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Resumo

A pandemia de COVID-19 de 2020 espalhou-se rapidamente, sobrecarregando os sistemas

de saúde e causando milhões de mortes em todo o mundo. Investigadores e cientistas

concentraram esforços em encontrar soluções para ajudar a detetar e conter a propagação

da doença, incluindo ferramentas alimentadas por modelos de aprendizagem automática.

Entre os estudos efetuados, vários exploram diferenças entre sinais biométricos de pessoas

que contráıram COVID-19, recolhidos antes e depois da infeção, em busca de padrões

que possam ajudar a detetar a doença o mais rápido posśıvel. Em particular, em sinais

relacionados com a frequência card́ıaca recolhidos através de dispositivos como smart-

watches. Esses estudos resultaram em algumas ferramentas de deteção, mas precisam que

os utilizadores tenham dados anteriores a contráırem a doença para serem usados, con-

tendo elementos de personalização com base nos dados saudáveis para funcionarem. Mas

e se um novo utilizador não possuir dados saudáveis? Poderá um modelo treinado com

dados de uns indiv́ıduos detetar a doença noutros, com sucesso? Este trabalho explora

essa situação transportando uma ferramenta de deteção de anomalia personalizada para

um ambiente de Aprendizagem Federada, a fim de ver seu comportamento em dados de

indiv́ıduos que participaram no treino do modelo e de novos indiv́ıduos, incluindo dados

recolhidos por dispositivos hospitalares de indiv́ıduos internados numa unidade de cuida-

dos intensivos, que dificilmente contém dados saudáveis. Embora os modelos resultantes,

em média, não detetem mais anomalias verdadeiras do que os modelos personalizados,

seu desempenho é semelhante quando aplicado a dados de indiv́ıduos de treino e novos

indiv́ıduos.

Palavras-Chave: Deteção de Anomalias, Aprendizagem Federada, Modelo na

Saúde, Aprendizagem automática
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Abstract

The COVID-19 pandemic of 2020 spread around the world fast, overwhelming healthcare

systems and causing millions of deaths all over the globe. Researchers and scientists rushed

to find tools to help detect and contain the spread of the disease, including automatic

ones powered by machine learning models. Amongst the efforts, several studies focused on

exploring differences between biometric signals in people with the disease collected before

and after the infection, in search of patterns that can help detect it as soon as possible.

In particular, heart rate related signals collected via devices such as smartwatches. These

studies have resulted in some detection tools, but they always require users to have data

from before the infection occurred in order to be used and often contain personalization

based on this healthy data. But what if a new user has not yet collected healthy data? Can

a model trained with the data of other individuals successfully detect the illness on a novel

one? This work explores that situation by taking an individual based anomaly detection

and transporting into a Federated Learning environment in order to see its behavior on

the data from individuals that trained the model and novel individuals, including data

collected via hospital devices from individuals admitted to the intensive care unit which

is unlikely to contain healthy data. Although the resulting models, on average, did not

detect more true anomalies than the personalized ones, their performance is similar when

applied to the training individuals and novel ones.

Keywords: Anomaly Detection, Federated Learning, Health Model, Machine Learn-

ing
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CHAPTER 1

Introduction

First detected in December of 2019, the coronavirus disease 2019 (COVID-19) quickly

spread around the globe, gaining the status of a pandemic in 11 March of 2020 from

the World Health Organization (WHO). Its vast success is, in part, due to its ability to

be infectious before the carriers feel sick, with several never developing symptoms. But

studies have found changes in physiological metrics track-able by commercial wearable

devices can occur before symptom onsets, which could be used to warn users of a potential

infection [2, 3].

This chapter is divided into background and motivation, research goals and contribu-

tions and the methodology followed during the development of this work.

1.1. Background and Motivation

Reverse transcription-polymerase chain reaction (RT-PCR) tests are used to detect a

COVID-19 case but only work 3 days after the infection, require material and a labora-

tory which entails costs, rarely detect pre-symptomatic carriers and struggle to detect the

disease at an early stage [4]. Meanwhile, the interest in wearable sensors, such as smart-

watches, increased during the pandemic and several are capable of not only collecting data

but also analyze it and provide feedback [5]. Several authors and studies suggest these

devices and the data they collect can be used to identify potentially infected individuals

before they develop symptoms, allowing the detection of asymptomatic carriers without

testing an entire population [2, 6]. Having an Artificial Intelligence (AI) able to analyze

an individual’s health data captured by these devices and alert them something might be

wrong before they feel ill enables the individual to take preventive measures to protect

those around them, such as to enter in isolation or to wear a mask in the case of COVID-19

and other illnesses with similar spread, and to seek guidance from an health professional.

But training a good Machine Learning (ML) algorithm requires lots of data which can be

difficult to gather both due to the recent nature of the virus and disease and data privacy

laws. Federated Learning (FL) is an ML approach where a central global model can be

trained using data from several models at different locations without needing to transfer

the said data outside of its original location [7]. As such, it respects privacy issues while

building on distributed computation to capitalize on several and varied data.

This work is integrated in the Information Sciences Technologies and Architecture

Research Center (ISTAR) project AI-based mobile applications for public health response
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(AIM-HEALTH) funded by the Foundation for Science and Technology (FCT) [8]1. AIM-

HEALTH aims to create a smartphone app embodying a trustworthy secure AI distributed

and service-based platform. This AI system employs a FL architecture, a technique that

enables ML algorithms deployed across multiple decentralized edge devices or servers

holding local data samples to collaboratively train a global model. The user’s data is

collected and stored using their mobile devices and locally processed by the global model,

then locally used to train the new model iteration. Upon authorization, the new/updated

model is downloaded into the edge devices, in an exchange between the decentralized

devices and a server. In particular, this work explores the proposals for the detection

of anomalies in a time series signal - resting heart rate (RHR) - collected by wearable

devices, where differences between data collected during healthy periods and periods of

sickness, namely COVID-19 infection, have been found [6, 9, 10].

1.2. Research Goals and Contributions

Goals The main goal of this project is to implement a FL framework to create a Neural

Network (NN) model able to identify health anomalies using biometric sensing devices

(such as smartwatches, smart wristbands, or medical sensing devices), to enable early

abnormal symptomatology alert indicative of a possible COVID-19 infection and compare

its results to those obtained by locally or pooled dedicated trained models.

On the other hand, and given that the AIM Health project partners with Hospital de

Santa Maria and Professor Lúıs Rosário, a medical doctor from this hospital and Professor

in the University of Lisbon, we portrayed the possibility of exploring the development of

an automated system to be used for the detection of a possible COVID-19 infection on

a patient under hospital care, especially those patients who are in a intensive care unit

(ICU) unit, which are generally open spaces and thus more people are exposed to the

virus spread. Given that, any patient that is admitted to an hospital needing treatment

for an urgent or emergent disease condition (be it multiple fractures, coronary disease, or

other) has no baseline whatsoever to train an individual model, one other goal consists

on understanding if pre-trained models from different individual sensors data can be

applied to novel individual’s data, without any fine-tunning (since no data for training is

available), in particular in the case of patient’s data collected via hospital devices during

normal hospital activities in an ICU.

Towards this goals, this study begins with an exploratory effort for the implementation

of an anomaly detection pipeline that receives biometric data that can be collected by

wearable or mobile devices, and determines if the person the data belongs to might be

infected with COVID-19, with a ML model that is trained via FL, that is, without sharing

the biometric data with any external devices and aggregating the individual parameters

training into a central model. This approach results are compared with the results from

the individual models, after which we investigate on the feasibility of applying this central

model to hospital patient biometric data acquired by medical sensing devices.

1https://istar.iscte-iul.pt/portfolio-posts/ai-based-mobile-applications-for-public-health-response/
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Research questions Given the previously stated general goals, this thesis aims to answer

the following research questions:

RQ1: Our first question regards the investigation of the related literature and is a

compound one: What is the state-of-the art regarding ML models to detect

COVID-19 infections using wearable or mobile devices? What FL applications

exist, namely within the context for health anomaly detection of COVID-19 in-

fection? If any, do they make use of data acquired by wearable or mobile devices

or sensing data collected with medical devices?

RQ2: Is FL a feasible approach for personal health anomalies detection?

RQ3: Are pre-trained models accurate for anomaly detection in patients other than the

users they were trained upon?

RQ4: Are FL aggregated models feasible for the detection of anomalies in a new user?

Contributions The main contributions of this work are two-fold: on the one hand, the

exploration of shifting an anomaly detection pipeline, originally developed to be trained

by a single individual’s data for risk alert of that same individual, into the FL paradigm

to understand its validity within this setting. On the other hand, we find that detection

anomaly models should be further investigated towards their application in new domain

data, that is, new data from new users and acquired in a completely different environment.

Our experimentation with the data coming from an ICU of a Portuguese hospital, that

is, data collected during a hospital’s daily activities from its patients, allows to perceive

the potential of pre-trained models using individual data have towards the construction

of a global model to be used in a hospital to help with automated patient screening and

early alert system.

Finally, we note that some of the exploratory results next described have been sub-

mitted to a relevant conference in the area with peer-revision scheme.

1.3. Methodology

As previously described, this project has as main goal that of exploring how an anomaly

detection pipeline created to be trained with the data of a single person and detect possible

COVID-19 infections on its user behaves when transported into a FL approach and, on a

second note, see how it performs with data collected in an hospital during normal daily

activity.

With this in mind, this work follows the CRISP-DM2 methodology, which consists of

phases of understanding what is wanted (business understanding), what data is necessary

or available (data understanding), how the data must be changed for modeling (data

preparation), and the training and evaluation of models. The first cycle through these

phases is straightforward: this work aims to implement an anomaly detection pipeline

to detect possible COVID-19 infections using data that can be collected by wearable

devices, such as smartwatches, while resorting to FL. As such, it is necessary to obtain

2https://www.datascience-pm.com/crisp-dm-2/
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data that can be collected by those devices related which has been collected during periods

of COVID-19 illness and health. There are publicly available datasets and models focused

on this premise that do not implement FL, so these are used for a first round of modeling

with the FL to see its affects. These results are to be complemented by data collected in

a hospital, but exploring it proves it lacks characteristics necessary to apply the chosen

pipeline. As it is imperative the final pipeline be applicable to the hospital data, several

experiments that fall on going back and forth the different phases of the CRISP-DM are

conducted.

In general, chapters 1 and 2 refer to the business understanding phase, while chapter

3 focuses on the data understanding and data preparation. The modeling and evaluation

phases are present in chapter 4 and chapter 5 contains a brief explanation of the files that

make up the developed final prototype.

This work uses only the language Python3 and Jupyter Notebooks4. All data explo-

ration pertaining to the data provided by the Hospital de Santa Maria is done in a server

provided by the AIM-Health project with the Pandas5 and Dask6 libraries. All other code

is run in a personal laptop. To develop the models and FL experiments, the Tensorflow7

library and Flower.Dev (FLWR)8 framework are used. The visualization graphics are

built with the Matplotlib9 and Seaborn10 libraries.

3https://www.python.org/
4https://jupyter.org/
5https://pandas.pydata.org/
6https://docs.dask.org/en/stable/dataframe.html
7https://www.tensorflow.org/
8https://flower.dev/
9https://matplotlib.org/
10https://seaborn.pydata.org/
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CHAPTER 2

Literature Review

The literature review follows a simplified version of the Preferred Reporting Items for

Systematic Reviews and Meta-Analyses (PRISMA) [11] methodology.

Three different queries were conducted on the Web Of Science repository to find lit-

erature to answer the research questions.

The first focuses on how FL has been applied to COVID-19, with the query 2.1, and

returned 98 results. Attempts to narrow the search by adding the keywords “wearable

device” or “biometric data” returned 2 and 0 results, respectively, so the full 98 were

examined. None of the found records are about the detection of COVID-19 using data

from wearable devices.

(ALL=(covid-19) AND ALL=(federated learning)) (2.1)

The second query 2.2 obtained 69 records, several of which are about the use of data

from wearable devices to train ML models during the pandemic or wearable devices not

available to the public. The third query 2.3 retrieved 16 records.

(ALL=(covid-19) AND ALL=(wearable device) AND ALL=(machine learning)) (2.2)

(ALL=(smartwatch) AND ALL=(covid-19 detection)) (2.3)

The inclusion criteria for the records are:

• Focus on data that can be easily collected by wearable devices available to the

public

• Compares models trained with FL to models trained locally

Exclusion criteria are:

• Not about COVID-19 detection

• About COVID-19 at the population level instead of the individual level

• Focus on the creation of COVID-19 detection ML models without data from

wearable devices available to the public

Known biases of this literature research are:

• Using only the Web of Knowledge repository

• Only including records in English

• Only including records with free full text available
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No data filtering is applied because the inclusion of the keyword “covid-19” in all

queries guaranteed all records are from 2019 and afterwards. Figure 1 contains a summary

of the selection process of the records selected for this review conducted up to January of

2023.

Figure 1. Literature review flow diagram, adapted from PRISMA

A follow up search of each query in September of 2023 with index date of ”year to

date” found 61, 26 and 6 new papers, respectively, of which only 2 from the third query

are included.

Articles about the aggregation functions made available by the FL framework used

in the course of this work and their respective articles are explored at the end of this

chapter.

No works about applying FL to data collected via wearable devices in order to detect if

the user has COVID-19 were found during the literature review. Most focus on classifying

images as belonging to patients with COVID-19 or not, with the few that utilize data from

wearable devices focusing on predicting patients’ outcomes and necessities with the help

of supplemental data. Outside of the FL scope, most works that utilize data collectable

by wearable devices focus on heart rate (HR), activity and sleep data plus symptoms.

When several types of ML algorithms are explored, NN do not present the best results.

Statistical works focus on finding differences between an individual’s healthy and sick

data, while automatic anomaly detection works train ML models with an individual’s

data to detect anomalies in that individual’s data.

A short explanation of anomaly detection was added to this work after the final presen-

tation, at the jury’s request. This is based on a search containing the keywords “anomaly

detection”, “time series” and “survey”. The search, conducted on November 24 of 2023,
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returned 132 results of which 5 are used, and is supplemented by 2 articles provided by

the advisors.

2.1. Background Concepts

This section explains what is meant by wearable devices for this project and how they

might be used to detect illnesses, then does a short presentation of the concept of FL

followed by a subsection about anomaly detection.

2.1.1. Wearable Devices

Wearable devices, as their name implies, are devices people can wear and are able to track

a variety of body physiology. This project focuses on wrist and handheld devices such

as smart watches, wrist bands and rings which are usually used for fitness tracking and

allow for contactless communication and send notifications to the user. Although how

and what data a device captures varies between brands and models, they often allow to

keep track of workout time, burnt calories, sleep time, step count and heart rate [12].

Viral infections can increase a person’s heart rate and sleep duration and decrease its

quality, and blood oxygen saturation is significantly lower in severe COVID-19 patients,

along with an increased respiratory rate (RR), so wearable devices that track these met-

rics, when coupled with AI techniques, can help detect potential infected users and warn

them to take a test and isolate [3, 13].

It should be noted the incorrect placement of the device, movement during measure-

ments and even the skin type of the wearer can influence the collected data [14] and most

wearable devices don’t have a temperature sensor and their oxygen saturation (SpO2)

sensor, when they exist, tend to have low accuracy [3, 15].

2.1.2. Federated Learning

FL is a term coined by Google that represents the decentralized training of a ML model

while sharing minimum amounts of information and requires two types of users: Clients

and Server.

The clients are the users who contain data that can be used to train the model. Each

of them has a copy of the global model and furthers its training with its local data, which

is never shared with any of the other users. Once the training of the local model is

complete, its parameters are sent over to the Server who aggregates the local model of all

the clients into a new global model.

Besides aggregating the models, the server is also responsible for starting a new round

of training, deciding how many clients should participate and sharing the global model

with the clients. However, due care must be taken since the performance of a FL trained

model and the time necessary to train it can be influenced by the aggregation algo-

rithm [16].

The main benefit of FL is improved data privacy which opens the possibility to have

multiple entities working collaboratively to train a model with a larger amount of data

that could not be joined otherwise [7, 17]. But it’s distributed nature and reliance on

7



internet connection makes it more vulnerable to security risk such as model inversion

attacks (where the model parameters are used to recreate an individual sample), man-in-

the-middle attacks (where model updates get intercepted and replaced), and adversarial

attacks (where fake data is introduced in the training data). These issues can be cir-

cumvented by adding Gaussian noise to the model parameters, applying encryption or

block-chain technologies and using an adversarial model [18].

FL can be classified into three types depending on the similarity of the data between

the different clients: horizontal, vertical and transfer learning. In horizontal FL the data

has the same features across all clients, in vertical FL different clients have different

information (features) regarding the same samples and, in transfer learning, neither the

samples nor features are the same.

Since each client trains a local model based on only its own data, the local models

might be trained with non-independent and identically distributed (non-IID) data which

can lead to diverging training [19]. The studies found suggest FL trained models present

better results than models trained with just local data [17, 20, 21], but that gathering

all the data and training one single model can yield a better performance [17, 21].

2.1.3. Anomaly Detection

Anomaly detection is the process of identifying anomalous data, that is data that

appears odd in relation to the remaining data [22, 23]. This process is used in several

domains but the algorithms that work best vary greatly. An anomaly might represent an

important event such as heart failure or incidents of financial fraud [24, 23, 25]. This

work focus on anomaly detection in time series, which are sequences of data ordered by

time [24]. Time series can be univariate or multivariate depending if they contain only

one or more variables ordered by time, respectively [24, 25].

In the context of time series, anomalies can be classified as point, subsequence or

sequence anomalies depending on their granularity. Point anomalies are data points that

deviate from other points in the time series, and can be further divided into global or local

anomalies depending on being odd within the entire time series or just for neighbouring

points. These are very short in duration, with the data quickly reverting back to normal

values [25]. Subsequence anomalies are a sequence of data points that are not odd when

isolated but together form a strange pattern. Sequence anomalies occur in multivariate

time series when one of the variables shows a strange behaviour when considered with the

other variables [26].

Anomalies can also be classified in terms of their behaviour as point, contextual and

collective. In this case, point, or global, anomalies are data points that appear strange

when considering the full time series while contextual, or local, anomalies are points that

are strange given its neighbouring values. Collective anomalies are when a sequence of

points forms an odd pattern [24, 22, 26, 25].

Anomaly detection algorithms can be statistical in nature or take advantage of machine

learning or data mining techniques [24, 22] and can output either an anomaly score, that
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indicates how odd the sample is, or a label. How an anomaly score is calculated varies

depending on the algorithm. Labels can be binary (normal and anomaly) or multi-class

in nature. Often the algorithms calculate a score then label data as normal or anomalous

based on a threshold [25, 27] Regarding how the learning occurs, anomaly detectors can

be classified as supervised, semi-supervised or unsupervised.

Supervised learning is used when the training dataset contains both normal and

anomalous labelled data. This method is the least popular due to high costs of obtaining

the labelled data and issues with the detection of new types of anomalies. Often, super-

vised learning tends to struggle with multivariate data [24, 26, 23]. NN, support vector

machine (SVM) and decision trees are some examples of techniques that use supervised

learning [26].

Semi-supervised learning requires the availability of normal data to train the anomaly

detection mechanism [24]. With this type of learning, the algorithms learn from nor-

mal data and will behave strangely or poorly when in the presence of anomalous data.

Some methods that apply semi-supervised learning are autoencoders, gaussian models

and GANs [22, 28].

Unsupervised learning assumes anomalous data is less frequent than normal data and

presents different behaviours and patterns. Methods that apply unsupervised learning do

not require the labelling of any data and often focus on splitting the data [24, 23]. This

is the most common type of learning and common techniques employed are K-nearest

neighbours, clustering algorithms, and statistical methods [22, 26, 23].

Anomaly detection algorithms can also be divided by families of methods such as

forecasting, reconstruction, encoding, distance, distribution and isolation tree methods

[24]. Forecasting methods use a model that is continually updated to predict, or forecast,

a number of time steps based on the current context window. The predicted values are

then compared to the real values to see if they are anomalous. The methods in this family

can differ greatly on the model, type of learning and anomaly score calculation employed,

but they tend to use semi-learning. These can also be called predictive methods.

Reconstruction methods are methods that build a model from normal data that en-

codes subsequences of the data in a low dimensional latent space. To detect anomalous

data, the latent space is reconstructed and the resulting subsequence is compared to the

original values with the assumption the reconstruction of anomalous data will be worse

than the reconstruction of normal data. These tend to be semi-supervised methods and

autoencoders are part of this family. GANs can also be used in this context [28].

Encoding methods also encode time series subsequences into a low latent space but

the detection is obtained from this representation and not from a reconstruction of the

signal.

Distance methods tend to be unsupervised and use distance metrics to compare points

or subsequences of time series with each other, with the assumption that anomalous data

will show a larger distance than normal data. Clustering and nearest neighbour methods
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are examples of methods in this family. With clustering algorithms, data that is far from

dense clusters is considered anomalous.

Distribution methods fit a distribution model to the data or estimate its distribution

and anomalies are detected based on probabilities as they are often found in the extremes

of the distributions. These methods are usually unsupervised but some semi-supervised

approaches exist by fitting the distribution to known normal data and then seeing how

other data compares to it. Several of these algorithms use gaussian distributions and

histograms.

Isolation tree methods build random trees that isolate the data, be it points or subse-

quences, with the assumption anomalous data is easier to separate then normal and will

be closer to the root of the tree.

No family of algorithms is superior to the other, with each displaying methods that

perform better in some cases than in others [24, 25, 27]. Using more than one approach

can help to achieve better results [26, 25].

This work will focus on univariate time series, with a reconstruction based anomaly

detection that returns a label (normal or anomaly).

2.2. Related Works

This section is divided into works that use data gathered from wearable devices to detect

COVID-19 infection and works that apply FL to COVID-19 related data.

2.2.1. Identifying COVID-19 infection with wearable device data

Fifteen different studies that mention detecting a COVID-19 infection through wearable

device data were identified.

The authors in [29] propose a crowd-sensing framework where people infected with

COVID-19 are detected and tracked in real-time using wearable devices data and security

cameras. They train four ML algorithms (Logistic Regression (LR), SVM, decision tree

(DT) and Bernoulli naive bayes (BNB)) on a dataset with an even number of COVID-

19 positive and negative records that consists on SpO2, pulse rate in beats per minute

(bpm), temperature and the COVID-19 status obtaining the lowest false negative rate

with the SVM. D. Barbhuiya et al. [30] propose a remote health monitoring system where

patient’s data is collected and analyzed on the edge device to detect anomalies which might

indicate a healthcare emergency, suggesting Robust Covariance, One-Class SVM (OC-

SVM), Isolation Forest and Local Outlier Factor (LOF) models to find anomalies/outliers

in collected data. They also test SVM, linear discriminant analysis (LDA), gaussian

mixture model (GMM) and NN to detect COVID-19 on data consisting of diastolic blood

pressure, galvanic skin response, pulse, SpO2 and body temperature, some of which can

be monitored by some commercially available wearable devices, but achieve poor results

with SVM and LDA failing to detect any COVID-19 positive cases and GMM and NN

achieving a precision score of 4,33%. They consider the LOF model’s ability to detect

anomalies acceptable.
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G. Quer et al. did a research study where they collect demographic data, symptoms

and data from smartwatches, specifically daily RHR (calculated by the device), daily sleep

duration in minutes (from noon to noon of the next day) and daily steps taken [31]. The

baseline data is extracted from 21 days to 7 days before reported symptom onset and

the test data from the day of symptom onset to 7 days afterwards. For each datatype,

a metric based on removing the median of the baseline data from either the max value

of the test data RHR or the mean (sleep and steps) is calculated. Another metric is

calculated based on demographic and symptom data, and the 3 sensor-based metrics are

merged into a single one which is further added to the symptom metric to achieve an

overall metric. They conclude the RHR metric doesn’t differentiate significantly between

COVID-19 positive and COVID-19 negative patients, with it being better to use either

the Sleep metric or the Activity metric. Using all 3 sensor metrics is preferable to using

only one or the symptom metric. The best results are achieved using the overall metric.

T. Mishra et al. [9] recruit for a study people with confirmed or suspected COVID-19

infection or with a high risk of exposure to the disease and ask them to wear a fitness

tracker as much as possible and fill a daily survey to track symptoms and their severity,

tests and diagnoses of both COVID-19 and other illnesses and recovery dates. Partici-

pants are also asked to provide demographic information, medical history, and current

COVID-19 status during enrollment. Of the participants, they select the data collected

by Fitbit from 32 COVID-19 positive individuals with either a positive test or symp-

tom onset data, 15 patients with another illness and 73 healthy individuals, plus 7 other

individuals from another study, to focus on. They develop three methods to detect anom-

alies in physiological data: resting heart rate difference (RHR-Diff), heart rate over steps

anomaly detection (HROS-AD) and resting heart rate anomaly detector (RHR-AD). The

first focuses on detecting time intervals of elevated RHR when compared with the average

daily curve using a 28 days sliding window, considering an anomaly is occurring whenever

the elevated intervals last for over 24h. The second is an unsupervised method where a

gaussian density estimation classifies the heart rate over steps (HROS) data as normal

or an anomaly. The third is the same as the second but uses the RHR instead. They

applied these methods to the 32 COVID-19 positive individuals, detecting 26 anomalies

within a window of 14 days before and 7 days after COVID-19 symptom onset or diag-

noses, with a median of 4 days before and 7 days before respectively. It should be noted

that the 15 individuals with other illnesses also showed increases of RHR near symptom

onset, meaning this is a general signal of respiratory illness. They also create a real-time

online detection of early COVID-19 method named CuSum that accumulates deviations

of elevated RHR using the data from the previous 28 days as a baseline. To reduce the

number of alarms, the RHR must stay elevated for over 24h. When applying this method

to the selected 120 individuals, 63% of the COVID-19 positive cases received alarms, as

did 9 out of the 15 individuals with other illnesses. Some alarms of shorter duration are

also triggered for the 73 healthy individuals, likely resulting of other events associated
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with higher heart rate such as holidays. They notice a reduction on the number of steps

taken and increase of sleep duration around the time detected by RHR-Diff.

A. Alavi et al. [6] follow up the work of T. Mishra et al. [9], by developing an online

real-time alert system with 3 different detection algorithms: the proviously presented

RHR-AD and CuSum, and NightSignal. Only the latter’s results were made available

to the participants of the study, via daily red and green alerts, and participants were

expected to complete survey per alarm about diagnosis, symptoms, and activity. This

study considered data from both Fitbit and Apple Watch devices, although only the

former’s data can be used with the RHR-AD and CuSum methods. NightSignal employs

a state machine and only takes into consideration overnight RHR (midnight to 7 in the

morning) to avoid events that increase the RHR such as stress or exercise. It sends a

red alert whenever the overnight RHR is at least 4 bpm above the baseline, calculated

by finding the media of all overnight RHR up to the current night. They consider true

positives the number of cases who received a red alert between 21 days before and the

symptom onset or diagnoses date, false negatives those who didn’t receive red alerts

during the same period, true negatives as the number of green alerts received between

21 days before and up to a negative COVID-19 test or the entire study period in the

case of untested participants, and false positives the number of red alerts sent in these

same conditions. NightSignal detected 80% of the Covid-19 infections, CuSum 72% and

RHR-AD 69%, all with similar rates of false positives. The red alerts received by healthy

individuals tended to last longer than the true positive ones.

H. Cho et al. [32] use part of the data made available by T. Mishra et al. (29 out

of the 32 COVID-19 infected individuals) to train OC-SVM models, focusing on the

early detection of COVID-19, decreasing the minimum period sampling to be able to

detect an anomaly and the suppression of false positives. All experiments are done with

OC-SVM and Mahalanobis Distance-Minimized Covariance Determinant (MD), which is

what the authors in [9] used according to H. Cho et al., with both RHR and HROS.

In terms of detecting COVID-19, the OC-SVM approaches detected more and earlier

positive cases than their MD counterparts while detecting fewer outliers. To decrease

the period necessary to collect data before the model can begin to detect anomalies, H.

Cho et al decrease the moving average window size from the original 400 hours, used by

T. Mishra et al., to 350 and 300 for both methods and both sets of data for a total of

12 experiments. Decreasing the window from 400 to 350 improved the time between the

anomaly detection and the symptom onset in 4 of the 3 models (HROS-OC-SVM only

saw an increase with 300 hours, which didn’t improve the other models). Decreasing

the window also improved accuracy and decreased the minimum training period in days

(the HROS always requires less time because it has more data per day). To test which

approaches detect fewer false positives, they applied the 12 different models to the data

of healthy individuals collected by T. Mishra et al.. The model who detected the fewer

number of outliers was RHR-OC-SVM with a window size of 350.
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Both G. Bogu and M. Snyder [1] and F. Abir et al, 2022 [33] create Long Short-Term

Memory (LSTM) based autoencoders with part of the individuals’ data from the study

done by T. Mishra et al. (individuals who had less than 20 days of information before

symptom onset were removed). Because the publicly available dataset contains the raw

heart rate and steps data and not the RHR, they calculate it by averaging the HR in 1

minute, merging it with the steps data and then removing all samples where the number

of steps is not 0 for 12 consecutive minutes. They apply a moving average of 400 minutes

and aggregate the data into 1 hour samples with the mean. They select the data up to

20 days before the symptom onset of each individual, use data augmentation techniques,

and split these data points 95%/5% to obtain a train and a validation sets. All the

remaining data is used for test sets. Each individual’s data is used to train a different

model. Both use the loss of the reconstructed train and validation (baseline) samples to

define thresholds to detect if a test sample’s loss indicates an anomaly. G. Bogu and M.

Snyder use the max mean squared error (MSE) found in the baseline, while F. Abir et

al, 2022 add Kullback-Leibler Divergence to the MSE and define two different thresholds:

Statistical Threshold Estimation (STE) where the threshold is three standards deviations

above the mean of the baseline loss, and MinMax Threshold Estimation (MTE), which is

the approach used in the other study. The model in the first of these 2 studies detected

14 cases before symptom onset, 9 after and failed to detect 2 cases amongst the COVID-

19 positive cases. Within the other illness cases, it detected anomalies in 7 individuals

before symptom onset, 2 after and didn’t detect any for the remaining 2. Anomalies were

detected in 44 healthy individuals pre onset and in 15 post onset. The second study’s

MTE detected 44% of the cases before symptom onset, 44% after and failed to detect

12% while the STE detected 80% before and 20% after, with both approaches achieving

a better performance than the other model.

F. Abir et al., 2023 [34] follow up their work by replacing the model of their anomaly

detection framework with a Convolutional Neural Network-based Variational Autoencoder

(CNN-VAE) model with LSTM embeddings and pre-training both the CNN-VAE and

LSTM components with data from 67 healthy individuals found in the datasets made

available by T. Mishra et al. and A. Alavi et al., before finetuning it to each of the

COVID-19 infected individual’s baseline data. They also increase the rolling window to

smooth the data from 400 to 1600 samples and apply linear interpolation after the hour

resampling, followed by another rolling average, of 10 samples, to remove spikes caused

by interpolation. Applying this to the data of 68 individuals with COVID-19 found in the

public datasets achieved a precision of 0.70 and recall of 0.53 when testing on samples from

20 to 10 days prior to symptom onset (considered healthy) and from symptom onset to

14 days after (anomalous samples). They experiment with other test ranges and conclude

the current division of samples based on the symptom onset day found in the literature

might not be ideal.
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The authors in [35] also focus on the dataset from [9], selecting data from two windows

of time, before and after illness (or, in the case of healthy individuals, from an earlier and

later time), from which they extract 50 features used to train SVM, LR, DT, random

forest (RF) and extreme gradient boosting (XGBoost) models to classify individuals as

COVID-19 positive or negative or as COVID-19 positive, infected with another illness or

healthy. Their most accurate model is the k-nearest neighbor (K-NN), independently of

the window size and type of classification (binary or multi-class) but the best accuracy is

achieved by binary classification with a window size of 5 days.

M. M. H. Shandhi et al. [10] augment the data they collect with part of the dataset

from [9], analyzing the data of people with a COVID-19 test, assuming the data from 60

to 22 days before as a baseline period and from 21 days before to the diagnostic date as

the detection period. Like other studies, they notice an increase of the daily RHR during

the detection period and a decrease of the steps taken. They train LR, K-NN, SVM, RF

and XGBoost with features extracted from both RHR and steps taken data, choosing the

recall metric as the preferable to measure the models’ performances as their consider an

unidentified COVID-19 case (false negative) to be more serious since it can spread the

disease. The LR model is the best performing model and training with either just the

RHR or the steps data decreases its performance.

M. Gadaleta et al. [36] collect self-reported COVID-19 symptoms, COVID-19 test

results and data from any wearable device that can be connected to either Google Fit or

Apple Health kit platform and analyze the accuracy of gradient boosting DT models. Only

data from participants with a COVID-19 test is included, with symptom reports being

considered when occurring between 15 days before and the day of the test. To counter

hardware and software differences, the data collected from the devices is treated to create

dynamic daily baseline and a baseline variability. They analyze the data considering a

window of 5 days before and after the test and only 5 days before the test, with either

samples with symptoms or without. The models trained with symptomatic information

achieve a better area under curve (AUC), as did the models that considered data after

the test. They note the symptoms are the most important feature when present, followed

by activity, sleep and HR.

R. P. Hirten et al. [37] collect biometric data using Apple smartwatches, demographic

data, medical history, occupation, prior to study COVID-19 diagnosis and daily surveys

about COVID-19 related symptoms, symptom severity and tests results from 409 health-

care workers from 7 different hospitals and considers samples as positive when they occur

7 days before or after a positive test result. This data is used to train gradient-boosting

machines (GBM), elastic-net, partial least squares, SVM and RF models, with GBM be-

ing the best one. They notice the most important predictors are related to heart rate

variability (HRV), age and body max index (BMI) with RHR having median importance.

They found the importance of the individual’s sex to be 0 in most models.
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B. Conroy et al. [38] detect COVID-19 with data collect from military personal using

Garmin watch and Oura ring devices, along with demographic data and daily surveys

about self-reported symptoms, taken medication and illness diagnosis. From the gathered

data, they select the subjects who used both devices, had sleep data from more than 10

nights in the 21 days before a COVID-19 test and whether they had symptoms during

the 14 days before the test (requiring symptoms if COVID-19 positive and the absence of

if negative). Their algorithm achieved an AUC of 0.82.

A. Aguado-Garcia et al. [39] create a statistical biomarker based on Shannon Entropy

and Beta Distribution to detect possibly COVID-19 infection. The daily heart rate,

activity in steps and duration of sleep stages data of an individual is analyzed separately

with this biomarker and values higher than the individual’s threshold are kept, with the

other being equaled to 0, to calculate the mean of the three values. Consecutive days

where this mean is higher than the threshold are indicative of a possible infection. Over 6

months, they collected of 115 health care workers in charge of areas related to COVID-19

patients at the General Hospital of Mexico Dr. Eduardo Liceaga, in Mexico City, gathering

data of 18 individuals that tested positive for COVID-19 with at least 2 months of data,

the minimum considered for their study. Based on their observations, they suggest the

best threshold to be 0.75 standard deviations during 7 consecutive days, having obtained

a match of 94.4% between days marked by the algorithm and dates where the individuals

had positive RT-PCR tests.

2.2.2. Federated Learning in the context of COVID-19

The literature review process suggests most efforts at applying federated learning to detect

COVID-19 have focused on computer vision since 32 of the found records focused on

images and only 9 on other types of data. The records found containing some data

that might be collectable from wearable devices aimed at predicting the mortality risk

of COVID-19 patients [20], the likelihood of an infected patient developing acute kidney

injuries within 3 and 7 days of admission to the hospital [18] and predict a patient oxygen

needs within 24 and 72 hours [21].

A. Vaid [20] and F. F. Gulami et al. [18] use electronic health records from five Mount

Sinai Health System hospitals in New York, consisting of demographic information, past

medical history, vitals, and lab tests to train models in three different ways: via FL,

with all data pooled into a single location and with each hospital training a model with

their local data. The authors in [20] use it to train Multilayer Perception (MLP) and

LR with L1-regularization or least absolute shrinkage and selection operator (LASSO)

with the federated models outperforming all but one local model from a hospital with a

higher mortality rate. When compared to the pooled models, the federated LASSO are

outperformed but two of the federated MLP are better than pooled one. In the case of

the other work [18], the federated models have a similar performance to the pooled model

and are better than the locals.
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I. Dayan et al. train a model with 20 features consisting of chest x-ray (image) and

electronic medical records, including SpO2 which can be collected by some smart wearable

devices [40]. The data wasn’t harmonized between the different participating locations

(twenty spread over four continents) and the FL model outperforms all local models.

In terms of the aggregation algorithms, K. M. Elshabrawy et al. [16] use FL to train

a model using chest x-rays from four different hospitals to see the effect of using differ-

ent aggregation algorithms when the data is non-IID. Of the five algorithms (Federate-

dAveraging (FedAvg), FedProx, Federated Normalized Averaging (FedNova), Stochastic

Controlled Averaging (SCAFFOLD) and FedBN), FedBN performed the best.

This literature review failed to find any FL applications that use wearable device data

to detect COVID-19. Some studies show this type of data can be used for this end, but

they gather the data from all participants and examine it together to create either pure

statistical analyses or ML models, without the use of an aggregating algorithm.

2.3. Federated Learning Aggregation Functions

The works found during the literature review process apply five different aggregation

functions, that is, functions that merge the weights of the models trained by each client

into a single global model: FedAvg, FedProx, FedNova, SCAFFOLD and FedBN.

Let w be the parameters of the models, S the set of clients participating in the training

round t, n the number of data samples present in a client’s set and m the total number of

samples across all participating clients. Equation 2.4 represents the FedAvg aggregation

function, which consists on calculating the average of the weights of the models trained

by the different clients during each round [41].

wt+1 =
∑
k=St

nk

mt

wk
t+1 (2.4)

FedProx differs from FedAvg by adding a proximal term to the clients’ algorithm to

allow different amount of work per client and round due to the heterogeneity of devices and

networks that can be found in a FL situation [42], while FedNova takes into consideration

the number of locals updates done by each client during the averaging process instead of

just their number of samples to help prevent convergence towards a subpar solution [43].

To increase the speed of convergence, SCAFFOLD adds a control variate based on the

difference between the direction of the updated server model and of each client model

to the FL process. This variate is added to the client’s model after it finishes its local

update but before it gets averaged into the global model [44]. FedBN focuses on feature

shift, that is, clients having different feature distribution but not necessarily different

label distribution, adding batch normalization to each layer of each local model before

the aggregation phase [45].

FLWR [46], the FL framework this work applies, comes with implementations of the

aggregation functions FedAvg and FedProx, plus the functions Federated Averaging with
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Server Momentum (FedAvgM), FedAdagrad, FedAdam and FedYogi, and the ability to

implement others through their abstract class Strategy [47].

How FedAvg updates the weights of the global model can be rewritten as seen in

Equation 2.5, with ∆wk
t+1 being the update of the k client’s parameters during the tth

round. FedAvgM replaces ∆w with the variable v, which is updated as shown in Equation

2.6 [48].

wt+1 = wt −∆wt+1

∆wt+1 =
∑
k=St

nk

mt

∆wk
t+1

(2.5)

v = βv +∆w (2.6)

S. J. Reddi et al. [49] add adaptive optimizers by changing the aggregation equation

to Equation 2.7 where η is the client learning rate, τ is the degree of adaptability and β1

is a decay parameter that varies between 0 and 1.

wt+1 = wt + η
mt√
vtτ

mt = β1mt−1 + (1− β1)∆t

∆t =
1

|S|
∑
k=St

wk
t+1 − wt

(2.7)

How vt is calculated depends on the adaptive optimizer algorithm that is being applied.

The authors present three, with β2 being a second decay parameter:

• FedAdagrad

vt = vt−1 +∆2
t (2.8)

• FedAdam

vt = β2vt−1 + (1− β2)∆
2
t (2.9)

• FedYogi

vt = vt−1 − (1− β2)∆
2
t sign(vt−1 −∆2

t ) (2.10)

This work focuses on the aggregation functions FedAvg, FedAvgM, FedAdam, FedAda-

grad and FedYogi.
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CHAPTER 3

Data Understanding and Preparation

This chapter presents the data explored during the course of this work, its treatment and

assumptions.

In order to achieve its goals, this work has access to raw data collected by the Hospital

de Santa Maria (HSM) in Lisbon, Portugal, during normal care procedures and ranging

between the years of 2019 and 2021. Unfortunately, since this data is collected from

patients admitted to the hospital’s ICU, it is found to be unsuitable to train an anomaly

detection model because it lacks samples that one can confidently consider healthy, or

normal, to use as a baseline to train the model. To counter this, data from two publicly

available datasets containing time-series of biometric data are used to train the ML model

explored. Meaning, in total, data from 3 different sources is explored.

The chapter is divided into two sections according to the origin of the data: the

publicly available data collected by the authors of two scientific studies mentioned in the

literature review [9, 6] and raw data from patient admissions of HSM made available to

the AIM-HEALTH project of which this work is part of.

3.1. Publicly Available Data

T. Mishra et al. [9] collected heart rate measurements and activity from several users

from February to June of 2020. The measurements were obtained via personal wearable

devices of volunteers, in particular FitBit1 devices. The data was made publicly available

after anonymization. This public dataset contains data pertaining to 32 individuals that

have been infected with COVID-19, 15 that have been infected with other illness and 73

with no reported symptom or illness [9]. The individual data covers both infected and

uninfected periods.

A. Alavi et al. [6] published a dataset with HR and activity data of 2123 volunteers,

84 of which have been infected COVID-19. The data was collected between November of

2020 and July of 2021 by the individuals’ personal wearable devices (Fitbit, Apple Watch2

or Garmin watches3) to be used in a real time COVID-19 alert system. [6].

Data from the T. Mishra et al. dataset pertaining to individuals with known COVID-

19 infection is referred to as ”P1” from hereafter, and data from individuals with no known

illness or other illness as ”P1 Healthy” and ”P1 Other Illness”. Data from individuals

with known COVID-19 infection and from the A. Alavi et al. dataset shall be referred to

1Brand of smartwatches focused on activity trackers.
2Smartwatches developed by the American technology company Apple.
3Smartwatches developed by the American Swiss-domiciled technology company Garmin.
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as ”P2”. The data from individuals with no known illness from the latter dataset are not

explored.

In both of the previous cases, the data of each participant is organized into two files -

one with HR data and another with activity data. The HR files contain measurements in

bpm with the timestamp of the recording, measured multiple times per minute, while the

activity data differs depending on the capture device: FitBit records contain the number

of steps taken during a minute (represented by a timestamp), while other devices contain

a start and an end timestamp of the activity and the number of steps taken during the

interval. Both datasets contain information about when individuals first felt symptoms of

illness in different time periods (symptom onset) and dates of positive COVID-19 tests.

Figure 2. Data pre-processing scheme for public datasets.

For the analysis presented in this dissertation, all the publicly available data from both

datasets has been treated following G. Bogu and M. Snyder publicly available code [1]. To

simplify, this work ignores the end timestamps that some devices create when collecting

the activity data and uses the start timestamp as if it is the moment where the steps are

taken. For each individual:

(1) the HR, measured multiple times per minute by the devices, is averaged at the 1

minute interval the mean bpm of that minute

(2) the activity data is summed at the 1 minute interval to introduce missing minutes

with zero steps

(3) the two time series are used to extract the HR measured when there hasn’t been

any activity, that is steps taken, during the twelve previous minutes. These

measurements are considered the individual’s RHR.

(4) the RHR is smoothed using a Rolling Window (RW) and the mean RHR of each

hour is extracted. How the data is smoothed is explored in section 4.3

This process is schematized in Figure 2, including when the data is cleaned of missing

values.
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Figure 3. Division of data per label according to the distance to day Zero
of known illness. Baseline samples are used to train models, normal and
anomaly samples to test.

For individuals with a known illness, whether COVID-19 or other, the earliest positive

test day is used as day 0 and data from 30 days before until 30 days after is extracted and

labeled using appropriate labels as shown in Figure 3. Thus, we considered as baseline

data the samples from 30 days before until 20 days before the first positive COVID-19

test, which means that these signals report what we consider to be a period completely

free of COVID-19, that is, these are healthy signals. The remaining samples are labeled

normal if occurring between 20 to 10 days before the positive test, while the infection

period is taken to occur from 7 days before until 21 days after the positive test (marked

as day zero). Notice that days colored in grey in Figure 3 represent days that were not

explored in this work: the first section refers to days where it is difficult to determine if

an individual is already infected with the virus due to the incubation period, while the

second block refers to when the individual is likely to be recovering from the illness and

still experiencing some symptoms, even if mild.

Table 3.1. Number of individuals in each sub-dataset after applying the
data-preprocessing (RW=200) and discarding those without enough data
for training.

Subset P1 P2
COVID-19 29 77
Healthy 73 –
Other Illness 9 –

Table 3.1 presents the number of individuals in each dataset after applying data pre-

processing and selecting the individuals with enough data to train and test the AI model

explored in this work.

Figure 4 shows the mean RHR of each subset per label. This mean is the mean HR

in bpm measured when the individuals haven’t been moving for at least twelve minutes,

which can mean, for example, that they are sleeping, sitting down working at a desk or

watching a movie. Notice that, during the day, the mean RHR changes similarly across

the different subsets and types of samples. But, more importantly, we can observe that

the anomalous samples in both P1 and P1 Other Illness show higher RHR than the

corresponding baseline samples. Although there is a short three-hour period where this

difference is not observable in P2, for the remaining hours, the pattern is maintained,

although at a lower relative difference. Therefore, this study uses the baseline samples to
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Figure 4. Mean hourly RHR after applying 200RW

train and validate the models used and the normal and anomalous samples to test and

evaluate the models. The distribution of training or baseline samples and normal and

anomaly samples for the test of these sets can be observed in Figure 5. It is noticeable

that the anomaly observations show a significant difference in behavior from the remaining

observations.

Figure 5. Distribution of the type of samples present in P1 and P2.
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3.2. Raw Hospital Data

HSM provided data from their databases. These data are generated by their sensing

devices but also manually inserted by staff related to patients admitted into the hospital’s

intensive care unit between the years of 2019 and 2021. This work has used both structured

data - in the form of comma-separated value (csv) files - and text reports. Each csv file

pertains to a different database table, with the type of data varying greatly from one

file to another. The text reports are notes taken by medical staff thus their content,

structure and style of writing also vary greatly between different reports. These reports

are identified by patient id.

The different csv files were examined to find how they connect and how to identify

what information relates to patients infected with COVID-19. As it could be expected, a

sample of raw real-data raises several issues for data extraction and treatment.

The data provided is scattered amongst several files without any indication of how

they complement each other. As such, it is necessary to examine the features found on

each file to discover any connections. Furthermore, some of the features are identified with

codes whose location within the many files is not easily discerned and some information is

simply not possible to infer from the codes or names on its own, requiring communicating

with an expert advisor involved in the involving project.

In terms of the quality of the data, several data is missing and a great number of cells

are filled incorrectly with types of data that do not fit with the values for that feature,

such as text or numbers in columns that are clearly meant to be marked as either true

or false. There are also issues with multiple symbols or words being used with the same

meaning, which makes it more difficult to extract data when searching for them, such

as multiple ways to write “true”. Due to these issues, the high quantity of raw data

and the necessity of keeping it stored in a safe server, the data extraction and clean up

process took around three to four months, despite the help and information provided by

the experts and other researchers involved in the AIM-HEALTH project.

In total, just by exploring the files, six different ways to discover such data have been

employed: by looking for the terms “sars” and ”covid” in a table listing analyses the

hospital provides and linking it to lab analyses results and there on to the patients they

are assigned to, filtering for positive results (total crossing of 5 files); looking for the same

terms in a table listing the several diagnosis the hospital contains in its information system

and linking it to the given patients (3 files crossing); repeating the search in four different

columns reserved for free text found in three of the tables explored in the previous methods

(only one of these actually returned any results but, given the structure of the raw data,

it was feasible to find results in all of them). A seventh method was provided by other

researchers involved with the AIM-HEALTH project, starting from a list of equipment

reserved for COVID-19 patients (5 tables crossing). Finally, some patients with the illness

have been found by exploring, with the help of a text mining expert, the textual reports

regarding medical exams the patients went through.
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After discovering the patients, it was necessary to find data that can be fed to the

ML model by linking three different tables, for a total of 12 files. In the end, 935 patients

with mentions of COVID-19 infection have been discovered in the data provided by the

hospital, of which 310 contain biometric data records pertaining to the patient’s HR.

Each identified patient with a known COVID-19 infection can be associated with

multiple candidate dates for the earliest confirmation of the illness because some are

admitted with an already known COVID-19 positive status and because one patient can

take multiple tests throughout their admission. It is also possible for data connected to

the same patient’s admission to belong to different times, for example, a patient admitted

on the 11th of October only contains data collected after January of the following year.

The candidate dates were automatically extracted from the available medical reports and

observations, via manual reading of the texts, the lab data tests, and the start of admission

dates. The earliest COVID-19 infection date is selected as the first day of known infection

(day zero). HR data ranging from 30 days before until 30 days after day zero of patients

with known COVID-19 infection is extracted to use in this work. This extraction reduces

the number of patients to 286. These patients do not contain data spanning the entire

60 days: only 34 patients contain data up to seven days before their day zero, 118 data

collected 21 days after the day zero and 234 data pertaining to the time in between.

After the identification of the COVID-19 positive patients, HR data of the remaining

patients found in the provided data, with a known type of diagnosis not related to COVID-

19 or pediatric care, are extracted to see if the trained models identify anomalies within

it. Diagnosis with less than nine patients, the number of individuals found in the P1

Other Illness dataset, are also discarded as such a small number of patients is likely not

statistically relevant. From these patients with other diagnoses, the first 60 days of the

data are extracted. In fact, the date of admission is not always accurate and searching

the database for a date of analyses or report that confirms the diagnosis would be time

consuming task requiring external help and that falls outside of the scope of this work.

Overall, we extracted data for 8467 patients. However, the extracted data does not always

span 60 days: for 5644 of the patients the data were collected during a single day, for

2216 the data was collected during 10 days, 483 patients contribute with data collected

during 11 to 59 days, and 124 patients with data spanning 60 days.

Table 3.2. Comparison of the publicly available datasets and the data
pertaining to COVID-19 infected patients found in the HSM dataset

Dataset P1 P2 HSM
Covid Other illness Healthy Covid

Device Smartwatch Hospital
Data HR + Activity RHR
#Individuals 29 9 73 77 212
Healthy Data Yes No
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Table 3.2 highlights the differences between the datasets presented in the last section

and the HSM data. Notably, because the available data belongs to patients admitted

into the hospital’s intensive care unit, none of the samples can be considered a ”healthy”

baseline. Thus, the data from this set cannot be used to (re)train models and can only

be used for testing, serving as anomaly samples. Remaining types of diagnoses are used

to explore if the fraction of samples detected as anomalous is similar between data from

patients with COVID-19 and other health issues.

Figure 6. Hospital dataset data pre-processing

This process can be observed in Figure 6, which includes the steps where the data is

cleaned of missing values.

This work assumes the HR of the hospital dataset is comparable to the RHR of the

publicly available dataset, as the provided data contains no information regarding activity

and it is collected from people admitted to the hospital’s intensive care unit, meaning it is

reasonable to assume they are resting in beds, chairs or stretchers and not walking (which

is the criteria required to consider the HR from the public datasets as RHR).This is

followed by a drop of null values that might have been created by the resampling, which

does so whenever it fails to find data to create the mean for a given minute between

minutes with known values, before a rolling window with the mean function is applied for

smoothing the data. The size in minutes of this rolling window is one of the parameters

explored in this work, which reaches the conclusion that 200 is a good compromise between

performance and loss of number of patients that do not have that number of minute

samples.

After pre-processing, the mean RHR of individuals with known COVID-19 infection

from HSM shows higher values than what is found in P1 and P2. Moreover, as it can

be observed in Figure 7, it lacks the daily pattern observed in the previous section.

Nevertheless, it should be noted that HSM patients are constantly abed, while the same

cannot be inferred from P1 and P2 subjects. The fact that these are patients in an ICU,

thus in a serious anomalous state that requires constant observation, can also help to

explain the higher RHR. Finally, this values are monitorized using specific cardiac clinical

devices, which are rather more accurate in the heart measurements than a wearable.

In terms of HSM data, several patients have been identified with illness other than

COVID-19. Figure 8a shows the number of patients per diagnosis type with enough

data to create the input of the chosen model (eight hour samples) after applying the

25



Figure 7. Daily mean RHR of individuals with COVID-19 found in P1,
P2 and HSM datasets

pre-processing with a RW of 200 minute samples. The correspondence between the label

number and type of diagnoses can be found in table 3.3.

Table 3.3. Number assigned to the types of diagnoses present in the Hos-
pital dataset

Number Type of Diagnoses
0 Intensive Care Medicine Services Main Diagnosis
1 International Classification of Diseases 10th revision
2 Diseases of the Circulatory System
3 COVID-19
4 Neoplasm
5 Diseases of the Genitourinary System
6 Common Diagnoses
7 Diseases of the Respiratory System
8 Diseases of the Nervous System and Sense Organs
9 Trauma and Poisoning
10 Supplementary Classification of Factors that Influence the Health
11 Diseases of the Digestive System
12 Hematological and Hematopoietic Organic Diseases
13 Diseases of the Musculoskeletal system and connective tissue
14 Infectious and Parasitic Diseases
15 Psychiatry

Figure 8b shows the mean HR for patients with the previously identified diagnosis.

Same as with COVID-19, all other types of diagnoses appear to show higher HR values

than those present in the public datasets and lack the daily pattern previously seen. This

visualisation of the HR divided by diagnosis enables the understanding of possible pattern

differences between patients with COVID-19 and with other illness based on the mean

signal. Patients with COVID-19 are amongst the diagnosis types showing the lowest mean

of HR and, although not explored in this work, it’s worth noticing the stratification that

can be observed might be interesting to explore with a classification model.
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(a) Number of patients per diagnosis
type (b) Mean HR per type of diagnosis

Figure 8. Statistics and HR signal relating to the hospital data.
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CHAPTER 4

Experiments and Results

This chapter focus are the different experiments made to obtain an anomaly detection

pipeline trained via FL, that can be applied to both data collected via commercial wearable

devices and data collected using hospital devices and, if successful, be used by new users

without the need to fine-tune the pipeline with personal healthy data. This anomaly

detection pipeline contains a ML model and the generation of a threshold based on the

training data.

The chapter starts with a summary of all the experiments conducted during this work,

followed with the application of the code made available by G. Bogu and M. Snyder [1],

which served as the base for the investigation with the FL approach, using both P1

and P2 datasets described in the previous chapter. Next, it proceeds with the changes

to better suit the data from HSM and experiment with other methods to calculate the

anomaly detection threshold, before comparing different methods of training and some of

the FL aggregation functions that are offered by the FLWR framework. An extra step

is introduced to the pipeline to explore how refining the number of anomalies needed to

consider a detection a true anomaly affects the performance, then the models with the

highest mean recall are examined at the individual level and, finally, some of the models

are applied to the hospital data and the other subdatasets of P1.

Due to the variety of experiments conducted, this chapter ends with a small recap of

the most important results.

4.1. Experiments

The literature review reveals a work that uses a public dataset to train a personalized

anomaly detection model for the data of each individual present in the set with a LSTM

autoencoder and personalized threshold at its core, to detect anomalies in the individual’s

RHR that might be indicative of an health issue, in particular of early COVID-19 infection.

Since the authors made their code publicly available, it was decided to use this work as

the start of this project and see how it performs when moved from the model being

individually trained to trained by the data of several individuals via FL. This anomaly

detection pipeline, including the NN explored, is detailed in Section 4.2.

Several experiments are conducted to alter the pipeline so it can be applied to the

hospital data and to decide how to transfer the focus on the individual into the FL par-

adigm. Each experiment explores specific changes to the original pipeline and these are

incremental. To select which change is brought to following experiments, higher mean
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recall scores are favored because this work deems it more critical to minimize false nega-

tives, that is, to decrease the number of anomalous samples that are classified as normal

by the anomaly detection pipeline. Changes to the mean precision are also observed, and

to the mean specificity because the number of supposed healthy samples, that is that are

expected to not be marked as anomalies, used to test the models refer to a period of ten

days while the anomaly samples refer to twenty eight days. Please note all models used

during in this work have the same structure, differing only in their weights due to changes

on how they are trained.

The first experiment consists on recreating the original work, that is, training a model

for each of the different individuals present in the public datasets, and then comparing

the mean performance of the resulting models to the mean performance of models trained

via FL with the same data. The original work classifies whether each hour sample is an

anomaly, which might be overwhelming or confusing when transported to the end-user of

the pipeline, while the work the other public dataset is part of had interaction with the

user and alerted them after two anomalous days. Because of this, detection of anomalous

days is also explored during this first experiment, although the following ones do not

apply it to have a better sense of the anomaly detection pipeline raw results.

The original work’s pre-processing data pipeline contains a standardization process

based on part of an individual’s healthy samples and applies a rolling window to smooth

the time series. The former cannot be applied to the hospital data as it contains no

samples than can confidently be considered healthy and applying the latter shows that

several of the hospital’s individuals do not contain enough data for it. The next set

of experiments consist on changing the pre-processing data pipeline to deal with these

constraints. This allows not only to use the data made available by the hospital, but

also permits users of the possible future end product with less data to use the detection

pipeline without needing known healthy data.

In terms of the threshold that determines whether a sample is anomalous or not based,

which is calculated based on the differences between the sequence of measurements that

is fed into the autoencoder model and the reconstruction sequence it returns (differences

between the input and output of the model), two things are explored: how the individual’s

threshold is calculated, and each individual using their own threshold versus the creation

of an averaged threshold. The first exploration is done to try to increase the mean recall

while the second is, once again, due to the lack healthy data in the hospital dataset and

contains the same benefit mentioned above

Once the changes to the pre-processing pipeline and the method to calculate the

threshold are established by training individual models, models are trained by treating

the data of all the individuals as a single set of data and via FL.

FL introduces three new variables to the training: the number of participants, the

number of training rounds and the aggregation function. The number of participants

is how many different users (or clients), each with their own data, participate in the

30



training of the global model by training a local model and sending its weights to another

user (the server) to merge them and create the global model, while the number of rounds

refers to the number of times this process occurs in a row. The aggregation function is

how the server merges the weights of the different local models. Five of the aggregation

functions offered by the FL framework used during this work are explored: FedAvg,

FedAvgM, FedAdagrad, FedAdam and FedYogi. The FL is run for thirty rounds with

each aggregation function, always starting with a new untrained model and all available

individuals participate with their data. Due to memory issues, the number of epochs each

individual model is trained for is changed from up to 1200 to 120. The model created

during each training round is saved for later testing to create evolution lines of the mean

metrics achieved by each aggregation function.

After all the models are trained and tested with data pertaining to the individuals who

trained them, how to classify periods of time longer than one hour is explored by, once

again, seeing the affect on the metrics score of considering an entire day as anomalous

if it contains at least one anomalous hour sample and requiring the previous day to also

verify that, and by changing the percentage of anomalous hour samples found in a day

required.

Once all these experiments are conducted, the models with the highest mean recall

scores are selected to see the results at the individual level in order to see if any patterns

emerge such as individuals that achieve similar results with all the best models or models

that behave much better on some individuals but worse with others, for example.

Finally, the models are tested with data from the hospital and other data from the

public datasets that is not used in the training to see if similar mean scores are achieved.

This data includes individuals with known COVID-19 infection, other illnesses and no

known illness, that is, supposed healthy individuals

Due to difficulties in running the simulation feature offered by FLWR that simulates

the FL with a server and several clients with the data augmentation featured in the chosen

work, no data augmentation is applied during the experiments run.

In all experiments that involve training models via FL, the process is run for 30 training

rounds. This number was chosen arbitrarily during the first attempts at using the FLWR

framework.

4.2. Applying the work of G. Bogu and M. Snyder [1] to Federated Learning

The first experiment of this work consists of adapting the code from G. Bogu and M.

Snyder [1] to train a personalized model for each individual with known COVID-19

infection found in P1 and P2 and a model trained via FL with the aggregation function

FedAvg by the individuals of each dataset.

The authors worked with the data collected by the authors of [9] to create personalized

anomaly detection pipelines for each individual of the public dataset (P1). This pipeline

contains a LSTM-based autoencoder at its core consisting of six layers: two consecutive
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LSTM layers with input and output shapes of (8x1)→(8x128) and (8x128)→(1x64), re-

spectively, to extract 64 features from the original input which are replicated by a Repeat

Vector layer before going through mirror versions of the first two layers with the sixth,

and final layer, being a TimeDistributed (Dense(1)) layer that reconstructs the shape of

the input. This autoencoder receives eight measurements of RHR pertaining to eight

hours and returns a reconstruction of them.

A single value, referred to as loss, is calculated by comparing the input and output

of the autoencoder, which is used to verify if the eighth, or final, hour is anomalous by

comparing it to a threshold. In the pipeline developed by G. Bogu and M. Snyder [1], the

loss corresponds to the MSE of the input and outup sequences and the threshold there

proposed is the maximum MSE obtained with the baseline samples, when they are sent

through the trained autoencoder model. If the current value is greater than the threshold

then the eighth hour is considered anomalous. The main stages of the anomaly detection

pipeline can be seen in Figure 9.

Figure 9. Main steps of the anomaly detection pipeline.

The eight hours that make the input do not correspond to consecutive hours, but

rather consecutive hours with RHR, that is, if the individual’s RHR skips one or more

hours these are not filled with a default value, instead the next measurements are used

until the input is complete. This experiment applies a rolling window of 400 minute

samples, standardization based on baseline samples of each individual and max MAE

threshold calculated at the individual level.

A. Alavi et al. [6] alert the users of their online anomaly detection when there are two

consecutive days of elevated RHR. Figure 10 shows the evolution of the mean precision,

recall and specificity scores obtained by the different models over FL rounds (each round

consists on the training of individual models and their aggregation into a single global

model). The detection is made at an hour sample (Sample) and at the day level, requiring

only one anomalous hour sample for the day to be considered an anomaly (1Day) or using

also the previous day to issue an anomaly alert (2Days). Note that, over rounds, precision

appears to evolve more erratically than recall. The word ”solo” refers to when FL is not

applied and a personalized model is trained by and for each individual.
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Figure 10. Evolution of the mean precision and recall scores (over P1 and
P2 datasets) with hourly, daily, or two days in a row detection.

In general, detecting anomalies at the day level (1Day and 2Days) instead of the hour

level (Sample) increases the mean recall, with 1Day showing a greater improvement than

2Days. But in none of the three situations the models trained via FL produce a better

score than the solo models. In terms of the specificity score, the opposite behavior is

observed - the FL models surpass the solo ones and 1Day shows the lowest scores while

Sample achieves the highest, although the federated P1 Sample and P1 2Days lines cross

several times during the 30 rounds of training. This results in the highest mean precision

being achieved by the models trained with the P1 dataset and the 2Days configuration,

independently of the training method. Regarding Samples and 1Day, neither P1 nor P2

show pronounced differences.

From now on, the results are presented considering only the hourly samples unless

stated otherwise, to better see the effect of the experiments on the results of the original

anomaly detection pipeline.

4.3. Changes to the Data Pre-Processing

The data offered by the HSM is collected via clinical monitoring systems, i.e., data from

patients admitted into the hospital’s intensive care unit. Thus, it contains no samples

that can confidently be considered healthy and used as a baseline for standardization.

Moreover, a more in-dept exploration of the data shows there are less samples per in-

dividual than in the publicly available datasets. This means that applying the 400 RW
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leads to losing 20% of the individual observations. Thus, this section focus on the af-

fects of removing the standardization and also decreasing the RW previously described

for the anomaly detection process in order to achieve a pipeline that can be applied to

the hospital data without compromising too much the performance of the system.

Table 4.1 contains a summary of the mean precision, recall and specificity scores

obtained by each experiment with each dataset. The first two lines refer to models trained

with data that went through standardization and augmentation processes, the third does

not apply augmentation and other do not apply either technique. The loss and threshold

are calculated using mean absolute error (MAE), unless stated otherwise.

Table 4.1. Mean precision, specificity and recall scores obtained when
training a model per participant (solo training) with different data pre-
processing configurations and changing the LR parameters (the changes
are cumulative). The higher and lower scores obtained in each dataset per
metric are always marked using (+) and (-), respectively.

Experiment P1 P2
Prec Recall Spec Prec Recall Spec

Public Model (MSE) 0.838 0.120 0.929
Public Model (MSA) 0.842 0.118(-) 0.931
Remove Augmentation step 0.797 0.222 0.867 0.730 0.296(+) 0.782(-)
Remove Standardization step 0.741(-) 0.200 0.858(-) 0.778(+) 0.204 0.854
Increase LR 0.846 0.224(+) 0.893 0.771 0.282 0.826
Decrease RW 0.789 0.180 0.904 0.734 0.216 0.882
Remove RW step 0.888(+) 0.123 0.950(+) 0.711(-) 0.066(-) 0.953(+)

In what concerns the use of P1, removing both the data augmentation and stan-

dardisation steps decreases the mean precision scores. This effect can be minimized by

increasing the LR, achieving the second-best precision value and the best recall with this

dataset. Decreasing the RW to 200 samples decreases both scores while removing this

step completely increases the precision but lowers the recall. The variation of the RW is

cumulative with the removal of the augmentation and standardization steps. The public

models, built by G. Bogu and M. Snyder, achieved lower scores than those reported by

the authors [1], possibly because they split the individuals’ data based on the date of

symptom onset and this work uses the date of the positive COVID-19 test.

The same experiments using the P2 dataset achieved generally lower scores when

compared with P1, with the last experiment performing the worst of all.

Hereinafter, further experiments are performed choosing a RW of 200, no standard-

ization and a LR of 0.001. The reason for these choices lies in the fact that these are the

settings that applied to the hospital dataset balance the loss in performance with the loss

of observations that can be used.
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4.4. Threshold Variation

The next experiment focuses on varying the threshold that determines if the loss obtained

by a sample is indicative of an anomaly or not, with each individual still creating their own

model and threshold. This work explores four different methods to calculate the threshold:

the maximum MAE (Max) used in the previous section, and three other thresholds, where

MAE is represented by X, defined by

X + kσ, k = 1, 2, 3. (4.1)

In general, the effect on the three metrics values is now inverted, with higher thresholds

increasing the precision and specificity but lowering the recall. The changes have a higher

impact on recall, with a difference of 0.240 between the highest and the lowest values,

while the specificity varies by 0.200 and precision only varies 0.075, at most. The mean

scores can be seen in Table 4.2 and the distribution of the threshold value per dataset can

be found in Figure 11, showing the obtained loss does not follow a normal distribution

since X + 3σ can be higher than the maximum loss.

Table 4.2. Mean scores obtained with solo training models varying how
the threshold is calculated. The highest value per metric is in bold.

Threshold P1 P2
Prec Rec Spec Prec Rec Spec

X + σ 0.748(-) 0.396(+) 0.713(-) 0.744 0.390(+) 0.729(-)
X + 2σ 0.807 0.249 0.856 0.757 0.250 0.858
X + 3σ 0.823(+) 0.156(-) 0.913(+) 0.760(+) 0.165(-) 0.918(+)
Max 0.789 0.180 0.904 0.734(-) 0.216 0.882

Figure 11. Value distribution of the different thresholds per dataset.

For the aim of this work (abnormal symptomatology alert for early disease detection),

preference is given to decrease the number of anomalous samples that are not detected,

that is, to increase the recall.
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As the results present in Table 4.2 show that, despite decreasing the precision to

0.748 with P1 and 0.744 with P2 and the specificity to 0.713 and 0.729, using X + σ as

threshold improves the recall the most, the remaining experiments are conducted setting

the anomaly detecting threshold by this formula.

4.5. Training Methodology

The works found during the literature review about FL implementations showcase results

pertaining to three different training methods: each client trains its own model with its

own data (solo training), gathering the data of all clients into a single dataset used to

train a general model (local training), and the FL approach: train locally and aggregate

model parameters for a central global model.

Table 4.3. Mean scores of the solo, local and local averaged models.

Model P1 P2
Prec Rec Spec Prec Rec Spec

Solo 0.748 0.396 0.713 0.744 0.390 0.729
P1 Local 0.717 0.274 0.775 0.735(+) 0.321(+) 0.750
P1 Local Averaged 0.711(-) 0.258(-) 0.770 0.722 0.243(-) 0.777(+)
P2 Local 0.721(+) 0.269 0.782(+) 0.715 0.311 0.738(-)
P2 Local Averaged 0.720 0.308(+) 0.762(-) 0.699(-) 0.279 0.741

Due to the nature of the chosen anomaly detection pipeline, containing an autoencoder

model and using a threshold to determine if an anomaly has occurred, and the constraints

of the hospital dataset (no baseline data to enable the creation of a threshold), this section

explores the scenario of having each individual creating its own threshold (local models)

and using all the individuals to create a general/global threshold. In the latter case, the

threshold consists of the mean of the individual thresholds (the averaged approach).

Table 4.3 contains a summary of the mean scores obtained by the solo, local and local

averaged approaches, marking the highest and lowest scores obtained by the non-solo

models. Figures 12 and 13 show the evolution of the scores of the models trained by the

two datasets when tested with P1 and P2, respectively.

In general, the solo models show higher precision and recall but lower specificity, while

the local models achieve higher precision. When an averaged threshold is used, the models

show the lowest precision. Examining the mean recall and specificity of these approaches,

the local models obtain higher precision with P1 due to classifying less normal samples

as anomalies, and with P2 by detecting more true anomalies.

In terms of the FL approach, the precision of the models evolves in a more erratic

way than the other two metrics, but within a smaller range. The mean specificity of

this training method is higher than what is obtained with the other methods with both

types of thresholds (individual and averaged) managing to obtain the maximum precision

in a few rounds, although at the expanse of the recall. The one exception is the model

trained with P2 with an averaged threshold that never surpass the specificity of all non FL
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Figure 12. Mean scores of solo, local and FL with FedAvg models tested
with P1

Figure 13. Mean scores of solo, local and FL with FedAvg models tested
with P2
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models when applied to P1. This seems to indicate that applying FL using this particular

aggregation function (FedAvg) is good for decreasing the number of false positives.

4.6. FL Aggregation Functions

A model trained via FL with the FedAvg does not reach the mean precision and recall of

personalized models, but can surpass models trained with data from multiple individuals

and decrease the number of false anomalies detected, as seen in the previous section. This

section focus on trying the different aggregation functions offered by FLWR, in particular

FedAvgM, FedAdagrad, FedAdam and FedYogi with two settings: using an individual

threshold or an averaged one.

Figure 14. Metric scores evolution of the models trained with P1 with
the FedAvg aggregation function for up to 1200 and 120 epochs per client
per round.

We start allowing each client to train its local model for up to 1200 epochs on each

round, as in the previous experiment, after which we decrease the number of epochs to

120. Only the second setting is applied to P2 due to difficulties in running the simulation

with P2 (out of memory crash on the Jupyter notebook during the training process) and

the remaining aggregation functions. The FedAvgM aggregation function is used setting

the momentum to 0.5, while the remaining functions are used with the default values of

FLWR. All graphics are shown with the solo, local, and local averaged scores previously

presented.

The forced decrease in the number of epochs each client trains the local model for in

each training round results in a lower mean recall score and higher mean precision and
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specificity scores across all five different aggregation functions explored. These changes

can be seen in Figure 14 with FedAvg, graphics of the remaining four aggregation functions

can be found in Annex A (1200 epochs) and B (120).

Examining the behavior of the different aggregation functions when local training runs

for up to 120 epochs, FedAvgM behaves similarly to FedAvg for both types of threshold

(individual and averaged) except the scores are more erratic during the first rounds.

The mean scores of both FedYogi and FedAdagrad remain stable during earlier rounds,

with FedYogi doing so for longer. The averaged threshold results in the mean recall

score starting high and remaining unchanging until it begins a drop that matches with

the increase of the specificity (after round 20 for FedYogi, before 10 for FedAdagrad).

The averaged precision also starts high and ends lowering. Utilizing individual thresholds

results in curves with similar evolution but lower recall and precision and higher specificity

than the using the averaged threshold. Finally, FedAdam presents a cyclical pattern that

differs between the averaged and the individual, or personalized, threshold. As with the

other functions, the averaged threshold results in higher recall but lower specificity. The

evolution of the models aggregated with FedYogi and FedAdam can be seen in Figure 15,

the affect of the remaining functions can be found in Annex B.

Figure 15. Metric scores evolution of the models trained with P1 with
the FedAdam and FedYogi aggregation functions.

The differences in behavior found when training the models with P2 are as follow:

FedAvg with averaged threshold achieved better mean recall but worse mean precision;

the recall with individual, or personalized, threshold is higher than the averaged one;

and the recall and specificity obtained with both FedAdagrad and FedYogi remain stable
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during the entire process, when applying the personalized threshold. Figure 16 shows the

evolution of FedAvgM and FedAdagrad, graphics with the other functions can be found

in Annex B.

Figure 16. Metric scores evolution of the models trained with P2 with
the FedAAvgM and FedAdaagrad aggregation functions.

With both datasets, FedYogi with the averaged threshold achieves the highest mean

recall scores, reaching its maximum value within the first rounds and keeping it the

longest.

Four of the five aggregation functions obtain models whose average loss decreases with

the number of rounds, with FedAdam showing more of a cyclical evolution. The loss of the

baseline samples is almost always less than that of the anomaly samples, but the difference

is very small and all are below the average threshold. The average loss of the normal

samples is also very similar to that of the baseline and anomaly samples. The average

threshold approaches that of the solo models at later rounds, even becoming smaller with

FedAvg and FedAvgM, suggesting the models are becoming better at reproducing the

input but without that leading to being able to better distinguish between the baseline

and the anomalies (Figure 17).
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Figure 17. Evolution of the average loss obtained when training with each
aggregation function.

4.7. Anomaly Detection Fine-Tuning

This work is exploring how an anomaly detection pipeline behaves when trained with FL

to see how feasible it would be to implement such a system in a mobile app to alert the

users of a possible COVID-19 infection. Given this context, detecting anomalies every

hour might be bothersome for the user, or even confusing if they are told contradicting

results in consecutive or close by hours. To address this issue, this section explores

the impact of changing the anomaly detection sampling from hours to days, by varying
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how many hours in one day need to be classified as anomalous so that the entire day is

considered anomalous and also how many days should be considered anomalous for the

alert to be issued, similarly to what has been done in Section 4.1. This is done using

the results obtained in the previous section where the clients trained their models for 120

epochs between rounds.

By considering each hour sample, the mean recall scores obtained by the models

trained via FL vary between 0.081 and 0.302, independent of the dataset, aggregation

function and if the threshold in personalized or averaged, while the precision ranges from

0.691 and 0.825 and the specificity between 0.724 and 0.946. When considering the

detection at the day level (1Day), the mean recall scores increase to a minimum of 0.371

and maximum of 0.594, with a penalty to the precision and specificity scores whose values

variation shifts to [0.647, 0.792] and [0.473, 0.638], respectively. Requiring the previous

day to also contain at least one identified anomalous hour (2Days) increases the range of

values obtained by each metrics (precision: [0.632, 0.806], recall: [0.289, 0.610], specificity

[0.462, 0.703]). Although the maximum value reached by the recall with 2Days is higher

than with 1Day, examining the evolution of the curve shows it tends to be lower (Figure

18 and Annex C). Otherwise, the metrics of both 1Day and 2Days behave similarly.

Figure 18. Metric scores evolution of models aggregated with FedAdam
and trained with P2 when detecting anomalous days.

Varying the percentage of hour samples that are considered to classify one day as

anomalous fails to improve the specificity and precision scores without lowering the recall.

The only improvement is by setting the hours’ percentage to 10%, which gives an increase
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of 0.1 on the lowest mean specificity score without penalising the other two mean scores

(Table 4.4).

Table 4.4. Approximate score ranges of varying the percentage hour
anomalies required to label a day as anomalous.

% Precision Recall Specificity
Min Max Min Max Min Max

0 0.7 0.8 0.4 0.7 0.3 0.6
10 0.7 0.8 0.4 0.7 0.4 0.6
20 0.7 0.8 0.3 0.6 0.5 0.7
40 0.6 0.8 0.2 0.5 0.6 0.8
60 0.5 0.8 0.1 0.4 0.7 0.9

4.8. Individual Threshold Results

All results presented in this work, so far, have been the averages of the metrics scores

obtained by the models when applied to each individuals’ data. This section explores how

the models perform at the individual level to see if any patterns arise, such as if there are

individuals where all models perform equally well, or poorly.

To do so, the best models, that is the models with the highest mean recall score

when detecting anomalous days with more than 10% of anomalous hour samples are

selected. This selection is done by dataset (P1 and P2), by aggregation function (FedAvg,

FedAvgM, FedAdagrad, FedAdam and FedYogi) and how the threshold is calculated (each

individual creates their own threshold and calculating a shared threshold, averaged). Note

that the highest recall is achieved during the first round of training in several occasions

but, as these models are the worst at recreating the signals (Figure 17) and this value is

often reached again in later rounds, the results from the first round of training are ignored

during the selection process. The scores obtained by the solo, local, and local averaged

models are also shown for comparison.

The precision appears with the most consistent behaviour across all models. Albeit,

the models built using the averaged threshold consistently fail to detect some anomalies

(in five of the individuals from P1 and eleven from P2), most other individual and model

pairings achieve a score over 60% (Figure 19). In terms of recall, the averaged thresholds

achieve worse scores in more individuals than the non-averaged, or personalized, anomaly

detection (Figure 20). The models obtain lower specificity scores with the P1 dataset

when compared to the recall of the same data, a difference that is not noticeable with the

P2 dataset (Figure 21).

Overall, the solo models achieve higher precision with more of the individuals in the

test than the FL approaches but the latter present higher recall, in particular with person-

alised thresholds and the P1 dataset. The local averaged approach presents worse scores

than the FL models in terms of recall.
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Figure 19. Heatmaps of the precision of the best models.

Figure 20. Heatmaps of the recall of the best models

4.9. Testing the Models with New Data

In this section, models trained with multiple individuals (Local and FL models) are applied

to data from new individual, that is, from individuals that do not train the models. All

results presented in this section are obtained by using averaged threshold - the mean

threshold obtained by the individuals that participated in the training of the models -
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Figure 21. Heatmaps of the specificity of the best models

and entire days are considered anomalous when 10% of its hour measurements are detected

as anomalies by the pipeline.

Three datasets with distinct characteristics are explored:

• P1-Other, consisting of data from nine individuals with a known infection other

than COVID-19, collected at the same time as P1 and containing both ”healthy”

or ”normal” and ”sick” or ”anomalous” samples;

• P1-Healthy, which contains only ”healthy” data of seventy-three individuals,

also collected at the same time as P1;

• HSM, Data from patients admitted to the intensive care unit of the HSM with

known infection where, naturally, all samples are assumed to be anomalous.

The hospital data is further divided into patients with known COVID-19 infection and

patients with other types of diagnosis.

Figure 22 shows the mean scores obtained when applying the previously trained models

to P1-Other with the averaged threshold. The specificity reaches higher values than those

seen in the previous experiments. However, both the precision and recall show lower

values than before. This could be because some of the illnesses contained in this dataset

don’t affect the RHR as much as COVID-19.

P1-Healthy only contains healthy samples, meaning that only the specificity scores can

be examined. The range of mean scores obtained with this dataset is within the values

already seen using P1 and P2 (Figure 23).

Likewise, only the values obtained for recall are explored when testing on SMH since

all samples are assumed to be anomalies. Figure 24 shows the mean evolution of the

score obtained by the models when applied to the data of patients with known COVID-19

45



infection. The results for these models in the previous sections achieve similar perfor-

mances and notably the maximum mean recall is equal to what was obtained with the

original datasets. nevertheless, the worst scores now obtained are lower than the mini-

mum that was observed when testing P1 and P2 in previous sections, occurring during

the first rounds aggregated with FedAvgM or with the cyclical FedAdam. FedYogi and

FedAdagrad sustain the highest score for several consecutive rounds.

Data from individuals found in the hospital data marked with other types of diagnosis

achieves similar mean curves and ranges of recall scores, as it can be seen in Annex D.

Figure 22. Metric evolution of the models trained with P1 and P2 applied
to P1 Other with an averaged threshold.

Figure 23. Metric evolution of the models trained with P1 and P2 applied
to P1 Healthy with an averaged threshold.
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Figure 24. Metric evolution of the models trained with P1 and P2 with
an averaged threshold applied to hospital patients with known COVID-19
infection.

4.10. Summary

This section provides a small recap of the most important results presented throughout

this chapter, which is expansive and contains a high variety of experiments. A graphical

recap of the main experiments conducted during this work is shown in Figure 25.

Figure 25. Flow of the main experiences conducted during this work.

The anomaly detection pipeline provided by G. Bogu and M. Snyder [1] where each

individual trains their own pipeline to detect anomalies on their own data is used as

the starting point to obtain a pipeline trained via FL that might be applicable to new

users that might not contain healthy data to personalise the pipeline. To do this, the

autoencoder model contained in the pipeline is trained via FL, a global threshold is created

by averaging the threshold calculated by each individual that participates in the training

process, and the standardization step is removed from the pipeline. These changes are

highlighted in Figure 26.

Between having each individual train their own pipeline (Solo) and several create a

single pipeline by treating multiple individuals as a single one (Local) or by using FL,

the Solo approach obtains the highest recall. But the other two approaches might be

applicable to users with no healthy data, since models trained and tested with data from

P1 behaves similarly when tested with P2 and vice-versa, and the models trained with

FL are able to surpass the performance achieved by the Local approach.

Regarding the aggregation functions explored in this work, FedYogi is deemed the

most appropriate for achieving high and stable recall values for several training rounds,
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Figure 26. Main steps of the anomaly detection pipeline with the changes
that allow to bring it into the paradigm of FL.

which might make deciding for how many rounds the training process should last less

critical.

In terms of the threshold, lower values increase the number of detected anomalies but

also increase the number of false detections. The same occurs if the detection of anomalies

is done daily instead of every hour (to avoid overflowing users with alerts). This can be

improved by altering the number of anomalous hours found within a day to consider that

day anomalous.

Finally, when the pipelines obtained via the Local and the FL approaches are applied to

new individuals there are less anomalies detected in individuals with illnesses other than

COVID-19 (dataset P1-Other), and the amount of non anomalous samples in healthy

individuals (P1-Healthy) correctly identified as such is similar. In terms of the data

collected by the HSM, the performance is similar to what is obtained by the original

datasets, with some models achieving higher recall but a few also performing worse.
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CHAPTER 5

Alert System Prototype

This chapter proposes an implementation for an FL approach to detect anomalies in

biometric data, such as RHR, that might be indicative of a COVID-19 infection. In fact,

this architecture may be used for other arising health issues that may be infered from

biometric signals alike RHR. The alert system is divided into two main components: the

server and the client. Each one of these components will be described by a separate

section.

It is important to note this prototype focuses only on the training of the model and

calculation of the threshold. This is not yet an end-to-end application for the clients

to receive either. This occurs both due to constraints of the FL framework used and

by design, as it is unlikely all clients will participate in all training processes leading to

different clients using different models and thresholds to detect anomalies in their data.

Instead, the aggregated model and threshold resulting from the training processes should

be sent to all clients via an update of the app that is still under development within the

AIM Health project, which this work is a part of.

How the training process is started is also not considered. The scripts created in this

work should be modified or added to enveloping code so the server starts a new training

process regularly (this work assumes the training will not happen more than once a day)

and the clients are warned of it so they can join the process, if they wish to. Due to the

behavior of the framework, the server should initiate the process because it is capable of

waiting for clients to connect to, while clients will terminate if they attempt to reach the

server and it is not available.

5.1. Server

The server consists of one Python script, one configuration JSON file, one folder with the

trained models and one csv file to save the thresholds of the anomaly detection and the

timestamp of when they were calculated.

The inclusion of a JSON file serves to decrease the need to change the code on the

script. Its edition allows for the change of the path to the folder where the models

are stored and the path to the threshold folder. It also allows to change configuration

parameters like how many clients must be available to train the model and which fraction

of those should participate in each training round, the maximum time a round should

take and what strategy, or aggregation function, should be used during the aggregation

process, including setting some of the strategy’s parameters. If the parameters of the

strategy are set to null, the pre-existing configurations of the framework are used.
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The models’ folder should contain files in Hierarchical Data 5 (h5) Format format,

with the identifier being composed of the day and training round in which the model is

created. The models are kept in h5 format instead of just saving the weights to avoid hard

coding the structure of the model. This way, if it becomes necessary to change the full

model, one simply needs to add the new one to the folder. Moreover, while not including

it in this proposal right now since its adequacy has yet been investigated and the project

is not at a producing stage at the moment, this process allows for later inclusion of a

champion/challenger process. Since the model the clients have at the time of the end of a

training process might not be the newest model, the server always loads its newest model

and sends the weights to all participating clients that are licensed to receive automatic

updates.

The FLWR framework does not allow for the trained models to be saved natively.

Instead, the aggregation strategy must implement the saving process. The Python script

includes extended versions of all five strategies used in this work: FedAvg, FedAvgM,

FedAdagrad, FedAdam and FedYogi. For each of them, the function ’aggregate fit’,

which aggregates the weights of the models trained by the clients on each round into a sin-

gle global model, is overrun to call the parent function and save the model with the new ag-

gregated weights. To calculate the averaged threshold, the function ’aggregate evaluate’,

which serves for the server to receive the results of the clients testing a newly aggregated

model, is taken advantage of: all clients add their own threshold and number of samples

used in the training and the server, using that information, calculates the mean and saves

it in the thresholds file. If it becomes necessary to add a new strategy, it must be imple-

mented with the code that allows to save the trained models and to calculate and save the

corresponding thresholds, plus be added to the ’get strategy’ function of the Python

script, which allows the server to receive the strategy described in the configuration file,

in order to function properly (any parameters of the new strategy that can be edited,

should be added to the file).

This architecture allows to keep the model completely separated from the server script,

as well as minimise the changes to the code when the training process needs to the altered.

As mentioned previously, the model and threshold that result from the training process

should be sent over to all existing users of the app via a separate process to avoid users

who don’t participate in the training having outdated information.

The Server communicates with each Client to know who is available to participate in

the training process, to send the weights of the global models, and to receive the weights

of the Clients’ models and thresholds, for a total of five main interactions per training

round. A scheme of these moments can be seen in Figure 27.
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Figure 27. Information exchanged between the Server and the Clients.

5.2. Client

The client consists of a Python script, a configuration JSON file, a csv file with their data,

another with the averaged thresholds and a h5 file with the newest available model.

Because the goal of the AIM Health project is to create a mobile app and the data used

in this anomaly detection process will be collected via a variety of wearable devices, the

gathering and transformation of the data are not considered in the client script. Instead,

it is presumed the client starts with the data file depicting:

• DateTime: timestamp of when the data was measured;

• Data: the measured data (which in this work is the RHR);

• Loss: the loss obtained by the sample from going through the model

• Threshold: the threshold used to label the sample as anomalous or normal

• AnomalousHour: if the measurement is considered an anomaly by the model and

threshold;

• PercentageAnomalousDay: if the day the sample was collected is considered an

anomaly based on the percentage of anomalous samples found during it;

• AnomalousDay: if the day is considered anomalous based on the classification of

previous days;

• ConfirmedAnomaly: this column serves to correct mistakes made by the anomaly

detection process1;

• DateTimeOfDetection: when the samples were evaluated.

This file should be updated regularly by enveloping code that was not considered during

the course of this work.

1If a day is marked as True then it is anomalous, regardless of the result of the other columns, and is
normal if marked as False. If a row is empty, the previous columns must be considered.
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The client contains two distinct processes: participating in the training process and

detecting anomalies in their data. The latter should be set to occur regularly and consists

in:

(1) Loading the model and the latest threshold value;

(2) Loading the data and discovering which samples must yet be analysed by the

anomaly detection process based on when they were collected and the last time

this process happened;

(3) Classification of each sample based on the loss generated by the model and the

threshold

(4) Classification of the day based on the percentage of anomalous samples present

and the minimum percentage needed for the day to be considered anomalous;

(5) Classification of the day based on the number of previous days that were consid-

ered anomalous, according to the stipulated number of days necessary.

Once the process is over, the data file is updated.

For the training process, the client must first ensure it has enough data to participate.

This means that data pertaining to thirty to twenty days before the current date, or day

chosen to act as day zero (the functions that require this date have it set up as a parameter

with the current date as the default value), for training and twenty to ten days before for

testing must be retrieved and both sets of data contain enough samples to input into the

model. Because the experiments where the anomaly detection is observed at the day level

resulted in a high amount of false positives, it is possible to set up a maximum number

of anomalous days the training and testing data can contain and still be used in the FL

process, for example, it can be decided that one anomalous day in the extracted data does

not disqualify the user from participating. If the data is acceptable, it is transformed to

be inputted into the model and the client connects to the server.

The actual client class that connects to the server is an extension of NumPyClient

class offered by FLWR. The constructor receives the training and test input data, the

current model (used to retrieve the structure of the model because the FL process does

not transfer it) and configurations for the local training. The previously mentioned class

contains two functions necessary for the FL process: ’fit’ and ’evaluate. The former

receives the global model’s parameters, or weights, from the server and retrains it with

local data, sending the new weights back to the server plus the number of samples used for

the training. The latter is meant to receive the new global model, test its performance on

the client’s test data and send the results to the server. Since the server expects to receive

the loss obtained by the model evaluation, the length of the test dataset and a dictionary

with a free structure, the ´evaluate’ function uses the new model and the training data

to create the local threshold, and sends it to the server inside the dictionary, along with

the number of training samples so the server can create the averaged threshold.

All constants, parameters, paths and the names of the columns present in the data file

can be edited via the configuration file. Enveloping code to make the two processes start
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automatically must ensure the training process only begins after the server is expecting

clients and the detection process should run at least once before the client participates in

the training process for the first time.
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Conclusions

This work set out to explore how an anomaly detection model to detect a possible COVID-

19 infection behaves when trained via FL. Moreover, this model was later applied to data

from novel individuals, in particular data collected during the normal daily activities

of a hospital’s ICU, to understand its generalization performance when applied to new

anomalous data.

The first research question, RQ1, sets a focus on investigating the state-of-the-art

regarding ML models to detect COVID-19 infections using wearable or mobile devices

and discovering what FL applications exist, namely within the context of health anomaly

detection of COVID-19 infection and if they make use of data acquired by wearable or

mobile devices or sensing data collected with medical devices. The literature review re-

vealed several works about detecting COVID-19 infections by examining data collectable

via wearable devices, some purely statistical and some that implement ML. All the dis-

covered works explore signals related to the heart, such as the heart rate, the resting heart

rate (RHR) and blood pressure, with a few also examining the oxygen saturation (SpO2)

and a person’s temperature. Unfortunately, the SpO2 sensors found in wearable devices

tend to not be very accurate and these often do not possess temperature sensors. The

majority of the works focused on RHR signals and on the same publicly available dataset,

that of Mishra et al. [9], which this work also explores. Three of the studies focus on

anomaly detection on data collected via wearable devices, each being based on the pre-

vious one. No work focused on detecting COVID-19 via data from wearable devices that

applied FL was found.

To answer RQ2, that is, if FL is a feasible approach for personal health anomalies de-

tection, this work focuses on recreating a FL context of one of the three works that explore

anomaly detection with publicly available data and code. The chosen work was that of G.

Bogu and and M. Snyder [1], using public data, where the data of each individual is used

to create a personalised LSTM autoencoder model and threshold to detect anomalies in

the individual’s data. Simply applying FL with the default aggregation function FedAvg

to their training process achieves a worse mean recall when compared to the mean recall

of each individual training their own personal model, but higher specificity which leads

to a higher precision score in some training rounds. In other words, the model detects

fewer anomalies but, when it does, it is more certain they truly are anomalies.

Besides the publicly available data gathered by T. Mishra et al. [9] and A. Alavi et

al. [6], this work also explores data from HSM for the development of the enveloping
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project AIM-HEALTH. This data pertained to individuals with known COVID-19 infec-

tion, with the exploration revealing no samples could be considered healthy and used for

training the selected anomaly detection process. This led to RQ3 and RQ4. In order to

answer them changes to the pre-processing of the data and how to calculate the threshold

for anomaly detection had to be explored. Changes included removing the standardization

of the data, as there is no known healthy data to serve as a baseline. The removal of the

standardization results in a decrease of the mean precision and recall, which could be re-

verted by increasing the LR. Halving the RW results in a compromise deemed acceptable

between the loss of patients and the loss of performance of the model.

Still focusing on non-FL training, different ways to calculate the threshold are explored,

utilizing the new pre-processing and LR configuration. In general, methods that lead to a

higher threshold achieve higher mean precision and specificity but lower recall. Assuming

it is preferable to decrease the number of false negatives, that is, the number of anomalous

samples labelled as normal, or increase the recall, the threshold set by X + σ is deemed

the best, as it obtains the higher mean recall.

For this work, the FL training used each source of data working as a different client

and also explored the possibility of having each individual create its own threshold and

the creation of an average threshold both due to the FL nature of this work and the lack

of data in the hospital dataset that allows it to create a threshold. Between the individual

and the local approaches, the individual achieves better performance independently of how

the threshold is calculated (individual or averaged). But the FL models achieve higher

precision than the individual models in several rounds due to a decrease of the number

of false anomalies detected and surpass or come close to the mean recall of the local

models. The aggregation functions FedYogi, FedAdagrad and FedAdam, in particular,

when coupled with an averaged threshold achieve the highest mean recall of the FL

approaches in several rounds, as well as the highest precision when applied to the data

collected by Mishra et al. Of these three aggregation functions, FedYogi is deemed the best

as it sustains its mean scores stable for longer, possibly making deciding the number of

rounds the FL process should run for less critical. Interestingly, all aggregation functions

present an averaged threshold that is higher than the mean loss of both the baseline and

anomaly samples and FedYogi presents the closest lines, with the decline of its recall score

matching its mean loss becoming less than what is achieved by the individual models.

The model detects anomalies in hourly samples, but a user likely will not want to be

disturbed every hour and be told an anomaly was detected in one hour, only for the next

to be normal, which can be both confusing and unnecessary. This work explores labelling

a day as anomalous based on the percentage of anomalous hour samples it contains and

if previous days are considered anomalous. The change from hours to days increases the

recall with a slight penalty to the precision which is reverted when it is required that the

previous day also have anomalous samples in order for it to be anomalous. To balance

the rate of false negatives and false positives, this work suggests that anomaly detection
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be made at the day level, requiring that at least 10% of the day’s samples be anomalous,

regardless of the classification of previous days but ensures this is easily modified, due to

the low specificity obtained when tested with data of individuals with no known illness

- between 0.53 and 0.55 with the FedYogi aggregation function with averaged threshold,

which is considered the best of the approaches to increase the recall.

Applying the trained models and calculated averaged thresholds to the data collected

by T. Mishra et al. pertaining to individuals with other illnesses shows similar mean

precision and recall scores, reinforcing what was discovered during the literature review

process - that the changes caused by COVID-19 are not restricted to this illness and this

approach can detect a possible illness but it might not be COVID-19. This is seen once

more when the models and thresholds are applied to the hospital data as the obtained

mean recall scores are similar across all types of diagnoses.

With these results, the answer to RQ3 is that (non FL) pre-trained models trained

with the data of multiple individuals can be just as accurate when detecting anomalies

in users other than the ones they were trained upon, but having each user train its own

model is better. And, although still not better than having a personalized model, it is

preferable to use a model trained by other people’s data via FL than by pooling the data

into a single location.

In conclusion, the main contributions of this work are that of exploring the transporta-

tion of an anomaly detection pipeline, originally developed to be trained by the data of

one individual to issue an alert in case of anomalous situations, into the FL paradigm and

exploring how anomaly detection models behave when applied to data from novel users

acquired in different environments. For the anomaly detection pipeline explored, if an

individual has enough healthy data to train its own personalised model and a device, a

model trained via FL might not offer advantages when compared to a personalised model.

But the FL approach may allow for the detection of anomalies in RHR, which might be

indicative of a health issue, in individuals who cannot train their personalised pipeline

due to lack of training data or that are unwilling to allocate resources to do so.

It is important to note this work assumes the HR collected by hospital grade devices

is equivalent to the RHR calculated from HR and activity data collected via wearable

devices sold to the general public. This is not necessarily true so a study that compares

the two types of data needs to be conducted.

In terms of the built prototype, two distinct components are created - the server and

the client. The server is in charge of the FL training process and saving the resulting

models and averaged thresholds. The client can detect anomalies in its data with the

global model and threshold and participate in the training process when its data is deemed

normal enough. Both components have several parameters that can be edited via a JSON

file and the model can be changed to a different type without needing to alter any code.

How to activate the training process automatically has not been explored, nor how to

gather the data used for the training and anomaly detection process due to the variety
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of available devices. This work also does not explore retraining the model with new data

after a first FL training process.

The work of A. Alavi et al. [6] looks for deviations in the RHR only between midnight

and seven in the morning to avoid changes to the HR due to events, such as watching a

horror movie, that are not detected and can be excluded through the activity data. This

work does not apply that data selection because not everyone has that sleeping schedule or

wears their wearable device during the same hours. It would be interesting to see how the

anomaly detection pipeline acts when trained with data from people with similar habits

or demographic characteristics but specialising the model in such ways might decrease

the privacy offered by FL. Another unexplored suggestion is to break the day into periods

longer than an hour and do the final detection based on those rather than the daily

percentage of anomalous hour samples. It should be noted the available data was labeled

as anomalous and normal, or healthy, according to what is found in the literature review,

but Abir et al., 2023 [34], who explore a similar anomaly detection pipeline without the

use of FL, question if the current division is accurate as they achieve higher recall when

discarding data from 14 days after the symptom onset.
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H. B. McMahan, “Adaptive federated optimization,” CoRR, vol. abs/2003.00295, 2020. [Online].

Available: https://arxiv.org/abs/2003.00295

63





APPENDIX A

This annex contains the evolution of the mean metric scores of the models trained via

FL with the P1 dataset when each client is allowed to train their local model for up to

1200 epochs during each round, for a total of 30 training rounds. Each graphic contains

information related to applying a different algorithm during the aggregation process.

Figure 28. Metric evolution of the models trained with P1 with the Fe-
dAvg aggregation function for up to 1200 epochs.
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Figure 29. Metric evolution of the models trained with P1 with the Fe-
dAvgM aggregation function for up to 1200 epochs.

Figure 30. Metric evolution of the models trained with P1 with the
FedAdagrad aggregation function for up to 1200 epochs.
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Figure 31. Metric evolution of the models trained with P1 with the
FedAdam aggregation function for up to 1200 epochs.

Figure 32. Metric evolution of the models trained with P1 with the
FedYogi aggregation function for up to 1200 epochs.
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APPENDIX B

This annex contains the evolution of the mean metric scores of the models trained via

FL with the P1 and P2 datasets when each client is allowed to train their local model for

up to 120 epochs during each round, for a total of 30 training rounds. The figures are

organized by aggregation function and dataset.

Figure 33. Metric evolution of the models trained with P1 with the Fe-
dAvg aggregation function for up to 120 epochs.
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Figure 34. Metric evolution of the models trained with P2 with the Fe-
dAvg aggregation function for up to 120 epochs.

Figure 35. Metric evolution of the models trained with P1 with the Fe-
dAvgM aggregation function for up to 120 epochs.

70



Figure 36. Metric evolution of the models trained with P2 with the Fe-
dAvgM aggregation function for up to 120 epochs.

Figure 37. Metric evolution of the models trained with P1 with the
FedAdagrad aggregation function for up to 120 epochs.
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Figure 38. Metric evolution of the models trained with P2 with the
FedAdagrad aggregation function for up to 120 epochs.

Figure 39. Metric evolution of the models trained with P1 with the
FedAdam aggregation function for up to 120 epochs.
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Figure 40. Metric evolution of the models trained with P2 with the
FedAdam aggregation function for up to 120 epochs.

Figure 41. Metric evolution of the models trained with P1 with the
FedYogi aggregation function for up to 120 epochs.
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Figure 42. Metric evolution of the models trained with P2 with the
FedYogi aggregation function for up to 120 epochs.
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APPENDIX C

The figures in this annex are obtained by shifting the anomaly detection from 1 hour

samples to an entire day (1Day) and 2 consecutive days (2Days). The clients of the FL

process train their models for up to 120 epochs per round, for a total of 30 rounds. The

figures are organized by dataset and aggregation function.

Figure 43. Metric scores evolution of models aggregated with FedAvg
and trained with P1 when detecting anomalous days.
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Figure 44. Metric scores evolution of models aggregated with FedAvgM
and trained with P1 when detecting anomalous days.

Figure 45. Metric scores evolution of models aggregated with FedAdagrad
and trained with P1 when detecting anomalous days.
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Figure 46. Metric scores evolution of models aggregated with FedAdam
and trained with P1 when detecting anomalous days.

Figure 47. Metric scores evolution of models aggregated with FedYogi
and trained with P1 when detecting anomalous days.
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Figure 48. Metric scores evolution of models aggregated with FedAvg
and trained with P2 when detecting anomalous days.

Figure 49. Metric scores evolution of models aggregated with FedAvgM
and trained with P2 when detecting anomalous days.
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Figure 50. Metric scores evolution of models aggregated with FedAdagrad
and trained with P2 when detecting anomalous days.

Figure 51. Metric scores evolution of models aggregated with FedAdam
and trained with P2 when detecting anomalous days.
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Figure 52. Metric scores evolution of models aggregated with FedYogi
and trained with P2 when detecting anomalous days.
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APPENDIX D

This annex contains result of applying the models trained by multiple individuals of P1

and P2 (local and FL training methods) with averaged thresholds to the data provided by

the SMH. The detection is made at 1Day, requiring 10% of the samples to be detected as

anomalous for the day to be labeled as such. The results are divided by type of diagnoses.

Table D.1. Number assigned to the types of diagnoses present in the
Hospital dataset

Number Type of Diagnoses
0 Intensive Care Medicine Services Main Diagnosis
1 International Classification of Diseases 10th revision
2 Diseases of the Circulatory System
3 COVID-19
4 Neoplasm
5 Diseases of the Genitourinary System
6 Common Diagnoses
7 Diseases of the Respiratory System
8 Diseases of the Nervous System and Sense Organs
9 Trauma and Poisoning
10 Supplementary Classification of Factors that Influence the Health
11 Diseases of the Digestive System
12 Hematological and Hematopoietic Organic Diseases
13 Diseases of the Musculoskeletal system and connective tissue
14 Infectious and Parasitic Diseases
15 Psychiatry

Figure 53. Metric evolution of the models trained with P1 and P2 with
an averaged threshold applied to hospital patients with known COVID-19
infection.
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Figure 54. Metric evolution of the models trained with P1 and P2 with
an averaged threshold applied to hospital patients with diagnostic types 0,
1, 2, 4 and 5.
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Figure 55. Metric evolution of the models trained with P1 and P2 with
an averaged threshold applied to hospital patients with diagnostic types 6
through 10.
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Figure 56. Metric evolution of the models trained with P1 and P2 with
an averaged threshold applied to hospital patients with diagnostic types 11
through 15.
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