

be changed via published configurations – only locally – by editing the configuration file and

restarting the service.

There are two scripts related to backing up and restoring the database. Backing up

database contents serves a dual purpose: it facilitates disaster recovery (DR), and enables the

migration of the SIAAS Server from one host to another. The operator can create a backup of

the DB on the old host, before installing SIAAS Server on the new host. Then, on the new host,

the operator can use the backup file as an argument for the restore script (after copying it to

the new host). The last step will be starting SIAAS Server service.

Finally, there’s a removal script. It deletes the SSL certificates from the system and

removes the SIAAS-related Apache virtual hosts. Finally, it removes the service from the

operating system’s list of services.

There are three extra scripts: one for killing the service, and another one for archiving the

SIAAS Server directory. These are mostly development-related, and should not be needed in

a normal day-to-day operation.

The configuration file for the SIAAS Server is available in the directory

“./config/siaas_server.cnf”. Full reference for this configuration file is available in Table B1

(Appendix B).

3.6. Command Line Interface (CLI)

The SIAAS CLI is a command line interface client with the purpose of facilitating human

interaction with the SIAAS Server’s API. It is important to note that the CLI is an auxiliary part

of the developed artifact. In other words, its usage is not mandatory or necessary to use the

API.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

64

SIAAS CLI allows the operator to use all functions of the SIAAS Server, including viewing

server statistics, managing published server and agent configurations (adding or removing

configurations from a list of comma-separated key/value pairs, or simply clearing them),

viewing the list of active agents, accessing agent data and historical data, and generating a

report that may include all available data, current vulnerabilities, or current exploitable

vulnerabilities (similar to the JSON object generated for sending e-mail reports, as explained

in Section 3.5.4). It also enables the use of API parameterization by leveraging the available

flags in requests.

It is relevant to note that, when it comes to the configuration management of the

server/agents, the CLI adds a bit of functionality when compared to the API. Natively, the API

does not support the concept of adding/updating or removing specific configuration keys: it

only accepts a JSON dictionary of configuration keys for the server or an agent UID, and then

replaces whatever exists. However, when adding or updating an individual configuration key,

the CLI will download the current configuration dictionary, merge with the keys/values passed

in the command, and finally upload it. The same applies for removing individual configuration

keys: it will download the current configuration dictionary, remove only the requested keys, and

upload it.

The CLI is implemented using the Python’s Click [98] module, and requests towards the

API leverage the module named “requests” [114]. The module Pygments [130] was used to

colorize and highlight the output. Details about the API endpoint, debug logging activation, and

the definition of the number of indentation spaces, can be set either using a flag or by sourcing

an environment file (a “vanilla” environment file is provided in the project’s archive [153]).

Figure 25 shows two examples of CLI outputs (the complete list of available commands,

as well as a vulnerability report showing only exploits [26]).

Intelligent System for Automation of Security Audits 3. System Design and Deployment

65

Figure 25 - SIAAS CLI showing help and vulnerability report outputs

As seen above, the output of the CLI commands is in JSON format, so it allows the

operator to use a JSON parser like jq [129] to slice and filter the output. The CLI automatically

disables colors when the output is redirected, as colorization adds special characters to the

output which might not be recognized by JSON parsers.

The CLI was deployed in, and validated for, the same operating system environments used

for the rest of this work (Debian-based [100]).

3.6.1. System Scripts and Environment Variables

The CLI is provided with an installation script. It installs the Python environment [102] and

creates a system-wide alias so that the CLI can be run anywhere, by calling “siaas-cli”.

Intelligent System for Automation of Security Audits 3. System Design and Deployment

66

There’s a script to run the CLI, to where the system-wide alias links to. This script will

activate the Python’s virtual environment [117] (installing it also, if missing), and run the main

client’s code.

There’s also a removal script, which deletes the SIAAS CLI system alias.

Finally, there’s a script to archive the SIAAS CLI directory (which should not be needed in

a normal daily operation).

As mentioned above, inputs for the CLI command can be passed using the available flags.

Help menus that contain descriptions for the sub-commands, available flags, and their possible

inputs, can be accessed by using the flag “--help". Some of the flags, namely related to the

login information against the API, can also be set for an entire session using environment

variables, so they don’t have to be explicitly called on every command. Full reference of the

available environment variables for the CLI is available in Table C1 (Appendix C).

Intelligent System for Automation of Security Audits 4. Validation and Tests

67

CHAPTER 4

Validation and Tests

The validation and testing of the artifact was performed both in a local laboratory and by

external testers which tested the artifact in a real-world environment and then answered a

survey. Local tests provide technical metrics related to the agent’s reliability, accuracy, and

security, whereas the surveys have the objective of testing usability and quantifying what is

the added value of the artifact to an organization.

4.1. Methodology

As explained above, the tests of the developed solution were done both locally and by external

testers (organizations and individuals).

Local tests – detailed in Section 4.2 – measured the solution’s performance and security,

and, as mentioned above, were focused more exactly on three aspects: reliability, accuracy,

and security. When it comes to “reliability”, the parameters taken into consideration were

service stability over a prolonged uptime (days-long), and resource usage (CPU/memory)

under stress. Some tests were also done regarding the impact of a more/less aggressive

thread parallelization on scanning times and resource usage. “Accuracy” consisted in testing

the scanner's ability to accurately detect the target hosts’ OS and service information, and

existing vulnerabilities. This is done by creating a test environment with known vulnerabilities

and confirming that the scanner is reporting the correct results. Lastly, the “security” tests had

the objective of validating that the API does not allow unauthenticated or insecure connections,

at a network protocol level.

Intelligent System for Automation of Security Audits 4. Validation and Tests

68

External tests – detailed in Section 4.3 – assessed the solution’s usability and perceived

added value to organizations. It was attempted to diversify the testers’ nature, to have different

perspectives based on different knowledge levels and organizational complexity. As such, the

testers were: one organization in the IT and cloud business (Section 4.3.1), one organization

in the telecommunications business with specialization in cybersecurity (Section 4.3.2), one

organization in the intersection of the IT and financial businesses (Section 4.3.3), and an

individual IT freelancer in the open-source field (Section 4.3.4).

The artifact was provided to an individual tester from each organization, and instructions

were sent on how to set it up (these instructions already exist inside the project deliverables

[151],[152],[153]). Then, a survey was produced, containing 10 statements related to user

experience, 5 statements related to organizational impact, 2 statements related to overall

experience, and 3 open-ended questions. The first 17 statements were to be answered using

the Likert scale [131]: the tester had to select a value, from the range 1 to 5, to describe how

strongly he or she agrees or disagrees with each of the statements. Here’s the complete list of

sentences/questions formulated for the surveys:

Technical aspects (10 sentences, participant rates from 1 (does not agree at all) to 5

(completely agrees)):

1. It is easy to install and configure the components of this vulnerability scanner.

2. The CLI usage and help menus are user-friendly.

3. The agent correctly discovers neighborhood hosts.

4. The vulnerability scan results are accurate.

5. The vulnerability scans do not impact network or targeted hosts negatively.

6. The e-mail reports are reliable and comprehensive.

7. The existing documentation is useful.

8. It is easy to customize the scanner for one's specific environment.

9. It is easy to integrate the API with existing tools and workflows.

10. You are satisfied with the performance and functionality of the vulnerability scanner.

Organizational aspects (5 sentences, participant rates from 1 (does not agree at all) to 5

(completely agrees)):

11. This vulnerability scanner is a valid approach to an organization which has no access

to paid commercial solutions or cybersecurity human expertise.

Intelligent System for Automation of Security Audits 4. Validation and Tests

69

12. When compared with other paid tools like Nessus, considering human expertise and

configuration time, this scanner saves time/money/resources while keeping an

acceptable performance.

13. The vulnerability reports generated by the scanner help with the process of addressing,

prioritizing, and remediating vulnerabilities.

14. This vulnerability scanner helps an organization complying with relevant security

standards and regulations.

15. This vulnerability scanner increases an organization's posture and ability to detect and

mitigate vulnerabilities.

Overall (2 sentences, participant rates from 1 (does not agree at all) to 5 (completely

agrees)):

16. This vulnerability scanner helps improving the security auditing process of an

organization.

17. You would recommend this vulnerability scanner to other organizations.

Open-ended questions (3 questions, participant writes a text response):

18. What were the main technical or organizational shortcomings found (technical issues,

false positives, or others)?

19. What features would you like to see added or improved in future versions of the

scanner?

20. Any other comments?

Intelligent System for Automation of Security Audits 4. Validation and Tests

70

There were two possible ways to approach these surveys: either anonymously or in-

person. The author recognizes that there are pros and cons to both approaches: in one hand,

an anonymous survey diminishes potential bias, in the other, having a personal survey allows

the author to dive deeper into each question with the replier, understanding what the specific

concerns of a company in a determined business field are, clarifying any answers that were

not clear, or even getting a whole new perspective from the replier by allowing the conversation

to divert into an unplanned scope. So, it was opted for an in-person approach. To diminish any

potential bias, it was made clear to the participants that negative replies would not only be

welcomed as means of suggestions for future improvements/corrections, but they would also

have no negative impact in the outcome of this work. If accepted by the testers, a video call

was set up using Microsoft Teams [132], and the conversation was recorded. If the testers

were not available for a call, the survey was sent in a textual format, using the platform

Microsoft Forms [133].

Local tests were run in a laboratory that was set up for the entire period of deployment and

testing: real hardware (one laptop running as the server, two Raspberry Pi modules [83]

running as agents), plus a virtualized environment that ran on top of KVM (Kernel-based Virtual

Machine) [134] for Linux [56] which ran all the three SIAAS modules. Resource usage metrics

were grabbed both manually and with the help of the monitoring tool Munin [135].

Testing the artifact was a continuous process that iterated with its deployment, following

the DSRM [18] philosophy that was detailed in Section 1.3.

4.2. Performance and Security Tests

The following sections contain an analysis and review of the obtained results for the

performance and security tests, done in a local environment.

4.2.1. Laboratory Specifications

The hardware used for the local tests used consisted of a Sony Vaio E11 laptop (2013) 1 with

the hostname “JP-OLD” running as server and agent, and two Raspberry Pi running as agents

1 https://www.sony.pt/electronics/support/laptop-pc-sve-series/sve1113m1e/specifications

https://www.sony.pt/electronics/support/laptop-pc-sve-series/sve1113m1e/specifications

Intelligent System for Automation of Security Audits 4. Validation and Tests

71

(“RPI4” being a 4th generation Model B (2019) 1, and “RPI1” being a 1st generation Model B

(2012) 2).

Figure 26 shows a photo of the setup of the local laboratory (except for the hypervisor host

where the previously mentioned VM ran).

Figure 26 - Local laboratory

Specifications of this environment:

• JP-OLD (Server and agent, for testing and staging): 1.75 GHz dual-core processor, 8

GB RAM, connected via Wi-Fi.

• RPI4 (Agent for testing and staging): 1.5 GHz quad-core processor, 2 GB RAM,

connected via Wi-Fi.

• RPI1 (Agent for testing and staging): 700 MHz single-core processor, 256 MB RAM,

connected via Ethernet.

1 https://elinux.org/RPi_HardwareHistory#Raspberry_Pi_4_Model_B
2 https://elinux.org/RPi_HardwareHistory#Raspberry_Pi_Model_B_Full_Production_Board

https://elinux.org/RPi_HardwareHistory#Raspberry_Pi_4_Model_B
https://elinux.org/RPi_HardwareHistory#Raspberry_Pi_Model_B_Full_Production_Board

Intelligent System for Automation of Security Audits 4. Validation and Tests

72

• SIAAS (VM running in an external hypervisor; mostly for deployment): 1.8 GHz quad-

core processor, 8 GB RAM, connected via Ethernet and Wi-Fi.

4.2.2. Reliability

As already explained, the reliability of the artifact was measured considering uptime and

resource usage while the services are running under stress.

When it comes to the uptime, no special tests were performed, as the staging environment

was always on during the entire deployment period, since the first working builds. This means

at least 5 months of mostly continuous hardware uptime with no issues (from November 2022

until March 2023). Service restarts were performed from time to time to test new builds. System

logs show at least 14 days of continuous uninterrupted service uptime in both the server (JP-

OLD) and one of the agents (RPI4) between service restarts, as the raw data shows in

Technical Note F1 (Appendix F). RPI1 logs were rotated recently, so no data could be retrieved

for it regarding previous service uptime times.

When it comes to testing resource usage, the 3 staging agents (RPI1, RPI4, and JP-OLD)

were left running on default configurations (Table) for 72 hours, and then data was grabbed

for at least the last 24. Same was done for the server (Table) running in JP-OLD. This means

they were finding and scanning all hosts in the neighborhood (the other agent, the server, an

Internet gateway, and any other devices eventually connected to the Wi-Fi network), plus 2

manual hosts that were configured (“sapo.pt,google.pt”). 3 scripts were activated in the

configuration (“vuln,vulscan,discovery”) (two of these are script categories [60], so the number

of individual scripts was higher than 3). To put more stress in the agents, the local APIs and

debug logs were activated, and the time interval between Neighborhood and Portscanner

modules’ iterations was set to only 5 seconds. Wi-Fi host discovery was disabled in JP-OLD,

as the wireless network card of this specific host was randomly disconnecting from the network

due to unknown reasons, and this problem worsened under stress.

Intelligent System for Automation of Security Audits 4. Validation and Tests

73

Even though JP-OLD and RPI4 seemed to behave properly during the tests, RPI1 was not

reporting any data. Analyzing its logs, it was found out that the agent was facing constant OOM

(Out of Memory) 1 kills of the Nmap [42] processes. To overcome this issue, the number of

threads was manually decreased. This still didn’t fix the problem: even when OOM kills were

not being observed, the CPU load was still very high, the agent completely unreachable, and

processes stuck with no progress. Eventually, the agent was brought to stability by using only

the SIAAS Agent’s default script (“vuln”, which is also the one that uses less memory), with

only 2 parallel workers or less. These tests are also documented in detail in Technical Note F1

(Appendix F).

Figure 27 shows the difference in CPU load as fewer parallel workers ran in RPI1.

Figure 27 - CPU load in RPI1 versus number of workers

When 3 parallel workers are running, the load is so high that even the monitoring service

sometimes fails to report (RPI1 has only one CPU, so a load of 1 is the maximum value before

overloading). As the number of parallel workers is reduced, the agent stabilizes. RPI1 was

then left running with just 1 worker for the 72-hour tests.

1 https://www.kernel.org/doc/gorman/html/understand/understand016.html

https://www.kernel.org/doc/gorman/html/understand/understand016.html

Intelligent System for Automation of Security Audits 4. Validation and Tests

74

It should be noted, as shown in Technical Note F1 (Appendix F), that RPI1 scans ended

faster when using 2 parallel workers instead of 1 (which is expected), but the load was still too

high for a day-to-day operation; even SSH connections to the agent were still extremely slow.

So, it is preferable to use just 1 worker in older platforms like these with a slower single-core

CPU, as the hardware is not so severely stressed to the point of almost creating an outage.

Figure 28 shows the CPU usage for all the agents during the last 24 hours (it is important

to remember that JP-OLD is running an instance of the server as well). The light orange space

in the graphs – labeled “idle” – represents free CPU. The rest, represent CPU usage. It can be

observed that the CPU usage is stable in all agents, showing peaks as the scans run.

Figure 28 - CPU usage in all the agents during local tests

Intelligent System for Automation of Security Audits 4. Validation and Tests

75

Figure 29 shows the memory usage for all the agents during the same period. The white

space in the graphs represents free memory. The rest represent memory usage. It should be

noted that the left axis of the RPI1’s graph goes above the hardware’s amount of physical

memory (256 MB), as the system was using swap memory during the tests.

Figure 29 - Memory usage in all the agents during local tests

Intelligent System for Automation of Security Audits 4. Validation and Tests

76

The memory usage was also quite constant for the entire period. In RPI4, some memory

spikes can be observed. After monitoring the agent for one night, these spikes could not be

attributed to any SIAAS related process. Also, in RPI1, swap memory is always being used.

This can be easily explained, as this hardware configuration has very low memory available

when compared to newer Raspberry Pi generations. As Technical Note F1 (Appendix F)

shows, each Nmap script takes around 100 MB of memory. This is almost half of the total

available memory of RPI1.

There was an extra test made – that was performed both on metal and on the VM – to test

the performance of the Portscanner’s task parallelization described in Section 3.4.3, and

compare both Python subclasses ThreadPoolExecutor and ProcessPoolExecutor [108]. As the

documentation in [108] explains, there are some differences: process parallelization fully

dedicates a CPU to a certain process, instead of thread parallelization which only dedicates

CPU time for a single thread at a time. In the other hand, thread parallelization runs a ratio of

5 workers per core, instead of 1 per core by its counterpart. Thread parallelization is usually

more appropriate for tasks that depend mostly on I/O, and process parallelization more

appropriate for CPU demanding tasks.

Nmap does not allow for a decisive choice between these two forementioned type of tasks

(it uses both CPU to process requests and I/O to send them and wait for their responses), so

tests were made to decide which would be the best. As shown in Technical Note F1 (Appendix

F), it seems that both subclasses perform similarly per-target and in total time on an

environment with 4 cores but, as the number of cores of the host decreases, thread

parallelization starts performing better. This can be explained either by the differences in the

ratios of workers per core (especially if I/O is the bottleneck, as more workers will transfer more

data in parallel), or by the fact that process parallelization requires a dedicated CPU core, and

therefore a worker might be stuck for longer periods of time waiting for the core to be available.

Therefore, the decision was to stick with ThreadPoolExecutor.

It can be concluded that the SIAAS artifact operated continuously and uneventfully in terms

of uptime and resource management during the entirety of the tests. In the agent running in

older hardware, the configuration of which scripts to run and number of workers to launch had

to be adapted, which is completely acceptable, as the first versions of Raspberry Pi are short

on resources when compared to more recent hardware. But once the proper configuration was

set, this agent also ran completely fine for hours in a row, till the end of the tests. During the

whole time, the agents were successfully reporting data to the server.

Intelligent System for Automation of Security Audits 4. Validation and Tests

77

4.2.3. Accuracy

Because it relies on Nmap, the developed work does not implement the logic responsible

for querying the target hosts and finding related vulnerabilities. Still, some tests were done to

validate that the artifact was correctly detecting the target’s OS, services, and vulnerabilities.

To do this test, the following path was taken: a VM running Ubuntu 20.04 “Focal” 1 was

created, and then a web server (Apache) 2 and SSH 3 services were installed in it. From the

Ubuntu’s security website, two vulnerabilities were picked: one for Apache 4 and other for SSH

5. It was validated that the agent identified these vulnerabilities. Then both these services were

upgraded to the next versions (this was done by upgrading the VM to Ubuntu 22.04 “Jammy”

6). It was then validated that the agent reported that those vulnerabilities were cleared (it was

previously verified online by the author that these two vulnerabilities were fixed on “Jammy”).

At the same time, the accuracy of OS and service detection was also verified.

Figure 30 shows the port scanning results against the target VM, with the specific scanning

results for port 80 (HTTP/web server) expanded. In this output, it can be seen that the

vulnerability was correctly identified. The version of the web server was also correctly

identified. The OS was correctly identified as “Linux”; the Kernel version, however, is not a

match. This is not a problem as the vulnerabilities are searched per service name and version,

and not by Kernel version. Even though the image does not show, it was found that the results

were also correct for the SSH service (complete output in Technical Note F1 (Appendix F)).

1 https://releases.ubuntu.com/focal/
2 https://packages.ubuntu.com/search?keywords=apache2
3 https://packages.ubuntu.com/search?keywords=openssh-server
4 https://ubuntu.com/security/CVE-2020-9490
5 https://ubuntu.com/security/CVE-2021-28041
6 https://releases.ubuntu.com/jammy/

https://releases.ubuntu.com/focal/
https://packages.ubuntu.com/search?keywords=apache2
https://packages.ubuntu.com/search?keywords=openssh-server
https://ubuntu.com/security/CVE-2020-9490
https://ubuntu.com/security/CVE-2021-28041
https://releases.ubuntu.com/jammy/

Intelligent System for Automation of Security Audits 4. Validation and Tests

78

Figure 30 - Scanning results before the VM upgrade during local tests

Intelligent System for Automation of Security Audits 4. Validation and Tests

79

As per the process described above, the VM was now upgraded, to upgrade the web

server and the SSH service versions.

Figure 31 shows the port scanning results of the target VM after the upgrade, again with

the specific scanning results of port 80 (HTTP/web server) expanded. In this output, the

vulnerability disappeared, as it should. The version of the web server was also correctly

updated. The OS was correctly identified as “Linux” (the Kernel version remained incorrect).

The results were also correct for the SSH service.

Intelligent System for Automation of Security Audits 4. Validation and Tests

80

Figure 31 - Scanning results after the VM upgrade during local tests

The test was therefore considered passed. Complete outputs from this test are available

in Technical Note F1 (Appendix F).

Intelligent System for Automation of Security Audits 4. Validation and Tests

81

An experienced system administrator would note that, in a practical scenario, there would

be no need to upgrade the OS and/or the service versions. This is because operating systems

like Ubuntu backport upstream fixes (from new versions) to older service versions. This is done

because, in a real-world scenario, organizations cannot simply move from one service version

to the next, without risking disruption due to changes in functionality.

An example makes it clearer: considering that hypothetical service A has a known

vulnerability in the upstream version 1.0, and that this vulnerability is fixed in upstream version

1.1. Considering also that service A version 1.0 is shipped with Ubuntu version X. If the

vulnerability is serious enough, Ubuntu developers might decide to backport this fix into 1.0.

Internally, in the OS, the installed version of this service will appear as something like “1.0

patch level 1”. However, to the client connecting to the service, the version appearing in the

banner will still be 1.0.

This is important to understand because, as explained in Sections 2.2.3 and 3.1, the

developed artifact is a “network-based” vulnerability scanner and, therefore, it has no access

to the internal patch level of the services running on a host. It can only know what is the

upstream version which is presented in the banner of the service running in a said port. In

other words, it cannot know if a vulnerability is solved by internal patching of the service.

There is no way around this: the price of a vulnerability scanner being less invasive and

simpler to configure is not being able to drill into details like the internal patching level of a

service at the OS level, and determine if a said vulnerability is fixed or not. It can only report

what are the known vulnerabilities for the upstream version of said service.

The author proposes two ways of approaching this, as suggestions for future work in

Section 5.3 (either by allowing the operator to mark vulnerabilities as solved in a potential

frontend, or by developing an optional software agent to be installed in a target host).

Finally, a test was done against a Microsoft Windows Server 2022 [136] VM, as shown in

Figure 32. It can be observed that the OS is correctly detected, including its version (Windows

Server 2022 is version 10 1). The web service is also correctly detected.

1 https://support.microsoft.com/en-us/topic/windows-server-2022-update-history-e1caa597-00c5-4ab9-
9f3e-8212fe80b2ee

https://support.microsoft.com/en-us/topic/windows-server-2022-update-history-e1caa597-00c5-4ab9-9f3e-8212fe80b2ee
https://support.microsoft.com/en-us/topic/windows-server-2022-update-history-e1caa597-00c5-4ab9-9f3e-8212fe80b2ee

Intelligent System for Automation of Security Audits 4. Validation and Tests

82

Figure 32 - Scanning results for a Windows Server VM during local tests

It was found out that the script “vulscan” [62] was more effective in detecting vulnerabilities

in Windows than the pre-defined category “vuln” (which uses the script “vulners” [61]

underneath), as the latter produced a significantly smaller output. Another important aspect to

note is that vulscan works offline, while vulners does not. This is of special use when running

the agent in the offline mode.

Intelligent System for Automation of Security Audits 4. Validation and Tests

83

Apart from these cases, the “vuln” category worked perfectly well as the out-of-the-box

configuration. The output is smaller and more organized, while detecting the most recent CVEs

[29]. Also, it shows CVSS scores [31] and web links containing more information about the

vulnerabilities, which is a useful addition.

Concluding, the developed artifact successfully detects the OS (even though sometimes

the versions of the Kernel were not correct – merely a cosmetic issue, as this has no impact in

service version detection), services and versions, and vulnerabilities, considering as far as it

can go due to being a network-based scanner. The ability of using different scripts is also a

plus, as vulscan proved to be a useful addition when scanning Windows hosts or when using

the agent in the offline mode.

4.2.4. Security

To test and validate proper API responses to insecure requests, the cURL command line

client [85] was used; from the SIAAS VM, against the SIAAS Server API running in JP-OLD.

As this work serves just as a proof of concept to assess the possibility of answering the

research question (Section 1.2), the security configuration is minimal, implemented only at the

protocol/service level. The API does not support multi-user or multi-tenancy. User

authentication is implemented using simple HTTP authentication, so the login credentials are

hard coded in the host (even though they can be changed by editing the SIAAS Server

installation script, detailed in Section 3.5.5). Therefore, only minimalistic tests were done, to

validate that the HTTPS protocol and simple HTTP authentication were correctly implemented.

A valid HTTPS (SSL) connection implies that, firstly, the client recognizes the CA that signs

the endpoint certificate and, secondly, that the domain that the certificate is valid for matches

the domain section of the requesting URL. SIAAS auto-generated SSL certificate is valid for

the domains “siaas” and the server’s hostname, but not valid for the server’s IP address (as

per commonly known recommendations, referenced in the related RFC 1).

The following tests were done:

1 https://www.rfc-editor.org/rfc/rfc6125#section-1.7.2

https://www.rfc-editor.org/rfc/rfc6125#section-1.7.2

Intelligent System for Automation of Security Audits 4. Validation and Tests

84

1. Request against the IP address (instead of the hostname), using the correct

username/password, but without the endpoint’s certificate to validate against (expected

result: rejection);

2. Repeat, but explicitly using the client’s flag to ignore certification validation (expected

result: acceptance);

3. Request with proper username/password and CA bundle to validate against, but using

IP address instead of hostname (expected result: rejection);

4. Repeat, but with correct hostname, and wrong username/password (expected result:

rejection);

5. Repeat, but with correct user/name (expected result: acceptance);

6. Repeat, but using HTTP in the URL instead of HTTPS (expected result: client

redirected from HTTP to HTTPS, and then accepted).

All the tests passed successfully, as shown in Technical Note F1 (Appendix F).

However, it is important to understand that, if this work is to be offered as a SaaS offering,

a proper security implementation of the API at the application-level is necessary, with

user/tenant separation, as well as proper security testing. Projects like OWASP API Security

Project [137] attempt to compile strategies and solutions to implement API security in a

systemized way. Adapting this work to be SaaS-ready (with multi-user and multi-tenancy), with

a systemic approach to security compliance, is proposed in future work, in Section 5.3.

The complete raw and detailed outputs for all the local tests above can be consulted in

Technical Note F1 (Appendix F).

4.3. User Tests

The following sections contain an analysis and review of the obtained results for the usability

tests, done by external testers.

4.3.1. Trilio Data (US Company)

Trilio Data [138] is a company based in Massachusetts, United States, specializing in backing

up popular cloud environments like OpenStack [139] and Kubernetes [140].

Intelligent System for Automation of Security Audits 4. Validation and Tests

85

The artifact was tested, and the survey replied to, by Matt Golden 1, Senior Customer

Success Engineer and Product Content Strategist, at the Customer Success Engineering

team. The artifacts were provided to Matt on March 4, 2023, and the survey was replied to via

a video call that took place on April 21, 2023, at 17:00 UTC. He opted for an AIO setup –

installing both the agent and the server in a single VM – and performed tests in a local

laboratory environment created by him for this purpose.

All of the replies were “agree” or “strongly agree”, to the exception of neutral replies to the

statements regarding API integrability and network/host impact of the scanner, as these were

not thoroughly tested by Matt. This denotes an overall satisfaction with the solution and a

positive experience.

Regarding the open-ended questions, Matt pointed out that the only technical difficulty he

experienced was crashing into the known issue detailed in Section 5.2 (BSON object size

limitation). He got over this hurdle by configuring fewer scanning scripts to be run.

The improvement suggestions revolved around the creation of a GUI (more details in the

“web frontend”-related future work suggestions in Section 5.3).

Finally, Matt pointed out that this project is interesting mainly because existing tools hide

most of their features behind paid versions, whereas this project offers them for free.

Complete survey replies from Trilio Data can be consulted in Technical Note G1 (Appendix

G).

Additional notes of interest: during the informal conversation after the survey, Matt referred

that the possibility of having a portable scanner in a Raspberry Pi is also a great addition to a

system administrator’s toolkit, so he considers installing an agent for his own use.

4.3.2. Altice Portugal

Altice Portugal [141] (formerly known as Portugal Telecom) is the oldest and largest

telecommunications and cable provider in Portugal, providing a wide set of services for both

1 https://www.linkedin.com/in/mattdgolden/

https://www.linkedin.com/in/mattdgolden/

Intelligent System for Automation of Security Audits 4. Validation and Tests

86

home and enterprise clients. It is mostly famous for its mobile and fixed telecommunications

product named “MEO” [142].

The artifact was tested, and the survey replied to, by Ricardo Ramalho 1, Head of

Cybersecurity Behaviour Analytics and Automation, at the Cybersecurity and Privacy

Directorate. The artifacts were provided to Ricardo on March 30, 2023, and the survey was

replied via a video call that took place on April 24, 2023, at 18:30 UTC. He opted for an AIO

setup – installing both the agent and the server in a single VM – and performed tests in a local

laboratory environment created by him for this purpose.

All of the replies were “agree” or “strongly agree”, to the exception of a neutral reply to the

statement regarding e-mail reporting, as Ricardo did not test this. This denotes an overall

satisfaction with the solution and a positive experience.

Ricardo has an extensive background in cybersecurity, so his inputs are of special value

and based in large experience and knowledge. He noted that this project adds value to the

cybersecurity auditing process of organizations, and even pointed out that this project has the

potential to become a product. Ricardo also drilled down a bit on the construction of the

survey’s organizational statements. Namely, he pointed out that prioritizing vulnerabilities is a

much more complex matter than just discovering them. This observation matches with what

was observed in Section 1.1.

The improvement suggestions were about delivering the SIAAS modules in Docker [143]

containers (more details in the “containerization”-related future work suggestions in Section

5.3).

Complete survey replies from Altice Portugal can be consulted in Technical Note G1

(Appendix G).

Additional notes of interest: Ricardo noted that the usage of Swagger [115] is an important

help in interacting with the API. He also noted that, when testing, the agent was not starting

properly in an offline environment, right after installing. This bug had already been corrected

by the time the survey was had, by forcing the SIAAS modules to install the virtual environment

[117] in the installation script, as explained in Sections 3.4.6, 3.5.5, and 3.6.1 (at the time

Ricardo was given the SIAAS Agent package, this correction had not been implemented yet).

1 https://www.linkedin.com/in/ricardogramalho/

https://www.linkedin.com/in/ricardogramalho/

Intelligent System for Automation of Security Audits 4. Validation and Tests

87

4.3.3. VTXRM (Portuguese Company)

VTXRM – Software Factory [144] is a Portuguese company focused on software development

and expert consultancy, for the finance sector.

The artifact was tested, and the survey replied to, by Jorge Teixeira 1, Information

Technology Team Lead. In the past, Jorge was also a Research Assistant in the

Telecommunications Institute, at ISCTE-IUL [145]. The artifacts were provided to Jorge on

March 30, 2023, and the survey was replied via a video call that took place on May 5, 2023, at

21:00 UTC. He opted for an AIO setup – installing both the agent and the server in a single

VM – and performed tests in a local laboratory environment created by him for this purpose.

All of the replies were “agree” or “strongly agree”, to the exception of neutral replies to the

statements regarding e-mail reporting, agent customization, API integration, and comparison

with paid tools, as Jorge did not test them, or couldn’t assess the answer. This denotes an

overall satisfaction with the solution and a positive experience.

In terms of limitations, Jorge pointed out that this tool – as it relies on ARP to discover

hosts automatically, as explained in Section 3.4.2 – can be sensitive to ARP spoofing 2, by a

malicious actor wanting to hide a machine in the network. Also, he noted that the deployment

of the test scenario could be easier. For this end, Jorge suggested that the software could be

provided in containers instead of installation scripts.

In terms of future improvements, Jorge suggested that a graphical interface could be

deployed. In this interface, more comprehensive and less technical information about each

vulnerability could be presented, compared to what is currently shown by the SIAAS Server

API (detailed in Section 3.5.1).

Both the suggestions above (containerization and a graphical interface) are considered as

future work in Section 5.3.

1 https://www.linkedin.com/in/jorge-teixeira-8b364487/
2 https://www.imperva.com/learn/application-security/arp-spoofing/

https://www.linkedin.com/in/jorge-teixeira-8b364487/
https://www.imperva.com/learn/application-security/arp-spoofing/

Intelligent System for Automation of Security Audits 4. Validation and Tests

88

Finally, Jorge said that this tool got him more interested in cybersecurity and related

concepts. He also said that this is a very interesting project, which he plans to use for personal

projects.

Complete survey replies from VTXRM can be consulted in Technical Note G1 (Appendix

G).

4.3.4. David Negreira (IT Freelancer, Ubuntu Community)

David Negreira 1, is an IT freelancing engineer with a strong background in Linux [56]. He’s

currently contracted by Canonical [146]. He is also an active member of the Ubuntu [99]

community, co-authoring Podcast Ubuntu Portugal 2.

The artifacts were provided to David on May 6, 2023, and the survey was replied via a

video call that took place on May 12, 2023, at 18:30 UTC. He opted for an AIO setup – installing

both the agent and the server in a single Linux container (LXC) [147] – and performed tests in

a local laboratory environment created by him for this purpose.

All of the replies were “agree” or “strongly agree”, to the exception of neutral replies to the

statements regarding the accuracy of the scanning results (more details below), and e-mail

reporting and API integration (not tested). This denotes an overall satisfaction with the solution

and a positive experience.

Regarding limitations, David pointed out that the results of the scanner are not completely

accurate. This is caused by a known limitation of this type of scanner, already explained in

Section 4.2.3: backported vulnerabilities via patching cannot be detected. Also, at the

beginning of his tests, SIAAS Agent was not properly obtaining an ID. This happened because

the agent was running in a container with limited privileges, which prevented it from obtaining

a unique ID from the system. This was corrected by the author, and the problem fixed.

1 https://www.linkedin.com/in/dnegreira/
2 https://podcastubuntuportugal.org/

https://www.linkedin.com/in/dnegreira/
https://podcastubuntuportugal.org/

Intelligent System for Automation of Security Audits 4. Validation and Tests

89

David’s suggestions for improvements revolved around solving the forementioned

limitation (detecting backported patches), as well as correctly detecting the OS distribution and

version (example: Ubuntu 22.04), and even lifecycle status. These improvements are

considered as future work (“agent-based software module”), in Section 5.3.

Finally, David mentioned that he sees potential for this solution to be widely adopted.

Complete survey replies from David Negreira can be consulted in Technical Note G1

(Appendix G).

4.3.5. Aggregated Results and Considerations

Figure 33 shows a graphical distribution of the agreeableness replies obtained.

Intelligent System for Automation of Security Audits 4. Validation and Tests

90

Figure 33 - Graphical distribution of the agreeableness replies given by the testers

As shown, the large majority of the replies are in the “agree” and “strongly agree” area,

which denotes a strong satisfaction overall from all the testers.

Intelligent System for Automation of Security Audits 4. Validation and Tests

91

In conclusion, external testers reported that the usage of the artifact is simple, effective,

and would help an organization automate and improve their efforts towards having a better

and more efficient cybersecurity posture. It helps them know which vulnerabilities need to be

fixed on an urgent basis, by filtering exploits. It was also concluded that this tool provides

special value for organizations that don’t have paid solutions or specialized cybersecurity

specialists.

Intelligent System for Automation of Security Audits 4. Validation and Tests

92

Intelligent System for Automation of Security Audits 5. Conclusions

93

CHAPTER 5

Conclusions

Final considerations on the capabilities of the developed work compared with the current state-

of-the-art, as well on the testing and validation results from the previous chapter. Formulation

of an answer to the research question made in Section 1.2. Known issues are explained. Some

ideas for future work are suggested. Project’s availability to the community is detailed.

5.1. Final Considerations

This work attempted, first of all, to solve the research question presented in Section 1.2.

Consequently, and as explained in Section 3.1, the goal was to – apart from other design

aspects – design and develop a vulnerability scanner that was simple to use, configure, and

scale, worked out of the box, could run on low-cost hardware, and available to the community.

Besides the port scanning performed by Nmap [42] – which was chosen for its simplicity,

portability, efficiency, and easy integration with Python [63],[64] – this work implements an

automatic discovery of hosts in the neighborhood. This list of hosts can then be fed to the port

scanner, making it possible for the system to be working out of the box with minimal

configuration, allowing a system administrator with no cybersecurity-related skills to operate it

with minimal configuration effort. Still, its flexibility still allows the operator to configure a set of

manual hosts, ports to scan, Nmap scripts to run, between other customizations.

The variety of Nmap script categories available [60] extends the scanner’s capabilities

beyond service/version crosschecking against vulnerability DBs. It also allows to perform more

advanced penetration testing, sometimes even for specific vendors 1.

1 https://packetstormsecurity.com/files/142066/ASUS-WRT-Cross-Site-Scripting-Nmap-NSE-
Script.html

https://packetstormsecurity.com/files/142066/ASUS-WRT-Cross-Site-Scripting-Nmap-NSE-Script.html
https://packetstormsecurity.com/files/142066/ASUS-WRT-Cross-Site-Scripting-Nmap-NSE-Script.html

Intelligent System for Automation of Security Audits 5. Conclusions

94

The presented work operates in an agent-server architecture. Not only this allows for load

distribution, but the agents can also be connected directly to internal LANs, bypassing many

of the bureaucratic and access granting needs of an external server scanner; especially in data

centers which do not allow inbound connections.

This work is also fully modular. An agent can work independently from a server, if needed.

The fully featured API can eventually be consumed by web interfaces, mobile clients, or even

AI systems, implemented by the community (as suggested in Section 5.3). These web

interfaces can potentially develop new features, like advanced graphing and reporting, as the

API already provides all the necessary underlying data. As explained in Section 3.2, there’s

even the possibility of creating an AIO environment with both the agent and server installed in

the same machine or VM (the testers of the artifact were offered and opted for this setup).

The developed solution also generates vulnerability reports and sends them via e-mail in

a file using the well-known CSV format. The granularity of this report can be configured,

allowing system administrators to focus on only exploitable vulnerabilities that need to be fixed

on priority.

To the best extent of the author’s knowledge – and considering the study of the current

state-of-the-art solutions and their limitations (Section 2.3) – there is no solution at this time

that covers all the aspects detailed above in a single open-source offering.

Testing the artifact (Chapter 4) revealed that it is stable and reliable, even in older

hardware with fewer resources (given the proper configuration). Considering the limitations

inherent to the type of scanner that is implemented in this artifact (more information in Section

4.2.3), it effectively and accurately detects hosts in the network, their OSes and services, and

vulnerabilities. The possibility to select from multiple Nmap scripts allows the operator to use

the best option for a given target host’s OS, or for a specific mode of operation of the agent.

The security-related tests, even though minimalistic, have shown that the API implementation

does not allow unauthorized or untrusted connections.

Intelligent System for Automation of Security Audits 5. Conclusions

95

Survey responses by external users – even those with no cybersecurity-specific

background – have shown that the artifact is easy to install and operate, correctly assessing

the characteristics of their environment, and providing valuable output, with no negative impact

in the rest of the infrastructure. Additionally, all of the testers stated that the artifact has shown

to be effective in providing added value in automating the security audit processes of

organizations, even if no other software options are available. These two points are of

particular interest, as they are essential to answer positively the research question of this work.

Considering all the paragraphs above, the author therefore considers that the research

question defined in Section 1.2 was positively answered.

5.2. Known Issues

As with other technological products and projects, the developed artifact has issues that might

be observed under specific circumstances. These might be addressed in the future, if needed.

The following issues are observed:

• MongoDB has a 16 MB limitation when it comes to the BSON document being uploaded

[148]. This might impact data uploading, especially in agents running a large number

of scripts in a large number of hosts. In local tests (Technical Note F1 (Appendix F)), it

was observed that an agent targeting a single host (running FTP, NFS, HTTP, and

SSH), using the default “vuln” script, took around 26 KB of data. This gives a maximum

value of around 615 hosts per agent. If 3 scripts are run (“vuln,vulscan,discovery”), it

will take around 141 KB, lowering the maximum value to around 113 hosts. A potential

solution to this problem is using GridFS [149].

5.3. Future Work

Considering the developed work and the testers’ feedback, the author suggests the following

future work as means of improving the current artifact:

Intelligent System for Automation of Security Audits 5. Conclusions

96

Related to UI/UX, a web frontend for the server’s API. Some features that this frontend

could implement: AAA/SaaS multi-tenant cloud offering with a systematic approach to API

security (as described in Section 4.2.4), advanced graphical reporting, stateful metadata

information (like marking vulnerabilities as resolved, remembering which vulnerabilities were

already seen by the operator, or notifying the operator for new vulnerabilities found since last

visit), improved e-mail reports (a more advanced implementation, directly in the frontend,

bypassing the Mailer module from the backend described in Section 3.5.4), advanced

scheduling of the agent’s and server’s modules (instead of the current method of having a fixed

time interval between module loops). Ideally, this web frontend would be a completely

independent module from the SIAAS Server, acting as just another client and consumer of the

server’s API.

This web frontend could also have a mobile application version;

Related to AI/ML, an AI system that feeds on the API’s output and determines courses of

remediation. One possible use case would be suggesting which possible patches could be

applied in a system to solve the existing vulnerabilities, using OS information, services running

and their version, and the list of found vulnerabilities for each of these services;

Related to vulnerability scanning, an optional agent-based software module that could be

installed in target hosts and report extra information directly to the server (in order to drill down

on information like backported vulnerability fixes for older versions of services as explained in

Section 4.2.2, or obtain more detailed information about the OS distribution, version, and

lifecycle, as suggested by the tester in Section 4.3.4);

The possibility of adding extra tools to the agent (suggestion: using specialized tools like

Metasploit [150] to perform extensive pentesting on specific services, by probing found exploits

and then running post-exploitable code 1 2, like described in Section 2.2.4). This would imply

changes in the agent’s and server’s code (and possibly the CLI’s), as the agent would have to

run the forementioned tools and support related configurations, and the operator would need

to configure the agents remotely via the server’s API;

1 https://www.varonis.com/blog/what-is-metasploit
2 https://www.cm-alliance.com/cybersecurity-blog/using-metasploit-and-nmap-to-scan-for-
vulnerabilities

https://www.varonis.com/blog/what-is-metasploit
https://www.cm-alliance.com/cybersecurity-blog/using-metasploit-and-nmap-to-scan-for-vulnerabilities
https://www.cm-alliance.com/cybersecurity-blog/using-metasploit-and-nmap-to-scan-for-vulnerabilities

Intelligent System for Automation of Security Audits 5. Conclusions

97

And, finally, generic improvements: code optimization and proper unit testing, packaging

and/or containerization (containerization needs to be carefully evaluated in the agent’s case,

as the added complexity might negatively impact its performance), possibility of having a high-

availability (HA) cluster running the server module, and accessibility and internationalization.

Authors of future improvements or changes should always bear in mind that the core

objective underlying this work – as explained in Section 3.1 – is to offer to the community a

tool that is simple enough to work out-of-the-box, with little to no extra configuration needed,

that even operators with no specific cybersecurity expertise can operate. New features should

not get in the way of this philosophical foundation.

5.4. Project Availability, Credits, and Contributions

The three artifacts produced by this work are available online in GitHub [151],[152],[153], and

are licensed under GPL [154] (version 3). Code was written in the vim text editor [155] and in

the PyCharm IDE [156], and automatically styled in accordance with PEP 8 (style guide for

Python code) [157], with the help of autopep8 [158].

The Platform module for both SIAAS Agent and SIAAS Server (Sections 3.4.1 and 3.5.2)

contains pieces of code from a blog post from Abdou Rockikz, named "How to Get Hardware

and System Information in Python" [87].

The Neighborhood module for SIAAS Agent (Section 3.4.2) contains pieces of code from

the “Layer 2 network neighbourhood discovery tool” project, by Benedikt Waldvogel [89], which

is licensed under GPL [154] (version 2).

A pull request [159] was also proposed by the author of this work in the python3-nmap

project [64]. It was accepted by the owners of the project and incorporated in the module,

meaning it is now available for the entire community to use.

Finally, an article based on the findings of this work was submitted and published in the

peer-reviewed journal European Alliance for Innovation: Endorsed Transactions on Scalable

Information Systems [160]. It is fully available online under open access [161].

Intelligent System for Automation of Security Audits 5. Conclusions

98

Intelligent System for Automation of Security Audits References

99

References

[1] Check Point Blog, “Check Point Research: Third quarter of 2022 reveals increase in cyberattacks and unexpected

developments in global trends”, checkpoint.com, https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-

increase-in-cyberattacks/ (accessed: 2023/08/31)

[2] B. Connolly, “Is automation the future of cyber security?”, CIO (13284045), IDG Communications, 2017/10/10, pp. 4.

[Online] Available: https://www.cio.com/article/203489/is-automation-the-future-of-cyber-security.html (accessed:

2023/08/31)

[3] Cybersecurity and Infrastructure Security Agency (CISA), “Cost of a Cyber Security Incident: Systematic Review and

Cross-Validation”, 2020

[4] Congressional Research Service, “Global Research and Development Expenditures: Fact Sheet”, 2022/09/14

[5] S. Morgan (Cybercrime Magazine), “Cybercrime To Cost The World $10.5 Trillion Annually By 2025”,

cybersecurityventures.com, https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ (accessed:

2023/08/31)

[6] Kaspersky Lab, “Damage Control: The Cost of Security Breaches; IT Security Risks Special Report Series”, 2015?

[7] S. Furnell, P. Fischer, and A. Finch, “Can't get the staff? The growing need for cyber-security skills”, Computer Fraud &

Security, 2017, vol. 2017, i. 2, pp. 5-10, doi: 10.1016/S1361-3723(17)30013-1

[8] S. Furnell, “The cybersecurity workforce and skills”, Computer Fraud & Security, 2021, vol. 100, i. C, doi:

10.1016/j.cose.2020.102080

[9] C. Russu, “The impact of low cyber security on the development of poor nations”, developmentaid.org,

https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations

(accessed: 2023/08/31)

[10] T. Caldwell, “Plugging the cyber-security skills gap”, Computer Fraud & Security, 2013, vol. 2013, i. 7, pp. 5-10, doi:

10.1016/S1361-3723(13)70062-9

[11] G. Smith, “The intelligent solution: automation, the skills shortage and cyber-security”, Computer Fraud & Security, 2018,

vol. 2018, i. 8, pp. 6-9, doi: 10.1016/S1361-3723(18)30073-3

[12] R. K. L. Ko, “Cyber Autonomy: Automating the Hacker – Self-healing, self-adaptive, automatic cyber defense systems

and their impact to the industry, society and national security”, arXiv, 2020, doi: 10.48550/arXiv.2012.04405

[13] “Introducing ChatGPT”, openai.com, https://openai.com/blog/chatgpt (accessed: 2023/08/31)

[14] Deascona, “How ChatGPT will revolutionize the cyber security industry”, uxdesign.cc, https://bootcamp.uxdesign.cc/how-

chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e (accessed: 2023/08/31)

[15] Ponemon Institute (sponsored by Rezilion), "The State of Vulnerability Management in DevSecOps", 2022

[16] Julia Anderson, “Updates to ISO 27001/27002 raise the bar on application security and vulnerability scanning”, invict.com,

https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/

(accessed: 2023/08/31)

[17] S. Shea, “SOAR (security orchestration, automation and response)”, techtarget.com,

https://www.techtarget.com/searchsecurity/definition/SOAR (accessed: 2023/08/31)

[18] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A Design Science Research Methodology for

Information Systems Research”, Journal of Management Information Systems, 2007, vol. 24, no. 3, pp. 45-77, doi:

10.2753/MIS0742-1222240302

[19] “Google”, google.com, https://www.google.com (accessed: 2023/08/31)

[20] “B-On”, b-on.pt, https://www.b-on.pt/ (accessed: 2023/08/31)

[21] “IEEE Xplore”, ieee.org, https://ieeexplore.ieee.org/ (accessed: 2023/08/31)

https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://blog.checkpoint.com/2022/10/26/third-quarter-of-2022-reveals-increase-in-cyberattacks/
https://www.cio.com/article/203489/is-automation-the-future-of-cyber-security.html
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.developmentaid.org/news-stream/post/149553/low-cyber-security-and-development-of-poor-nations
https://openai.com/blog/chatgpt
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://bootcamp.uxdesign.cc/how-chat-gpt-will-revolutionize-the-cyber-security-industry-7847cc7fc24e
https://www.invicti.com/blog/web-security/iso-27001-27002-changes-in-2022-application-security-vulnerability-scanning/
https://www.techtarget.com/searchsecurity/definition/SOAR
https://www.google.com/
https://www.b-on.pt/
https://ieeexplore.ieee.org/

Intelligent System for Automation of Security Audits References

100

[22] “Google Scholar”, google.com, https://scholar.google.com (accessed: 2023/08/31)

[23] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and The PRISMA Group, “Preferred Reporting Items for Systematic

Reviews and Meta-Analyses: The PRISMA Statement”, PLoS Medicine, 2009, vol. 6, no. 7, doi:

10.1371/journal.pmed.1000097

[24] N. Mandal and S. Jadhav, "A survey on network security tools for open source”, 2016 IEEE International Conference on

Current Trends in Advanced Computing (ICCTAC), 2016, pp. 1-6, doi: 10.1109/ICCTAC.2016.7567330

[25] I. Zulkarneev and A. Kozlov, "New Approaches of Multi-agent Vulnerability Scanning Process", 2021 Ural Symposium on

Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2021, pp. 488-490, doi:

10.1109/USBEREIT51232.2021.9455061

[26] W. Haydock, "But is it exploitable?", deploy-securely.com, https://www.blog.deploy-securely.com/p/but-is-it-exploitable

(accessed: 2023/08/31)

[27] Encyclopedia by Kaspersky, “What is an attack vector?”, kaspersky.com,

https://encyclopedia.kaspersky.com/glossary/attack-vector/ (accessed: 2023/08/31)

[28] A. Granova and M. Slaviero, “Cyber Warfare”, Computer and Information Security Handbook (Third Edition), Morgan

Kaufmann, 2007, ch. 83, pp. 1085-1104, doi: 10.1016/B978-0-12-803843-7.00083-1

[29] “Common Vulnerabilities and Exposures (CVE)”, mitre.org, https://cve.mitre.org/ (accessed: 2023/08/31)

[30] “National Vulnerability Database (NVD)”, nist.gov, https://nvd.nist.gov/ (accessed: 2023/08/31)

[31] National Vulnerability Database (NVD), “Vulnerability Metrics”, nist.gov, https://nvd.nist.gov/vuln-metrics/cvss (accessed:

2023/08/31)

[32] “Security Content Automation Protocol (SCAP)”, nist.gov, https://csrc.nist.gov/projects/security-content-automation-

protocol/ (accessed: 2023/08/31)

[33] A. D'Hondt and H. Bahmad, "Understanding SCAP Through a Simple Use Case", Hakin9 IT Security Magazine, 2016/03,

vol. 11, no. 3, pp. 100-110. [Online] Available:

https://dial.uclouvain.be/memoire/ucl/en/object/thesis:8128/datastream/PDF_05/view (accessed: 2023/08/31)

[34] “Common Platform Enumeration (CPE)”, nist.gov, https://nvd.nist.gov/products/cpe (accessed: 2023/08/31)

[35] “Common Configuration Enumeration (CCE)”, nist.gov, https://csrc.nist.gov/Projects/Security-Content-Automation-

Protocol/Specifications/common-configuration-enumeration-cce (accessed: 2023/08/31)

[36] “Open Vulnerability and Assessment Language (OVAL)”, mitre.org, https://oval.mitre.org/ (accessed: 2023/08/31)

[37] “Extensible Configuration Checklist Description Format (XCCDF)”, nist.gov, https://csrc.nist.gov/projects/security-content-

automation-protocol/specifications/xccdf (accessed: 2023/08/31)

[38] “Common Weakness Enumeration (CWE)”, mitre.org, https://cwe.mitre.org/ (accessed: 2023/08/31)

[39] “OpenSCAP”, open-scap.org, https://www.open-scap.org/ (accessed: 2023/08/31)

[40] I. Chalvatzis, D. A. Karras, and R. C. Papademetriou, "Evaluation of Security Vulnerability Scanners for Small and Medium

Enterprises Business Networks Resilience towards Risk Assessment", 2019 IEEE International Conference on Artificial

Intelligence and Computer Applications (ICAICA), 2019, pp. 52-58, doi: 10.1109/ICAICA.2019.8873438

[41] W. Liu, "Design and Implement of Common Network Security Scanning System", 2009 International Symposium on

Intelligent Ubiquitous Computing and Education, 2009, pp. 148-151, doi: 10.1109/IUCE.2009.24

[42] G. F. Lyon, Nmap Network Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning,

Insecure Press, 2008, ISBN 978-0-9799587-1-7. [Online] Available: https://nmap.org/book/toc.html (accessed:

2023/08/31)

[43] G. F. Lyon, “Port Scanning Techniques and Algorithms – TCP SYN (Stealth) Scan (-sS)”, Nmap Network Scanning; The

Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 5, ISBN 978-0-

9799587-1-7. [Online] Available: https://nmap.org/book/synscan.html (accessed: 2023/08/31)

[44] S. Liao et al., "A Comprehensive Detection Approach of Nmap: Principles, Rules and Experiments", 2020 International

Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), 2020, pp. 64-71, doi:

10.1109/CyberC49757.2020.00020

[45] E. Hjelmvik, “Passive OS Fingerprinting”, netresec.com, https://www.netresec.com/?page=Blog&month=2011-

11&post=Passive-OS-Fingerprinting (accessed: 2023/08/31)

[46] E. Chikohora and L. Mogomeli, "A Study on the Impact of Network Vulnerability Scanners on Network Security”, 2021 3rd

International Multidisciplinary Information Technology and Engineering Conference (IMITEC), 2021, pp. 1-4, doi:

10.1109/IMITEC52926.2021.9714598

https://scholar.google.com/
https://www.blog.deploy-securely.com/p/but-is-it-exploitable
https://encyclopedia.kaspersky.com/glossary/attack-vector/
https://cve.mitre.org/
https://nvd.nist.gov/
https://nvd.nist.gov/vuln-metrics/cvss
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://csrc.nist.gov/projects/security-content-automation-protocol/
https://dial.uclouvain.be/memoire/ucl/en/object/thesis:8128/datastream/PDF_05/view
https://nvd.nist.gov/products/cpe
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/common-configuration-enumeration-cce
https://csrc.nist.gov/Projects/Security-Content-Automation-Protocol/Specifications/common-configuration-enumeration-cce
https://oval.mitre.org/
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/xccdf
https://csrc.nist.gov/projects/security-content-automation-protocol/specifications/xccdf
https://cwe.mitre.org/
https://www.open-scap.org/
https://nmap.org/book/toc.html
https://nmap.org/book/synscan.html
https://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting
https://www.netresec.com/?page=Blog&month=2011-11&post=Passive-OS-Fingerprinting

Intelligent System for Automation of Security Audits References

101

[47] A. Chen and Z. Zhang, "A Comparative Study of Credentialed Vulnerability Scanning and Non-credentialed Vulnerability

Scanning”, 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing,

Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),

2021, pp. 1613-1616, doi: 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00215

[48] G. F. Lyon, “Nmap Output Formats – Common Platform Enumeration (CPE)”, Nmap Network Scanning; The Official Nmap

Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 13, ISBN 978-0-9799587-1-7.

[Online] Available: https://nmap.org/book/output-formats-cpe.html (accessed: 2023/08/31)

[49] “Script vulners”, nmap.org, https://nmap.org/nsedoc/scripts/vulners.html (accessed: 2023/08/31)

[50] “PTES – Penetration Testing Execution Standard”, pentest-standard.org, http://www.pentest-standard.org/ (accessed:

2023/08/31)

[51] “OpenVAS”, openvas.org, https://www.openvas.org/ (accessed: 2023/08/31)

[52] “Nessus”, tenable.com, https://www.tenable.com/products/nessus (accessed: 2023/08/31)

[53] “Nexpose”, rapid7.com, https://www.rapid7.com/products/nexpose/ (accessed: 2023/08/31)

[54] “Faraday”, faradaysec.com, https://faradaysec.com/ (accessed: 2023/08/31)

[55] “Vuls”, vuls.io, https://vuls.io/ (accessed: 2023/08/31)

[56] “What is Linux?”, linux.com, https://www.linux.com/what-is-linux/ (accessed: 2023/08/31)

[57] A. Mohan, G. A. Swaminathan, and N. J. Shafana, "Automated Tools and Techniques in Vulnerability Assessment", 2022

4th International Conference on Smart Systems and Inventive Technology (ICSSIT), 2022, pp. 533-540, doi:

10.1109/ICSSIT53264.2022.9716474

[58] Y. Wang and J. Yang, "Ethical Hacking and Network Defense: Choose Your Best Network Vulnerability Scanning Tool",

2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2017,

pp. 110-113, doi: 10.1109/WAINA.2017.39

[59] “NSE Scripts”, nmap.org, https://nmap.org/nsedoc/scripts/ (accessed: 2023/08/31)

[60] G. F. Lyon, “Nmap Scripting Engine – Usage Examples”, Nmap Network Scanning; The Official Nmap Project Guide to

Network Discovery and Security Scanning, Insecure Press, 2008, ch. 9, ISBN 978-0-9799587-1-7. [Online] Available:

https://nmap.org/book/nse-usage.html (accessed: 2023/08/31)

[61] “Nmap plugin and http-vulners-regex”, vulners.com, https://vulners.com/docs/plugins/nmap_vulners/ (accessed:

2023/08/31)

[62] “vulscan.nse”, computec.ch, https://www.computec.ch/projekte/vulscan/ (accessed: 2023/08/31)

[63] “What is Python?”, python.org, https://www.python.org/doc/essays/blurb/ (accessed: 2023/08/31)

[64] “python3-nmap”, pypi.org, https://pypi.org/project/python3-nmap/ (accessed: 2023/08/31)

[65] “Zenmap”, nmap.org, https://nmap.org/zenmap/ (accessed: 2023/08/31)

[66] Tenable Documentation, “Benefits and Limitations (Nessus Agents)”, tenable.com,

https://docs.tenable.com/nessusagent/Content/BenefitsAndLimitations.htm (accessed: 2023/08/31)

[67] “Scanner-VS”, scanner-vs.ru, https://scaner-vs.ru/ (accessed: 2023/08/31)

[68] “CyBot”, cronus-cyber.com, https://cronus-cyber.com/ (accessed: 2023/08/31)

[69] “XSpider”, ptsecurity.com, https://www.ptsecurity.com/ww-en/products/xspider/ (accessed: 2023/08/31)

[70] “Qualys”, qualys.com, https://www.qualys.com/ (accessed: 2023/08/31)

[71] “Retina CS”, beyondtrust.com, https://www.beyondtrust.com/vulnerability-management (accessed: 2023/08/31)

[72] Microsoft Learn, “What is Microsoft Baseline Security Analyzer and its uses?”, microsoft.com,

https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance (accessed:

2023/08/31)

[73] "HCL AppScan", hcltechsw.com, https://www.hcltechsw.com/appscan (accessed: 2023/08/31)

[74] Invicti, "Acutenix", acutenix.com, https://www.acunetix.com/ (accessed: 2023/08/31)

[75] S. Shah and B. M. Mehtre, "An automated approach to Vulnerability Assessment and Penetration Testing using Net-

Nirikshak 1.0", 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies,

2014, pp. 707-712, doi: 10.1109/ICACCCT.2014.7019182

[76] Y. Wang, Y. Bai, L. Li, X. Chen, and A. Chen, "Design of Network Vulnerability Scanning System Based on NVTs", 2020

IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), 2020, pp. 1774-1777, doi:

10.1109/ITOEC49072.2020.9141812

https://nmap.org/book/output-formats-cpe.html
https://nmap.org/nsedoc/scripts/vulners.html
http://www.pentest-standard.org/
https://www.openvas.org/
https://www.tenable.com/products/nessus
https://www.rapid7.com/products/nexpose/
https://faradaysec.com/
https://vuls.io/
https://www.linux.com/what-is-linux/
https://nmap.org/nsedoc/scripts/
https://nmap.org/book/nse-usage.html
https://vulners.com/docs/plugins/nmap_vulners/
https://www.computec.ch/projekte/vulscan/
https://www.python.org/doc/essays/blurb/
https://pypi.org/project/python3-nmap/
https://nmap.org/zenmap/
https://docs.tenable.com/nessusagent/Content/BenefitsAndLimitations.htm
https://scaner-vs.ru/
https://cronus-cyber.com/
https://www.ptsecurity.com/ww-en/products/xspider/
https://www.qualys.com/
https://www.beyondtrust.com/vulnerability-management
https://learn.microsoft.com/en-us/windows/security/threat-protection/mbsa-removal-and-guidance
https://www.hcltechsw.com/appscan
https://www.acunetix.com/

Intelligent System for Automation of Security Audits References

102

[77] H. Chen, J. Chen, J. Chen, S. Yin, Y. Wu, and J. Xu, "An Automatic Vulnerability Scanner for Web Applications", 2020

IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 2020,

pp. 1519-1524, doi: 10.1109/TrustCom50675.2020.00207

[78] X. Zhang et al., "An Automated Composite Scanning Tool with Multiple Vulnerabilities”, 2019 IEEE 3rd Advanced

Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019, pp. 1060-1064,

doi: 10.1109/IMCEC46724.2019.8983828

[79] C. Wang et al., "FalconEye: A High-Performance Distributed Security Scanning System", 2019 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud

and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech),

2019, pp. 282-288, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00059

[80] P. Davies and T. Tryfonas, “A lightweight web-based vulnerability scanner for small-scale computer network security

assessment”, Journal of Network and Computer Applications, 2009, vol. 32, i. 1, pp. 78-95, doi:

10.1016/j.jnca.2008.04.007

[81] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, “SecuBat: a web vulnerability scanner”, WWW ‘06: Proceedings of the

15th International Conference on World Wide Web, 2006, pp. 247-256, doi: 10.1145/1135777.1135817

[82] M. Noman, M. Iqbal, K. Rasheed, and M. Muneeb Abid, “Web Vulnerability Finder (WVF): Automated Black-Box Web

Vulnerability Scanner”, International Journal of Information Technology and Computer Science, 2020, vol. 12, pp. 38-46,

doi: 10.5815/ijitcs.2020.04.05

[83] “What is a Raspberry Pi?”, rasberrypi.org, https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/ (accessed:

2023/08/31)

[84] “What is MongoDB?”, mongodb.com, https://www.mongodb.com/en-us/what-is-mongodb (accessed: 2023/08/31)

[85] “cURL”, curl.se, https://curl.se/ (accessed: 2023/08/31)

[86] “Firefox”, mozilla.org, https://www.mozilla.org/en-US/firefox/ (accessed: 2023/08/31)

[87] A. Rockikz, “How to Get Hardware and System Information in Python”, thepythoncode.com,

https://www.thepythoncode.com/article/get-hardware-system-information-python (accessed: 2023/08/31)

[88] “Scapy”, scapy.net, https://scapy.net/ (accessed: 2023/08/31)

[89] B. Waldvogel, “Layer 2 network neighbourhood discovery tool”, github.com, https://github.com/bwaldvogel/neighbourhood

(accessed: 2023/08/31)

[90] “Django”, djangoproject.com, https://www.djangoproject.com/ (accessed: 2023/08/31)

[91] “Flask”, palletsprojects.com, https://flask.palletsprojects.com/ (accessed: 2023/08/31)

[92] “FastAPI”, tiangolo.com, https://fastapi.tiangolo.com/ (accessed: 2023/08/31)

[93] “Apache HTTP Server”, apache.com, https://httpd.apache.org/ (accessed: 2023/08/31)

[94] “Nginx”, nginx.com, https://www.nginx.com/ (accessed: 2023/08/31)

[95] “What is MySQL?”, oracle.com, https://www.oracle.com/mysql/what-is-mysql/ (accessed: 2023/08/31)

[96] “mysql”, pypi.org, https://pypi.org/project/mysql/ (accessed: 2023/08/31)

[97] “pymongo”, pypi.org, https://pypi.org/project/pymongo/ (accessed: 2023/08/31)

[98] “Click”, palletsprojects.com, https://click.palletsprojects.com/ (accessed: 2023/08/31)

[99] “Ubuntu”, ubuntu.com, https://ubuntu.com/ (accessed: 2023/08/31)

[100] “Debian”, debian.org, https://www.debian.org/ (accessed: 2023/08/31)

[101] “Raspberry Pi OS”, raspberrypi.com, https://www.raspberrypi.com/software/ (accessed: 2023/08/31)

[102] Debian Packages, “Details of package python3 in bullseye”, debian.org, https://packages.debian.org/bullseye/python3

(accessed: 2023/08/31)

[103] Debian Manpages, “dmidecode(8) – dmidecode – Debian bullseye”, debian.org,

https://manpages.debian.org/bullseye/dmidecode/dmidecode.8.en.html (accessed: 2023/08/31)

[104] “psutil”, pypi.org, https://pypi.org/project/psutil/ (accessed: 2023/08/31)

[105] “py-cpuinfo”, pypi.org, https://pypi.org/project/py-cpuinfo/ (accessed: 2023/08/31)

[106] Debian Manpages, “ip-neighbour(8) – iproute2 – Debian bullseye”, debian.org,

https://manpages.debian.org/bullseye/iproute2/ip-neighbour.8.en.html (accessed: 2023/08/31)

[107] Debian Packages, “Details of package nmap in bullseye”, debian.org, https://packages.debian.org/bullseye/nmap

(accessed: 2023/08/31)

https://www.raspberrypi.org/help/what-%20is-a-raspberry-pi/
https://www.mongodb.com/en-us/what-is-mongodb
https://curl.se/
https://www.mozilla.org/en-US/firefox/
https://www.thepythoncode.com/article/get-hardware-system-information-python
https://scapy.net/
https://github.com/bwaldvogel/neighbourhood
https://www.djangoproject.com/
https://flask.palletsprojects.com/
https://fastapi.tiangolo.com/
https://httpd.apache.org/
https://www.nginx.com/
https://www.oracle.com/mysql/what-is-mysql/
https://pypi.org/project/mysql/
https://pypi.org/project/pymongo/
https://click.palletsprojects.com/
https://ubuntu.com/
https://www.debian.org/
https://www.raspberrypi.com/software/
https://packages.debian.org/bullseye/python3
https://manpages.debian.org/bullseye/dmidecode/dmidecode.8.en.html
https://pypi.org/project/psutil/
https://pypi.org/project/py-cpuinfo/
https://manpages.debian.org/bullseye/iproute2/ip-neighbour.8.en.html
https://packages.debian.org/bullseye/nmap

Intelligent System for Automation of Security Audits References

103

[108] Python Docs, “concurrent.futures – Launching parallel tasks”, python.org,

https://docs.python.org/3/library/concurrent.futures.html (accessed: 2023/08/31)

[109] G. F. Lyon, “Nmap Network Scanning – Nmap Reference Guide – OS Detection”, Nmap Network Scanning; The Official

Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 15, ISBN 978-0-9799587-

1-7. [Online] Available: https://nmap.org/book/man-os-detection.html (accessed: 2023/08/31)

[110] G. F. Lyon, “Nmap Network Scanning – Nmap Reference Guide – Service and Version Detection”, Nmap Network

Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 15,

ISBN 978-0-9799587-1-7. [Online] Available: https://nmap.org/book/man-version-detection.html (accessed: 2023/08/31)

[111] G. F. Lyon, “Nmap Network Scanning – Nmap Reference Guide – Port Specification and Scan Order”, Nmap Network

Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 15,

ISBN 978-0-9799587-1-7. [Online] Available: https://nmap.org/book/man-port-specification.html (accessed: 2023/08/31)

[112] G. F. Lyon, “Nmap Network Scanning – Nmap Reference Guide – Nmap Scripting Engine (NSE)”, Nmap Network

Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 15,

ISBN 978-0-9799587-1-7. [Online] Available: https://nmap.org/book/man-nse.html (accessed: 2023/08/31)

[113] G. F. Lyon, “Nmap Network Scanning – Port Scanning Techniques and Algorithms – UDP Scan (-sU)”, Nmap Network

Scanning; The Official Nmap Project Guide to Network Discovery and Security Scanning, Insecure Press, 2008, ch. 5,

ISBN 978-0-9799587-1-7. [Online] Available: https://nmap.org/book/scan-methods-udp-scan.html (accessed:

2023/08/31)

[114] “requests", pypi.org, https://pypi.org/project/requests/ (accessed: 2023/08/31)

[115] “Swagger”, swagger.io, https://swagger.io/ (accessed: 2023/08/31)

[116] “flask-swagger-ui”, pypi.org, https://pypi.org/project/flask-swagger-ui/ (accessed: 2023/08/31)

[117] Python Docs, “venv – Creation of virtual environments”, python.org, https://docs.python.org/3/library/venv.html (accessed:

2023/08/31)

[118] “systemd”, systemd.io, https://systemd.io/ (accessed: 2023/08/31)

[119] Python Docs, “logging – Logging facility for Python”, python.org, https://docs.python.org/3/library/logging.html (accessed:

2023/08/31)

[120] MongoDB Docs, “Install MongoDB Community Edition on Debian”, mongodb.com,

https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-debian/ (accessed: 2023/08/31)

[121] Debian Packages, “Details of package apache2 in bullseye”, debian.org, https://packages.debian.org/bullseye/apache2

(accessed: 2023/08/31)

[122] Debian Packages, “Details of package openssl in bullseye”, debian.org, https://packages.debian.org/bullseye/openssl

(accessed: 2023/08/31)

[123] Apache Docs, “Apache Virtual Host documentation”, apache.org, https://httpd.apache.org/docs/2.4/vhosts/ (accessed:

2023/08/31)

[124] Python Docs, “csv – CSV File Reading and Writing”, python.org, https://docs.python.org/3/library/csv.html (accessed:

2023/08/31)

[125] Python Docs, “email – An email and MIME handling package”, python.org, https://docs.python.org/3/library/email.html

(accessed: 2023/08/31)

[126] Python Docs, “smtplib – SMTP protocol client”, python.org, https://docs.python.org/3/library/smtplib.html (accessed:

2023/08/31)

[127] "Gmail", google.com, https://mail.google.com/ (accessed: 2023/08/31)

[128] Microsoft, "Outlook.com", live.com, https://outlook.live.com/ (accessed: 2023/08/31)

[129] “jq”, github.io, https://stedolan.github.io/jq/ (accessed: 2023/08/31)

[130] “Pygments”, pypi.org, https://pypi.org/project/Pygments/ (accessed: 2023/08/31)

[131] R. Likert, “A Technique for the Measurement of Attitudes”, Archives of Psychology, 1932, vol. 22, no. 140, pp. 5-55

[132] “Microsoft Teams”, microsoft.com, https://teams.microsoft.com/ (accessed: 2023/08/31)

[133] “Microsoft Forms”, microsoft.com, https://forms.microsoft.com (accessed: 2023/08/31)

[134] "KVM", linux-kvm.org, https://www.linux-kvm.org/page/Main_Page (accessed: 2023/08/31)

[135] "Munin", munin-monitoring.org, http://munin-monitoring.org/ (accessed: 2023/08/31)

[136] “Windows Server 2022, microsoft.com, https://www.microsoft.com/en-us/windows-server (accessed: 2023/08/31)

[137] “OWASP API Security Project”, owasp.org, https://owasp.org/www-project-api-security/ (accessed: 2023/08/31)

https://docs.python.org/3/library/concurrent.futures.html
https://nmap.org/book/man-os-detection.html
https://nmap.org/book/man-version-detection.html
https://nmap.org/book/man-port-specification.html
https://nmap.org/book/man-nse.html
https://nmap.org/book/scan-methods-udp-scan.html
https://pypi.org/project/requests/
https://swagger.io/
https://pypi.org/project/flask-swagger-ui/
https://docs.python.org/3/library/venv.html
https://systemd.io/
https://docs.python.org/3/library/logging.html
https://www.mongodb.com/docs/manual/tutorial/install-mongodb-on-debian/
https://packages.debian.org/bullseye/apache2
https://packages.debian.org/bullseye/openssl
https://httpd.apache.org/docs/2.4/vhosts/
https://docs.python.org/3/library/csv.html
https://docs.python.org/3/library/email.html
https://docs.python.org/3/library/smtplib.html
https://mail.google.com/
https://outlook.live.com/
https://stedolan.github.io/jq/
https://pypi.org/project/Pygments/
https://teams.microsoft.com/
https://forms.microsoft.com/
https://www.linux-kvm.org/page/Main_Page
http://munin-monitoring.org/
https://www.microsoft.com/en-us/windows-server
https://owasp.org/www-project-api-security/

Intelligent System for Automation of Security Audits References

104

[138] “Trilio”, trilio.io, https://trilio.io/ (accessed: 2023/08/31)

[139] “OpenStack”, openstack.org, https://www.openstack.org/ (accessed: 2023/08/31)

[140] “Kubernetes”, kubernetes.io, https://kubernetes.io/ (accessed: 2023/08/31)

[141] “Altice Portugal”, altice.pt, https://www.altice.pt/pt (accessed: 2023/08/31)

[142] “MEO”, meo.pt, https://www.meo.pt/ (accessed: 2023/08/31)

[143] “Docker”, docker.com, https://www.docker.com/ (accessed: 2023/08/31)

[144] “VTXRM – Software Factory”, vtxrm.com, https://www.vtxrm.com/ (accessed: 2023/08/31)

[145] “ISCTE – Instituto Universitário de Lisboa”, iscte-iul.pt, https://www.iscte-iul.pt/ (accessed: 2023/08/31)

[146] “Canonical”, canonical.com, https://canonical.com/ (accessed: 2023/08/31)

[147] “Linux Containers”, linuxcontainers.org, https://linuxcontainers.org/ (accessed: 2023/08/31)

[148] MongoDB Docs, “MongoDB Limits and Thresholds – BSON Documents – BSON Document Size”, mongodb.com,

https://www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-BSON-Document-Size (accessed: 2023/08/31)

[149] MongoDB Docs, “GridFS”, mongodb.com, https://www.mongodb.com/docs/manual/core/gridfs/ (accessed: 2023/08/31)

[150] Rapid7, “Metasploit”, metasploit.com, https://www.metasploit.com/ (accessed: 2023/08/31)

[151] J. P. Seara, “Intelligent System for Automation of Security Audits (SIAAS) – Agent”, github.com,

https://github.com/jpseara/siaas-agent (accessed: 2023/08/31)

[152] J. P. Seara, “Intelligent System for Automation of Security Audits (SIAAS) – Server”, github.com,

https://github.com/jpseara/siaas-server (accessed: 2023/08/31)

[153] J. P. Seara, “Intelligent System for Automation of Security Audits (SIAAS) – Command Line Interface”, github.com,

https://github.com/jpseara/siaas-cli (accessed: 2023/08/31)

[154] GNU Project, “Licenses”, gnu.org, https://www.gnu.org/licenses/licenses.html.en (accessed: 2023/08/31)

[155] “Vim”, vim.org, https://www.vim.org/ (accessed: 2023/08/31)

[156] JetBrains, "PyCharm", jetbrains.com, https://www.jetbrains.com/pycharm/ (accessed: 2023/08/31)

[157] Python Enhancement Proposals, "PEP 8 – Style Guide for Python", python.org, https://peps.python.org/pep-0008/

(accessed: 2023/08/31)

[158] “autopep8”, pypi.org, https://pypi.org/project/autopep8/ (accessed: 2023/08/31)

[159] J. P. Seara, "python3-nmap – Pull request – Added "task_results" to output", github.com,

https://github.com/nmmapper/python3-nmap/pull/84 (accessed: 2023/08/31)

[160] “EAI Endorsed Transactions on Scalable Information Systems”, eai.eu, https://publications.eai.eu/index.php/sis

(accessed: 2023/11/25)

[161] J. P. Seara and C. Serrão, “Intelligent System for Automation of Security Audits (SIAAS)”, EAI Endorsed Transactions on

Scalable Information Systems, 2023, vol. 11, no. 1, doi: 10.4108/eetsis.3564

https://trilio.io/
https://www.openstack.org/
https://kubernetes.io/
https://www.altice.pt/pt
https://www.meo.pt/
https://www.docker.com/
https://www.vtxrm.com/
https://www.iscte-iul.pt/
https://canonical.com/
https://linuxcontainers.org/
https://www.mongodb.com/docs/manual/reference/limits/#mongodb-limit-BSON-Document-Size
https://www.mongodb.com/docs/manual/core/gridfs/
https://www.metasploit.com/
https://github.com/jpseara/siaas-agent
https://github.com/jpseara/siaas-server
https://github.com/jpseara/siaas-cli
https://www.gnu.org/licenses/licenses.html.en
https://www.vim.org/
https://www.jetbrains.com/pycharm/
https://peps.python.org/pep-0008/
https://pypi.org/project/autopep8/
https://github.com/nmmapper/python3-nmap/pull/84
https://publications.eai.eu/index.php/sis

Intelligent System for Automation of Security Audits Appendix A

A

Appendix A – Agent Configuration Reference

Key

Protected
(no

runtime
changes)

Default
(by

omission)
Extra details

api_pwd X (None) SIAAS API user password

api_ssl_ca_bundle X (None)
SSL CA bundle of the SIAAS API endpoint’s

certificate

api_ssl_ignore_verify X (None)
Ignore SIAAS API endpoint’s SSL CA

verification
api_uri X (None) SIAAS API URI
api_user X (None) SIAAS API user name

datatransfer_loop_interval_sec 3600
Seconds between the Data Transfer module

iterations

disable_neighborhood_discovery false
Disables discovery of known hosts in the

local networks

disable_portscanner false
Disables port scanning (system info and

vulnerabilities)

disable_wifi_auto_discovery false
Disables discovering hosts on the Wi-Fi

interfaces
enable_internal_api X false Enables the agent’s local API

log_level X info
Logging level. Possible values: debug,

info, warn, error, critical

manual_hosts (None)
Comma-separated list of manually configured

hosts to scan. Example:
109.51.61.78,sapo.pt,google.com

neighborhood_loop_interval_sec 900
Seconds between the Neighborhood module

iterations

nmap_portscan_timeout_sec 600
Nmap timeout value in seconds when scanning
a target host’s port for vulnerabilities

nmap_scripts (None)

Comma-separated list of Nmap
scripts/categories to run. When not

defined, no Nmap scripts are run. Possible
values: auth, broadcast, brute, default,

discovery, dos, exploit, external, fuzzer,
intrusive, malware, nmap-vulners, safe,

version, vuln, vulscan

nmap_sysinfo_timeout_sec 600
Nmap timeout value in seconds when scanning

a target host for system information

offline_mode X true
Agent will not communicate with the server

at all

platform_loop_interval_sec 300
Seconds between the Platform module

iterations

portscanner_loop_interval_sec 86400
Seconds between the Portscanner module

iterations

portscanner_max_parallel_workers (None)

Defines a fixed maximum number of parallel
workers (threads) to run when port scanning

the target hosts. If not defined, this
number is automatically managed by Python

scan_only_manual_hosts false Port scans only manually configured hosts

silent_mode false
Download published configurations, but

don’t upload any data

target_specific_ports (None)
Restrict port scanning to a comma-separated
list of ports/ranges. Example: 22,80,8080-

8083

Table A1 - SIAAS Agent configuration reference

Intelligent System for Automation of Security Audits Appendix A

B

Important note: The sample configuration file shipped with the SIAAS Agent software package

does not necessarily have the default values set.

Intelligent System for Automation of Security Audits Appendix B

C

Appendix B – Server Configuration Reference

Key

Protected
(no

runtime
changes)

Default
(by

omission)
Extra details

dbmaintenance_history_days_to_keep 14
Number of days of historical agent data

to keep in the database

dbmaintenance_loop_interval_sec 86400
Seconds between the DB Maintenance module

iterations

log_level X info
Logging level. Possible values: debug,

info, warn, error, critical

mailer_loop_interval_sec (None)
Seconds between the Mailer module

iterations
mailer_smtp_account (None) SMTP account name
mailer_smtp_pwd (None) SMTP account password

mailer_smtp_recipients (None)
Comma-separated list of e-mail recipients

of the reports

mailer_smtp_report_type vuln_only
Granularity of the report to be sent.

Possible values: all, vuln_only,
exploit_vuln_only

mailer_smtp_server (None) SMTP server address
mailer_smtp_tls_port (None) SMTP TLS port
mongo_collection X (None) MongoDB collection

mongo_db X (None) MongoDB DB name
mongo_host X (None) MongoDB host address
mongo_port X (None) MongoDB port
mongo_pwd X (None) MongoDB user password
mongo_user X (None) MongoDB user name

platform_loop_interval_sec 300
Seconds between the Platform module

iterations

Table B1 - SIAAS Server configuration reference

Important note: The sample configuration file shipped with the SIAAS Server software package

does not necessarily have the default values set.

Intelligent System for Automation of Security Audits Appendix B

D

Intelligent System for Automation of Security Audits Appendix C

E

Appendix C – CLI Environment Variables Reference

Variable
Default (by
omission)

Extra details

SIAAS_API_URI https://127.0.0.1/api SIAAS API URI
SIAAS_API_USER siaas SIAAS API user name
SIAAS_API_PWD siaas SIAAS API user password

SIAAS_API_SSL_IGNORE_VERIFY false Ignore SIAAS API endpoint’s SSL CA verification

SIAAS_API_SSL_CA_BUNDLE (None)
SSL CA bundle of the SIAAS API endpoint’s

certificate
SIAAS_API_TIMEOUT 60 Timeout of the SIAAS API calls
SIAAS_DEBUG_LOGS false Enabled debug logging

SIAAS_OUTPUT_COLORS false Colorful JSON output
SIAAS_OUTPUT_INDENT_SPACES 4 Number of indentation spaces in the JSON output

Table C1 - SIAAS CLI environment variables reference

Important note: The sample environment file shipped with the SIAAS CLI software package

does not necessarily have the default values set.

Intelligent System for Automation of Security Audits Appendix C

F

Intelligent System for Automation of Security Audits Appendix D

G

Appendix D – Local API Guide (Agent)

SIAAS LOCAL API (AGENT) GUIDE

How to read this guide:

- <method> is a method for the route

-- <key> is an optional parameter accepted under the current method

() describes the body of a method, or the value of a parameter key

[] is the list of possible returns for a method

is a description of the method/parameter

Base URL: http://<SIAAS_Agent_IP>:5001

Template: http://<SIAAS_Agent_IP>:5001/<Local_API_Route>?key1=value1&key2=value2

List of Local API Routes:

/api

- GET [200] # shows API information

/api/siaas-agent

- GET [200, 500] # shows the data collected by the agent

-- module (string: platform, neighborhood, portscanner, config, *; default: *) # filters specific

modules (accepts a comma-separated list)

cURL examples:

GET: curl -i -X GET http://192.168.1.11:5001/siaas-agent?module=platform,portscanner

Technical Note D1 - SIAAS Agent local API guide

Full web guide for the local API is available at: http://<SIAAS_Agent_IP>:5001/docs.

Intelligent System for Automation of Security Audits Appendix D

H

Intelligent System for Automation of Security Audits Appendix E

I

Appendix E – API Guide (Server)

SIAAS API (SERVER) GUIDE

How to read this guide:

- <method> is a method for the route

-- <key> is an optional parameter accepted under the current method

() describes the body of a method, or the value of a parameter key

[] is the list of possible returns for a method

is a description of the method/parameter

Base URL: https://<SIAAS_Server_IP>

Template: https://<SIAAS_Server_IP>/<API_Route>?key1=value1&key2=value2

List of API Routes:

/api

- GET [200] # shows API information

/api/siaas-server

- GET [200, 500] # shows the contents of the local server DBs

-- module (string: platform, config, *; default: *) # filters specific modules (accepts a comma-

separated list)

/api/siaas-server/configs

- GET [200, 500] # shows the published configurations for the server

- POST [200, 500] (header: Content-Type: application/json; body: JSON dict of configs) # posts a

dictionary of configurations for the server

- DELETE [200, 500] # deletes all server configurations

/api/siaas-server/agents

- GET [200, 500] # shows a summary of known agents (nickname, description, IP, last ping) (nickname

and description strings for each agent are read from the published configuration keys “nickname” and

“description”, for each agent’s uid)

-- sort (string: date, agent; default: date) # sorts the agents by last ping or uid

/api/siaas-server/agents/data

Intelligent System for Automation of Security Audits Appendix E

J

- GET [200, 500] # shows the data uploaded by all agents

-- module (string: platform, config, *; default: *) # filters specific modules (accepts a comma-

separated list)

/api/siaas-server/agents/data/<siaas_agent_uid>

- GET [200, 500] # shows the data uploaded by a specific agent uid (accepts multiple uids, comma-

separated)

-- module (string: platform, neighborhood, portscanner, config, *; default: *) # filters specific

modules (accepts a comma-separated list)

- POST [200, 500] (header: Content-Type: application/json; body: JSON dict of agent-module data) #

posts a dictionary of agent data from an agent’s uid

- DELETE [200, 500] # deletes agent data from the server’s DB from an agent’s uid (accepts multiple

uids, comma-separated)

-- days (int: 0-99999; default: 365) # number of days to keep

/api/siaas-server/agents/configs

- GET [200, 500] # shows the configurations published for all agents

-- merge_broadcast (int: 0, 1; default: 0) # merges the broadcasted configurations with the

configuration of each agent’s uid (broadcast address: ffffffff-ffff-ffff-ffff-ffffffffffff)

/api/siaas-server/agents/configs/<agent_uid>

- GET [200, 500] # shows the configurations published for a specific agent uid (accepts multiple uids,

comma-separated)

-- merge_broadcast (int: 0, 1; default: 0) # merges the broadcasted configuration in the configuration

of each agent’s uid

- POST [200, 500] (header: Content-Type: application/json) (body: JSON dict of configs) # posts a

dictionary of configurations for an agent’s uid (accepts multiple uids, comma-separated)

- DELETE [200, 500] # deletes published configurations for an agent’s uid (accepts multiple uids,

comma-separated)

/api/siaas-server/agents/history

- GET [200, 500] # shows historical data for all agents

-- days (int: 0-99999; default: 15) # maximum number of days to show

-- hide (int: 0, 1; default: 0) # empty keys till module-key level

-- limit (int: 0-99999; default: 100) # maximum number of records to show

-- module (string: platform, neighborhood, portscanner, config, *; default: *) filters specific modules

(accepts a comma-separated list)

-- older (int: 0, 1; default: 0) # shows older records first

-- sort (string: date, agent; default: date) # sort by most recent or agent uid

/api/siaas-server/agents/history/<agent_uid>

- GET [200, 500] # shows historical data for a specific agent uid (accepts multiple uids, comma-

separated)

-- days (int: 0-99999; default: 15) # maximum number of days to show

-- hide (int: 0, 1; default: 0) # empty keys till module-key level

-- limit (int: 0-99999; default: 100) # maximum number of records to show

-- module (string: platform, neighborhood, portscanner, config, *; default: *) filters specific modules

(accepts a comma-separated list)

-- older (int: 0, 1; default: 0) # shows older records first

Intelligent System for Automation of Security Audits Appendix E

K

-- sort (string: date, agent; default: date) # sort by most recent or agent uid

cURL examples:

GET: curl -i -X GET https://192.168.1.100/api/siaas-server/agents/history?sort=agent\&hide=1\&days=5

--user siaas:siaas --insecure

POST: curl -i -X POST https://192.168.1.100/api/siaas-server/agents/configs/10000000dbb5bbc1 -H

"Content-Type: application/json" -d '{"disable_wifi_auto_discovery": "false","manual_hosts":

"sapo.pt,google.pt"}' --user siaas:siaas --insecure

DELETE: curl -i -X DELETE https://192.168.1.100/api/siaas-server/agents/data/0924aa8b-6dc9-4fec-9716-

d1601fc8b6c6?days=3 --user siaas:siaas --insecure

Technical Note E1 - SIAAS Server API guide

Full web guide for the API is available at: https://<SIAAS_Server_IP>/api/docs.

Intelligent System for Automation of Security Audits Appendix E

L

Intelligent System for Automation of Security Audits Appendix F

M

Appendix F – Local Tests

LOCAL TESTS

Lab:

JP-OLD (SERVER + AGENT) - 2013

Sony Vaio E11 (SVE1113M1EW)

Processor: 1.75GHz Dual Core

Memory: 8GB

WLAN

RPI4 (AGENT) - Q2 2019

Raspberry Pi 4 Model B Rev 1.2

Processor: 1.5GHz Quad Core

Memory: 2GB

Ethernet / WLAN

pi@raspberrypi:~ $ cat /proc/cpuinfo

(...)

Hardware : BCM2835

Revision : b03112

Serial : 10000000dbb5bbc1

Model : Raspberry Pi 4 Model B Rev 1.2

RPI1 (AGENT) - Q3 2012

Raspberry Pi Model B Rev 1

Processor: 700MHz Single Core

Memory: 256MB

Ethernet

pi@raspberrypi:~ $ cat /proc/cpuinfo

(...)

Hardware : BCM2835

Revision : 0003

Serial : 000000007ab1b3b3

Model : Raspberry Pi Model B Rev 1

SIAAS (VM) (SERVER + AGENT + CLI)

Processor: 1.8GHz Quad Core

Intelligent System for Automation of Security Audits Appendix F

N

Memory: 8GB

Ethernet / WLAN

Set up November 2022.

Nmap commands run by python3-nmap:

OS detection:

#TCP

nmap.nmap_os_detection(target, args="-%s -sV -Pn --host-timeout %s" % (ipv, timeout))

/usr/bin/nmap -v -oX - -O -4 -sV -Pn --host-timeout 600 sapo.pt

#UDP

nmap.scan_top_ports(scanned_ip, args="-%s -sU --top-ports 10 -Pn --host-timeout %s" % (ipv, timeout))

/usr/bin/nmap -v -oX - --top-ports 10 -4 -sU --top-ports 10 -Pn --host-timeout 600 sapo.pt

Vulnerability scan:

nmap.nmap_version_detection(target, args="-%s -p%s:%s --script %s -Pn --host-timeout %s" % (ipv,

prot_flag, port, nmap_script, timeout))

/usr/bin/nmap -v -oX - -sV -4 -pT:443 --script vuln -Pn --host-timeout 600 sapo.pt

/usr/bin/nmap -v -oX - -sV -4 -pU:445 --script vuln -Pn --host-timeout 600 sapo.pt

-O: Enable OS detection

--top-ports: most famous ports for this service (UDP is very slow when scanning ports, so we just

scan the 10 most famous ones)

-sV: Probe open ports to determine service/version info

-sU: UDP scan

-Pn: Treat all hosts as online -- skip host discovery

Reliability tests:

Uptime agent @ RPI4:

pi@raspberrypi:~ $ journalctl -u siaas-agent | grep -Ei 'Started|Stopped'

(...)

Jan 26 15:42:29 raspberrypi systemd[1]: Started SIAAS Agent.

Feb 10 14:33:14 raspberrypi systemd[1]: Stopped SIAAS Agent. # 15 days

(...)

Feb 26 16:17:33 raspberrypi systemd[1]: Started SIAAS Agent.

Mar 15 14:22:31 raspberrypi systemd[1]: Stopped SIAAS Agent. # 17 days

Uptime server @ JP-OLD:

jpseara@JP-OLD:~$ journalctl -u siaas-server | grep -Ei 'Started|Stopped'

Intelligent System for Automation of Security Audits Appendix F

O

(...)

jan 24 19:30:56 JP-OLD systemd[1]: Started SIAAS Server.

fev 03 14:04:16 JP-OLD systemd[1]: Stopped SIAAS Server. # 10 days

(...)

fev 24 02:24:30 JP-OLD systemd[1]: Started SIAAS Server.

mar 10 00:05:17 JP-OLD systemd[1]: Stopped SIAAS Server. # 14 days

RPI4 and RPI1 customized configs for stress test:

enable_internal_api: true

log_level: debug

manual_hosts: google.com,sapo.pt

neighborhood_loop_interval_sec: 5

nmap_scripts: vuln,vulscan,discovery

platform_loop_interval_sec: 5

portscanner_loop_interval_sec: 5

RPI1 modified configs for stress test (check MULTIPROC/MULTITHREAD ANALYSIS):

enable_internal_api: true

log_level: debug

manual_hosts: google.com,sapo.pt

neighborhood_loop_interval_sec: 5

nmap_scripts: vuln

platform_loop_interval_sec: 5

portscanner_loop_interval_sec: 5

portscanner_max_parallel_workers: 1

JP-OLD customized configs for stress test:

disable_wifi_auto_discovery: true # problematic Sony Vaio WLAN card...

log_level: debug

manual_hosts: google.com,sapo.pt

neighborhood_loop_interval_sec: 5

nmap_scripts: vuln,vulscan,discovery

platform_loop_interval_sec: 5

portscanner_loop_interval_sec: 5

Multiproc/Multithread analysis:

Scripts: vuln,vulscan,discovery

$ cat /var/log/siaas-agent/siaas-agent.log | grep portscanner.py | grep -Ei 'running|sleeping'

SIAAS (VM)

4 cores:

Intelligent System for Automation of Security Audits Appendix F

P

(target -

num_scanned_ports/num_valid_scripts/total_num_vulnerabilities/total_num_exploits/time_taken_sec_with

_multiprocs | time_taken_sec_with_multithreads)

192.4.5.5 - 10/0/0/0/320 | 321

192.168.122.1 - 3/1/21/0/75 | 72

192.168.123.3 - 6/1/105/16/414 | 499

2a00:1450:4003:80f::500e - 0 | 1

aisense-qas.aitecservdevenv.local - 6/1/105/16/205 | 287

cgsa-dev.aitecservdevenv.local - 6/1/105/16/305 | 507

focal62 - 6/1/105/16/281 | 431

google.com - 12/1/0/0/828 | 834

sapo.pt - 12/1/0/0/269 | 277

Multiproc

2023-03-26 20:28:49.610 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 20:42:38.092 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 14 min with multiprocs

2023-03-26 23:37:25.729 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 23:53:00.522 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 16 min with multiprocs

2023-03-27 00:30:38.661 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 00:44:21.775 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 14 min with multiprocs

Multithread

2023-03-26 20:53:22.372 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 21:07:16.836 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 14 min with multithreads

2023-03-26 23:55:42.821 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 00:12:06.655 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 17 min with multithreads

2023-03-27 00:13:06.681 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 00:26:54.418 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 13 min with multithreads

1 core:

Intelligent System for Automation of Security Audits Appendix F

Q

(target -

num_scanned_ports/num_valid_scripts/total_num_vulnerabilities/total_num_exploits/time_taken_sec_with

_multiprocs | time_taken_sec_with_multithreads)

192.4.5.5 - 10/0/0/0/319 | 321

192.168.122.1 - 3/1/21/0/76 | 77

192.168.123.3 - 6/1/105/16/291 | 288

2a00:1450:4003:80f::500e - 0 | 0

aisense-qas.aitecservdevenv.local - 6/1/105/16/191 | 219

cgsa-dev.aitecservdevenv.local - 6/1/105/16/241 | 390

focal62 - 6/1/105/16/258 | 250

google.com - 12/1/0/0/837 | 822

sapo.pt - 12/1/0/0/403 | 333

Multiproc

2023-03-26 21:16:35.895 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 22:00:15.958 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 44 min with multiprocs

2023-03-26 22:25:07.402 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 23:07:10.023 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 42 min with multiprocs

Multithread

2023-03-26 22:07:57.615 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 22:21:40.491 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 14 min with multithreads

2023-03-26 23:16:51.694 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 23:30:33.042 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 60 seconds

before next loop ...

^ 14 min with multithreads

JP-OLD (2 cores):

Multiproc

2023-03-26 20:26:37.423 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 21:11:35.644 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 45 min

Intelligent System for Automation of Security Audits Appendix F

R

2023-03-26 22:49:22.629 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 23:39:44.293 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 50 min

2023-03-27 09:09:23.603 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 09:52:51.857 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 43 min

Multithread

2023-03-27 14:14:54.371 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 14:49:05.507 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 35 min

2023-03-27 23:39:46.666 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 00:12:47.279 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 33 min

2023-03-29 21:28:20.767 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-29 22:06:56.988 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 38 min

RPI4 (4 cores):

Multiproc

2023-03-26 21:07:50.915 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 21:41:47.588 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 34 min

2023-03-26 22:52:43.420 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-26 23:32:21.365 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 40 min

2023-03-27 09:11:46.586 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 09:45:00.430 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 34 min

Intelligent System for Automation of Security Audits Appendix F

S

Multithread

2023-03-27 15:44:48.612 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-27 16:18:19.489 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 34 min

2023-03-27 23:45:25.392 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 00:23:52.301 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 38 min

2023-03-29 22:03:27.798 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-29 22:39:06.373 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 36 min

RPI1 (1 core):

Multiproc

2023-03-26 18:53:47.131 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

(Still stuck on discovery script at 10:23 next day (observed in two consecutive days))

Multithread (auto=5)

2023-03-27 10:44:05.352 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

Mar 27 10:58:00 raspberrypi kernel: [251173.162310] Out of memory: Killed process 12525 (nmap) total-

vm:49200kB, anon-rss:24476kB, file-rss:0kB, shmem-rss:0kB, UID:0 pgtables:56kB oom_score_adj:0

Multithread (3)

2023-03-28 02:07:05.455 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

Mar 28 02:30:10 raspberrypi kernel: [307127.505793] Out of memory: Killed process 3296 (nmap) total-

vm:49272kB, anon-rss:20656kB, file-rss:0kB, shmem-rss:0kB, UID:0 pgtables:56kB oom_score_adj:0

Multithread (1)

2023-03-28 02:43:58.575 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

(Still stuck on discovery script at 11:15 next day)

Multithread (3, just vuln+vulscan)

2023-03-28 11:19:17.734 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

Mar 28 12:28:56 raspberrypi kernel: [343049.420355] Out of memory: Killed process 21494 (nmap) total-

vm:93968kB, anon-rss:38344kB, file-rss:0kB, shmem-rss:0kB, UID:0 pgtables:98kB oom_score_adj:0

Intelligent System for Automation of Security Audits Appendix F

T

Multithread (3, just vuln)

2023-03-28 12:42:47.256 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 14:10:23.094 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 1 hr 28 min

2023-03-28 14:10:28.110 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 15:32:47.064 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 1 hr 22 min

(Works, but under very intense load (Munin fails, SSH fails):

top - 14:55:47 up 4 days, 1:44, 1 user, load average: 10.47, 7.24, 7.68)

Multithread (2, just vuln)

2023-03-28 17:00:39.340 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 17:56:55.046 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 56 min

2023-03-28 17:57:00.054 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 18:53:34.851 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 56 min

(Less load but still high:

top - 17:22:22 up 4 days, 4:11, 1 user, load average: 5.36, 4.20, 4.50)

Multithread (1, just vuln)

2023-03-28 19:55:54.036 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-28 21:27:22.010 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 1 hr 32 min

2023-03-29 14:25:23.225 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-29 15:47:50.464 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 1 hr 22 min

2023-03-29 21:16:40.642 DEBUG siaas_portscanner.py [Process-3|MainThread] Loop running ...

2023-03-29 22:31:19.090 DEBUG siaas_portscanner.py [Process-3|MainThread] Sleeping for 5 seconds

before next loop ...

^ 1 hr 15 min

(Even less load (much more acceptable now):

top - 21:34:52 up 4 days, 8:23, 1 user, load average: 2.08, 2.14, 2.03)

Intelligent System for Automation of Security Audits Appendix F

U

Peak memory usage observations (per script category):

(at RPI4)

$ watch sudo ps -C "nmap" -o vsz,rss,cmd

106548 98220 /usr/bin/nmap -v -oX - google.com -sV -4 -pT:443 --script vuln -Pn --host-timeout 600

^ 98MB

141912 133492 /usr/bin/nmap -v -oX - google.com -sV -4 -pT:443 --script discovery -Pn --host-timeout

600

^ 133MB

135132 127136 /usr/bin/nmap -v -oX - google.com -sV -4 -pT:443 --script vulscan -Pn --host-timeout 600

^ 127MB

Accuracy tests:

ubuntu@target:~$ uname -a

Linux target 5.4.0-131-generic #147-Ubuntu SMP Fri Oct 14 17:07:22 UTC 2022 x86_64 x86_64 x86_64

GNU/Linux

ubuntu@target:~$ sudo dpkg -l | grep -Eiw 'apache2|openssh'

ii apache2 2.4.41-4ubuntu3.12 amd64

Apache HTTP Server

ii openssh-server 1:8.2p1-4ubuntu0.3 amd64

secure shell (SSH) server, for secure access from remote machines

https://ubuntu.com/security/cves?q=&package=openssh

https://ubuntu.com/security/CVE-2021-28041 # Fixed in 20.04, no issue in 22.04

https://ubuntu.com/security/cves?q=&package=apache2

https://ubuntu.com/security/CVE-2020-9490 # Fixed in 20.04, no issue in 22.04

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t vuln_only | grep -Ei 'CVE-2021-28041|CVE-

2020-9490'

'CVE-2021-28041': ['4.6', 'https://vulners.com/cve/CVE-2021-28041'],

'CVE-2020-9490': ['5.0', 'https://vulners.com/cve/CVE-2020-9490'],

^ OK!

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i apache

'product': 'Apache httpd 2.4.41 (Ubuntu)',

'http-server-header': {'raw_lines': ['Apache/2.4.41 (Ubuntu)']},

Intelligent System for Automation of Security Audits Appendix F

V

^ OK!

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i openssh

'product': 'OpenSSH 8.2p1 Ubuntu 4ubuntu0.3 (Ubuntu Linux; protocol 2.0)',

^ OK!

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i linux

{'0924aa8b-6dc9-4fec-9716-d1601fc8b6c6': {'portscanner': {'192.168.122.51': {'system_info':

{'hostname': 'target.local', 'mac_address': '52:54:00:59:A5:04', 'nic_vendor': 'QEMU virtual NIC',

'os_name': 'Linux 3.2 - 4.9', 'os_family': 'Linux', 'os_gen': '4.X', 'os_vendor': 'Linux', 'os_type':

'general purpose', 'scanned_ip': '192.168.122.51'},

^ Linux OK! Kernel info NOK...

ubuntu@target:~$ sudo apt update

ubuntu@target:~$ sudo apt-get dist-upgrade -y

ubuntu@target:~$ sudo do-release-upgrade

ubuntu@target:~$ uname -a

Linux target 5.15.0-40-generic #43-Ubuntu SMP Wed Jun 15 12:54:21 UTC 2022 x86_64 x86_64 x86_64

GNU/Linux

ubuntu@target:~$ sudo dpkg -l | grep -Eiw 'apache2|openssh'

ii apache2 2.4.52-1ubuntu4.4 amd64 Apache

HTTP Server

ii openssh-server 1:8.9p1-3ubuntu0.1 amd64 secure

shell (SSH) server, for secure access from remote machines

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t vuln_only | grep -Ei 'CVE-2021-28041|CVE-

2020-9490'

(No output.)

^ OK!

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i apache

'product': 'Apache httpd 2.4.52 (Ubuntu)',

'http-server-header': {'raw_lines': ['Apache/2.4.52 (Ubuntu)']},

^ OK!

ubuntu@siaas:~$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i openssh

'product': 'OpenSSH 8.9p1 Ubuntu 3 (Ubuntu Linux; protocol 2.0)'

^ OK!

ubuntu@siaas:/opt/siaas-cli$ siaas-cli vuln-report -h 192.168.122.51 -t all | grep -i linux

{'0924aa8b-6dc9-4fec-9716-d1601fc8b6c6': {'portscanner': {'192.168.122.51': {'system_info':

{'hostname': 'target.local', 'mac_address': '52:54:00:59:A5:04', 'nic_vendor': 'QEMU virtual NIC',

Intelligent System for Automation of Security Audits Appendix F

W

'os_name': 'Linux 3.2 - 4.9', 'os_family': 'Linux', 'os_gen': '4.X', 'os_vendor': 'Linux', 'os_type':

'general purpose', 'scanned_ip': '192.168.122.51'},

^ Linux OK! Kernel info NOK...

Security tests:

CLI (SIAAS (VM)) -> SERVER (JP-OLD)

-L: follow redirects

-X: method (GET)

--location-trusted: use the same authentication when redirected

--user: user/password auth

--insecure: don't check the CA validity

--cacert: local CA bundle to verify the endpoint against

-v: verbose (confirm redirection to https)

ubuntu@siaas:/opt/siaas-cli$ curl -LX GET https://192.168.1.69/api --user siaas:siaas

curl: (60) SSL certificate problem: self signed certificate

More details here: https://curl.haxx.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not

establish a secure connection to it. To learn more about this situation and

how to fix it, please visit the web page mentioned above.

ubuntu@siaas:/opt/siaas-cli$ curl -LX GET https://192.168.1.69/api --user siaas:siaas --insecure

{"output":{"name":"Intelligent System for Automation of Security Audits

(SIAAS)","module":"Server","api":"v1","author":"João Pedro Seara","supervisor":"Carlos

Serrão"},"status":"success","total_entries":5,"time":"2023-04-04T18:43:25Z"}

ubuntu@siaas:/opt/siaas-cli$ curl -LX GET https://192.168.1.69/api --user siaas:siaas --cacert

./ssl/jp-old.crt

curl: (60) SSL: no alternative certificate subject name matches target host name '192.168.1.69'

More details here: https://curl.haxx.se/docs/sslcerts.html

curl failed to verify the legitimacy of the server and therefore could not

establish a secure connection to it. To learn more about this situation and

how to fix it, please visit the web page mentioned above.

ubuntu@siaas:/opt/siaas-cli$ curl -LX GET https://jp-old/api --user baduser:badpassword --cacert

./ssl/jp-old.crt

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>401 Unauthorized</title>

</head><body>

<h1>Unauthorized</h1>

<p>This server could not verify that you

are authorized to access the document

requested. Either you supplied the wrong

credentials (e.g., bad password), or your

Intelligent System for Automation of Security Audits Appendix F

X

browser doesn't understand how to supply

the credentials required.</p>

<hr>

<address>Apache/2.4.41 (Ubuntu) Server at jp-old Port 443</address>

</body></html>

ubuntu@siaas:/opt/siaas-cli$ curl -L -X GET https://jp-old/api --user siaas:siaas --cacert ./ssl/jp-

old.crt

{"output":{"name":"Intelligent System for Automation of Security Audits

(SIAAS)","module":"Server","api":"v1","author":"João Pedro Seara","supervisor":"Carlos

Serrão"},"status":"success","total_entries":5,"time":"2023-04-04T18:45:37Z"}

ubuntu@siaas:/opt/siaas-cli$ curl -L -X GET http://jp-old/api --user siaas:siaas --location-trusted -

-cacert ./ssl/jp-old.crt -v

Note: Unnecessary use of -X or --request, GET is already inferred.

* Trying 192.168.1.69:80...

* TCP_NODELAY set

* Connected to jp-old (192.168.1.69) port 80 (#0)

* Server auth using Basic with user 'siaas'

> GET /api HTTP/1.1

> Host: jp-old

> Authorization: Basic c2lhYXM6c2lhYXM=

> User-Agent: curl/7.68.0

> Accept: */*

>

* Mark bundle as not supporting multiuse

< HTTP/1.1 301 Moved Permanently

< Date: Tue, 04 Apr 2023 18:45:45 GMT

< Server: Apache/2.4.41 (Ubuntu)

< Location: https://jp-old/api

< Content-Length: 298

< Content-Type: text/html; charset=iso-8859-1

<

* Ignoring the response-body

* Connection #0 to host jp-old left intact

* Issue another request to this URL: 'https://jp-old/api'

* Trying 192.168.1.69:443...

* TCP_NODELAY set

* Connected to jp-old (192.168.1.69) port 443 (#1)

* ALPN, offering h2

* ALPN, offering http/1.1

* successfully set certificate verify locations:

* CAfile: ./ssl/jp-old.crt

 CApath: /etc/ssl/certs

* TLSv1.3 (OUT), TLS handshake, Client hello (1):

* TLSv1.3 (IN), TLS handshake, Server hello (2):

* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):

* TLSv1.3 (IN), TLS handshake, Certificate (11):

* TLSv1.3 (IN), TLS handshake, CERT verify (15):

Intelligent System for Automation of Security Audits Appendix F

Y

* TLSv1.3 (IN), TLS handshake, Finished (20):

* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):

* TLSv1.3 (OUT), TLS handshake, Finished (20):

* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384

* ALPN, server accepted to use http/1.1

* Server certificate:

* subject: C=PT; ST=Lisbon; L=Lisbon; O=ISCTE; OU=METI; CN=jp-old

* start date: Oct 30 23:52:16 2022 GMT

* expire date: Oct 27 23:52:16 2032 GMT

* subjectAltName: host "jp-old" matched cert's "jp-old"

* issuer: C=PT; ST=Lisbon; L=Lisbon; O=ISCTE; OU=METI; CN=jp-old

* SSL certificate verify ok.

* Server auth using Basic with user 'siaas'

> GET /api HTTP/1.1

> Host: jp-old

> Authorization: Basic c2lhYXM6c2lhYXM=

> User-Agent: curl/7.68.0

> Accept: */*

>

* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):

* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):

* old SSL session ID is stale, removing

* Mark bundle as not supporting multiuse

< HTTP/1.1 200 OK

< Date: Tue, 04 Apr 2023 18:45:45 GMT

< Server: waitress

< Content-Length: 238

< Content-Type: application/json

<

{"output":{"name":"Intelligent System for Automation of Security Audits

(SIAAS)","module":"Server","api":"v1","author":"João Pedro Seara","supervisor":"Carlos

Serrão"},"status":"success","total_entries":5,"time":"2023-04-04T18:45:45Z"}

* Connection #1 to host jp-old left intact

Max BSON size limitation:

2023-03-14 04:33:04.090 ERROR siaas_aux.py [MainProcess|waitress-3] Can't insert data in the DB server:

BSON document too large (71625954 bytes) - the connected server supports BSON document sizes up to

16793598 bytes.

Ports 21, 22, 80, 111, 2049, 8080

- FTP

- NFS

- HTTP

- SSH

discovery,vuln,vulscan:

Intelligent System for Automation of Security Audits Appendix F

Z

~ 140.8 KB (~119 hosts)

ubuntu@siaas:/opt/siaas-agent/var$ du -b

140842 .

ubuntu@siaas:/opt/siaas-agent/var$ ls -lrta

total 160

-rw-r--r-- 1 root root 577 Mar 15 02:24 config_local.db

-rw-r--r-- 1 root root 36 Mar 15 02:24 uid

drwxr-xr-x 2 root root 4096 Mar 15 02:24 .

drwxrwxr-x 11 ubuntu ubuntu 4096 Mar 15 02:25 ..

-rw-r--r-- 1 root root 133767 Mar 15 02:36 portscanner.db

-rw-r--r-- 1 root root 577 Mar 15 02:42 config.db

-rw-r--r-- 1 root root 265 Mar 15 02:43 neighborhood.db

-rw-r--r-- 1 root root 1524 Mar 15 02:44 platform.db

discovery,vuln:

~ 75 KB

ubuntu@siaas:/opt/siaas-agent/var$ du -b

75039 . (~223 hosts)

ubuntu@siaas:/opt/siaas-agent/var$ ls -lrta

total 96

drwxrwxr-x 11 ubuntu ubuntu 4096 Mar 15 01:55 ..

-rw-r--r-- 1 root root 569 Mar 15 02:10 config_local.db

-rw-r--r-- 1 root root 36 Mar 15 02:10 uid

drwxr-xr-x 2 root root 4096 Mar 15 02:10 .

-rw-r--r-- 1 root root 67898 Mar 15 02:21 portscanner.db

-rw-r--r-- 1 root root 569 Mar 15 02:22 config.db

-rw-r--r-- 1 root root 265 Mar 15 02:23 neighborhood.db

-rw-r--r-- 1 root root 1606 Mar 15 02:23 platform.db

vuln:

~ 26.2 KB

ubuntu@siaas:/opt/siaas-agent/var$ du -b

26234 . (~640 hosts)

ubuntu@siaas:/opt/siaas-agent/var$ ls -lrta

total 48

drwxrwxr-x 11 ubuntu ubuntu 4096 Mar 15 01:55 ..

-rw-r--r-- 1 root root 559 Mar 15 02:02 config_local.db

-rw-r--r-- 1 root root 36 Mar 15 02:02 uid

drwxr-xr-x 2 root root 4096 Mar 15 02:02 .

-rw-r--r-- 1 root root 19198 Mar 15 02:07 portscanner.db

-rw-r--r-- 1 root root 265 Mar 15 02:08 neighborhood.db

-rw-r--r-- 1 root root 559 Mar 15 02:08 config.db

-rw-r--r-- 1 root root 1521 Mar 15 02:09 platform.db

Intelligent System for Automation of Security Audits Appendix F

AA

vulscan: 65803 (~65.8K) - 46.7%

discovery: 48805 (~48.8K) - 34.7%

vuln: 26234 (~26.2K) - 18.6%

Technical Note F1 - Raw notes from the local tests

Intelligent System for Automation of Security Audits Appendix F

BB

Intelligent System for Automation of Security Audits Appendix G

CC

Appendix G – Survey Responses from Testers

SIAAS SURVEY FOR TESTERS

Methodology:

A survey was replied via video call or text survey: https://forms.microsoft.com/e/t47we3fNCf

Participants:

Trilio Data: Video call (with Matt Golden, Customer Success Engineer), on April 21, 2023, at 17:00 UTC

Altice Portugal: Video call (with Ricardo Ramalho, Head of Cybersecurity Behaviour Analytics and Automation), on April 24,

2023, at 18:30 UTC

VTXRM – Software Factory: Video call (with Jorge Teixeira, IT Team Lead), on May 5, 2023, at 21:00 UTC

David Negreira: Video call, on May 12, 2023, at 18:30 UTC

Replies:

Technical aspects (10 sentences, rate 1-5):

1. It is easy to install and configure the components of this vulnerability scanner.

Trilio -> 4

Altice -> 5

VTXRM -> 5

David -> 5

2. The CLI usage and help menus are user-friendly.

Trilio -> 5

Altice -> 5

VTXRM -> 4

David -> 4

3. The agent correctly discovers neighborhood hosts.

Trilio -> 5

Altice -> 5

VTXRM -> 4

David -> 5

https://forms.microsoft.com/e/t47we3fNCf

Intelligent System for Automation of Security Audits Appendix G

DD

4. The vulnerability scan results are accurate.

Trilio -> 5

Altice -> 4

VTXRM -> 5

David -> 3

5. The vulnerability scans do not impact network or targeted hosts negatively.

Trilio -> 3

Altice -> 5

VTXRM -> 5

David -> 5

6. The e-mail reports are reliable.

Trilio -> 4

Altice -> 3

VTXRM -> 3

David -> 3

7. The existing documentation is useful.

Trilio -> 4

Altice -> 5

VTXRM -> 4

David -> 5

8. It is easy to customize the scanner for one's specific environment.

Trilio -> 4

Altice -> 5

VTXRM -> 3

David -> 5

9. It is easy to integrate the API with existing tools and workflows.

Trilio -> 3

Altice -> 5

VTXRM -> 3

David -> 3

10. You are satisfied with the performance and functionality of the vulnerability scanner.

Trilio -> 4

Altice -> 5

VTXRM -> 5

David -> 4

Organizational aspects (5 sentences, rate 1-5):

11. This vulnerability scanner is a valid approach to an organization which has no access to paid commercial solutions or

cybersecurity human expertise.

Trilio -> 5

Altice -> 5

VTXRM -> 5

David -> 4

Intelligent System for Automation of Security Audits Appendix G

EE

12. When compared with other paid tools like Nessus, considering human expertise and configuration time, this scanner saves

time/money/resources while keeping an acceptable performance.

Trilio -> 4

Altice -> 4

VTXRM -> 3

David -> 5

13. The vulnerability reports generated by the scanner help with the process of addressing, prioritizing, and remediating

vulnerabilities.

Trilio -> 4

Altice -> 4

VTXRM -> 5

David -> 5

14. This vulnerability scanner helps an organization complying with relevant security standards and regulations.

Trilio -> 4

Altice -> 4

VTXRM -> 4

David -> 5

15. This vulnerability scanner increases an organization's posture and ability to detect and mitigate vulnerabilities.

Trilio -> 5

Altice -> 5

VTXRM -> 5

David -> 5

Overall aspects (2 sentences, rate 1-5):

16. This vulnerability scanner helps improving the security auditing process of an organization.

Trilio -> 4

Altice -> 5

VTXRM -> 5

David -> 5

17. You would recommend this vulnerability scanner to other organizations.

Trilio -> 4

Altice -> 4

VTXRM -> 5

David -> 4

Open-ended questions (3 questions, text response):

18. What were the main technical or organizational-related shortcomings found (technical issues, false positives, or others)?

Trilio -> Technical problems regarding the DB file limits (16MB BSON limit in MongoDB), which disappeared after disabling

one of the scripts. This was the only technical problem observed.

Altice -> (Empty.)

VTXRM -> As it relies on ARP to discover hosts, the scanner might be sensitive to ARP spoofing from a malicious actor

in the network. An easier installation process for the test scenario would be nice, as it requires some Linux expertise as it

is (suggestion: containerization).

Intelligent System for Automation of Security Audits Appendix G

FF

David -> The scanner does not detect vulnerabilities already fixed by server patching. Some confusion in understanding

what the agent IDs meant (clarified with the author).

19. What features would you like to see added or improved in future versions of the scanner?

Trilio -> GUI interface, with possibility of configuring the agents, and a way one can go through a list of targets and select

them from a drop-down list to filter the scanning outputs. Also, this GUI should have the ability to mark false positives in

order to remove them from the reports.

Altice -> Docker release, especially for the server component. This would also be quite useful for testing.

VTXRM -> Graphical interface. More details in the CVE descriptions (current information is too technical). These details

could be presented in the graphical interface itself.

David -> Detecting backported vulnerabilities by patching. Identifying the distribution of the neighborhood hosts (example:

Ubuntu) and other aspects related to it, per example, if an OS version was already discontinued.

20. Any other comments?

Trilio -> Popular tools have most of their features hidden behind their paid version, which makes this an interesting project

overall. Regarding statement 5: no negative impact was observed, score of 3 just because the tests didn't drill down on

this specific point; statement 9: score of 3 because it was not tested.

Altice -> It is a very interesting and useful project. Has the potential to become a product. Regarding statement 6: score

of 3 because it was not tested; statement 13: prioritizing is a different matter from addressing or remediating, and even

the most expensive and complex solutions have difficulties in helping with this; statement 16: the tool helps but does not

necessarily guarantee by itself that, for an audit, all requirements are passed; statement 17: the alternatives were not

thoroughly explored.

VTXRM -> Interesting project. Increased interest in cybersecurity and what CVEs are. Will use it for own projects.

Regarding statements 6, 8, 9, and 12: score of 3 because those statements could not be tested or assessed.

David -> It is a good product. Possibility of being widely adopted. It is easy to install, configure, and set up. Regarding

statement 4: score of 3 because it does not detect vulnerabilities solved by patching; statement 6: score of 3 because it

was not tested; statement 9: JSON output looks easy to parse and integrate, but score of 3 because this was not tested.

Technical Note G1 - Survey results from the testers of the artifact

Last page intentionally left blank

