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Resumo

No ambiente retalhista atual, o uso de tecnologias como videovigilância e inteligência artificial para o

estudo do comportamento dos clientes é um fator essencial para melhorar aspectos como marketing,

apoio ao cliente, e segurança. Neste contexto, a presente dissertação foca-se no desenvolvimento de

um sistema para a extração de informações sobre o comportamento dos clientes a partir de vídeos de

vigilância, o que envolve detetar e seguir pessoas, extrair pontos de trajetória, estimar velocidades de

caminhada, detetar grupos, e reconhecer ações usando dados de pose (esqueleto).

Em complemento ao sistema, propomos duas contribuições para melhorar o seu desempenho: o

mecanismo de compensação de oclusões e um método de suavização de trajetórias. O mecanismo de

compensação de oclusões foi criado para mitigar o impacto das oclusões nos dados de localização. Os

resultados indicaram melhorias estatisticamente significativas derivadas da sua utilização. Além disso,

o método de suavização foi introduzido para atenuar as oscilações nos pontos de trajetória, tendo em

conta informação anterior e posterior. Aliado ao mecanismo de compensação de oclusões, provou ser

uma ferramenta valiosa para melhorar o mapeamento de trajectórias.

Relativamente ao reconhecimento de acções, comparámos três modelos baseados em esqueleto

(ST-GCN, AGCN e PoseC3D) em subconjuntos do conjunto de dados People in Public com 12 classes de

ação. Os resultados obtidos com o treino e teste dos modelos revelaram a sua eficácia em reconhecer

ações típicas de clientes (atingindo taxas de acerto na ordem dos 90%), e permitiram-nos inferir casos

de utilização adequados para cada um deles.

Palavras-chave: comportamento do cliente; deteção de objectos; seguimento de objectos; extração

de trajectórias; estimativa de pose; reconhecimento de ações.
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Abstract

In the modern retail environment, leveraging technologies such as high-resolution video surveillance

and artificial intelligence to study in-store customer behaviour is a crucial factor in improving valuable

business aspects including marketing, customer service, and security. In this context, this dissertation

focuses on the development of a framework for extracting information regarding customer behaviour

from high-resolution surveillance videos. This framework incorporates a series of steps, which include

detecting and tracking each person, extracting trajectory points, estimating walking speeds, detecting

groups, and recognising actions using pose (skeleton) data.

Along with the framework, we propose two contributions designed to enhance its performance:

occlusion-aware mechanism and trajectory smoothing method. The occlusion-aware mechanism was

created as a means of mitigating the impact of partial occlusions on location data. The experimental

results indicated statistically significant improvements resulting from its application. Furthermore, the

smoothing method was introduced to attenuate oscillations in the trajectory points, considering both

past and future path information. Combined with the occlusion-aware mechanism, it proved to be a

valuable tool for improving trajectory mapping.

Regarding action recognition, we compared three skeleton-based models (i.e. ST-GCN, AGCN, and

PoseC3D) on subsets of the People in Public dataset featuring 12 shopping-related action classes. The

results obtained from training and testing the models demonstrated their effectiveness in recognising

customer behaviour (reaching accuracy values of around 90%) whilst ensuring privacy, and allowed us

to deduce appropriate use cases for each of them.

Keywords: customer behaviour; object detection; multi-object tracking; trajectory extraction; pose

estimation; action recognition.
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CHAPTER 1

Introduction

In this chapter, we begin by delving into the motivation regarding the theme and problem addressed

in this dissertation, as a means of introducing the subject. Then, the goals are presented, followed by

the research questions that are intended to be answered in this dissertation. Finally, the methodology

that was adopted for the development of this work is described.

1.1. Motivation

In recent years, advances in observational technology and retail analytics have facilitated the study of

in-store customer behaviour for the purpose of behavioural marketing, in contrast to traditional retail

marketing [1]. Using diverse tools such as high-resolution video surveillance cameras, depth sensors,

traffic counters, and radio frequency identification (RFID) tags, enables the possibility to continuously

evaluate how customers behave while shopping and how they respond to stimuli [1] (e.g. discounts,

in-store advertisements and product placement). To this end, rather than solely drawing conclusions

based on purchase records, one can analyse the decisions made by customers from the moment they

enter the store until they reach the checkout line [2]. By studying these decisions it is possible to infer

customer profiles [3], and to adapt the layout of the store based on their preferences, which has been

shown to have a positive impact on sales [4].

In parallel with the marketing aspect, there are various practical issues that can benefit from the

assessment of in-store customer behaviour, for instance detecting if a customer needs the support of

a sales assistant [3]. Furthermore, store security can be improved, for example by recognising violent

behaviour [5] and theft [6], both of which would traditionally require a person actively monitoring the

public areas.

Several techniques can be applied to evaluate customer behaviour in order to subsequently infer

profiles. These techniques include recognising customer actions (e.g. interactions with the products

on the shelves [2]), extracting trajectory points relative to the paths taken by customers in the store,

and generating heatmaps that illustrate the most consulted areas [4]. This dissertation focuses on the

action recognition and trajectory point extraction techniques, based on image data (videos) acquired

from high-resolution surveillance cameras.

With the improvements in computing power over the last decades and the availability of public

datasets with huge amounts of labelled data, the interdisciplinary field of Computer Vision has seen

great progress. Specifically, in the Human Action Recognition (HAR) application domain, research has
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evolved from shallow approaches, which require intensive engineering work and specialised domain

knowledge to develop effective feature extraction methods, to deep learning approaches, which are

able to autonomously learn more generalised and powerful features [7]. Nevertheless, there are still

multiple problematic challenges for this domain, namely cluttered background, viewpoint variations,

lighting conditions, and occlusions [7].

Some examples of deep learning approaches for HAR include the Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs) and Graph Neural Networks (GNNs). There are multiple

real-world scenarios in which they can be applied such as surveillance, autonomous driving systems,

human-robot interaction and entertainment [8]. In addition, different data modalities can be used as

input for HAR, namely: RGB, skeleton, depth, infrared, point cloud, event stream, audio, acceleration,

radar, and Wi-Fi [8]. Given the scope of this dissertation, both RGB data generated by the surveillance

cameras and skeleton data extracted from the generated video frames, can be used.

However, when dealing with customer information, there is an important topic that needs to be

addressed first: Privacy. As stated in Recital 26 of the General Data Protection Regulation (GDPR) [9],

which applies to all individuals in the European Union (EU) and European Economic Area (EEA): “The

principles of data protection should apply to any information concerning an identified or identifiable

natural person. (...)”. Therefore, apart from the need to have the customers' faces blurred, in order to

maintain total anonymity, the action recognition process must be performed based on customer pose

information (skeleton data) [10].

1.2. Goals

The work documented in this dissertation was developed as part of the “ECI 4.0 - Espaços Comerciais

Inteligentes” project, which was conducted as a partnership between AXIANSEU Digital Solutions SA

(Axians), SONAE MC Serviços Partilhados SA (Sonae) and ISCTE-IUL. The aim of this research project is

to develop the prototype of a multimodal platform for the intelligent analysis of customer behaviour

in large commercial spaces, using Computer Vision, Sensor Fusion and Machine Learning techniques

[11]. This dissertation is primarily focused on the task “development of pose classification models for

the detection of client specific behaviours”.

With this in mind, the main objective of this work is to create a framework capable of effectively

extracting information regarding customer behaviour, based on videos acquired from high-resolution

surveillance cameras. This includes trajectory-related data (location and speed) and pose-related data

(actions), both of which require stable and accurate tracking data for the continuous identification of

each customer. As for the latter, the framework should be able to recognise shopping-related actions

performed by customers in retail stores, using only their pose information (skeleton data).
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1.3. Research Questions

The assessment of customer behaviour is a demanding process owing to all the challenges inherent in

real-world retail settings. These mainly include occlusion cases (caused by shelves, banners, products

on display, other customers, etc.) and the requirement to ensure customer privacy. With this in mind,

it is important to answer the following questions:

● How can the accuracy of location data generated by object detection and tracking algorithms

be improved in real-world scenarios involving occlusions? What are the practical implications

of these improvements on trajectory mapping?

● What methods can be used to effectively recognise customer behaviour while ensuring their

privacy? What are the most suitable use cases for each of these methods, taking into account

performance and computational efficiency?

1.4. Methodology

Considering the context in which this dissertation is conducted, the Cross-Industry Standard Process

for Data Mining (CRISP-DM) [12] model was adopted for the purpose of establishing the development

phases for this work. These phases and their interconnections are illustrated in Figure 1.1.

Figure 1.1. CRISP-DM methodology [12].

Initially, in the Business Understanding phase, the problem to be addressed is identified, and the

goals to try to solve it are established. These were presented in Sections 1.1 and 1.2.

Subsequently, in the Data Understanding phase, the dataset provided to us as part of the ECI 4.0

project (consisting of surveillance videos recorded inside an electronics store) is analysed in order to

identify the characteristics of the data, as well as the challenges that may arise from them. However,

given that these may render the dataset unusable, the identification, collection and analysis of other
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alternative datasets may be necessary to accomplish the established goals.

Based on what was decided in the previous phase, several techniques can be applied to the data

before going to the Modelling phase. As stated in Section 1.2, the main goal of this work is to develop

a framework capable of extracting valuable information regarding customer behaviour from images

(video frames). This includes trajectory-related data depicting the location of customers over time, as

well as pose-related data representing the actions performed by them. Thus, in the Data Preparation

phase, several procedures may be required. These encompass pre-processing video frames, including

metadata, as well as annotating the dataset with bounding boxes around the individuals of interest in

each video frame, numerical identifiers (IDs) for these individuals, and action class labels. From there,

it is possible to extract skeleton sequences as a means of building a skeleton-based HAR dataset.

After that, in the Modelling phase, the selected skeleton-based HAR deep learning methods are

implemented and trained using the data that was prepared in the previous phase. These models are

then tested using metrics that have been chosen for that.

Next, in the Evaluation phase, in addition to the technical results obtained in the previous phase,

the models are evaluated in terms of which one best meets the business requirements, based on the

identified benefits. Therefore, with this in mind, a decision is made about whether to move on to the

Deployment phase or to iterate further in light of important aspects.

Finally, in the Deployment phase, the solution is migrated to the multimodal platform of the ECI

4.0 project, for the purpose of assessing its impact together with all the other components. It should

be noted that this assessment is not performed by us.

1.5. Document Structure

The remainder of this dissertation is organised as follows:

● In Chapter 2, a systematic review is provided of existing literature on techniques and methods

related to Human Action Recognition (HAR).

● In Chapter 3, the components that make up the proposed framework are described, including

implementation decisions and algorithms used. Moreover, the datasets that were considered

for use throughout the course of this work are discussed.

● Chapter 4 introduces the occlusion-aware mechanism, a contribution created to detect cases

of partial body occlusion and mitigate their effect on location data. Furthermore, a trajectory

smoothing method is proposed to attenuate oscillations in the extracted trajectory points.

● In Chapter 5, a rigorous statistical evaluation of the occlusion-aware mechanism is conducted.

Additionally, a detailed description of the procedures performed for training and testing the

selected skeleton-based HAR models is presented, along with an analysis of the results.

● Finally, Chapter 6 draws the main conclusions and suggestions for future work.
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CHAPTER 2

Literature Review

In this chapter, the reader can find a review of the existing literature around techniques and methods

related to Human Action Recognition (HAR). First, the methodology chosen to carry out the search for

related work is described. Then, important background concepts linked to this subject are introduced.

Finally, related work involving different approaches to perform HAR is presented.

2.1. Systematic Review

For the purpose of finding the existing literature related to the topic of this dissertation, a search was

conducted in a database and a web search engine, i.e. Scopus and Google Scholar, respectively. The

main source of information was Scopus, where a query was created in an attempt to find the most

relevant related work, whereas Google Scholar was used to access other papers that were referenced

in the related work found through the query. Other documents were provided by the supervisors and

members of the “ECI 4.0 - Espaços Comerciais Inteligentes” project.

The query created to conduct the search in Scopus was the following: ( 'action recognition' OR

'action detection' OR 'pose estimation' OR 'pose orientation' OR 'customer behav*' OR 'shopping

behav*' ) AND ( 'convolutional neural network' OR 'skeleton based' ) AND ( 'surveillance' ). The

keywords were chosen with the aim of finding the various deep learning methods that are frequently

employed for HAR (whether based on the RGB or the skeleton modality), as well as papers related to

the analysis of in-store customer behaviour, both in the surveillance setting. This query was iteratively

improved during the research.

In order to filter the query results so that only relevant papers were returned, some constraints

were imposed, namely the requisites of being: published (publication stage set as “final”), conference

papers and articles, in the field of Computer Science or Engineering, written in english, and published

from 2014 to 2022.

After performing the query with all the previously described constraints, the PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-Analyses) [13] workflow was adopted. Starting with

201 papers extracted from Scopus, a screening was done (title and abstract analysis), where only 80

were selected with the criterion of being related to the topic of this dissertation. Next, a skimming of

these documents was carried out, in which only the papers that complied with the title and abstract,

were accessible under the provided licence, and have been published in recognised conferences and

journals, were selected. This last criterion of the skimming phase was applied through the Conference
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Ranks and ScimagoJR websites. Therefore, apart from the documents accessed from other sources,

22 papers were selected. In the end, 29 papers were fully analysed and included in Section 2.3. Table

2.1 provides a concise overview of this process, indicating the number of papers at each stage.

Table 2.1. Summary of each phase of the Systematic Review.

Phase # Papers

Query performed on Scopus 201

Screening (title and abstract analysis) 80

Skimming (selective reading of the papers) 22

Selected to be fully analysed (including additional papers not retrieved by the query) 29

2.2. Background Concepts

Most literature on Human Action Recognition (HAR) attempts to classify entire trimmed videos, which

means a single person performs a particular action for the whole duration of the video. However, in

contrast, when it comes to surveillance footage, each video consists of continuous, untrimmed data

streams, where different people perform various actions over time.

To build a classification framework, it is necessary to detect each person, track them throughout

the course of the video, and only then classify the multiple actions they are performing. With this in

mind, some techniques that enable the transition to the video surveillance scenario are presented in

this section, including object detection, multi-object tracking and human pose estimation algorithms.

2.2.1. Object Detection Algorithms

In order to detect each person in the video frames, object detection algorithms can be employed. The

concept of these algorithms consists in identifying the objects present in a given image, returning for

each object: the bounding boxes with the coordinates of their location, the class to which they belong

(e.g. person, dog, bicycle, or car) and the confidence level of the detection (from 0.0 to 1.0).

There are two main categories into which these algorithms can be divided, i.e. single-shot and

two-stage detectors [14]. The former refers to algorithms that only analyse each image once to infer

the objects and their location, thus making them computationally efficient (an important

requirement when it comes to real-time applications such as surveillance systems). The latter refers

to algorithms that perform two passes over each image. They first generate a set of propositions on

possible object locations and then refine these propositions to provide final predictions.

Examples of single-shot detectors include YOLO (You Only Look Once) [15] and SSD (Single Shot

MultiBox Detector) [16], whereas two-stage detectors include R-CNN [17], denoted Regions with CNN

features, and its enhancement variations, namely Fast R-CNN [18] and Faster R-CNN [19]. Figure 2.1

shows a high-level illustration of how a single-shot detector (in this case, YOLO) works.
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Figure 2.1. Model proposed for YOLO [15].

2.2.2. Multi-Object Tracking Algorithms

Based on the detections generated by the object detection algorithms, it is necessary to perform data

association (i.e., to link bounding boxes across video frames), in order to obtain the location of each

detected person over time. Hence, assigning a numerical identifier (ID) to each tracked person. This is

referred to as the tracking-by-detection paradigm.

To this end, objects are represented as tracks. This representation typically includes information

regarding position, velocity, and other relevant attributes, which collectively define the state of each

tracked object. With this in mind, motion models (e.g. Kalman or Particle filters) are used to predict

where each object should be in the current frame based on its previous states. After that, assignment

algorithms (e.g. Hungarian method) are employed to associate the predicted tracks to the detections

within the current frame, relying on similarity or cost scores (e.g. Euclidean distance or Intersection

over Union (IoU)). Once the assignments are made, the states of the existing tracks are updated using

the motion models, based on the assigned detections. Additionally, appearance information is often

used to enhance tracking performance, which involves extracting features (e.g. colour histograms or

deep learning embeddings) that help distinguish between objects with similar motion patterns.

There are several challenges that render this a demanding task, mainly due to the complexity and

variability of real-world scenarios. These challenges include crowded environments (where multiple

people can be close together, leading to frequent ID switches), occlusions (when people temporarily

hide behind others, partially or completely), complex motion (abrupt stops and accelerations, as well

as non-linear trajectories), appearance variations (clothing, illumination, and viewpoint changes), and

scale variations (spatial location in the scene, and posture changes).

Examples of multi-object tracking algorithms, which employ the tracking-by-detection approach,

include SORT (Simple Online and Realtime Tracking) [20], DeepSORT [21] (extended version of SORT

that integrates appearance information based on a deep appearance descriptor), and ByteTrack [22].
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A depiction of the output of these algorithms, in particular DeepSORT, is shown in Figure 2.2.

Figure 2.2. DeepSORT output example [21].

2.2.3. Human Pose Estimation Algorithms

In the case of skeleton-based HAR, human pose can either be inferred using RGB-D sensors (3D joint

coordinates) or using pose estimation algorithms (2D joint coordinates). Since RGB-D sensors are not

available for this work, pose estimation algorithms need to be employed. These algorithms consist of

predicting the location of individuals in images by identifying and classifying each of their body joints

(keypoints), which have an associated ID and prediction confidence score (ranging from 0.0 to 1.0).

This process generates a structure that resembles the human skeleton, by establishing connections

(also referred to as edges or limbs) that define the spatial relationships between these keypoints. The

specific number of keypoints, and consequently connections, varies depending on the architecture of

the model (which can be designed for either a fixed or adaptable number of keypoints), as well as the

dataset used for training the model.

There are two main approaches for pose estimation algorithms: top-down and bottom-up. While

top-down approaches use information from object detection algorithms about detected individuals in

a given image by estimating body joints within the generated bounding boxes, bottom-up approaches

detect all the body joints in the whole image and then group the joints that belong to each individual.

Compared to its bottom-up counterparts, top-down methods tend to obtain superior performance on

standard benchmarks [23]. Examples of bottom-up and top-down approaches include OpenPose [24]

(whose model is represented in Figure 2.3) and HRNet [25], respectively.

Figure 2.3. Model proposed for OpenPose [24].
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2.3. Related Work

Based on the techniques that were presented in Section 2.2, both RGB data sequences and human

skeleton sequences can be generated for each tracked person in a video. These two cases correspond

to the RGB and skeleton modalities, respectively. There are different methods that can be employed

when performing Human Action Recognition (HAR) under each of these modalities, or a combination

of both. In this section, we present and discuss some of these methods, which have been employed

in other studies related to the theme of this dissertation.

2.3.1. CNN-based methods for HAR

In recent years, Convolutional Neural Networks (CNNs) have garnered attention in several areas in the

field of Computer Vision due to their ability to learn spatial features and patterns from still images.

These types of CNNs are referred to as 2D CNNs, and can be used in tasks such as image classification,

segmentation, and object detection. Plus, it is possible to exploit the availability of large amounts of

annotated image data through transfer learning. In [26], a framework for HAR based on the fusion of

hand-crafted and deep features was proposed. Specifically, Histogram of Oriented Gradients (HOG)

features extracted from processed silhouette images and 2D CNN (pre-trained AlexNet) deep features

extracted from the original video frames, were fused into a single feature vector. Then, an entropy-

based feature selection technique was used to reduce the dimensionality and a multi-class Support

Vector Machine (SVM) was employed to perform action classification.

However, to perform HAR based on RGB data sequences, as opposed to still images, both spatial

and temporal information need to be taken into account, as videos contain the temporal dynamics of

human body motion. In order to address this issue, various research projects have proposed different

solutions, including the gathering of motion-related information in the form of an image, and the use

of 3D CNNs, which can learn both spatial and temporal features (see Figure 2.4). Some pioneering

works that have explored these approaches include [27] and [28], respectively. In [27], the authors

first proposed a two-stream 2D CNN architecture for HAR (illustrated in Figure 2.5). This architecture

consisted of two separate 2D CNNs, one for extracting spatial features (appearance) from still frames,

and the other for extracting temporal features (motion) from dense multi-frame optical flow. The

results from both networks were combined using late fusion, based on softmax scores. In [28], the

authors proposed the use of 3D CNNs for HAR and, after that, several other works presented their

own architectures, including C3D [29] and I3D (Inflated 3D CNNs) [30], which aimed to maintain the

feasibility of using transfer learning, by inflating 2D CNNs into 3D. Also, [31] proposed a method for

HAR based on 3D CNNs using 3D motion cuboids as input, which consist of a sequence of absolute

temporal difference images, obtained by subtracting each frame with the previous, on a pixel-by-pixel

basis, as a way to capture motion information.
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Figure 2.4. Difference between 2D (left) and 3D (right) convolutions [29].

Figure 2.5. Architecture of the two-stream 2D CNNs for HAR in [27].

Given that human actions are normally performed at different temporal scales, the authors of

[32] proposed a method for multi-temporal scale HAR. For each temporal scale, a two-stream 3D CNN

was employed, with one stream to learn the spatio-temporal information from RGB and another from

optical flow. In order to fuse the results, two types of feature-level fusion were required: RO (RGB and

optical flow) fusion and MTS (multi-temporal-scale) fusion. For the former, summation was employed

and, for the latter, a parallel approach to the Discriminant Correlation Analysis (DCA) method, which

reduces dimensionality. Results of the tests performed on the UCF101 and HMDB51 datasets showed

that when compared to the single-temporal-scale methods, the proposed method achieved higher

recognition accuracy and spent less time on classification due to the smaller representation.

In [33], the authors proposed the pairwise attentive adversarial spatio-temporal network (PASTN)

to perform cross-domain few-shot action recognition. PASTN comprised a pairwise TR3D network, an

attentive adversarial network and a pairwise discrimination margin loss. The pairwise TR3D network

consisted of a source domain TR3D network and a target domain TR3D network, each consisting of a

2D CNN (ResNet-50) to obtain the spatial information with a 3D convolution block on top to convert

the spatial features into spatio-temporal features. The attentive adversarial network was employed to

align actions with large domain discrepancies, which consisted of a network to generate transferable

domain adaptation weights and another network to fill the gap between source and target domains.

Finally, a pairwise margin discrimination loss function was used to improve the discrimination of the

learned domain-invariant features.

Furthermore, with the goal of recognizing interactions between two people, in addition to single

person behaviour, the authors of [34] proposed a two-stream 2D CNN model. In one branch, Motion

History Images (MHI) were extracted from sequences of 10 frames and passed to a 2D CNN (VGG-16)
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that would output softmax scores. In the other branch, the last frames of the sequences were fed to a

Faster R-CNN model that would output both softmax scores and the bounding boxes representing the

location where the actions occurred. The softmax scores from both branches were fused in order to

obtain the final action classes.

The previously reported studies referred to HAR based on RGB sequences, however, due to some

issues that are inherent to the RGB modality, such as illumination changes, background clutter and

appearance variations, some works explored the idea of using human skeleton sequences. The main

concept of using 2D CNNs to perform skeleton-based HAR is to encode the spatio-temporal dynamics

of the skeleton sequence into the form of an image to be processed by 2D CNNs. In [35], an enhanced

3D skeleton visualisation method for view invariant human action recognition was proposed (shown

in Figure 2.6). To achieve this, a sequence-based view invariant transform method was applied, which

synchronously transformed all skeletons, thus retaining the relative motion between skeletons. Then,

the transformed skeletons were depicted as colour images, which encode both spatial and temporal

information of the skeleton joints. Furthermore, in order to emphasise the most discriminating cues,

visual (morphology) and motion (joint weighting) enhancement methods were employed. Finally, all

ten generated image types were passed to a multi-stream 2D CNN, with each stream responsible for

processing one type. The probabilities generated by each stream were fused using a weighted fusion

method, to generate a final class score.

Figure 2.6. Enhanced 3D skeleton visualisation method in [35].

Similarly, the authors of [36] proposed a unified framework for learning comprehensive shape

and motion representations from 3D skeleton sequences using Geometric Algebra (GA). To this end, a

pipeline was developed, in which the space of a 3D skeleton sequence was first built as a subset of

GA. Then, a rotor-based view transformation method was applied to eliminate the effect of viewpoint

variation. After that, a space-time view invariant model (STVIM) was built and, therein, the shape and

motion representations of the skeleton sequence were mutually learned: Joint Shape Representation,

Joint Motion Representation, Bone Shape Representation, and Bone Motion Representation. Finally, a

multi-stream 2D CNN was used to extract and fuse deep features from the representation mapping

images for action classification.
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2.3.2. RNN-based methods for HAR

Some of the downsides of using CNN-based methods for HAR on RGB sequences include the fact that

they cannot capture long-range temporal dependencies. To address this issue, some studies combine

these methods with RNN variations, i.e. Recurrent Neural Network (RNN), Long Short-Term Memory

(LSTM), and Gated Recurrent Unit (GRU).

In [37], the authors employed multiple hybrid deep neural networks for HAR in videos, including

Convolutional Long Short-Term Memory (ConvLSTM) and Long-Term Recurrent Convolutional (LRCN)

networks. The ConvLSTM network consisted of four ConvLSTM2D layers and a final dense layer, with a

ConvLSTM2D layer being similar to a typical LSTM layer, but having the ability to extract both spatial

and temporal features. On the other hand, the LRCN consisted of a 2D CNN to extract spatial features

followed by a RNN variant to cope with temporal dynamics and a final dense layer. Multiple 2D CNN

encoders including VGG16, ResNet50, DenseNet121, and MobileNet, as well as RNN variant decoders

including LSTM, bidirectional LSTM (BiLSTM), and GRU, were tested on the UCF50 dataset. The best

accuracy of 87%, using 20-frame sequences, was achieved using LRCN with MobileNet as the encoder

and BiLSTM as the decoder, with MobileNet being the lightest and the best choice as a visual feature

extractor.

In [38], an evolving ensemble deep learning model consisting of 3 CNN-BiLSTM networks (whose

architecture is shown in Figure 2.7) was proposed for HAR. Each of these networks consisted of a 2D

CNN encoder (pre-trained GoogLeNet), which would extract spatial features from the video frames,

and a BiLSTM decoder, which would infer both their forward and backward temporal dependencies.

In addition, a Swarm Intelligence (SI) algorithm was used to optimise the relevant hyper-parameters

of each BiLSTM network, such as the learning and dropout rates, and the number of hidden neurons.

The results of each network were fused by averaging the softmax scores. The model was evaluated

on publicly available datasets (i.e. KTH, UCF50 and UCF101), and demonstrated superior performance

compared to those with default and optimal configurations identified by other classical and advanced

search methods.

Figure 2.7. Architecture of each CNN-BiLSTM network for HAR in [38].
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In addition to the RGB modality, the strengths of the RNN-based methods can also be applied in

the skeleton modality. The existing literature exploits two main approaches, consisting of RNN-based

methods for extracting the long-range dependencies between consecutive skeletons and, inspired by

the two-stream method [27] presented in Section 2.3.1, the combination of such motion information

with appearance features extracted from RGB data using CNN-based methods. In [39], the authors

proposed a two-stream RNN/3D-CNN method for HAR from 3D skeleton data and RGB video frames,

both captured by a Kinect sensor. Specifically, the RNN (BiGRU) stream was fed with 3D coordinates of

human skeletons as input, and the 3D CNN (pre-trained C3D) stream with RGB sequences (16 frames

each). Furthermore, in order to fuse the results from each stream, features from the fully connected

layers were concatenated into a single feature vector, which was normalised using L2 normalisation,

and fed to a linear SVM to classify the actions. Results from the experiments performed on the NTU

RGB+D dataset showed that using both streams resulted in a 13% accuracy improvement over simply

using the RNN stream. This study was extended in [40], in which the main contribution was the repla-

cement of the 3D CNN with a 2D CNN (pre-trained Xception), being that only the middle frame of the

RGB frame sequence was used (cropped at the location of the human subject to remove background

interference). Moreover, two attention modules (self-attention and skeleton attention) were included

in the 2D CNN stream, to extract the most relevant features for action representation. Also, contrary

to [39], the concatenated and normalised feature vector was fed to a fully connected layer followed

by a softmax layer to predict the actions. These aspects are illustrated in Figure 2.8. Results indicated

that the proposed method attained competitive performance close to that of [39], but with much less

parameters in the RGB stream (about one-third (76.6 million to 21.9 million parameters)).

Figure 2.8. Framework of the method for HAR using multimodal data in [40].

In [41], a model for HAR based on 2D skeleton data and a two-branch stacked LSTM network was

presented (shown in Figure 2.9). In order to enable structural parallelization and manage occlusions,

the structure of the network was designed to process the upper and lower body parts separately. The

input for each branch consisted of lightweight features derived from the skeleton joints, comprising
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angle and acceleration data. In addition, supplementary information from the scene surrounding the

analysed individual was extracted, using a support 3D CNN network (3D-DenseNet). The OpenPose

algorithm was employed to estimate the 2D poses of all the individuals in each video frame, and the

extension of an existing multi-object tracking algorithm was also included to track the detected 2D

poses in the entire frame sequence. Results from experiments carried out on different HAR datasets

(i.e. KTH, Weizmann, UCF Sports, IXMAS, HMDB51, UCF101, Kinetics400, UT-Kinect and NTU-RGB+D),

showed the ability of the model to manage missing skeleton information and partial body occlusions,

as well as its comparable performance to that of 3D skeleton-based works.

Figure 2.9. Architecture of the two-branched stacked LSTM network for HAR in [41].

2.3.3. GCN-based methods for HAR

Graph Convolutional Networks (GCNs) are a generalisation of CNNs for graphs of arbitrary structures.

Due to the graph nature of skeleton data, in which joints can be represented as nodes and bones can

be represented as edges, many works adopted GCN-based methods for HAR. Specifically, this subject

began to receive significant attention after the Spatial Temporal GCN (ST-GCN) was proposed in [42],

as the first adaptation of GCNs for HAR. To this end, based on sequences of skeleton data, the authors

introduced two types of edges for generating the input graph (noting that each body joint is a node):

the spatial edges (connections between different joints of the same skeleton) and the temporal edges

(connections between the same joint across consecutive time steps) – these are shown in Figure 2.10

as the blue and green connections, respectively. With this representation, both spatial patterns and

temporal dynamics of the skeleton sequences can be learned by the ST-GCN, where the convolution

filters are applied directly on the graph nodes and their neighbours. Furthermore, both 3D skeletons

generated using RGB-D sensors and 2D skeletons generated using pose estimation algorithms can be

employed in this architecture. Both approaches were explored on the NTU-RGB+D (3D coordinates)

and Kinetics (2D coordinates) datasets, using OpenPose as the pose estimation algorithm.
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Figure 2.10. Framework of the ST-GCN for HAR using skeleton data in [42].

The ST-GCN was extended in [43], in which the authors proposed the Two-Stream Adaptive GCN

(2s-AGCN). This extension consisted of explicitly using first-order (joint coordinates) and second-order

(bone lengths and directions) information, as opposed to the ST-GCN, which only considers first-order

information. To this end, a two-stream architecture was designed, in which softmax scores from both

streams were merged through addition to classify the actions. Moreover, instead of being manually

set, the topology of the graphs was parameterized and incorporated into the network to be jointly

learned and updated with the model, therefore being better suited for the HAR task.

In another approach, the authors of [44] proposed a multi-task framework based on ST-GCNs to

improve classification accuracy. For that, they included an attentional branch to give greater attention

to more discriminative features and a co-occurrence feature learning branch to aggregate all joints

globally. In the attentional branch, attention weights were learned from fully attentional blocks (FAB)

in a data-driven manner. In the co-occurrence feature learning branch, after the fourth convolutional

layer, the feature map tensors were transposed to arrange joints to the channel dimension, the result

was input to several convolutional operations in order to aggregate the global features from all joints

effectively.

2.3.4. Online Multi-Person Action Recognition

In the previous sections (2.3.1, 2.3.2 and 2.3.3), different deep learning methods that can be used for

HAR, either based on the RGB or skeleton modality, were presented. Most of these studies performed

HAR on trimmed videos, in which one or two people would perform a certain action for the entire

duration of the video. However, as mentioned in Section 2.2, in the case of surveillance footage, each

video consists of untrimmed data streams, where different people perform various actions over time.

Thus, to perform HAR in these cases, it is required that we detect all individuals, track them over time

(multi-person), and only then recognise the actions they are performing, while being able to detect

the beginning and end of each action (online). Thereby, in this section, we present some studies that

aimed to recognise human actions based on information captured by video surveillance systems.

In [45], the authors proposed a framework for HAR based on online surveillance data streams of

non-stationary environments. Specifically, a 2D CNN model (pre-trained VGG-16) was used to extract

spatial features relative to individual frames. These features were then passed to an optimised Deep
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AutoEncoder (DAE), which would convert the high-dimensional features into low-dimensional, while

learning the temporal changes between adjacent frames. Finally, a Quadratic Support Vector Machine

(QSVM) classifier was employed to process the output of the DAE as a means to classify the actions

being performed. Furthermore, predictions with high confidence scores were stored for iterative

fine-tuning with new data, allowing the model to adapt to variations in non-stationary environments.

Results from experiments performed on the UCF50, UCF101, HMDB51 and YouTube Action datasets

verified that the framework was capable of performing classification at 25 frames per second, while

maintaining efficient and effective performance.

In [46], the authors proposed a modular visual pipeline for surveillance systems with the goal of

early detection and prevention of suicide. For that purpose, they implemented a top-down approach

consisting of pedestrian detection, pedestrian tracking, pose estimation and action recognition (both

normal actions and high risk behavioural cues), where each step uses the output from the previous

module. In the first module, the authors used pre-trained YOLOv5 weights (YOLOv5x) and fine-tuned

them according to their own private dataset. Then, in order to track the detected pedestrians over

time, they applied the DeepSORT algorithm, which was also used to generate trajectory information.

After that, since the top-down pose estimation approach was chosen for the pipeline, HRNet was the

selected algorithm, rather than other bottom-up algorithms such as OpenPose. Finally, based on the

pedestrian pose information, various features of non-geometric and geometric types were extracted

from a sequence of 30 consecutive frames, and fed into a two-branch network with a stacked LSTM

structure (one branch for each feature type). The resulting softmax scores from both branches were

fused using an element-wise multiplication, and the fused value was then used to compute the final

action prediction for the given sequence. Additionally, a rule-based logical layer was created to assess

the occurrence of actions over a pre-defined duration, to infer risk behaviour. Figure 2.11 shows some

examples of recognition results obtained from running the pipeline on test samples.

Figure 2.11. Examples of recognition results on surveillance testing clips in [46].

Similarly, but using a bottom-up pose estimation approach, a HAR framework was proposed in

[10] for real-time on-the-edge surveillance systems. First, a multi-person human pose estimator was

used to extract the pose information of each person in the video frames and generate the respective
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bounding boxes. Then, each frame was cropped in the bounding boxes areas, and these crops were

used to compute feature representations and temporal locations, to assign numerical ID labels to

each person. Finally, an extension to the ST-GCNs named Real-World Graph Convolutional Networks

(RW-GCNs) was used to classify the actions from skeleton sequences. This extension was motivated

by three constraints that the authors identified in real-world scenarios, namely: flawed body joint

information provided by pose estimation algorithms, the need to have a short response time, and the

limited computational power of the low-power edge devices that were used in their work in order to

ensure privacy. To solve these issues, they used a simple static graph with a predefined structure,

adopted a Sliding Window (SW) method with no overlapping frames, and used attentive feedback

augmentation that consisted in propagating information from previous SWs into the network, while

processing the current SW. The results demonstrated the ability of the model to address real-world

constraints, while achieving an accuracy of 94.1% on the NTU-RGB+D-120 dataset, with 32 times less

latency than the baseline ST-GCN, and an accuracy of 90.4% on the Northwestern UCLA dataset in the

presence of noisy input.

Besides [10], other studies have explored the idea of using the SW approach for online HAR. In

[47], a framework for processing continuous, untrimmed data streams was proposed. To this end, the

authors used ST-GCNs to recognise human actions from skeletal sequences that were extracted based

on a SW method (depicted in Figure 2.12). This method consisted of dividing the signal into a series of

fixed-size windows, with the interval between each window (SW step size) set to 1 frame, resulting in

the overlapping of SWs. Due to this overlap, multiple predictions are made for each frame, so in order

to generate a final classification, the Majority Voting (MV) technique was used, in which the action

that received the most votes is chosen. This approach smoothes the final output labels, but implies a

latency corresponding to the length of the SWs.

Figure 2.12. Illustration of the SW approach with the MV principle [47].
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Likewise, a real-time multi-person HAR framework for surveillance applications was proposed in

[14]. First, throughout the video stream, the people in the scene were detected and tracked using the

YOLOv3 and DeepSORT algorithms, respectively. Also, if subjects were too far away from the camera,

a zoom-in function would be applied for better recognition performance. Then, for each person, the

area around the bounding box was blurred and, within an interval of 5 frames, a 16-frame SW would

be fed to an Inflated 3D CNN (I3D) to perform the classifications. Finally, Non-Maximum Suppression

(NMS) was applied in order to obtain a more robust decision for every group of five consecutive SWs,

which resulted in a delay of about 2.5 seconds between the recognition results and the occurrence of

the observed action.

Most skeleton-based approaches focus only on human skeletons, ignoring contextual information

such as objects and scenes. To address this issue, the authors of [48] proposed a framework for the

recognition of Object-related Human Actions using GCNs (OHA-GCN), which is shown in Figure 2.13.

First, the OpenPose algorithm was applied to estimate the pose of each person in a video frame. If a

person was holding an object, that object would be located by subtracting the human area (estimated

joint heatmap) from the moving area (background subtraction). Subsequently, a tracking-by-detection

algorithm was employed to extract the regions where each person was located over time, using the

pose information. In order to only select the poses with the most complete structure, an informative

frame selection strategy was used, that consisted of dividing the video in segments of equal length

and choosing the frame with the highest confidence score for each segment. Finally, a human pose

graph and an object-related human pose graph (object node connected to the joints of both hands)

were generated in the spatial and temporal domains from the sequence of informative frames, and

fed to a two-stream ST-GCN. The outputs of both streams were fused to obtain a final prediction. This

method was tested in the proposed IRD dataset and in the ICVL dataset (introduced in [49]), attaining

an accuracy of 80.1% and 91.9%, respectively, while still achieving real-time performance.

Figure 2.13. Framework of the OHA-GCN for HAR using skeleton data in [48].
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2.3.5. Customer Behaviour Recognition in Commercial Spaces

There is not much literature specifically about recognising customer actions from video surveillance

systems, and most of it relies on shallow, rule-based approaches. In [3], a system for the multimodal

assessment of customers' appreciation for products was proposed. First, frame sequences and audio

files were extracted from the respective surveillance videos. Based on the frame sequences, several

modules were created to extract different features, including motion energy classification (direction

and amount of movement), human detection and tracking (trajectories), face detection and tracking

(facial expression analysis), and hand detection and tracking (gesture recognition). As for the audio

files, a module was created to extract voice-related features, such as pitch, energy, MFCC and jitter, to

detect interest and classify it as positive or negative. Finally, to take into account the relationships and

the importance of each module, a Dynamic Bayesian Network (DBN) was employed. This system was

tested on recordings made in a store laboratory. However, given that the nature of the data involved

is quite sensitive, the ethical issues regarding privacy make it impractical in real-world scenarios.

In [2], the authors developed a system capable of recognising different types of customer actions

performed in front of the shelves, such as no interest, viewing, turning to shelf, touching, picking and

returning to shelf and picking and putting into basket. For that, both head and body orientation cues,

as well as arm gesture information were integrated into a framework. The head and body orientation

cues were discretized into 8 directions, and were inferred using a multi-class Support Vector Machine

(SVM) based Semi-Supervised Learning method in order to estimate whether the customer is looking

or turning to a shelf. The arm gesture information, defined as Combined Hand Feature (CHF), included

features such as hand trajectory, tracking status and relative position between hand and basket, and

were used by a DBN in order to classify different arm actions. Despite correctly recognizing 89.5% of

the images in the private dataset of the authors, since shallow and rule-based approaches were used,

there are some weaknesses that can be identified in this work, such as not being able to generalise

well and not being scalable to other more demanding datasets.

In the future work section of [2], the authors discussed that they wanted to try other postures

such as bending over or squatting down, rather than just standing. That aspect was addressed in [49],

in which each action was deconstructed into three abstraction levels, that is: posture, locomotion and

gesture. These abstraction levels provided three sub-action descriptors for each action, which were

classified using three 2D CNNs that aimed to extract different appearance-based temporal features.

The goal consisted of developing a real-time action recognition model for surveillance systems, where

each person in a video frame would be identified through motion detection, human detection (HOG

with SVM) and tracking (Kalman Filter) algorithms. Then, the respective regions of interest (bounding

boxes) would be fed to the 2D CNNs, in the forms of binary difference images (shape), motion history

images, and their combined cues (weighted average images), for each abstraction level respectively.
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Their framework achieved a mean Average Precision (mAP) of 76.6% and 83.5% in frame-based and

video-based experiments, respectively, while running at 25 frames per second on the proposed ICVL

video surveillance dataset, showing its ability to perform in real time. Figure 2.14 illustrates examples

of recognition results obtained from running the framework on test videos from the ICVL dataset.

Figure 2.14. Examples of recognition results on surveillance testing clips in [49].

2.3.6. Summary and Contributions

Considering the related work that was just described, it can be concluded that there are various types

of deep learning methods that can be used to perform Human Action Recognition (HAR), either using

RGB data, human skeleton data, or a combination of both.

When using RGB data (images or videos), CNN-based methods have the strength of being able to

learn appearance information about the scene and the objects (including people) that are involved in

it. However, because 2D CNNs can only be employed to extract features from static images, and the

temporal dynamics of the human body is, in most cases, an essential aspect to describe actions, many

solutions have been proposed. These include the gathering of motion-related information in the form

of an image (e.g. optical flow) to be learned by 2D CNNs, and the use of 3D CNNs, which can extract

both spatial and temporal features from video frame sequences. Additionally, many works have used

RNN-based methods as a complement to 2D CNNs, where 2D CNNs extract features from static video

frames and RNN-based methods operate on them to learn temporal dependencies. Nevertheless, due

to some challenges that are inherent to the RGB modality, such as illumination changes, background

clutter and appearance variations, various works have explored the use of skeleton data.

There are two main forms of acquiring human skeleton data, either using RGB-D sensors, which

extract the 3D coordinates of body joints from the depth information of the scene, or pose estimation

algorithms, which directly extract the 2D coordinates of body joints from RGB data. When using the

skeleton modality, either CNN, RNN, or GCN-based methods can be used for HAR. In the case of the

CNN-based methods, most works explore different ways of encoding the spatio-temporal dynamics of

skeleton sequences as pseudo-images to be processed using 2D CNNs. On the other hand, regarding

the RNN-based methods, some works pass the body joint coordinates directly to the networks, while

others pass lightweight features derived from the skeleton data, such as angles and acceleration data.
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Finally, studies that use GCN-based methods, leverage the natural graph structure that is inherent in

skeleton data, where body joints are represented as nodes and bones as edges.

Furthermore, taking into account the advantages of these two modalities, some works aimed at

developing multimodal methods, in which two or more networks are used to process different types

of data. With regard to this topic, most of the studies that were covered used CNN-based methods to

process RGB data and RNN-based methods to process skeleton data, although GCN-based methods

have also been employed for the latter case.

Regarding the video surveillance scenarios, where each subject needs to be detected and tracked

throughout the data stream (multi-person), both RGB and skeleton modalities have been used. In the

case of the former, the region covered by the bounding box of each tracked person is extracted in a

series of consecutive frames, and the resulting RGB sequences are passed to a CNN-based method for

recognizing the actions. However, since skeleton-based methods do not require much information to

perform HAR, most works have chosen to use them. In such cases, RNN and GCN-based methods are

employed to perform HAR on 2D skeleton sequences extracted through pose estimation algorithms,

using either bottom-up or top-down approaches. However, the use of supplementary cues to further

enrich the pose information was not explored. In addition, to segment the recognised actions in real

time, many works applied the Sliding Window (SW) technique, each with a different approach.

In the specific case of customer action recognition in commercial spaces (i.e. stores), there are

only a few studies, and most are based on shallow, rule-based approaches, which is not ideal with all

the recent advances in deep learning methods. Moreover, none of them covered the implications of

real-world cases, where customer faces need to be blurred due to ethical and privacy issues.

Thus, this dissertation seeks to explore this gap in the literature through leveraging existing deep

learning methods to the case of customer action recognition in large commercial spaces, noting that

when compared to other surveillance scenarios, these tend to be more challenging due to occlusions

by shelves and banners. With this in mind, the focus of this dissertation is to employ skeleton-based

methods that have been previously used for HAR in video surveillance systems (specifically ST-GCNs),

while addressing the practical issues of occlusions and trajectory mapping. Table 2.2 shows the most

relevant studies for the scope of this dissertation.
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Table 2.2. Overview of the most relevant studies for the scope of this dissertation.

Reference Description Highlights

[40]

A two-stream RNN/2D-CNN method was
proposed for HAR based on the multimodal
fusion of 3D skeleton data and RGB data.

- Supplemented the pose information
with RGB data to recognise
human-object interaction actions.

- Similar to [39] but with one-third of the
parameters in the RGB stream due to
the use of 2D CNNs instead of 3D CNNs.

[41]

A two-branch stacked LSTM network was
proposed for HAR based on 2D skeleton
data, in which the upper and lower body
parts were processed separately.

- Robust approach to deal with partial
occlusions.

[42]

The authors introduced the first adaptation
of the GCNs for skeleton-based HAR
(ST-GCN), which is able to automatically
learn spatial and temporal patterns from
skeleton sequences.

- Supports 2D skeleton data.
- Provides complementary information to
the RGB modality.

[46]

A modular visual pipeline was proposed for
surveillance systems with the intent of early
detection and prevention of suicide. The
pipeline consisted of modules for pedestrian
detection, pedestrian tracking, pose
estimation, action recognition (RNN-based
method), and logical layer to infer risk
behaviour.

- Used the YOLOv5 object detector, the
DeepSORT tracker, and the HRNet pose
estimator (top-down approach).

[10]

A framework was proposed for HAR in
real-time on-the-edge surveillance systems.
The authors extended the ST-GCNs
(RW-GCNs), to cope with flawed body joint
information, limited computational power
and short response time.

- Robust approach to deal with noisy
input from pose estimators.

- More efficient than the base ST-GCN.
- Used a Sliding Window (SW) technique
with no overlapping frames.

[47]

A framework was proposed for processing
continuous, untrimmed data streams. The
authors used ST-GCNs to recognise human
actions from skeleton sequences that were
extracted based on a SW technique.

- Used a SW technique with overlapping
frames (step size of 1 frame) and Major
Voting (MV) to infer the final action for
each frame.

[48]

A framework was proposed for the
recognition of object-related human actions
using GCNs (OHA-GCN). For that, the authors
introduced an object-related human pose
graph, in which the object node is connected
to the joints of both hands.

- Viable approach to recognise
human-object interaction actions
without using appearance information.

[2]
A system was proposed for recognizing
different types of customer actions
performed in front of the shelves.

- Similar goal to that of this dissertation.
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CHAPTER 3

Design and Development

In this chapter, details regarding the design and development of the proposed solution are presented.

The aim is to create a framework capable of effectively extracting information on customer behaviour

from high-resolution surveillance footage. With this in mind, an overview of the various components

that constitute the framework is first provided. Then, different datasets that were or could have been

used to train and test the selected deep learning algorithms, as well as to simply perform inference,

are described.

3.1. Overview

The process of extracting information from video regarding the behaviour of a person is composed of

a series of steps, illustrated in Figure 3.1. Initially, a video is loaded and decoded into a sequence of

frames, which are stored in a list. Then, for each video frame, an object detection algorithm is used to

identify and locate people. Next, a multi-object tracking algorithm is employed to assign a numerical

identifier (ID) to each detected person over time. Based on this result, trajectory points are extracted,

the respective projections on the 2D floor plan (top view) are obtained, and an estimate of the speed

at which each person moves is calculated. Besides the trajectory data, skeleton sequences regarding

the pose of each tracked customer are also extracted. These sequences are then utilised to infer the

actions being performed. Furthermore, groups are identified by analysing factors such as the distance

between people and the scale of their bounding boxes.

The implementation of the framework is publicly available and can be accessed via the following

GitHub repository: https://github.com/simaoc00/eci4.0-customer-behaviour.

Figure 3.1. Diagram of the proposed framework.
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3.1.1. Person Detection

As mentioned in Section 2.2.1, object detection algorithms can be applied to detect people in video

frames, their purpose being to locate the objects present in a given image and identify them based on

their class (e.g. person, bicycle, car).

You Only Look Once (YOLO), whose first version was proposed in [15], is one of the most widely

used methods for this task. Its architecture consists of a single Convolutional Neural Network (CNN)

capable of simultaneously generating multiple bounding boxes, as well as class probabilities for each

of them. The main benefits over other object detectors, such as R-CNN [17] (including Fast [18] and

Faster [19] R-CNN), are that it is extremely fast, can take into account the context in which the objects

are in the image, and is very generalizable in how it learns the representations of each object.

Throughout the years, several versions of the YOLO algorithm have been proposed, with version

8 currently available. This work uses version 5 (YOLOv5 [50]), given that it is currently in a stable state,

performs well, and is easily accessible through the PyTorch Hub [51] repository of pre-trained models.

In particular, we chose to employ the YOLOv5x6 model because of its ability to detect distant people,

as it operates on high-resolution images (1280x1280 pixels).

The weights that are provided in the Pytorch Hub repository, and were consequently used for this

dissertation, result from a training process executed by the authors of YOLOv5 on the Microsoft COCO

[52] dataset. Given that this dataset includes a large number of labelled images (over 200,000), many

of which feature people, the pre-trained YOLOv5x6 model delivered reliable results, without the need

to fine-tune it to our data.

A comparison between the various pre-trained YOLOv5 models can be seen in Table 3.1. The first

column contains the names of the models, each denoted by a letter (n, s, m, l, x) representing its size,

along with an additional '6' to indicate the variants designed for higher-resolution images. The second

column displays the input sizes for each model in pixels. The third and fourth columns show the mean

Average Precision (mAP) scores, indicating performance at Intersection over Union (IoU) thresholds of

0.5 to 0.95 and 0.5, respectively. The fifth and sixth columns display the inference speeds for CPU and

GPU (NVIDIA Tesla V100) for a batch size of 1, in milliseconds. The last two columns show information

on the number of model parameters (in millions), as well as the number of floating-point operations

(FLOPs) required to process an image with a resolution of 640x640 pixels (in billions).

Upon analysing Table 3.1, it is clear that, beyond operating on high-resolution images, YOLOv5x6

is the best performing model, as it achieved the highest mAP scores. This was the main consideration

in our choice over the other '6' variants, as our focus was on obtaining the most reliable location data

possible. However, it should be noted that this superior performance comes with considerably higher

computational complexity. Specifically, the YOLOv5x6 model has more parameters and requires more

time to perform inference, as well as a higher number of floating-point operations, rendering it more
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demanding on computational resources. Nevertheless, the decision to use it was made based on the

specific requirements of being able to detect distant people and providing accurate results.

Table 3.1. Properties and validation results (on the Microsoft COCO [52] val2017 split) of the available

pre-trained YOLOv5 models [50].

Model Size (pixels)
mAPval
@0.5:0.95

mAPval
@0.5

Speed CPU
b1 (ms)

Speed V100
b1 (ms)

Parameters
(M)

FLOPs
@640 (B)

YOLOv5n 640 28.0 45.7 45 6.3 1.9 4.5

YOLOv5s 640 37.4 56.8 98 6.4 7.2 16.5

YOLOv5m 640 45.4 64.1 224 8.2 21.2 49.0

YOLOv5l 640 49.0 67.3 430 10.1 46.5 109.1

YOLOv5x 640 50.7 68.9 766 12.1 86.7 205.7

YOLOv5n6 1280 36.0 54.4 153 8.1 3.2 4.6

YOLOv5s6 1280 44.8 63.7 385 8.2 12.6 16.8

YOLOv5m6 1280 51.3 69.3 887 11.1 35.7 50.0

YOLOv5l6 1280 53.7 71.3 1784 15.8 76.8 111.4

YOLOv5x6 1280 55.0 72.7 3136 26.2 140.7 209.8

3.1.2. Tracking

To obtain the location of each detected individual over time, it is necessary to associate the bounding

boxes that correspond to the same person, throughout the video frames. A numerical identifier (ID) is

thus assigned to each tracked individual. This is referred to as the tracking-by-detection paradigm. For

this dissertation, we decided to use the ByteTrack [22] algorithm, which is the current state of the art

in multi-object tracking.

In order to associate the bounding boxes, ByteTrack leverages every detection, contrary to most

methods, which discard those with low confidence scores. The reason for this method to include low

confidence detections is that many result from occlusions, which does not invalidate their usefulness.

Hence, detections are selected based on the confidence score, using a threshold set to 0.6. With this

in mind, for each video frame, the detected bounding boxes whose confidence score is greater than

the threshold, are associated with the bounding boxes predicted using a Kalman filter [53] (based on

information obtained from previous frames). This association consists of computing either motion or

appearance similarity, i.e. Intersection over Union (IoU) or Re-Identification (Re-ID), respectively, and

applying the Hungarian method [54] to assign the IDs based on the similarity. If the associations are

unsuccessful, then the process is repeated for the detections whose confidence scores are lower than

the threshold, using IoU only, in order to resolve occlusion and background detection cases.

The components used in the Kalman filter to predict the tracks, based on measured locations and

prior knowledge, are , where is the centre point of the bounding box,(𝑥,  𝑦,  𝑎,  ℎ,  𝑣𝑥,  𝑣𝑦,  𝑣𝑎,  𝑣ℎ) (𝑥,  𝑦)

is its aspect ratio, is its height, and are the corresponding velocities.𝑎 ℎ (𝑣𝑥,  𝑣𝑦,  𝑣𝑎,  𝑣ℎ)
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Regarding the parameters that were chosen, relative to the ByteTrack implementation available

on the GitHub repository [55], qualitative experiments were conducted with different configurations,

and the values that yielded the best results are presented in Table 3.2. It should also be noted that we

tried adjusting the position and velocity weights of the Kalman Filter, but since these modifications

did not consistently improve the results, we decided to maintain the original values.

Table 3.2. ByteTrack parameters.

Parameter Value

track_buffer frames per second (fps)

match_thresh 0.8

track_thresh 0.5

aspect_ratio_thresh 1.6

min_box_area 10

3.1.3. Trajectory Point Extraction

Having the IDs assigned to each tracked person, we were able to extract additional information about

the paths travelled by them over time. Specifically, we store every point corresponding to the centre

of the bottom side of their bounding boxes (feet position). That is, given that bounding boxes, in this

case of rectangular shape, are defined by the coordinates , which refer(𝑥_𝑚𝑖𝑛,  𝑦_𝑚𝑖𝑛,  𝑥_𝑚𝑎𝑥,  𝑦_𝑚𝑎𝑥)

to both the top-left and bottom-right corner points, the(𝑥_𝑚𝑖𝑛,  𝑦_𝑚𝑖𝑛) (𝑥_𝑚𝑎𝑥,  𝑦_𝑚𝑎𝑥)

corresponding trajectory points are extracted as follows: .(𝑥,  𝑦) ((𝑥_𝑚𝑖𝑛 + 𝑥_𝑚𝑎𝑥)/2 ,  𝑦_𝑚𝑎𝑥)

However, due to oscillations in the dimensions of the bounding boxes that occur because of the

presence of certain obstacles (occlusions) or the way each person moves, the extracted points end up

showing some irregularities. To solve this issue, a smoothing method is applied, which is explained in

detail in Section 4.2.

In addition, assuming that the dataset to be used includes projection matrices relative to the

homography [56] of the scenes, for each extracted trajectory point, its equivalent projection in the 2D

floor plan (top view) is also stored. This process consists of multiplying the projection matrix of the

associated scene (with a 3x3 dimension) by the extracted trajectory point (with an additional(𝑥,  𝑦,  1)

coordinate of value 1). The result of this operation is a 3-tuple , and the subsequent floor𝑧 (𝑢,  𝑣,  𝑤)

plan projection consists of dividing each of its components by : .𝑤 (𝑥',  𝑦',  1) = (𝑢/𝑤,  𝑣/𝑤,  𝑤/𝑤)

3.1.4. Speed Calculation

In order to estimate the walking speed of each person, in a first approach, we tried to use the velocity

information of the central position of the bounding box provided by the Kalman filter, one of(𝑣𝑥,  𝑣𝑦)

the components used in the ByteTrack algorithm, as reported in Section 3.1.2. However, since these

values are inferred from the pixel coordinates of the video frames, the walking speed of individuals
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far from the camera turned out to be much lower than those close to it. To solve this issue, we chose

to use the coordinates projected into the 2D floor plan, as a way to obtain a better approximation of

the actual speed. It was calculated based on the distance travelled by each person in one second.

More specifically, assuming there is a list with the floor plan trajectory points of a certain person,

corresponding to the locations travelled by that person so far, we fetch the last points in the list based

on a sliding window whose size is equal to the number of frames per second (fps). If the total number

of points available is less than the fps, the size is set to that value instead. Next, we calculate the total

distance travelled in that range, by summing the Euclidean distances between every two consecutive

points. The Euclidean distance between two points, e.g. and , is calculated using the(𝑥1, 𝑦1) (𝑥2, 𝑦2)

formula: . Then, we divide the total distance calculated in the previous(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

step by the size of the sliding window, in order to obtain the distance travelled in each fraction of a

second (one frame). Finally, we multiply that value by the fps.

3.1.5. Group Detection

Another functionality that we found useful was to check if a detected person is alone or belongs to a

group of people. For that purpose, based on the two bounding boxes of a pair of people, we analyse

two criteria that need to be mutually confirmed. The first criterion is whether the distance between

the centres of the two bounding boxes is less than 1.35 times the width of the wider bounding box.

The second criterion is to measure the difference between the scales of the two bounding boxes, that

is, to confirm that the result of dividing the area of the larger bounding box by the area of the smaller

bounding box is less than 1.5. After all pairs are associated, a check is performed in order to join all

pairs with common elements into a single group. For example, taking into account that each person is

identified by its ID, the pairs , , and , would be merged into the group .(1,  2) (2,  6) (6,  5) (1,  2,  6,  5)

Finally, considering the ends of the bounding boxes of all members, we mark the group with a general

bounding box.

3.1.6. Pose Estimation

Considering the sensitive nature of surveillance footage, where the privacy of each individual must be

ensured, the process of recognizing the actions being performed by them has to be performed under

the skeleton modality. Hence, apart from the trajectory data, skeleton sequences (time sequences of

keypoints) regarding the pose of each tracked customer are also extracted.

With this in mind, we decided to use the MMPose toolkit [57] (version 0.29.0), considering the

variety of human pose estimation algorithms it provides, both bottom-up and top-down approaches,

as well as its flexibility and ease of use. This pose estimation toolkit is part of the OpenMMLab Project

[58], which is an open-source Pytorch-based algorithm system that covers a wide range of research
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topics of computer vision such as image classification, object detection, semantic segmentation, and

video understanding.

Amongst the available human pose estimation algorithms, we chose HRNet [25], specifically the

HRNet-W32 model, which operates with an input size of 384x288 pixels. This algorithm adopts the

top-down approach, which means that it uses information regarding the location of individuals in a

given image (derived from object detection algorithms) to generate the 2D poses. In order to perform

inference, the MMPose toolkit provides a configuration file (.py extension) that defines the model, as

well as a checkpoint file with pre-existing parameters. The latter consists of pre-trained weights that

resulted from a training process previously performed on the Microsoft COCO [52] dataset, which

includes keypoint annotations for over 250,000 people, comprising coordinates of 17(𝑥,  𝑦)

keypoints. Similar to the case of YOLOv5 (object detection algorithm), the pre-trained HRNet-W32

model also presented good results without the need to fine-tune it according to our data, having

achieved a mAP score of 76.1 on the Microsoft COCO val2017 split [57].

3.1.7. Action Recognition

With the skeleton sequences extracted for each person over time, we can then perform human

action recognition using skeleton-based action recognition models. For that, we used the MMAction2

toolkit [59], which supports many video understanding models, including action recognition,

skeleton-based action recognition, spatio-temporal action detection and temporal action localization.

Along with the MMPose toolkit, MMAction2 is also part of the OpenMMLab project, which means

that, due to the unified interfaces among the various projects of the platform, it enables a simple

integration between the pose estimation and action recognition processes.

MMAction2 version 0.24.1 provides three skeleton-based action recognition models, i.e. ST-GCN

[42], AGCN [43], and PoseC3D [23]. There are numerous configuration and checkpoint files available,

relative to training processes that were performed on the NTU RGB+D (60 and 120 classes), HMDB51,

UCF101, and FineGYM datasets. However, since the majority of the classes included in these datasets

are not of great interest for the purpose of this dissertation, we need to perform the training process

either from scratch or by fine-tuning the model according to the available pre-trained weights, using

another more suitable dataset.

To train any of the skeleton-based action recognition models with a custom skeleton dataset (i.e.

beyond those already supported), it is necessary to store each skeleton sequence, which represents a

person performing an action, into a pickle file (a binary file that comprises Python object structures as

byte streams). These pose sequences are usually related to a RGB video snippet with the action being

performed, and can either be extracted from it or provided by the authors of the dataset. With this in

mind, each skeleton sequence is stored in the pickle file, as a dictionary with the following fields:
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● frame_dir (str): The identifier of the corresponding video.

● label (int): The action label.

● img_shape (tuple[int]): The shape of a video frame, a tuple with two elements, in the format

of (height, width).

● original_shape (tuple[int]): Same as img_shape.

● total_frames (int): The temporal length of the skeleton sequence.

● keypoint (np.ndarray, with shape [M x T x V x C]): The keypoint annotation.

○ M: number of persons;

○ T: number of frames (same as total_frames);

○ V: number of keypoints (17 for COCO, 18 for OpenPose, etc.);

○ C: number of dimensions for keypoint coordinates (C=2 for 2D keypoints, C=3 for 3D

keypoints).

● keypoint_score (np.ndarray, with shape [M x T x V]): The confidence score of keypoints.

Then, we gather all the pickle files into separate lists for training and validation purposes. After

that, we save each of these lists as individual pickle files, such as “custom_dataset_train.pkl” for the

training set and “custom_dataset_val.pkl” for the validation set. Once this is done, we simply need to

edit some fields in the configuration file of the model, regarding the number of classes, paths to the

training and validation pickle files, and the path to the pre-trained weights (if fine-tuning is intended).

More information on these procedures can be found in [59].

Having the checkpoint file resulting from the training process, in order to perform inference, we

simply provide the action recognition model with the 2D skeleton sequences extracted using the pose

estimation algorithm (HRNet), and it returns the resulting action predictions.

3.2. Datasets

Considering what was explained in Section 3.1, regarding the overview of the proposed framework, it

is necessary to explore the multiple options of datasets that can be used to support it. In this section,

we discuss some datasets that were considered during this work, taking into account that the ideal

dataset should include footage obtained from video surveillance cameras in a retail setting, showing

customers engaging in shopping-related activities.

3.2.1. Worten Surveillance dataset

To achieve the established objectives, we were provided with a dataset that was prepared for the "ECI

4.0 - Espaços Comerciais Inteligentes" project, with the purpose of understanding the decisions made

by customers during their visit to a Worten store located at Mar Shopping (in the city of Matosinhos,

Portugal).
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The dataset comprises videos acquired from high-resolution surveillance cameras over a period

of one week (from Monday to Sunday). It includes 91 hours of footage that was filmed at a resolution

of 1080p using 5 different cameras (each covering a different area) with a frame rate of 20 frames per

second (fps). The videos are accelerated, with each second corresponding to approximately 3 seconds

in real-time (3.3 seconds). Furthermore, a human face-blurring algorithm was applied beforehand to

anonymise the data relating to each customer. Figure 3.2 provides examples of footage.

Each video was annotated with tracking data (i.e. bounding boxes and customer IDs), along with

the respective trajectory points projected into the 2D floor plan. In addition, homography information

[56] was provided for each camera, in the form of projection matrices, which allow the data acquired

from the videos to be projected into the 2D floor plan of the store (as if it was seen from above).

Due to restrictions imposed by the project agreement, we are not permitted to show examples of

footage that features people. It should also be noted that unexpected problems (described in Section

3.2.8) related to the accessibility of the dataset, the provided tracking data and the application of the

human face-blurring algorithm, made it necessary to find alternative datasets.

Figure 3.2. Examples of footage from the Worten Surveillance dataset.

3.2.2. Video Image Retrieval and Analysis Tool (VIRAT) dataset

The VIRAT [60] dataset consists of a large-scale surveillance video dataset designed to evaluate the

performance of event recognition algorithms. The dataset is partitioned into two parts: VIRAT Ground

Video Dataset and VIRAT Aerial Video Dataset. The former consists of stationary footage from ground

based cameras, and contains approximately 25 hours of video distributed across 16 different outdoor

scenes, which include parking lots, construction sites, open outdoor spaces, and streets. The videos

were recorded in 720p and 1080p, with a frame rate of 25 to 30 fps, varying according to the camera

used. The latter, however, consists of videos collected from aerial vehicles, which, by their nature, are

not relevant for this dissertation.

Every video frame is annotated with the bounding boxes and numerical identifiers (IDs) of each

moving object (e.g. people and vehicles), along with the events that occur over time. These events

include Single Person Events (e.g. walking, running, standing, gesturing, loitering), Person and Vehicle

Events (e.g. getting into or out of vehicle, opening or closing trunk, loading, unloading), and Person

and Facility Events (e.g. entering or exiting facility). In addition, the homography information of each
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scene is provided, in the form of projection matrices, which allow the tracking data acquired from the

videos to be projected into the 2D floor plan (top view). Figure 3.3 shows examples of 3 scenes from

the VIRAT dataset, along with their corresponding homography projections.

Figure 3.3. Examples of scenes from the VIRAT [60] dataset and their homography projections.

3.2.3. Multiview Extended Video with Activities (MEVA) dataset

The MEVA [61] dataset consists of a very-large-scale dataset for human action recognition (HAR). The

complete dataset contains about 9300 hours of footage from ground-based cameras, collected over

the course of 3 weeks, of which 144 hours are annotated for 37 action categories, including bounding

boxes of actors and props. Regarding the annotations, 122 hours of the 144 were collected in support

of the NIST Activities in Extended Video (ActEV) challenge [62], whereas the remaining 22 hours were

released through the MEVA website, along with 328 hours of video (recorded in 1080p with 25 fps).

The recordings consist of continuous, untrimmed surveillance videos featuring around 100 actors

performing scripted scenarios, as well as spontaneous background activity, with both overlapping and

non-overlapping viewpoints across indoor and outdoor spaces. The action categories included in the

MEVA dataset are listed below (some visual examples are provided in Figure 3.4):

- person sits down
- person stands up
- person picks up object
- person puts down object
- person carries heavy object
- person transfers object
- person abandons package
- person steals object
- person reads document
- person interacts with laptop
- person texts on phone
- person talks on phone
- person talks to person

- person embraces person
- hand interacts with person
- person purchases
- person opens facility door
- person closes facility door
- person enters scene through
structure

- person exits scene through
structure

- person rides bicycle
- person enters vehicle
- person exits vehicle
- person opens trunk

- person closes trunk
- person opens vehicle door
- person closes vehicle door
- person loads vehicle
- person unloads vehicle
- vehicle picks up person
- vehicle drops off person
- vehicle starts
- vehicle stops
- vehicle reverses
- vehicle turns left
- vehicle turns right
- vehicle makes U-turn
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Figure 3.4. Examples of action categories from the MEVA [61] dataset.

3.2.4. People in Public (PIP) dataset

The PIP [63] dataset is a consented large-scale video dataset of people performing actions in different

locations. It contains a total of 405,781 background stabilised videos (1518x1262 pixels with 30 fps) of

67 action types (examples are shown in Figure 3.5). These were collected by more than 150 subjects

across 44 countries using the Visym Collector [64] mobile application. The action types in this dataset

are subsets of the 37 categories in the MEVA dataset and are consistent with the ActEV challenge.

The Visym Collector mobile app was developed by the authors of the dataset, with the objective

of turning the collection of annotated video datasets into an easier process, since it integrates video

collection, activity labelling, and bounding box annotation into a single step. Thus, the annotations for

each video, which can be intuitively accessed, modified, and visualised using the VIPY python library

[65], include the bounding boxes surrounding the subject performing the action over time, as well as

the action label, and the frame interval at which it occurs.

Figure 3.5. Examples of videos from the PIP [63] dataset, each representing an activity type.
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3.2.5. Multi-camera Multiple People Tracking (MMPTRACK) dataset

The MMPTRACK [66] dataset is a large-scale dataset with about 9.6 hours of footage, recorded inside

Microsoft indoor laboratories where 5 simulated settings were constructed, i.e. retail, lobby, industry,

cafe and office. The videos were acquired from surveillance cameras positioned at different locations

around each scene, with all fields of view connected (one camera has overlapped field of view with at

least one of the other cameras). The filming was done at a resolution of 640x320 with a frame rate of

15 fps. Figure 3.6 shows examples of footage from three of the cameras in the retail setting.

The MMPTRACK dataset, as the name suggests, was primarily designed for training multi-camera

multi-object tracking systems, so the annotated data only comprises bounding boxes and person IDs

(across all camera views), as well as the respective footpoint projections on the 2D floor plan (world

coordinates system). However, given that the retail setting of this particular dataset is quite similar to

that of the Worten store, it provides a good alternative for training skeleton-based action recognition

models in retail-related activities. In that case, it would be necessary to further annotate the dataset

with the labels of the actions performed by each individual over time.

Figure 3.6. Examples of footage from the retail setting of the MMPTRACK [66] dataset.

3.2.6. MERL Shopping dataset

The MERL Shopping [67] dataset consists of 106 two-minute videos, which were captured by a static

overhead HD camera (920x680 pixels with 30 fps) gazing down at people shopping from grocery-store

shelves, arranged in a laboratory setting. The videos are annotated with the start and end timestamps

of actions from the following 5 different classes: reach to shelf (stretch arm towards the shelf), retract

from shelf (retract arm from the shelf), hand in shelf (extended period with arm on the shelf), inspect

product (inspect a product while holding it in the hand), and inspect shelf (look at the shelf without

touching or reaching for the shelf). It is important to note that each video contains multiple instances

of these actions. Figure 3.7 presents some sample frames from the videos.
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Figure 3.7. Examples of footage from the MERL Shopping [67] dataset.

3.2.7. UCF-Crime dataset

The UCF-Crime [68] dataset is a large-scale dataset with 128 hours of footage. It consists of 1900 long

and untrimmed real-world surveillance videos (recorded at a resolution of 320x240 pixels), containing

13 realistic anomalous activities, i.e. shoplifting, vandalism, robbery, burglary, etc., as well as normal

activities. Figure 3.8 displays visual examples for 3 of these activity types. The dataset can be used for

general anomaly detection, considering all anomalies in one group and all normal activities in another

group, as well as for recognizing the individual anomalous activities. Regarding the annotations, these

consist of video-level labels (meaning that each video is tagged with the activity it depicts), with the

exception of the testing videos, which include the start and ending frames of the anomalous event.

Figure 3.8. Examples of activity types (shoplifting, vandalism, and normal event, respectively) from

the UCF-Crime [68] dataset.

3.2.8. Discussion

During the first three months of the development process of this dissertation, we did not have access

to the Worten Surveillance dataset, so most of the components that the methodology includes were

tested on the VIRAT dataset, except for the action recognition process (given that the events depicted

on the VIRAT dataset were of no interest to the purpose of this dissertation).

When we obtained the Worten Surveillance dataset, we noticed that the provided tracking data

was imprecise. Furthermore, the area that resulted from the application of the human face-blurring

algorithm was rectangular and often too large, so it would frequently cover more body space beyond

the face area (sometimes reaching as far as the waist). These issues made the process of extracting

quality skeleton sequences from customers a challenging task. Making this dataset inadequate for the
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goals intended for this dissertation. Therefore, it was necessary to find an alternative dataset for the

process of action recognition.

Among the multiple datasets we found, the ones that interested us the most (due to the nature

of the actions involved) were the MEVA, PIP, MMPTRACK, MERL Shopping, and UCF-Crime datasets,

with the MMPTRACK dataset being the closest to what we previously described as the ideal dataset.

However, of all the options of interest, both MMPTRACK and UCF-Crime did not include information

regarding the frame interval at which each action is performed, and so they would need to be further

annotated. Furthermore, besides not including tracking data, the viewpoints of the cameras used in

the MERL Shopping dataset (gazing down at people) are substantially different from the ones used in

the Worten Surveillance dataset, so we decided to discard it as well.

Regarding the PIP and MEVA datasets, the main advantage of PIP over MEVA, for the purposes of

this dissertation, is that it provides straightforward, feature-rich video data for the process of training

human action recognition models. This is because the videos are trimmed, meaning that each video

(in its entirety) contains a person performing a single action, contrary to the continuous, untrimmed

videos of the MEVA dataset, where each video contains multiple people performing different actions

over time, with challenges such as camera distance. Therefore, we decided to use the PIP dataset for

action recognition.

Taking into account the 67 types of activities included in the dataset, we selected the classes that

could be useful for the task at hand. We were left with a total of 139,236 video files corresponding to

the following classes: person walks, person sits down, person stands up, person picks up object (from

floor, shelf or table), person puts down object (from floor, shelf or table), person carries heavy object,

person transfers object to person, person interacts with laptop, person texts on phone, person talks

on phone, person talks to person, and person purchases from cashier.

In summary, for experiments involving the people detection, tracking, trajectory point extraction,

speed calculation, group detection and pose estimation processes, we utilised the VIRAT [60] dataset

(see Sections 4.1, 4.2, 4.3 and 5.1). Alternatively, for the action recognition process, we decided to

use the PIP [63] dataset (see Section 5.2).

35





CHAPTER 4

Contributions

In this chapter, some issues that were discovered throughout the design and development stages of

the framework are explained, as well as the proposed solutions to mitigate them. First, the impacts

that occlusions have on the trajectory point extraction and pose estimation processes are presented,

and a mechanism for detecting and rectifying occlusion cases is proposed. Then, some of the factors

that may cause irregularities in the extracted trajectory points are explained, along with a smoothing

method that was introduced to correct them.

4.1. Occlusions

When certain obstacles are present in the scene, for instance cars, lampposts, trees, and bushes (in a

street scene) or items, shelves, and banners (in a retail store scene), they are likely to occlude people

standing close to them. This causes the detections made by the YOLOv5 object detection algorithm to

simply surround the visible area of the occluded individuals. To address this problem, we developed a

mechanism to detect whether or not an individual is occluded and, if so, to automatically adjust the

dimensions of its bounding box to include the occluded area. Figure 4.1 depicts how this mechanism

(referred to as the occlusion-aware mechanism) interacts with the other components of the proposed

framework.

Figure 4.1. Diagram of the integration of the occlusion-aware mechanism into the proposed

framework.
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4.1.1. Impacts

There are several aspects that are negatively affected by the occurrence of occlusions. As previously

mentioned, when a subject is occluded, the only area that is detected is the one that is visible. This

leads to two problems: irregularities in the extracted trajectory points and, as a result, inconsistencies

in the calculation of the speed at which the person walks (both when the feet are occluded). In Figure

4.2, a few occurrences of these cases are presented.

Regarding the inconsistencies in the calculation of the walking speed, given what is described in

Section 3.1.4, these occur because as the bounding box shrinks and expands, the extracted trajectory

points show a significant displacement in consecutive frames. Thus, when the frame-level trajectory

points are projected into their world-level projections (2D floor plan), it creates the illusion that the

person has travelled a greater distance than they actually have, and often on an irregular path.

In addition to these trajectory-related issues, occlusion cases also complicate the pose estimation

process, as the position of occluded body parts cannot be estimated, which in turn makes the process

of skeleton-based action recognition considerably more complex. Nevertheless, it is through this pose

information that we were able to create the occlusion-aware mechanism, which is explained in detail

in the following sections.

Figure 4.2. Examples of the impact of occlusions on the extracted trajectory points (footage from the

VIRAT [60] dataset).

4.1.2. Detection

To mitigate these occlusion cases, it is first necessary to identify them. To do so, we decided to utilise

the pose information generated by the HRNet human pose estimation algorithm. Thus, the skeleton

of each individual is divided into four parts: upper part, lower part, left arm and right arm. Having the

body parts established, and access to the confidence score of each joint, we determined that if more

than 50% of the joints that constitute a body part have a low confidence score (a threshold of 0.3 was

38



used), then that body part is considered occluded. An illustration of the body part division process is

depicted in Figure 4.3.

Figure 4.3. Correspondence between each joint and its respective body part. The hip body joints (11

and 12) were not taken into account for occlusion detection.

4.1.3. Mitigation

Depending on which body part is occluded, we apply different adjustments to the dimensions of the

bounding box of the occluded person, in order to approximate them to the actual body proportions.

Hence, considering that a bounding box is defined as , where are the coordinates of(𝑥,  𝑦,  𝑤,  ℎ) (𝑥,  𝑦)

the top-left corner point, and correspond to the width and height values of the bounding box,(𝑤,  ℎ)

respectively, the following cases are considered:

A. Arms (the left and right arms are occluded) - The bounding box must be widened to include

the location of the arms. To this end, two operations are performed, where one increases the

width of the bounding box and the other translates its position to the left, ensuring it remains

centred in relation to the body:

(1) 𝑤' = 𝑤 + (𝑤 × 𝑓𝑎𝑐𝑡𝑜𝑟) 

(2) 𝑥' = 𝑥 − (𝑤 × 𝑓𝑎𝑐𝑡𝑜𝑟 × 1
2 ) 

○ - defines the amount by which the width of the bounding box is increased.𝑓𝑎𝑐𝑡𝑜𝑟

B. Lower Part (the lower part of the body is occluded) - The bounding box must be heightened

to include the location of the feet. For that, a modified sigmoid function is calculated𝑠𝑖𝑔(α)

to define the amount by which the height of the bounding box is increased, given its aspect

ratio ( ). Hence, when the aspect ratio is lower (meaning that the bounding box isα = 𝑤 ÷ ℎ

thinner and therefore the occluded area is smaller), the height does not increase as much as
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when the aspect ratio is larger. Moreover, extreme aspect ratio cases are attenuated. A visual

representation of is shown in Figure 4.4. This process can be described as follows:𝑠𝑖𝑔(α)

(3)𝑠𝑖𝑔(α) = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

1 + 𝑒 −𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠(α−𝑐𝑒𝑛𝑡𝑟𝑒)

(4)ℎ' = ℎ +  (ℎ × 𝑠𝑖𝑔(α))

○ - represents the maximum scaling factor applied to the original height;𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

○ - determines how steep the sigmoid function is;𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠

○ - represents the midpoint of the sigmoid function.𝑐𝑒𝑛𝑡𝑟𝑒

Figure 4.4. Illustrative example of the modified sigmoid function.

C. Upper Part (the upper part of the body is occluded) - The bounding box must be heightened

to include the location of the head. This is similar to what is performed when the lower body

part is occluded, but with the additional step of decrementing the coordinate of the top-left𝑦

point with the same value by which the height was increased:

(5)𝑦' = 𝑦 − |ℎ − ℎ'|

For visual reference, an illustration of these processes is provided in Figure 4.5.

Figure 4.5. Illustrative examples of the dimensions of the bounding boxes, as well as the different

adjustments applied to them in the considered cases (A, B and C).
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4.2. Trajectory Irregularities

There are a few circumstances that can lead to oscillations in both the location and the dimensions of

the bounding boxes throughout a sequence of consecutive video frames. These oscillations cause the

extracted points to present irregularities in the trajectory. In order to mitigate these irregularities and,

consecutively, generate more reliable path information, a smoothing method was applied.

4.2.1. Factors

Two major factors that may cause these unnatural changes in the values of the bounding boxes, and

therefore create irregularities in the trajectory information of each person associated with them, are

occlusions and gait movement. Illustrative examples of these factors are presented in Figure 4.6.

The former refers to when an individual is partially occluded by an object (addressed in depth in

Section 4.1). This is an issue for the trajectory point extraction process because, as the person moves

along the area covered by the occluding object, the extracted points accompany the contours of the

obstacle rather than the feet of the individual. In part, this is largely resolved by the occlusion-aware

mechanism we proposed. However, given that the mechanism does not take into account information

concerning previous corrections, as a means of smoothing the adjustments performed, an additional

post-processing step is required.

The latter, on the other hand, refers to the movements that the limbs perform while a person is

walking. The object detectors often capture these movements by aligning the edges of the bounding

boxes with the positions of the extremities of the body (in particular the hands and feet). The result is

an undulatory effect in the trajectory of each moving person, which accompanies their gait.

Figure 4.6. Examples of the two major factors that create irregularities in the extracted trajectory

points: occlusions (top) and gait movement (bottom).
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4.2.2. Smoothing

In order to attenuate the irregularities in the extracted trajectory points, we introduced a smoothing

method. This method consists of calculating the moving average of the most recent points, using a𝑁

sliding window of fixed size (if fewer than , only the available points are considered). Furthermore, a𝑁

recurrent approach was adopted, meaning that the smoothing process executed for the current point

considers the smoothing corrections applied to the previous points (within the most recent).𝑁

To evaluate the effectiveness of this first approach, we performed a visual examination according

to the factors that caused the irregularities. Regarding the oscillations caused by the manner in which

each person walks (gait movement), using a sliding window of 5 points, the smoothing method was

able to obtain satisfactory results. However, when addressing the oscillations caused by the presence

of obstacles (occlusions), a larger window of 10 points was necessary. While this helped to attenuate

the irregularities in the extracted trajectories, it introduced a significant delay in the smoothed points

as only past points were considered. Therefore, the points calculated for a given frame, representing

the closest location for each individual at that time, no longer aligned with their current position, but

instead corresponded to their position from several frames prior. This problem is illustrated in Figure

4.7.

Figure 4.7. Example of applying the trajectory smoothing method to irregularities caused by

obstacles: 5-point window (left) and 10-point window (right).

In this sense, to improve the trajectory smoothing process it was necessary to consider trajectory

information from past and future video frames. Hence, we decided to apply the trajectory smoothing

method twice. More specifically, given a video file, we store raw information regarding each extracted

trajectory point (without smoothing), along with the corresponding person and video frame IDs. After

that, we apply the trajectory smoothing method twice: a first time for the original trajectory points

(as was done before) and a second time for the reversed trajectory points (as if the method was being

applied to the video in reverse). In this way, we are able to generate two sets of trajectory points: one

smoothed based on past trajectory information and another based on future trajectory information.

Having these two sets, in order to obtain the final trajectories, it is necessary to match them based on

the person and video frame IDs, combining the corresponding points.
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Intuitively, this combination would be done by assigning a weight of 0.5 to each of the points, so

that equal importance is given to both the past and future trajectory information. However, we need

to consider the delays caused by the smoothing method, which, due to its recursive nature, become

longer as the size of the smoothing window increases. Thus, at the beginning of the trajectory of each

individual, these delays are more noticeable on the smoothed reversed points, whereas at the end of

those trajectories, they are more noticeable on the smoothed original points. With this in mind, the

assignment of weights is accomplished as follows (relative to a single trajectory point):

1. First, the interval that marks the beginning and end of the trajectory is defined (corresponds

to the aforementioned delay factor).

(6)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = (𝑁 × (𝑁 + 1))
2

This expression captures the range of influence of the smoothing process on each trajectory

point, considering the sliding window (of size ) and the recursive nature of the smoothing. It𝑁

provides a meaningful measure of how many points, including the current one, are involved

in the smoothing calculation, taking into account the previous smoothing corrections applied

within the sliding window.

2. Then, the weight for the smoothed original point is computed.

⇥ If the point is located at the beginning of the trajectory ( < ):𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(7)𝑜_𝑤𝑒𝑖𝑔ℎ𝑡 = 1 − ( 1
(2 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) × 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑑𝑒𝑥)

⇥ If the point is located at the end of the trajectory ( > ):𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(8)𝑜_𝑤𝑒𝑖𝑔ℎ𝑡 = 0. 5 − ( 1
(2 × 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) × (𝑝𝑜𝑖𝑛𝑡 𝑖𝑛𝑑𝑒𝑥 − (𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)))

⇥ Else (general case): .𝑜_𝑤𝑒𝑖𝑔ℎ𝑡 = 0. 5

3. Finally, the weight for the smoothed reversed point is computed.

(9)𝑟_𝑤𝑒𝑖𝑔ℎ𝑡 = 1 − 𝑜_𝑤𝑒𝑖𝑔ℎ𝑡

4.3. Results

Prior to conducting quantitative experiments, we first performed an initial qualitative analysis of the

two contributions described above. These were specifically designed to mitigate the issues identified

over the course of the design and development phases of the framework. One of the contributions,

the occlusion-aware mechanism, was developed to detect occluded persons and dynamically adjust

their bounding boxes to include the occluded areas. The other contribution, the trajectory smoothing

method, aimed to minimise oscillations in trajectory points. The outcomes of this analysis are specific

43



to the application of the proposed framework to videos from the VIRAT [60] dataset.

4.3.1. Occlusion Awareness

Regarding the occlusion-aware mechanism, for the particular video samples of the VIRAT dataset, we

empirically assigned the variables described in Section 4.1.3 with the following values:

● Width adjustments:

○ 𝑓𝑎𝑐𝑡𝑜𝑟 = 0, 25

● Height adjustments ( parameters):𝑠𝑖𝑔(α)

○ 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 1, 5

○ 𝑠𝑡𝑒𝑒𝑝𝑛𝑒𝑠𝑠 = 7, 5

○ 𝑐𝑒𝑛𝑡𝑟𝑒 = 0, 75

Based on the obtained visual outputs, we were able to confirm the effectiveness of the proposed

mechanism in detecting occluded body parts and estimating the actual body boundaries of occluded

individuals. Some examples can be seen in Figure 4.8.

Figure 4.8. Examples of applying the proposed occlusion-aware mechanism: without occlusion

awareness (top) and with occlusion awareness (bottom).

In cases where the lower body part was occluded, our method was able to predict the location of

the feet of the occluded individual, so as to improve the accuracy of the resulting trajectory. However,

given that the occlusion-aware mechanism takes the aspect ratio into account, and moving the arms

influences the width of the bounding boxes, this creates some noise in the trajectory. Moreover, its

performance is impacted by the fact that each person has its unique aspect ratio, owing to their body

proportions. In certain instances, the posture also affects the aspect ratio. For example, in the case of

cyclist occlusions, where they tend to lean forward, the width of the bounding boxes is larger, leading
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to suboptimal results. The aforementioned cases are shown in Figure 4.9. Nevertheless, as evidenced

in Section 5.1, the occlusion-aware mechanism proved to be an asset in handling occlusion cases.

Figure 4.9. Shortcomings: width oscillations (top) and variable aspect ratios (bottom).

It is also worth mentioning that as the confidence scores of body joints are used to infer whether

a body part is occluded, this may lead to some false positives, although their impact is not significant.

On the other hand, when reapplying the HRNet algorithm to the corrected bounding boxes, the pose

estimation results were generally improved, as depicted in Figure 4.10, which is expected to enhance

the skeleton-based action recognition process, as the noise in the pose data is reduced.

Figure 4.10. Example of reapplying the HRNet algorithm to the corrected bounding boxes (only joints

with a confidence score over the threshold of 0.3 are drawn): before occlusion awareness (left) and

after occlusion awareness (right).

4.3.2. Trajectory Smoothing

In terms of the trajectory smoothing method, as discussed in Section 4.4.2, using only past trajectory

information to perform the smoothing process introduced a delay in the resulting smoothed points,

which became more pronounced as the size of the sliding window increased. Thus, to try to improve

the smoothing process, we chose to incorporate both past and future trajectory information.

Based on the obtained visual outputs, we were able to confirm the added value of utilising future

trajectory information, in addition to past trajectory information. Besides effectively solving the delay

problem, the resulting trajectories became more precise and context-aware, meaning that the overall
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performance of the trajectory smoothing method was significantly improved. Figure 4.11 represents

an example of solving the delay problem.

Figure 4.11. Examples of applying the smoothing process (10-point window) using: only past

trajectory information (left), and both past and future trajectory information (right).

Furthermore, we compared various sizes for the sliding window. Naturally, as the size increased,

the resulting trajectories became smoother. However, in certain circumstances such as sharp turns, a

larger size resulted in trajectories deviating from the actual path taken by the subject. For this specific

use case, in order to attain an appropriate balance between smoothness and precision, we decided to

adopt a sliding window with a size of 8 trajectory points. An example of this trade-off is illustrated in

Figure 4.12.

Figure 4.12. Examples of applying the trajectory smoothing process on a sharp turn: 5-point window

(left), 8-point window (middle), and 10-point window (right).

With this in mind, using an 8-point sliding window, the trajectory smoothing method proved to

be effective in mitigating the impact of oscillations on the trajectory points. It successfully addressed

both types of oscillations: those caused by gait movement and those resulting from occlusions. Some

examples can be observed in Figures 4.13 and 4.14. Figure 4.13 illustrates the impact of the trajectory

smoothing method on points derived from the initial bounding boxes, whereas Figure 4.14 illustrates

the effect of applying the trajectory smoothing method to points obtained from the bounding boxes

adjusted by the occlusion-aware mechanism (in scenarios involving occlusions).

In addition, Figure 4.15 shows a comparison of the floor plan projections (top view) using the

first example depicted in Figures 4.13 and 4.14. In this comparison, we present the projections before

and after applying the occlusion-aware mechanism and the trajectory smoothing method. This allows

for a clearer understanding of the influence of these two contributions on trajectory mapping.
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Figure 4.13. Examples of applying the proposed trajectory smoothing method (without occlusion

awareness): without trajectory smoothing (top) and with trajectory smoothing (bottom).

Figure 4.14. Examples of applying the proposed trajectory smoothing method (with occlusion

awareness): without trajectory smoothing (top) and with trajectory smoothing (bottom).

Figure 4.15. Example of floor plan projections before (left) and after (right) applying the

occlusion-aware mechanism and trajectory smoothing.
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CHAPTER 5

Experiments

In this chapter, we explore two important aspects of our framework. Firstly, we report on the rigorous

quantitative assessment performed on the proposed occlusion-aware mechanism. Secondly, we delve

into the extensive process of training the skeleton-based action recognition models.

5.1. Occlusion-Aware Mechanism

In addition to the qualitative analysis presented in Section 4.3.1, we also carried out a comprehensive

quantitative and statistical analysis of the proposed occlusion-aware mechanism in order to provide a

rigorous, data-driven assessment of its performance.

To this end, we started by manually selecting occlusion cases representative of the typical variety

of occlusion scenarios. As a result, we acquired 35 instances from 21 videos in the VIRAT [60] dataset.

These instances had an average duration of approximately 139 frames (with a median of 100 frames),

corresponding to the period from when the individual was occluded until the moment they were no

longer covered by the obstacle. After the selection process, we used the ground truth bounding boxes

provided in the dataset (which depict the precise location and proportions of occluded individuals) to

compute two separate lists of Intersection over Union (IoU) values. Specifically, for each instance, we

calculated IoU scores for the original predicted bounding boxes and for the adjusted ones, separately

comparing them to the ground truth (an example is illustrated in Figure 5.1). These calculations were

then averaged to generate a single IoU value for the original detections and another for the adjusted

ones, representing their overall quality. Ultimately, we ended up with two sets (paired samples), each

consisting of 35 averaged IoU values, intended for evaluating the extent to which the occlusion-aware

mechanism enhanced the accuracy of detections in scenarios involving occlusion.

IoU is a metric commonly applied to quantify the degree of overlap between predicted bounding

boxes and ground truth bounding boxes. In particular, for a pair of these bounding boxes, it produces

a value between 0 and 1, where 0 indicates no overlap (complete mismatch), and 1 denotes a perfect

match, meaning that the predicted bounding box is perfectly aligned with the respective ground truth

bounding box. It is calculated using the following formula, where corresponds to𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

the area of overlap between the two bounding boxes (common area), and is the area𝑈𝑛𝑖𝑜𝑛 𝑎𝑟𝑒𝑎

covered by both bounding boxes (total area):

(10)𝐼𝑜𝑈 = 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
𝑈𝑛𝑖𝑜𝑛 𝑎𝑟𝑒𝑎
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Figure 5.1. Example of IoU scores for the original predicted bounding boxes (left) and the adjusted

predicted bounding boxes (right), in one video frame. The ground truth is depicted in black.

With the two sets of IoU values prepared, in order to assess the improvements resulting from the

application of the occlusion-aware mechanism, we computed descriptive statistics for each set. These

are shown in Table 5.1, where sample represents the IoU values derived from the original predicted𝐴

bounding boxes, and sample denotes those derived from the adjusted predicted bounding boxes. It𝐵

should be noted that the ground truth bounding boxes provided in the dataset were not perfect, so in

some cases this resulted in lower IoU scores for both the original and adjusted detections (as seen in

Figure 5.1). Nevertheless, since it affected each set in a similar way, there was no significant effect on

the evaluation outcomes.

Table 5.1. Paired samples descriptive statistics.

Sample Size (N) Mean (M) Median (Mdn)
Standard
Deviation (SD)

Coefficient of
Variation (CV)

Skewness Kurtosis

A 35 0.439 0.471 0.116 0.263 -0.681 -0.188

B 35 0.579 0.575 0.112 0.193 -0.214 -0.345

Based on the descriptives presented in Table 5.1, it was evident that sample had a higher mean𝐵

and median ( = 0.579, = 0.575) compared to sample ( = 0.439, = 0.471). This indicates𝑀 𝑀𝑑𝑛 𝐴 𝑀 𝑀𝑑𝑛

that the adjusted detections in , resulting from the occlusion-aware mechanism, had indeed shown𝐵

improvements when compared to the original detections in . Moreover, both the standard deviation𝐴

and the coefficient of variation showed that the IoU values in ( = 0.112, = 0.193) exhibited𝐵 𝑆𝐷 𝐶𝑉

less variability around their mean compared to those in ( = 0.116, = 0.263). This implies that,𝐴 𝑆𝐷 𝐶𝑉

from a general perspective, the adjustments produced by the occlusion-aware mechanism were

consistent, while also suggesting that certain adjusted instances had more significant improvements

than others. Finally, regarding the shape of the distributions, sample exhibited less negative𝐵
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skewness compared to sample , meaning that the adjustments in resulted in a less left-skewed𝐴 𝐵

distribution compared to the original detections in . In other words, a larger proportion of𝐴

detections in achieved higher IoU scores, reducing the left tail of the distribution. Furthermore,𝐵

both samples had negative kurtosis values, indicating platykurtic distributions. Specifically, sample 𝐵

had even lower kurtosis compared to sample , meaning that the distribution in was flatter and𝐴 𝐵

had thinner tails (IoU scores were more evenly spread across a wider range). Figure 5.2 shows a visual

depiction of these distributions, as well as the characteristics of the data.

Figure 5.2. Graphical display of the characteristics of samples and .𝐴 𝐵

Having examined the descriptive statistics and compared the differences between samples and𝐴

, the next phase of our analysis involved rigorously evaluating the significance of these differences.𝐵

For this purpose, we employed hypothesis testing as a way of scientifically determining whether the

improvements observed in the IoU scores of sample , attributed to the occlusion-aware mechanism,𝐵

were statistically significant. Typical options include the paired Student's -test [69] (parametric) and𝑡

the Wilcoxon signed-rank test [70] (nonparametric alternative). Parametric tests assume that the data

follows a particular distribution, typically the normal distribution, and rely on parameters such as the

mean and variance. Nonparametric tests, on the other hand, make less or no assumptions regarding

the underlying data distribution and are therefore more suitable when handling data that does not

meet the assumptions of parametric tests. However, if the data meets the assumptions, parametric

tests are often preferred due to their greater statistical power.

With this in mind, we began by examining the assumptions underlying the paired Student's -test𝑡

to evaluate its appropriateness for our study. This examination focused primarily on verifying whether

the differences between paired data points (sample − sample ) were roughly normally distributed,𝐵 𝐴

which is a fundamental assumption of the paired Student's -test (normality). It should be noted that𝑡

other assumptions of the -test had already been inherently satisfied due to the characteristics of the𝑡

data. These assumptions include continuous data (IoU scores are continuous numeric values), paired

data (each data point in sample corresponds to a specific data point in sample ), random sampling𝐴 𝐵
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(the instances were obtained through a random selection process), independence (the instances are

not related to each other), and absence of outliers (no extreme values are present).

To check the normality assumption of the paired Student's -test, we used the Shapiro-Wilk test𝑡

[71], a widely used statistical test that evaluates whether a given set follows a normal distribution. In

this examination, we applied the Shapiro-Wilk test to the differences between paired data points (as

expected for the -test) to assess the distribution of the improvements in IoU scores between sample𝑡

and sample . In addition, we applied the Shapiro-Wilk test separately to each sample. The results𝐴 𝐵

are presented in Table 5.2.

Table 5.2. Shapiro-Wilk test results.

Statistic (W) Significance (p-value)

A 0.943 0.071

B 0.973 0.521

B − A 0.908 0.007

The null hypothesis in the Shapiro-Wilk test assumes that the data follows a normal distribution.

Therefore, if the p-value is greater than a significance level of .05, we fail to reject the null hypothesis,

which suggests that there is not enough evidence to conclude a deviation from normality in the data.

On the other hand, if the p-value is less than .05, we reject the null hypothesis, implying that the data

does not follow a normal distribution. Thus, based on the obtained results, both sample (p = 0.071)𝐴

and sample (p = 0.521) were assumed to follow a normal distribution, given that both their p-values𝐵

were greater than .05. However, when analysing the differences between these samples, the p-value

of 0.007 suggested that they deviated from a normal distribution. To assess the degree of deviation,

we decided to generate a normal probability plot on these differences (shown in Figure 5.3).

Figure 5.3. Normal probability plot on the differences between samples and .𝐴 𝐵
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A normal probability plot is a graphical tool used to assess the degree to which a set conforms to

a normal distribution. It compares the quantiles of the observed data (i.e. the differences arranged in

ascending order) against the expected quantiles of a normal distribution. If the data follows a normal

distribution, the points on the plot should align along a straight line. Deviations from linearity indicate

departures from normality. For a more quantitative interpretation, these plots also provide numerical

measures to evaluate how closely the data adheres to a normal distribution. One such measure is the

coefficient of determination (R²), which quantifies the goodness of fit between the observed data and

the expected normal distribution, on a scale of 0 to 1. In this particular analysis, the obtained R² value

of 0.9132 suggests that there is a reasonably good fit, as it is close to 1. While the observed data does

not perfectly follow a normal distribution, the extent of deviation appears relatively modest.

Considering the robustness of the paired Student's -test to departures from normality, especially𝑡

when dealing with reasonably large sample sizes (equal to or larger than 30) due to the Central Limit

Theorem [72], we decided to use both the paired Student's -test and the Wilcoxon test. The purpose𝑡

was to ascertain whether both tests yielded similar outcomes, ensuring the reliability and robustness

of the findings.

Table 5.3. Statistical hypothesis tests results for the differences between samples and .𝐴 𝐵

Mean Std. Deviation Test Statistic Z
Degrees of
Freedom (df)

Significance
(p-value)

Effect Size*

B − A 0.140 0.071
Student 11.698 – 34 < .001 1.977

Wilcoxon 630.000 5.159 – < .001 1.000

* Student's -test: Cohen's ; Wilcoxon test: matched rank biserial correlation.𝑡 𝑑

The null hypothesis for both tests state that there is no significant difference between the paired

observations. More specifically, the paired Student's t-test focuses on the mean difference, while the

Wilcoxon test evaluates the distribution of the signed rank differences, which is related to the median

difference. As shown in Table 5.3 both tests produced extremely low p-values (paired Student's -test:𝑡

t(34) = 11.70, p < .001; Wilcoxon test: z = 5.16, p < .001), rejecting the null hypothesis at a significance

level of .05 (p-value is less than .05). This provides strong statistical evidence that the occlusion-aware

mechanism significantly enhanced detections for occlusion cases. In other words, it is highly unlikely

that the differences in IoU scores between sample and sample occurred by chance.𝐴 𝐵

Furthermore, to analyse the practical implications of these differences and given the similarity of

results from both tests, we decided to assess the effect size of the paired Student's -test (Cohen's ),𝑡 𝑑

leveraging its advantages in providing a standardised and easily interpretable measure. The retrieved

Cohen's value was 1.98, indicating a substantial effect size, surpassing the conventional threshold of𝑑

0.8 for a large effect size [73]. To put it into perspective, a value of 1.98 indicates that the differences

53



in IoU scores between samples and were nearly two standard deviations ( = 0.071) apart. This𝐴 𝐵 𝑆𝐷

suggests that the adjustments performed by the occlusion-aware mechanism had a significant impact

on the IoU scores, emphasising the real-world significance of these improvements.

5.2. Skeleton-Based Action Recognition

In this section, a detailed overview of the different stages required for preparing the skeleton-based

action recognition models is provided, including the decisions made during each phase. These stages

comprise Data Preparation, Modelling, and Evaluation, which correspond to the development phases

of the CRISP-DM process model described in Section 1.4.

5.2.1. Data Preparation

As mentioned in Section 3.2.8, for experiments involving the action recognition process, we chose to

use the PIP [63] dataset, in particular, the PIP 370k stabilised dataset (described in Section 3.2.4). This

dataset comprises 405,781 videos of 67 action classes (subsets of the 37 action classes in the MEVA

[61] dataset). The distribution of videos per action class is illustrated in Figure 5.4.

Figure 5.4. Distribution of videos per action class in the PIP [63] dataset.

However, a large part of the action classes included in the dataset are not related to the topic of

this dissertation (in-store customer behaviour), such as vehicle activity and hand interaction classes.

With this in mind, we only selected those relevant to our task, represented as the green bars in Figure

5.4. Furthermore, we merged and simplified some of the selected classes, as these were redundant

(shown in Table 5.4). This resulted in a subset of PIP that we refer to as the PIP Retail dataset, which
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encompasses 12 distinct action classes spanning a total of 139,236 video files. Figure 5.5 displays the

label assigned to each action class, along with the corresponding count of associated videos.

Table 5.4. Labelling correspondence for some of the selected action classes.

PIP PIP Retail

- person_picks_up_object
- person_picks_up_object_from_floor
- person_picks_up_object_from_shelf
- person_picks_up_object_from_table

- person_picks_object

- person_puts_down_object
- person_puts_down_object_on_floor
- person_puts_down_object_on_shelf
- person_puts_down_object_on_table

- person_places_object

- person_carries_heavy_object - person_carries_object

- person_texts_on_phone - person_interacts_with_phone

Figure 5.5. Distribution of videos per action class in the PIP Retail dataset.

Annotations for each video include the bounding boxes that surround the subject performing the

action over time (actor), the label of the action class, and the frame interval at which it occurs, along

with additional metadata (e.g. video ID, dimensions, and frame rate). These annotations are grouped

into a single JSON representing the entire dataset (VIPY annotation format), which can be intuitively

accessed using the open source VIPY [65] python package. VIPY was developed by the authors of the

dataset for representing, transforming and visualising annotated videos and images. It provides tools

for applying transformations such as downsampling, padding, scaling, cropping and rotating, so that

the annotations are transformed along with the video pixels.
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Moreover, it should be noted that the authors of the dataset performed post-processing tasks to

the collected videos. For instance, given that the hand-held cameras were used to record the videos,

the background is not stabilised. Therefore, background stabilisation was carried out using an affine

coarse-to-fine optical-flow method. This procedure was designed to minimise distortion for motion in

the regions around the centre of the actor bounding box, as if the cameras were rigidly mounted on a

tripod. In addition, bounding boxes were refined and transformed to be aligned with the background

stabilised video.

In this context, given that the PIP Retail dataset does not include information about the pose of

the actors, we executed the procedures outlined in Section 3.1.7 regarding the creation of a custom

skeleton dataset. Initially, we gathered the necessary annotations to generate the pickle files for each

of the 139,236 videos, which include the video ID (frame_dir), the action label (label), the dimensions

of the video (img_shape and original_shape), the duration of the action sequence (total_frames), the

skeleton sequence (keypoint), and the keypoint confidence scores (keypoint_score).

The 'frame_dir', 'label', 'img_shape', and 'original_shape' fields were directly retrieved from the

JSON annotation file of the PIP Retail dataset. To ensure compatibility with the 'label' field, which only

accepts integer values, we assigned each action class with a number, ranging from 0 to 11. As for the

'total_frames', 'keypoint', and 'keypoint_score' fields, based on the annotated bounding boxes, which

define the location of the actor over time, and the frame interval at which the action was performed,

it was possible to extract skeleton sequences corresponding to the poses that were estimated within

that interval. For this purpose, the HRNet [25] human pose estimation algorithm was employed (see

Section 3.1.6). This procedure resulted in 139,236 pickle files with the following structure (example of

one of the pickle files):

{

'frame_dir': '20200517_1233581741317354_2',

'label': 10, # person_stands_up

'img_shape': (1276, 1536),

'original_shape': (1276, 1536),

'total_frames': 65,

'keypoint': array([[[[769.27, 567.75], [772.20, 563.35],…]]])

'keypoint_score': array([[[0.9366, 0.9120, ...]]])

}

After generating the pickle files, we gathered them into separate lists for training and validation

purposes. In particular, for each action class, we split the pickle files into 80% for training and 20% for

validation. Subsequently, we saved each of these lists as individual pickle files: “pip_retail_train.pkl”
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for the training set and “pip_retail_val.pkl” for the validation set.

It is important to emphasise that the extraction of skeleton sequences from 139,236 video files is

a slow and resource-intensive operation, which was estimated to take several weeks to a few months

to complete. Hence, in the midst of this time-consuming process, a decision was made to generate an

additional, smaller version of the PIP Retail dataset. This version was assembled using the pickle files

that had been generated so far. To do so, we selected a fixed number of shuffled pickle files from

each class, making a total of 13,000 instances. The distribution of instances per action class is

illustrated in Figure 5.6. The process of gathering the selected files into training and validation sets

was performed using the aforementioned percentages, which resulted in the pickle files:

“pip_retail_small_train.pkl” and “pip_retail_small_val.pkl”.

Figure 5.6. Distribution of videos per action class in the PIP Retail Small dataset.

As for testing, we opted to use the validation set instead of creating an additional split

specifically for that purpose. The rationale for not including a test set was that we considered the PIP

Retail Small dataset to be too small for an additional split to be created. We maintained this same

strategy for the PIP Retail dataset to ensure that the results of both the small and complete versions

could be directly compared.

5.2.2. Modelling

Once the datasets were prepared, we could then proceed to train skeleton-based action recognition

models, and subsequently test them. As mentioned in Section 3.1.7, we used the MMAction2 toolkit

[59] version 0.24.1, which provides three skeleton-based action recognition models, i.e. ST-GCN [42],

AGCN [43] and PoseC3D [23].
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Both ST-GCN and AGCN leverage Graph Convolutional Networks (GCNs) to model the spatial and

temporal dependencies in skeleton data. Thus, human skeleton sequences are represented as graphs,

where each joint is a node, and the edges that connect the nodes represent the spatial and temporal

relationships between the joints. However, as opposed to ST-GCN where the topology of the graph is

defined manually and remains fixed over all layers and input samples, AGCN parameterises the graph

structure and incorporates it into the network, allowing it to be learned and updated with the model.

This enables the network to learn specific relationships between joints that are relevant to the action

being performed. Moreover, AGCN incorporates a two-stream design to simultaneously model both

first-order (joint coordinates) and second-order (bone lengths and directions) information, in contrast

to ST-GCN, which only considers first-order information.

PoseC3D was proposed as an alternative to the GCN-based approaches. It also takes 2D skeleton

sequences as input, which are obtained through human pose estimation algorithms. However, rather

than processing coordinates on a human skeleton graph, it represents the 2D poses as stacks of joint

heatmaps. In this approach, the heatmaps from different time steps are combined along the temporal

dimension, creating a 3D heatmap volume. PoseConv3D then applies a 3D CNN over this 3D heatmap

volume to recognise actions. Compared to GCN-based methods, PoseC3D is more effective at

learning spatio-temporal features, more robust against pose estimation noise, and can handle

multiple-person scenarios without incurring additional computational costs.

Each of these models has an associated configuration file (.py extension) to conduct experiments.

These configuration files follow a modular, inheritance-based design pattern, defining aspects such as

the model architecture, dataset specifications (including data loading and augmentation pipelines for

the training, validation, and testing processes), optimiser settings, learning rate schemes, and

runtime configurations (e.g. number of epochs). In addition, the MMAction2 toolkit provides tools for

training and testing the models based on these configuration files, i.e. the “train.py” and “test.py”

scripts. The “train.py” script is used to train the models. During this process, it generates logs

containing relevant statistics, and checkpoint files (.pth extension) representing the state of the

model at various training stages. The “test.py” script is then used to test the models. It loads one of

the saved checkpoints and evaluates the performance of the model according to the selected metrics.

It also generates a results file (.json extension) for offline evaluation.

With this in mind, we started by running the “train.py” script for the aforementioned models on

the PIP Retail Small dataset. Some important details regarding the training process of each model, as

well as results obtained from the logs (including execution time per epoch and top-K accuracy scores),

are shown in Tables 5.5 and 5.6, respectively.
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The top-K accuracy is the metric we chose to evaluate the checkpoints generated for each model

during training. In the context of these models, predictions for a given instance are made by assigning

a probability (confidence score) to each possible class. With this in mind, the top-K accuracy considers

the K model predictions with higher probability. If one of them matches the true class, the prediction

is classified as correct. The top-1 accuracy, referred to simply as accuracy, is a particular case in which

only the prediction with the highest probability is taken into account. Besides the top-1 accuracy, we

also used the top-2 accuracy (K = 2) in order to select the best-performing checkpoint for each model,

whose validation scores are presented in Table 5.6.

Table 5.5. Training process details.

Model Optimiser Learning Rate Momentum Weight Decay Batch Size Max Epochs

ST-GCN Stochastic
Gradient
Descent
(SGD)

0.1 (Step Decay) 0.9 0.0001 16 80

AGCN 0.1 (Step Decay) 0.9 0.0001 16 80

PoseC3D 0.2 (Cosine Annealing) 0.9 0.0003 16 240

Table 5.6. Training results for the PIP Retail Small dataset.

Model Execution Time per Epoch (mm:ss.SSS) Best Checkpoint
Validation
Top-1 Accuracy

Validation
Top-2 Accuracy

ST-GCN 01:45.988 70 0.7588 0.8754

AGCN 02:58.013 80 0.8038 0.9069

PoseC3D 05:15.279 240 0.8423 0.9408

Based on the training results, we noticed that ST-GCN is the lightest but worst performing model,

while PoseC3D is the heaviest but best performing model. On the other hand, AGCN presents a good

trade-off between accuracy and computational efficiency. Furthermore, we also noticed a significant

increase in the top-2 accuracy scores compared to the top-1, implying that approximately 10% of the

total number of instances from the validation set were incorrectly predicted as the first choice of the

models, but correctly predicted as their second choice.

Subsequently, we executed the “test.py” script on the best checkpoint generated for each model

during training. The metrics chosen to further evaluate these checkpoints were the accuracy, as well

as the macro-averaged recall, precision, and F1-score. The macro-averaged measures were calculated

in order to obtain an indication of how well a model performs for each individual class, as opposed to

simply considering the overall accuracy, which can be misleading when classes are unbalanced. These

metrics are detailed below.

● The accuracy refers to the overall performance of a classification model, and is defined as the

ratio of correctly predicted instances to the total number of instances.
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(11)𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

● The recall, in multi-class classification, indicates the proportion of instances of a class that the

model correctly predicted among all the instances that belong to that class. It is expressed as

the ratio of true positive predictions to the total number of actual positive instances.

(12)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

● The precision, in multi-class classification, reflects the fraction of correctly predicted instances

for a certain class among all the instances that the model predicted as being of that class. It is

the ratio of true positive predictions to the total number of positive predictions made.

(13)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

● The F1-score corresponds to the harmonic mean of precision and recall. It provides a balance

between the two metrics, considering both false negatives and false positives.

(14)𝐹1˗𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

To get the macro-averaged precision, recall, and F1-score, these metrics are calculated separately

for each action class, and then the values are averaged across all classes. This ensures that each class

contributes equally to the final metric, regardless of class imbalance.

The results obtained from the tests are illustrated in Figures 5.7, 5.8, and 5.9, which present the

normalised confusion matrices resulting from the ST-GCN, AGCN, and PoseC3D models, respectively.

The performance scores relative to the metrics described above are shown in Table 5.10.

Upon analysing the generated confusion matrices, we noticed that, in general, the highest degree

of confusion occurred between the “person_picks_object” and “person_places_object” classes. This

can be attributed to the similarity of the arm movements in these two action classes, bearing in mind

that the models solely rely on pose information and do not consider appearance cues to determine

whether the person is holding an object. Similarly, the “person_sits_down” and “person_stands_up”

classes were occasionally confused with each other due to noise in the respective videos, given that

in some instances the actor would perform both of these actions consecutively. Moreover, the class

“person_purchases_from_cashier” was often mistaken for others that can be perceived as subclasses

(i.e. atomic interactions between the person and the cashier), which include “person_picks_object”,

“person_places_object”, “person_transfers_object_to_person”, and “person_talks_to_person”.
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Figure 5.7. Confusion matrix of the ST-GCN model in the PIP Retail Small dataset.

Figure 5.8. Confusion matrix of the AGCN model in the PIP Retail Small dataset.
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Figure 5.9. Confusion matrix of the PoseC3D model in the PIP Retail Small dataset.

To enhance the results on the PIP Retail Small dataset, we opted to fine-tune model checkpoints

provided in the MMAction2 toolkit, which were originally trained on large-scale benchmark datasets.

Starting with ST-GCN, the only available checkpoint that leveraged 2D skeleton sequences was trained

on the NTU60-XSub [74] dataset. Therefore, we selected that particular checkpoint for fine-tuning. As

for AGCN, all the available checkpoints resulted from training processes performed using 3D skeleton

sequences, which made it unviable to experiment with fine-tuning using this model. Finally, regarding

PoseC3D, the provided checkpoints were relative to the NTU60-XSub [74], NTU120-XSub [75], UCF101

[76], HMDB51 [77], and FineGYM [78] datasets (all trained using 2D skeleton sequences). Considering

the actions featured in these datasets, HMDB51 is the one most closely related to PIP Retail. Thus, we

selected that checkpoint for the purpose of fine-tuning PoseC3D.

Some details regarding the training process of each model (noting that fine-tuning requires fewer

epochs and a lower initial learning rate), as well as results taken from the logs, can be found in Tables

5.7 and 5.8, respectively. Furthermore, Figures 5.10 and 5.11 depict the confusion matrices obtained

from testing the fine-tuned ST-GCN and PoseC3D models, while Table 5.10 shows the accuracy, along

with the macro-averaged values for recall, precision, and F1-score.
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Table 5.7. Training process details (fine-tuning).

Model Optimiser Learning Rate Momentum Weight Decay Batch Size Max Epochs

ST-GCN
SGD

0.05 (Step Decay) 0.9 0.0001 16 40

PoseC3D 0.1 (Cosine Annealing) 0.9 0.0003 16 120

Table 5.8. Training results for the PIP Retail Small dataset (fine-tuning).

Model Execution Time per Epoch (mm:ss.SSS) Best Checkpoint
Validation
Top-1 Accuracy

Validation
Top-2 Accuracy

ST-GCN 01:41.225 40 0.7973 0.9119

PoseC3D 21:40.283 120 0.8727 0.9508

Compared to training from scratch, fine-tuning the ST-GCN and PoseC3D models proved to be an

asset in improving results, considering the limited scale of the PIP Retail Small dataset. In both cases,

the accuracy scores increased by around 3%. Upon closer examination of the confusion matrices, we

noticed that ST-GCN improved its performance for most of the action classes, especially for those that

showed higher confusion rates when trained from scratch, such as “person_purchases_from_cashier”

“person_picks_object”, “person_places_object”, and “person_talks_to_person”. Another action class

that noticeably benefited from fine-tuning was “person_interacts_with_phone”. These

enhancements can be attributed to the presence of other classes with similar motions in the

NTU60-XSub dataset. An identical outcome was observed for PoseC3D, with most action classes

exhibiting lower confusion rates when compared to training from scratch. In particular, classes such

as “person_sits_down” and “person_stands_up”, as well as “person_picks_object”, were considerably

improved, since these are provided in the HMDB51 dataset. However, it should be noted that the

HMDB51 dataset covers four body visibility levels (i.e. full body, upper body, lower body, and head),

and the “talk” action class in the HMDB51 dataset was only recorded for the upper body and head

visibility levels, rather than the target full body. This limitation explains why the performance of the

“person_talks_to_person” action class did not improve.

63



Figure 5.10. Confusion matrix of the fine-tuned ST-GCN model in the PIP Retail Small dataset.

Figure 5.11. Confusion matrix of the fine-tuned PoseC3D model in the PIP Retail Small dataset.
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Once the entire PIP Retail dataset had been assembled, we were able to train the models with it.

The configurations adopted remained consistent with those used for training the models from scratch

with the PIP Retail Small dataset, which are presented in Table 5.5. The statistics drawn from the logs

during the training process are provided in Table 5.9. The confusion matrices generated in the testing

process are displayed in Figures 5.12, 5.13, and 5.14. Furthermore, the performance scores calculated

based on these matrices are shown in Table 5.10. However, since training with the PIP Retail dataset

requires substantially more time and computational resources than using the PIP Retail Small dataset,

we were not able to obtain results for PoseC3D as it is significantly more resource-intensive than both

ST-GCN and AGCN.

Table 5.9. Training results for the PIP Retail dataset.

Model Execution Time per Epoch (mm:ss.SSS) Best Checkpoint
Validation
Top-1 Accuracy

Validation
Top-2 Accuracy

ST-GCN 16:35.075 55 0.8784 0.9553

AGCN 30:35.463 65 0.9127 0.9679

Upon analysing the results, we observed that training the ST-GCN and AGCN models with the PIP

Retail dataset led to an increase in accuracy of approximately 11% to 12% compared to training them

with the PIP Retail Small dataset. This indicates a substantial improvement in performance. However,

it is important to note that the macro-averaged F1-score values increased by approximately 8% to 9%,

which, while also a notable improvement, was less substantial compared to the accuracy gains. These

outcomes emphasise the inherent imbalance of the complete dataset, given that the majority classes

outperformed the overall class performance. Nevertheless, they indicate significant enhancements in

the performance of the models when trained with the complete PIP Retail dataset, due to the greater

number and variety of instances they were able to learn from.

Regarding the confusion matrices, we noticed that the results for practically all classes improved,

with most of them exhibiting lower counts of false positives and false negatives. However, the action

“person_purchases_from_cashier”, previously mentioned for being the combination of several other

atomic actions of interactions between a customer and the cashier, was the only one that maintained

its poor true positive rate (recall) or even worsened it. In particular, although the predictions for this

specific class were mostly correct (few false positives), a significant number of instances were falsely

predicted as the “person_transfers_object_to_person” atomic action (false negatives).
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Figure 5.12. Confusion matrix of the ST-GCN model in the PIP Retail dataset.

Figure 5.13. Confusion matrix of the AGCN model in the PIP Retail dataset.
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Table 5.10. Overall test results.

Model Dataset Fine-tuning
Inference
Time (ms)

Macro
Recall

Macro
Precision

Macro
F1-Score

Accuracy

ST-GCN PIP Retail Small No 4 0.7850 0.7694 0.7754 0.7588

ST-GCN PIP Retail Small Yes (NTU60-XSub) 4 0.8183 0.8135 0.8150 0.7973

AGCN PIP Retail Small No 17 0.8192 0.8136 0.8154 0.8038

PoseC3D PIP Retail Small No 267 0.8556 0.8468 0.8503 0.8423

PoseC3D PIP Retail Small Yes (HMDB51) 267 0.8835 0.8758 0.8785 0.8727

ST-GCN PIP Retail No 4 0.8656 0.8655 0.8653 0.8784

AGCN PIP Retail No 17 0.8975 0.8992 0.8983 0.9127

5.2.3. Evaluation

Based on the results of our experiments in the Modelling phase, we can now discuss the performance

of each model on a more practical level. Among the 3 models, ST-GCN showed the shortest inference

times, highlighting its computational efficiency. However, it achieved lower scores for all performance

metrics compared to the other models, even though it still managed to achieve a notable accuracy of

87.84% on the PIP Retail dataset. Based on these findings, we would recommend its use in scenarios

where resource constraints are a factor, or in situations where the fastest inference time is imperative

(e.g. real-time applications). On the other hand, AGCN showed a good balance between performance

and computational efficiency, obtaining a 91.27% accuracy on the PIP Retail dataset, with moderately

longer inference times than those observed for ST-GCN. With this in mind, it also offers a favourable

choice for real-time applications, particularly when there are no considerable limitations in terms of

computing power. Lastly, despite not being able to evaluate its performance on the PIP Retail dataset,

PoseC3D achieved the best results in all metrics for the PIP Retail Small dataset, reaching an accuracy

of 87.27% through fine-tuning. However, this improved performance came at the cost of substantially

longer inference times. Therefore, while PoseC3D offers impressive results, it may be better suited for

scenarios where computational resources are abundant and the priority is obtaining the best possible

performance. For applications where real-time processing is essential, it may not be the best option.

In terms of dataset size, in general, all the models exhibited superior performance when trained

with the PIP Retail dataset rather than with the PIP Retail Small dataset, owing to the greater number

and variety of instances. Nonetheless, considering the limited scale of the PIP Retail Small dataset, it

was still possible to achieve respectable results. Furthermore, fine-tuning the models (pre-trained on

large-scale datasets) proved to be a valuable tool for improving results on small-scale datasets. These

improvements may not be extremely significant, but they do offer practical advantages, as fine-tuned

models leverage prior knowledge to produce more refined predictions.
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As for class-specific aspects, among the 12 action classes included in the PIP Retail dataset, some

consistently showed a higher level of confusion than the others. Notably, “person_picks_object” and

“person_places_object” were often mistaken for each other due to the similarity in arm movements.

To address this issue and enhance results, one potential approach would involve extracting additional

appearance cues from the video frames so as to gain insights into the scene surrounding the subjects

and any objects they may be holding, all while taking privacy into account. Noting that several other

classes would benefit from this solution. Furthermore, the “person_purchases_from_cashier” action

class was frequently confused with others that can be regarded as subclasses (i.e. atomic interactions

between the subject and the cashier), which include “person_picks_object”, “person_places_object”,

“person_transfers_object_to_person”, and “person_talks_to_person”. This issue suggests that it may

be more beneficial to train the models exclusively for predicting individual atomic actions, which can

then be further processed using a rule-based system to infer the actual complex actions.

In summary, the results obtained in our experiments provided valuable insights into the practical

applications of the three skeleton-based action recognition models (i.e. ST-GCN, AGCN, and PoseC3D)

for analysing customer behaviour in retail settings. Overall, the performance demonstrated by each of

these models confirms their suitability for this use case, laying a strong foundation for future research

in this area. Beyond their individual performance characteristics, it is essential to emphasise how the

outputs of these models, together with trajectory-related data, can aid decision-making processes in

real-world scenarios, contributing to an enhanced retail experience.
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CHAPTER 6

Conclusions

In this study, a framework was developed to extract information regarding customer behaviour from

high-resolution surveillance videos. This includes trajectory-related data that describes the location of

customers over time, as well as pose-related data that specifies the actions being performed by them,

both of which require reliable tracking data for the continuous identification of each customer.

For this purpose, we were provided with a dataset exclusively prepared for the “ECI 4.0 - Espaços

Comerciais Inteligentes” research project, of which this dissertation is a part. However, due to certain

problems inherent in this dataset, we found it necessary to search for alternative datasets. Hence, for

experiments involving trajectory-related data, we chose the VIRAT dataset, and for action recognition,

we opted for the PIP dataset.

During the development of the framework, we identified some issues and proposed solutions to

mitigate them. One of them was the impact of occlusions on the location data provided by the object

detection and tracking algorithms. To address this issue, we created the occlusion-aware mechanism,

which aims to detect occlusion cases and rectify their impact. To evaluate its effectiveness, in addition

to qualitative experiments, we conducted an in-depth statistical assessment of its performance using

parametric and nonparametric tests: the paired Student's -test and the Wilcoxon test, respectively.𝑡

These tests were applied to IoU values calculated by comparing the ground truth bounding boxes of

the VIRAT dataset with the outputs of the object detection algorithm, before and after being adjusted

using the occlusion-aware mechanism. The results from both tests indicated that the improvements

made by the mechanism were statistically significant (paired Student's -test: t(34) = 11.70, p < .001;𝑡

Wilcoxon test: z = 5.16, p < .001). Moreover, the paired Student's -test yielded a Cohen's value of𝑡 𝑑

1.98, indicating a substantial effect size.

These results directly satisfy the first part of our first research question, which aimed to provide a

viable solution for improving the accuracy of location data generated by object detection and tracking

algorithms in occlusion-prone scenarios. With this in mind, we can conclude that the occlusion-aware

mechanism is a valuable tool for enhancing location data in such scenarios.

Furthermore, we observed that the trajectory points, extracted from the location data, exhibited

irregularities due to different factors. Therefore, we introduced a smoothing method to correct them,

considering both past and future trajectory information. Based on the visual outputs produced using

an 8-point sliding window, we were able to verify the effectiveness of the method in attenuating the

irregularities. In particular, at an individual level, the method proved to be capable of handling natural
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types of irregularities, such as those caused by gait (walking) movement. Besides, in conjunction with

the occlusion-aware mechanism, it provided significant practical contributions in mitigating the effect

of occlusions on trajectory mapping, resulting in more reliable path information.

Specifically, our research confirmed that applying the occlusion-aware mechanism to the location

data of occluded subjects, and subsequently applying the smoothing method to the trajectory points

extracted from the corrected data, notably enhances the precision of the resulting trajectories. This is

because the smoothed trajectory points end up tracing the actual positions of the subjects over time,

rather than being influenced by the obstacles that occluded them. These findings address the second

aspect of our first research question, which sought to examine the practical implications of improving

the location data on trajectory mapping, particularly in scenarios involving occlusions.

In terms of the action recognition process, we compared 3 skeleton-based HAR models: ST-GCN,

AGCN, and PoseC3D. These were trained and tested on both the PIP Retail dataset, which comprises a

subset of 12 classes selected from the original PIP dataset, and its scaled-down version, the PIP Retail

Small dataset. The results obtained from assessing the models on these datasets suggest that ST-GCN

is the most efficient, but has lower performance, making it ideal for resource-constrained or real-time

applications, and that AGCN strikes a balance between efficiency and performance, thus rendering it

a compelling choice for real-time applications with reasonable computational resources. Conversely,

despite showing superior performance, PoseC3D proved to be considerably more resource-intensive

than the others, meaning it is suitable for scenarios where the priority is to achieve the best possible

performance, rather than real-time processing. Nevertheless, aside from their unique characteristics,

the scores achieved by each of these models (reaching accuracy values in the order of 90% on the PIP

Retail dataset) confirm their effectiveness in recognising customer behaviour, whilst ensuring privacy,

given that only anonymous skeleton data is processed.

The aforementioned findings effectively address the second research question, which concerned

the selection of suitable models to recognise customer behaviour while safeguarding their privacy, as

well as the identification of the most adequate use cases for each model, based on their performance

and computational efficiency.

6.1. Future Work

Regarding future research opportunities, an important aspect to consider is the acquisition of a more

specialised dataset, consisting of high-resolution surveillance videos captured in retail environments,

as was initially intended for this work with the Worten Surveillance dataset. Besides enabling a more

adequate assessment of the framework as a whole, a more specialised dataset would be particularly

useful for refining the action recognition process. This is because it would allow models to be trained,
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or possibly even fine-tuned (e.g. those trained on the PIP Retail dataset in this study), to respond to a

more specific use case, in order to rigorously evaluate their effectiveness in practical settings.

Still on the subject of action recognition, given that recognising actions with similar body motions

proved to be challenging using skeleton data only, it would be interesting to explore the integration of

supplementary visual features extracted from the video frames. This approach could provide valuable

insights into the context surrounding the subjects, all while maintaining the requirements associated

with their privacy. Furthermore, the contributions of the occlusion-aware mechanism can be further

explored, specifically by analysing the extent to which its improvements to the location data influence

the action recognition process in scenarios involving occlusions.

Another aspect that can also be explored is applying the occlusion-aware mechanism before the

tracking process. This approach would make it possible to provide the multi-object tracking algorithm

with the bounding boxes adjusted using the mechanism, instead of only those predicted by the object

detection algorithm. This adaptation is expected to reduce the number of lost tracks occurring due to

partial occlusions, improving the tracking process.
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