
Low-Code Security for Industrial Applications

Miguel da Ponte Lourenço

Master's in Telecommunications and Computer Engineering

Supervisor:
Doctor Maria Cabral Diogo Pinto Albuquerque, Assistant Professor,
ISCTE - Instituto Universitário de Lisboa, Portugal

Co-Supervisor:
Doctor Tiago José Espinha de Mendonça Gasiba, Senior Key Expert,
Siemens AG, Munich, Germany

October, 2023

Department of Information Science and Technology

Low-Code Security for Industrial Applications

Miguel da Ponte Lourenço

Master's in Telecommunications and Computer Engineering

Supervisor:
Doctor Maria Cabral Diogo Pinto Albuquerque, Assistant Professor,
ISCTE - Instituto Universitário de Lisboa, Portugal

Co-Supervisor:
Doctor Tiago José Espinha de Mendonça Gasiba, Senior Key Expert,
Siemens AG, Munich, Germany

October, 2023

Acknowledgments

These past months have been really challenging with new experiences that I could

never imagine going through them. The research and development described in this

master’s thesis were much more than the information presented in it: it is also the new

challenges that I faced in these last months that resulted in this thesis. Throughout the

writing of this thesis, there have been ups and downs, but I always had support every

step of the way. I am grateful for the people who have helped me through this arduous

but gratifying process.

In March of 2023, I went to Munich to work at Siemens AG and develop the research

presented in this thesis. I am thankful to my supervisor Maria Pinto Albuquerque for her

everlasting help and meticulous monitoring that facilitated the development and writing

of this thesis. My time at Siemens was productive and working with my co-supervisor

was an incredible experience. For this, I am utterly thankful to my co-supervisor Tiago

Gasiba. Not only was he exceptionally helpful and always ready to aid me when I needed

it, but he also pushed me to surpass my limits and was always ready to teach me different

topics. Without their assistance, dedication and involvement in every step of this work,

this dissertation would not have been achieved. I would like to thank you both for all the

support during these last months. Without you, this experience would not have been the

same and for that I am grateful.

Writing this thesis needed more than just academic assistance, for which I am grateful

to many people. To my family for the constant support and being present even when at a

distance in these past months. To my friends for all the fun, laughs and kind words that

motivated me to write this thesis.

i

Resumo

As Low-Code Development Platforms (LCDPs) estão a ganhar cada vez mais força,

mesmo no contexto industrial, como forma de tornar o desenvolvimento de software mais

rápido, barato e fácil. Com as suas caracteŕısticas visuais, como as interfaces gráficas

de fácil utilização e o recurso ao drag-and-drop, qualquer pessoa, desde especialistas em

programação a pessoas com pouca ou nenhuma experiência em desenvolvimento, pode

utilizá-las para desenvolver e implementar aplicações. No entanto, pouco se sabe sobre as

vulnerabilidades resultantes deste novo modelo de desenvolvimento de software. Apesar

de qualquer pessoa poder desenvolver software com LCDPs, as pessoas com menos conhec-

imentos de cibersegurança podem, involuntariamente, adicionar vulnerabilidades às suas

aplicações. Esta tese tem como objetivo compreender as vulnerabilidades das aplicações

desenvolvidas e implementadas nestas plataformas, abordando o problema das vulnera-

bilidades nas LCDPs através do desenvolvimento de um artefacto. As vulnerabilidades

podem ser consideradas a partir de três perspectivas: plataforma, programador e plug-

ins. O artefacto apresenta um top três de vulnerabilidades para cada perspetiva, baseado

numa revisão da literatura, pesquisa em bases de dados e entrevistas a especialistas. Além

disso, são fornecidas directrizes sobre como desenvolver aplicações de forma segura através

destas plataformas, com base na informação sistematizada sobre as vulnerabilidades. Os

resultados mostram que o artefacto desenvolvido é um bom método para compreender o

problema definido e foi aceite na indústria para a qual foi criado. Este trabalho contribui

para a compreensão da segurança das aplicações desenvolvidas com LCDPs e sensibiliza

os profissionais do sector, sistematizando informação sobre cibersegurança em LCDPs.

Palavras-Chave: Low-Code; Desenvolvimento de Software; Cibersegurança; Indústria;

Low-Code Development Platforms ; Vulnerabilidades.

iii

Abstract

Low-Code Development Platforms (LCDPs) are gaining more and more traction, even

in the industrial context, as a means for making software development faster, cheaper and

easier. With its visual features, such as user-friendly graphical interfaces and the use of

drag-and-drop, anyone from programming experts to someone with less or no experience

in development can use them to develop and deploy applications. However, little is known

about the vulnerabilities resulting from this new software development model. Although

anyone can develop software with LCDPs, people with less cybersecurity knowledge can

unwittingly add vulnerabilities to their applications. This thesis aims to understand the

vulnerabilities of applications developed and deployed on these platforms, addressing the

problem of vulnerabilities in LCDPs by developing an artefact. These vulnerabilities can

be considered from three perspectives: platform, developer, and plugins. This artefact

presents a top three vulnerabilities for each perspective, based on a literature review,

database research and interviews with experts. Also, guidelines are provided on how to

develop applications securely using these platforms, based on the systematised information

on vulnerabilities. The results show that the artifact developed is a good method for

understanding the problem defined and has been accepted in the industry for which it was

created. This work contributes to understanding the security of applications developed

with LCDPs and raises awareness among professionals in the sector by systematising

information on cybersecurity in LCDPs.

Keywords: Low-Code; Software Development; Cybersecurity; Industry; Low-Code

Development Platforms; Vulnerabilities.

v

Contents

Acknowledgments i

Resumo iii

Abstract v

Chapter 1. Introduction 1

Chapter 2. State-of-the-Art 5

Chapter 3. Methodology & Approach 9

3.1. Research Method 9

3.2. Approach 10

3.2.1. Lightweight Literature Review 11

3.2.2. Database Search 12

3.2.3. Interviews 15

3.2.4. Expert Review 16

Chapter 4. Results 17

Chapter 5. Discussion 25

5.1. Lightweight Literature Review 25

5.2. Database Search 26

5.3. Interviews 27

5.4. Threats to Validity 28

Chapter 6. Conclusion 29

References 31

Appendix A. Time Graph 35

Appendix B. Works Analysed 37

Appendix C. Platforms Found and Metrics 47

vii

CHAPTER 1

Introduction

Low-Code Development Platforms (LCDPs) are an evolution from the Rapid Applica-

tion Development tools (RAD tools) [1], used in the 1990s and early 2000s. The origins of

LCDPs may be traced back to fourth-generation programming languages and fast applica-

tion development tools in the 1990s and early 2000s. LCDPs, like their predecessors [2,3],

are founded on the ideas of model-driven design, automated code generation, and visual

programming. LCDPs were first defined by Forrester [4,5], in 2014, as platforms that ”en-

able rapid delivery of business applications with a minimum of hand-coding and minimal

upfront investment in setup and deployment.” Subsequently, Gartner [6] also described

LCDPs as being ”platforms that abstract away from code and offer an integrated set

of tools to accelerate app delivery”. Despite this, Low-Code platforms should not be

confused with No-Code platforms [7]. While Low-Code platforms allow developers to

implement manual code, No-Code platforms depend entirely on the visual tool that they

offer. Figure 1.1 shows a window of the Low-Code Development Platform Mendix [8].

Figure 1.1. Example of interface from Mendix

1

In early 2021, Gartner forecasted [9] that the global Low-Code Development Technolo-

gies market would be worth $13.8 billion in 2021, a 22.6 percent rise from 2020. According

to Gartner, despite continuous cost-cutting measures, the spike in remote development

during the COVID-19 epidemic would continue to drive Low-Code adoption, and Low-

Code as a broad social and technological movement was predicted to expand greatly in

the next years. In accordance with Gartner, the Low-Code Development Technologies

market can be defined as a set of technologies, such as Low-Code Development Platforms

(LCDPs), Intelligent Business Process Management Suites, Multiexperience Development

Platforms (MDXP), Robotic Process Automation (RPA), Citizen Automation and De-

velopment Platform (CADP), and Other Low-Code Development (LCD) Technologies.

LCDPs, for example, were predicted to be the largest component of the Low-Code De-

velopment Technology industry through 2022, rising over 30% from 2015. At the end of

2022, Gartner made another forecast [10] on the global market for the Low-Code Devel-

opment Technologies, expected to reach $26.9 billion in 2023, representing a 19.6% rise

from the forecast for 2022. In this study, Gartner’s prediction for 2021 was surpassed:

instead of an increase to $13.8 billion in revenue on the market, it reached $18.5 billion

dollars. Gartner stated that a rising number of enterprise-wide hyperautomation [11] and

composable business activities [12], as well as an increase in business technologists, would

be the primary drivers pushing the use of Low-Code solutions through 2026. LCDPs were

expected to be the most important component of the Low-Code development technology

industry, increasing by 25% to approximately $10 billion by 2023. Figure 1.2 shows the

predicted and observed revenues from these two studies by Gartner.

Figure 1.2. Forecasts for the revenue on the global Low-Code
Development Technologies Market, based on two studies from

Gartner [9,10]

2

According to Mendix [13], there are advantages to using LCDPs over code-based

development, such as 1) collaboration, 2) effortless legacy modernization, 3) flexibility and

scalability, 4) improved customer experiences, and 5) speed. Collaboration through the

use of a LCDP is achieved by means of a visual language between professional developers

and other teams in a collaborative atmosphere. This makes designing, deploying and

modifying the software possible by aligning different parties involved in the project with

the use of a visual interface and drag-and-drop features. According to Mendix [13],

the modernization of legacy systems is crucial for digital transformation programmes.

Even though starting such programs is a big endeavour, Low-Code platforms alleviate the

difficulties associated with dealing with these systems. For this purpose, LCDPs allow the

creation of apps that integrate with existing software landscapes, extend the capabilities

of the legacy systems, and can incrementally replace the systems.

Also, since Low-Code platforms are mostly cloud-based, it allows the deployment of

new apps and modification of old software as needed. Users of the platform may on-

board fast and simply, system administrators may manage the ecosystem and implement

role-based access, and professional developers may customise programs in an Integrated

Development Environment (IDE), offering Low-Code apps a competitive advantage over

No-Code apps. As stated by Mendix [13], competition is fierce and differentiating one-

self is becoming increasingly difficult. Customer-centricity is key for survival and Low-

Code may assist in providing consistent digital customer experiences. Low-Code Develop-

ment Platforms allows the user to create customer-facing mobile applications, web portal,

Internet-of-Thing (IoT) enabled apps, and more in a single platform. Speed is the core

of any LCDP, with capabilities like as visual modelling, pre-built components, automa-

tion, one-click deployment, support bots, and built-in monitoring, states Mendix [13]. As

shown in a statistical article by G2 [14], Low-Code development may save development

time by up to 90%.

Despite the LCDPs offering many advantages compared to code-based development,

the cybersecurity topic has been coming up lately. Forrester analysts predicted that, as

more organisations began to adopt Low-Code software development technologies through

citizen developers, a big corporate security breach would happen in 2023 [15, 16]. Mi-

crosoft’s Detection and Response Team (DART) report [17] has shown a cybersecurity

failure that happened to a large multinational company. In this report it is stated that the

attackers used a tool from their LCDP to search for passwords and intellectual property

from the employees, performing a Password Spraying Attack to the platform and gaining

access to sensitive information. A Password Spraying Attack [18] is a type of brute force

attack on which the attackers force the default password on a list of usernames on the

application, avoiding account lockouts that would normally occur when trying different

passwords for the same account. As stated by OWASP, this attack can be found com-

monly where the application or administrators set default passwords for the new users,

which might have facilitated access to the hackers. The attackers were able to sustain

3

continuous Office 365 access for 240 days, making use of a Living-of-the-Land attack.

In accordance with Kaspersky, a Living-of-the-Land [19] attack defines a cyberattack in

which intruders exploit legitimate software and system features to execute harmful acts

on the system. This term means surviving on what one can forage, hunt or grow in na-

ture, but transposing to the cybersecurity field, means the trespassers forage on the target

systems for tools and use them to achieve their goals. During this period, the attackers

were able to find sensitive material and exfiltrate data — all without installing malware or

gaining access to the corporate network. In the end, the company saw almost 40 million

confidential records and emails being exposed to the Internet.

The motivation for this work came from the necessity of the industry to understand

the vulnerabilities of the LCDPs and how to securely develop software using them. In or-

der to write this thesis, I was given the opportunity to be in Munich working at Siemens

AG, between the months of March and July 2023. During this time, a conference pa-

per [20] was written and accepted, which analyses the most common vulnerabilities in

LCDPs and describes the core of the work done in this thesis. Also, interviews with in-

dustry experts were conducted in order to obtain information from their field experience.

Accordingly, the research questions for the present work are: RQ1: What are the possible

threats and vulnerabilities for Low-Code applications? RQ2: How to model risk for Low-

Code software? RQ3: What are important aspects of the security life-cycle for Low-Code

applications? In this work, we want to address these issues, increase our knowledge of

LCDP vulnerabilities and understand how to counter these weaknesses. Therefore, our

work aims to generate an artifact - a list of relevant vulnerabilities that can affect appli-

cations developed and deployed using LCDPs - and a set of guidelines to help develop

secure software through LCDPs. This study approaches the issues by 1) conducting a

Lightweight Systematic Literature Review relevant to the topic, 2) performing relevant

database searches for known vulnerabilities, and 3) conducting interviews with cyberse-

curity experts from the industry. Figure A.1 describes the duration of all the activities

surrounding this work and when they took place.

The present thesis is structured in the following way. Chapter 2 overviews previous

work related to the present study. Chapter 3 provides details on the research method,

describes our approach to the problem, and also provides a description of the experiment

setup. Results are presented in Chapter 4 and are discussed in detail in Chapter 5. This

work is concluded in Chapter 6, which provides a quick overview of our main results and

details for further work. In the end, Appendices A, B, and C show information regarding

the research of this thesis.

4

CHAPTER 2

State-of-the-Art

This section characterizes the series of standards that influenced this work, discuss

relevant repositories on the topic and provides a description of what LCDPs are and how

they operate.

The IEC 62443 series [21], is designed to secure Industrial Automation and Control

Systems (IACS) throughout their life-cycle, including nine standards, technical reports,

and technical specifications. Cyber-attacks on IACS can have economic consequences,

environmental or public health risks, and can threaten public health and lives. IEC 62443

addresses not only the technology of a control system but also work processes, counter-

measures, and employees. It takes a holistic approach, recognizing that not all risks are

technology-based. Staff responsible for an IACS must have the required training, knowl-

edge, and skills to ensure security. The IEC 62443 series is organized into four parts:

General, System, Components, and Conformity Assessment. Part 1 covers common top-

ics to the entire series of standards, such as terminologies and concepts. Part 2 centres on

the strategies and activities related to IACS security. Part 3 is concerned with systems

requirements, such as security requirements and risk assessment. Part 4 offers specifi-

cations for IACS products, including secure product development life-cycle requirements

and technical security. This series of standards is relevant to this work because it encom-

passes security at an industrial level for the systems, the solution and the development

process for the product, which is what the topic of this work is about.

The ISO/IEC 27000 family of standards [22], also known as the ISMS family of stan-

dards or ISO27K, covers a broad range of information security standards published by both

the International Organisation for Standardisation and the International Electrotechnical

Commission. ISO 27000 series recommends best practices for managing information risks

by implementing security controls within the framework of an overall Information Security

Management System (ISMS). The ISO 27000 series is not specific to any industry, mak-

ing it applicable to any business, regardless of size and industry. Organizations should

tailor their information security controls to treat risks as they deem appropriate. Security

guidance and suggestions should be relied upon when appropriate. The ISMS concept

incorporates continuous feedback and improvements to respond to changes in threats or

vulnerabilities that occur as a result of incidents. Compliance with the ISO 27000 series

is the first step toward an information security program that will properly protect an

organization. Implementing the ISO 27000 series standard has several benefits, including

safeguarding mission-critical data, employee and customer information, instilling greater

confidence in operations, enhancing public perception, and providing methodologies for

5

more effective information security management. It is important to note that the ISO

27000 set of standards is transparent but can be revised as new technology and challenges

emerge. This family of standards is relevant for the present work because it was designed

to help companies manage cyberattack risks and data security threats.

Gartner [6] is a consultant company that offers customers insights, advice and solutions

in various areas of IT, such as software development, cloud computing, and data science.

This company is important for this work since it provides information regarding the

relevant LCDP providers in the market. For this effect, the Magic Quadrant repository

for Enterprise Low-Code Application Platforms will be used. The Magic Quadrant [23] is

a repository that provides information on the relevant players in the market, according to

Gartner. As reported by the latest version of Magic Quadrant for Enterprise Low-Code

Application Platforms [24], dated the end of 2022, the market leaders are Mendix [8],

OutSystems [25], Microsoft Power Apps [26], ServiceNow [27], and Salesforce [28].

The MITRE Corporation [29], commonly known as MITRE, is an American not-

for-profit organization that manages federally funded research and development centres

(FFRDCs) supporting the United States government agencies in homeland security and

cybersecurity fields, among others. In the cybersecurity area, MITRE’s projects that are

relevant to this work are the Common Vulnerabilities and Exposures and the Common

Weakness Enumeration.

The Common Vulnerabilities and Exposures standard (CVE) [30], is a list of informa-

tion security vulnerabilities and exposures, aiming to provide common names for publicly

known problems, making data sharing easier across different vulnerability capabilities. In

this database, it is possible to search for a development platform or software and be pre-

sented with a list of security vulnerabilities regarding it. Amongst these vulnerabilities,

we get access to valuable information, for example, the vulnerability’s details, the exploit

prediction, a score that reflects the severity of the vulnerability, and a Common Weakness

Enumeration identification.

The Common Weakness Enumeration standard (CWE) [31] is a community-developed

list of common software and hardware weaknesses with security implications. According to

CWE, a ”weakness” is a condition in a component that could introduce vulnerabilities, and

the CWE List and classification taxonomy help identify and describe these weaknesses.

Each entry on this list has a specific identification number to define the weakness, referred

as CWE-ID. Vulnerabilities such as ”Cross-Site Scripting” (CWE-79), ”SQL Injection”

(CWE-89), and ”Improper Input Validation” (CWE-20) are presented in this list. As

of 2023, the CWE standard identifies over 1000 software vulnerability types. In the

present work, the CWE will be used as a standardized means to identify and classify

security weaknesses. The usage of CWE for LCDPs is novel because CWE typically

applies to software code and LCDPs are Low-Code code. Nevertheless, we base our

vulnerability description on CWE as this is a standard provided by MITRE and covers

software weaknesses.

6

The OWASP Top 10 [32] is a widely recognized document for web application security,

outlining the most significant security threats to web applications. This standard is

maintained by the OWASP Foundation [33], which enhances software security through

its community-led projects. OWASP Top 10 from 2021 stages a diagram with the changes

that took place from the last iteration in 2017, explaining the changes and explaining the

vulnerability briefly. The vulnerabilities presented in this document are mapped to CWE,

also helping in identifying vulnerabilities. This standard is also used in this work because,

since the final product of LCDPs is typically web applications, it is natural to use a web

vulnerability standard to classify vulnerabilities of web applications.

The goal of this work is to answer the research question that has been raised by the

industry. In order to do this, we need to define what are Low-Code Development Plat-

forms and comprehend their characteristics and functionalities. Low-Code Development

Platforms are software development tools that offer a visual language, drag-and-drop in-

terface, pre-built components, and templates for developing applications. As such, LCDPs

enable either experienced or inexperienced people to develop software, depending on their

preferences and requirements. For the inexperienced crowd that develops apps through

these platforms, the term Citizen Developers was coined, as described by Gartner [34].

The common features present in LCDPs are visual IDE, automated code generation,

model-driven development approach, integrations, multi-user features, multi-platform de-

ployment, life-cycle manager and reusable components. The visual IDE facilitates the

development through the use of drag-and-drop, making it interactable for the user. Model-

Driven Development (MDD) [35] is a methodology for software development that enables

developers to write and implement software faster, effectively, and at a minimum cost.

The LCDPs implement this methodology by abstracting from the technical aspects of the

software development, presenting them through visual components. Multi-user features

promote the collaboration of multiple users in the same app at the same time and also

feature version control between users. Multi-platform deployment allows users to deploy

their apps across web, mobile and cloud environments. Life-cycle manager provides the

users with tools to build, debug, deploy and maintain apps in multiple environments.

Reusable components give the users libraries of pre-built components that can be used to

build apps. These platforms, despite having common features, can be focused on different

aspects of software development so, it is important to choose the platform in accordance

with the type of software to be developed.

As the name implies, the LCDPs do not require big amounts of code; rather small code

implementations are possible. This code implementation is made available in case the user

pretends to do customization according to their knowledge. It is important to note that

Low-Code and No-Code are two separate things: while No-Code does not provide the

means to implement custom code from the user, Low-Code makes it happen.

7

CHAPTER 3

Methodology & Approach

The present chapter describes the methodology followed in this work, separating the

research process into two focuses: the research method implemented and the approach

taken to conduct the research.

3.1. Research Method

For the present work, we took inspiration from the Design Science Research method by

Hevner et al.. Design Science Research (DSR) [36] is a research approach that focuses on

the creation and validation of prescriptive knowledge in the field of information science.

This methodology focuses on creating and enhancing designed artifacts with the explicit

aim of enhancing their functional performance. In 2004, Hevner et al. stated that the

DSR aims to gain knowledge and understanding of a problem domain by creating and im-

plementing a designed artifact. The authors provide guidelines for design science research

in Information Systems, requiring the creation of innovative artifacts for specific problem

domains, rigorous construction and evaluation, and effective presentation of results to

both technology-oriented and management-oriented audiences.

Thereby, the authors presented seven guidelines for a DSR: design as an artifact,

problem relevance, design evaluation, research contributions, research rigor, design as a

search process, and communication of research. Design as an artifact is the fact that the

DSR necessitates the creation of a viable artifact, such as a construct, model, method,

or instantiation. Problem relevance, as the name implies, shows that DSR aims to create

technology-based solutions to significant and pertinent business issues. Design evaluation

demands that the effectiveness and utility of a design artifact must be thoroughly assessed

through effective evaluation methods. Research contributions refer to the fact that DSR

should offer clear and verifiable contributions in design artifact, design foundations, andor

design methodologies. Research rigor shows that for the production and assessment of

design artefacts, DSR applies rigorous techniques. Design as a search process iterates that

pursuing an effective artefact demands making use of existing resources to attain desired

results while following problem-solving laws. Communication of research DSR must be

successfully communicated to both technical and managerial audiences.

Based on these guidelines provided by Hevner et al., four relevant guidelines were

adopted for this work: 1) design as an artifact, 2) problem relevance, 3) contributions,

and 4) rigor. The designed artifact in this work consists of a table of the top three

vulnerabilities and guidelines for more secure development of software with LCDPs. Fur-

thermore, this work’s problem is relevant for the industry since cybersecurity is essential

9

in developing products and services. This thesis aims to shed light on this problem in

order to understand it better. Also, it achieves rigor in the research by using diversi-

fied sources of information. In particular, this work makes use of existing information

in databases and blog posts and validates it through cybersecurity experts’ opinions and

experience. Regarding the contributions guideline, this work aims to contribute to a bet-

ter understanding of vulnerabilities in Low-Code Development Platforms. The present

work and the conference paper [20] produced contribute to academia by deepening the

existing knowledge on this subject for future generations. It also contributes to Siemens

by improving cybersecurity awareness and the software development process.

The topic that this work addresses can be named a wicked problem. A wicked prob-

lem [37] is a problem with many interdependent factors making it seem impossible to

have a solution. This can be claimed because the topic is unstable thanks to the fact

that technology is constantly evolving. The knowledge in this field can become obsolete

overnight, and that gives space for new information. Additionally, the requirements keep

on changing because the work and results keep progressing, which drives the need for new

and better knowledge. Furthermore, this problem is dependent on landscape, culture, and

environment because it is a situated research carried out at the company. Even though

this study was developed at a specific company, it can aid other companies with similar

problems. Moreover, the approach carried out in this work was done to try to gather

information, either theoretical or practical, from different sources. Therefore, it can be

affirmed that the results present in this work are not universally valid.

To better understand the vulnerabilities of each of the perspectives, we designed an

approach that would fit our research. This approach not only covers theoretical research

but also a more practical one.

3.2. Approach

Select Sources

Lightweight
Literature Review

Database Search

Interviews

Grouping in
Categories

Coding

Prioritizing

Grouping Prioritizing

Ex
p

er
t

R
ev

ie
w

1

2

3

4

Figure 3.1. Research activities

To reach this thesis’ goal, an approach was adopted as shown in Figure 3.1. This

approach was conducted during the time presented in Figure A.1 and consists of four

paths: 1) Lightweight Literature Review, 2) Database Search, 3) Interview, and 4) Expert

Review. A detailed description of each path will be presented afterwards. We believe that

this approach is appropriate for the topic at hand because it combines information from

the literature and from the practical experience of industry experts.

10

Table 3.1. Keywords and Inclusion and Exclusion Criteria used in
LWLR

Keywords Inclusion Criteria Exclusion Criteria

”Low-Code” Documents are single works
(articles, conference papers
or book chapters)

Works published before
2020

”Low-Code Development” Works discuss Low-Code Works not written in Eng-
lish

”Low-Code Platform” Works are available in digi-
tal form

Works that are secondary or
tertiary studies

”Low-Code Development
Platform”
”Security in Low-Code”
”Security in Low-Code De-
velopment”

3.2.1. Lightweight Literature Review

For the first path of the approach, a Literature review was conducted inspired by

the Systematic Literature Review (SLR) by Kitchenham et al. [38]. In this case, this

work’s goal is to better understand vulnerabilities related to LCDPs and the software

created by them. Because of this, we believe it to be an appropriate Literature Review

method to understand the topic addressed in this work. Because of this work’s goal, we

believe that following this Literature Review method is one way of obtaining information.

Therefore, a Lightweight Literature Review was conducted. The Lightweight Literature

Review (LWLR) differs from the original method in terms of the amount of time taken,

the number of articles used to understand the state-of-the-art on the topic, and snowball

research was not used. To engage in this method, a review protocol was created. A total

of five databases were used in our search, with the use of a set of keywords and inclusion

and exclusion criteria.

The search engines accessed during the research were IEEE [39], ACM [40], Springer

[41], Research Gate [42], and Google Scholar [43]. In order to search for works on the

search engines, six keywords were defined and a set of inclusion and exclusion criteria

were established, as shown in Table 3.1.

The LWLR was divided into two Steps: 1) using the keywords in searching for work

on the search engines and 2) applying the inclusion and exclusion criteria to the obtained

works. In Step One, the keywords were used in a query format, which was: ”Low-Code”

OR ”Low-Code Development” OR ”Low-code Platform” OR ”Low-Code Development

Platform” OR ”Security in Low-Code” OR ”Security in Low-Code Development”. There-

after, in Step Two, the inclusion and exclusion criteria were applied to obtain a precise

result that is related to the topic of this work. Table 3.2 shows the consulted search

engines and repositories for this effect, together with the number of works found on each

one.

11

Table 3.2. Search engines and works found in each one for Steps One
and Two

Search Engine Number of works found in
Step 1

Number of works found in
Step 2

ACM 793 323
Google Scholar 14000 8060
IEEE 510 179
Research Gate 83 59
Springer 974 77

3.2.2. Database Search

To gain a better insight into the platforms’ vulnerabilities, a search was conducted

on CVE Details, a database with information regarding vulnerabilities across multiple

applications. For this purpose, the second path of the approach was conducted, as shown

in Figure 3.1.

Therefore, firstly, a list of LCDPs was raised, based on a search done on three different

sources: G2 website [44], Gartner website [45] and Magic Quadrant [23]. Table C.1,

present in Appendix C, shows all the LCDPs found and in which source it was found.

With this list, all platforms were searched on the CVE Details database, to get the

vulnerabilities that each of the platforms had. Despite searching for all of the platforms

on the database, not all of them were present, as shown in Table 3.3. Table 3.3 presents

the platforms that were present in CVE Details and the weights that were given to each

one. Based on Figure 3.2, the platforms present in the top-right quadrant were given

a weight of ten, the platforms in the top-left and bottom-right quadrants were given

five, and the rest were given only one value of weight. This weight system was based on

Gartner’s Magic Quadrant for Enterprise Low-Code Application Platforms [24], published

in December 2022. The platforms that were not available in CVE Details were not taken

into consideration since there was no information regarding their vulnerabilities. Possible

causes for this might be the early age of the platform making them unknown on the market,

the vulnerabilities that have not yet been reported or the absence of vulnerabilities on

the platform so far.

After getting all the vulnerabilities’ data, an Excel table was created on which the

information was put and metrics such as raw data average and maximum score were

calculated. Table C.2, present in Appendix C, presents all the information regarding the

vulnerabilities available on the LCDPs presented in Table 3.3.

Table C.2 shows seven columns: the name of the platform, the CWE-ID that identifies

the vulnerability, the date on which the vulnerability was last updated, the score of the

vulnerability, the weight given to each platform, the raw average of all of the scores from

the vulnerabilities of each platform, and the maximum score of a vulnerability for each

platform. The CWE-ID is a unique code that identifies a vulnerability. The update date

of the vulnerability is the date of the last update on the platform’s vulnerability. The score

12

Table 3.3. Platforms available in CVE Details and corresponding
weights

Low-Code Development Platform Name Weight

1C 1
Agilepoint NX 1
Airtable 1
Appian 5
Blueprism RPA 1
Claris Filemaker 1
Decisions 1
HCL Domino 1
Intrexx 1
Joget Dx 1
Mendix 10
Openedge 1
Oracle Apex 5
OutSystems 10
Pega 5
Processmaker 1
Salesforce 10
ServiceNow 10
Wavemaker 1
Zoho 1

of each vulnerability is a value between 0 (zero) and 10 (ten) that relates to the ranking

of the exposure, according to CWE [46]. This allows us to measure the importance of a

vulnerability: 0 (zero) means that it is not important and 10 (ten) means that it is very

important. The raw average of the scores is a simple average operation of all vulnerability

scores of each platform, thus obtaining an average score for each platform. The maximum

score is the highest score of all vulnerabilities present in each platform.

After collecting this data, all the information was grouped in categories, more specif-

ically grouping all the vulnerabilities with the same ID. This was the second step of the

second path of the approach, presented in Figure 3.1. During this process, a new table was

created containing metrics using the information gathered regarding the LCDPs. Table

3.4 shows an example of the platforms on which the vulnerability CWE-269 (”Improper

Privilege Management”) occurred and Table 3.5 shows the metrics calculated for it. In

Table 3.4, it can be seen that this vulnerability occurred on three different platforms,

hence the number of occurrences being four. Because of this, the total weight of the

vulnerability will be the sum of the platforms’ weights. The total percentage divides the

weight of CWE-269 by the sum of the weight of all vulnerabilities, thus obtaining 3,6%.

Also, the sum score, the average score, and the maximum score are metrics pertaining

to the sum of all scores of the vulnerability, the average of all scores of the vulnerability,

and the maximum score of the vulnerability, respectively. Table 3.5 shows the metrics

calculated for this step: total weight, total percentage weight, number of occurrences, sum

13

Figure 3.2. Graph from Magic Quadrant for Enterprise Low-Code
Application Platforms 2022 [24], by Gartner

score, average score and maximum score. Total weight is calculated in the following way:

every time a vulnerability occurs in a platform, we get the weight value of that platform

and add to that vulnerability and do that to all platforms; after that, we end up with the

sum of weights from all platforms on which that vulnerability occurred. Total percentage

weight is the total weight of a specific vulnerability divided by the sum of all total weights

of all platforms, giving us a percentage. Number of occurrences is the number of time

that each vulnerability was present on the searched platforms. The sum score is, as the

name implies, the sum of all the scores of that specific vulnerability in each platform. The

average score is the sum score divided by the number of occurrences of each vulnerability.

Maximum score is the highest score that each vulnerability has on all platforms.

Afterwards, there was a prioritization of the vulnerabilities in case of repeated results

for a specific metric, presented as the third step in the second path of Figure 3.1. Because

of the grouping of the vulnerabilities, there were still overlapping results that needed to be

untied. To accomplish this, five industry experts were consulted in an interview format.

14

Table 3.4. Example for demonstration - Platforms

Low-Code Development Platform Name CWE-ID Score Weight

Mendix 269 5,0 10
Mendix 269 6,5 10
Pega 269 7,5 5
Openedge 269 7,2 1

Table 3.5. Example for demonstration - CWE-269 (”Improper Privilege
Management”)

CWE-ID Total
Weighted

Total % Nº Occur-
rences

Sum
Score

Avg
Score

Max
Score

269 26 3,6% 4 26,2 6,55 7,5

3.2.3. Interviews

On the third path of Figure 3.1, interviews with three security experts and two pen-

testers were designed. Firstly, the two pen-testers were interviewed, both with more than

ten years of experience in the field. Thus, the interviews with the pen-testers’ main goal

was to get more information from people who had tested the LCDPs and could report

directly from field data. These interviews took place between May and June 2023, were

recorded with the respondents’ consent, and lasted between 40 and 60 minutes. Due to

confidentiality issues from the company, some specific results could not be discussed in

depth. Despite this, the pen-testers provided anonymous data and true field data. The

format of the interview was divided into two parts: first a questionnaire and second open

questions. The questionnaire was developed to know the interviewees’ experience and,

based on it, obtain information regarding the topic of this work. Table 3.6 shows the

questions for the interview with the pen-testers.

Afterwards, based on the gathered list of vulnerabilities from the database search

and the results from the interviews with the pen-testers, three security experts from the

industry were interviewed, with field experience between two and twenty years. These

interviews were conducted during May 2023, were recorded with the respondents’ consent,

and lasted between 10 and 30 minutes. The format was an open discussion using a

questionnaire based on our findings, and was divided into two parts: first a simple survey

and second open questions. A set of questions was developed in order to obtain the

experts’ opinions on the created artifact. Table 3.7 shows the set of questions for the

interview with the security experts.

Following the interviews, the information obtained was coded, as shown in step two

of the third path of the approach, shown in Figure 3.1. During this step, the data was

labelled according to the topic associated with it. Afterwards, this data was grouped into

categories, as shown by the third step of path three of the approach, presented in Figure

3.1. This enabled the information to be organized in order to help identify common topics

15

Table 3.6. Questionnaire for the interviews with the pen-testers

Questionnaire

1) How many apps did you pen-test?
2) What kind of pen-test did you do?
3) What is each app used for?
4) Do the apps have internet or intranet access?
5) How many developers were involved in the develop-
ment of each app?
6) Which programming language was used for develop-
ing the app?
7) Which vulnerabilities are more recurrent and/or more
dangerous, based on your experience?
8) Have there been changes after the report on the pen-
test?
9) Based on your experience, are vulnerabilities caused
by developers or by the platform?
10) Based on your experience, are there any vulnerabil-
ities on the platforms?
11) In your opinion, do you think that the vulnerabilities
are related to the programming language used to develop
the apps?
12) In your opinion, do you think that the vulnerabilities
are related to the programming language that you can
use on the platform?

Table 3.7. Questions for the interviews with the security experts

Questions

1) Present the findings from the database search and
pen-tester interviews.
2) Ask if the experts agree with the findings.
3) Ask what the experts would change, based on their
experience and knowledge.

addressed by the interviewees. Consequently, the data was prioritized, as shown in step

four of the third path, as demonstrated in Figure 3.1.

3.2.4. Expert Review

On the fourth path of Figure 3.1, with all the gathered information, we asked three

experts from the industry to review it to validate, approve all research and interviews

done, and validate the consolidated results. Also, we appealed to the experts to help

narrow down and prioritize the list in case of double results between the different paths

and to get clarification on the unknown vulnerability (CWE-?). The experts helped in

better prioritizing double vulnerability results, according to their experience, and that the

unknown vulnerability should be considered as not yet defined. Therefore, it was possible

to create this work’s artifact and, with the help of the experts, improve and extend it.

16

CHAPTER 4

Results

This section presents all of the results acquired through the conducted research.

Throughout the research, while getting the results, there was a need to create perspec-

tives so that the vulnerabilities found could be assigned to that perspective for a better

understanding of the LCDP vulnerabilities. These were a product of the literature review

conducted and of the initial discussions with the supervisors and the experts from the

industry. Therefore we specify and present our results in three perspectives: platform,

developer, and plugins. We considered the platform perspective to be related to the vul-

nerabilities of the environment where the application is developed or runs, thus covering

the LCDP application deployment aspect. We specify the developer perspective as the

problems the LCDP developer causes or introduces to the LCDP-developed application

throughout the software development life-cycle. This perspective focuses on problems

generated by the developer of the application and does not consider problems incurred

through the usage of external components. Lastly, we defined the plugin’s perspective as

the problems that may occur in the developed solution due to the inclusion of third-party

components, e.g., from the LCDP plugin marketplace. These perspectives are essential for

understanding what are the causes of the vulnerabilities. Table 4.1 shows the mapping of

information sources between the research method and LCDP vulnerability perspectives.

This mapping of information will be followed during Chapter 4 and associates an activity

made during the research with the perspectives.

Table 4.1. Mapping of information sources

LWLR CVE Details Interview
Platform • •
Developer • •
Plugins • •

Table 4.2 shows a list of all CWE-IDs present in the results of this work and their

respective vulnerability name. The vulnerabilities present in this table were the CWE-

IDs that were found out of the more than 1000 CWEs defined by MITRE, making these

relevant for the LCDPs and for this work. Furthermore, the number of occurrences

alone is not a determinant of the importance of the vulnerability, which is the reason

why extra work was done with the metric calculations that will be presented afterwards.

Nevertheless, Table 4.2 is already a contribution of the work, albeit not the final artifact.

In Table 4.2, we observe that the vulnerability with the highest number of appearances

is CWE-79, i.e., the cross-site scripting vulnerability. In the second place, we found the

17

Table 4.2. List of the CWE-IDs present in this work and its number of
occurrences

CWE-
ID

Name of the Vulnerability Nº Ocur-
rences

79 Improper Neutralization of Input During Web Page
Generation (’Cross-site Scripting’)

45

89 Improper Neutralization of Special Elements used in an
SQL Command (’SQL Injection’)

6

352 Cross-Site Request Forgery (CSRF) 6
20 Improper Input Validation 5
269 Improper Privilege Management 4
287 Improper Authentication 4
400 Uncontrolled Resource Consumption 4
668 Exposure of Resource to Wrong Sphere 4
918 Server-Side Request Forgery (SSRF) 4
611 Improper Restriction of XML External Entity Reference 3
200 Exposure of Sensitive Information to an Unauthorized

Actor
2

284 Improper Access Control 2
326 Inadequate Encryption Strength 2
425 Direct Request (’Forced Browsing’) 2
434 Unrestricted Upload of File with Dangerous Type 2
502 Deserialization of Untrusted Data 2
829 Inclusion of Functionality from Untrusted Control

Sphere
2

863 Incorrect Authorization 2
22 Improper Limitation of a Pathname to a Restricted Di-

rectory (’Path Traversal’)
1

74 Improper Neutralization of Special Elements in Output
Used by a Downstream Component (’Injection’)

1

94 Improper Control of Generation of Code (’Code Injec-
tion’)

1

120 Buffer Copy without Checking Size of Input (’Classic
Buffer Overflow’)

1

203 Observable Discrepancy 1
209 Generation of Error Message Containing Sensitive Infor-

mation
1

281 Improper Preservation of Permissions 1
310 Cryptographic Issues 1
521 Weak Password Requirements 1
522 Insufficiently Protected Credentials 1
525 Use of Web Browser Cache Containing Sensitive Infor-

mation
1

601 URL Redirection to Untrusted Site (’Open Redirect’) 1
640 Weak Password Recovery Mechanism for Forgotten

Password
1

669 Incorrect Resource Transfer Between Spheres 1
787 Out-of-bounds Write 1
1321 Improperly Controlled Modification of Object Prototype

Attributes (’Prototype Pollution’)
1

18

unknown ID, which refers to the fact that a specific CWE-ID was not yet defined for the

vulnerability in question. Thirdly, we found CWE-89 and CWE-352, with six findings

each. These vulnerabilities correspond to SQL injection and cross-site request forgery,

respectively. Next, we found CWE-20, improper input validation, with 5 appearances.

Following this, we found CWE-269, CWE-287, CWE-400, CWE-668, and CWE-918, all

of which with 4 findings. These vulnerabilities pertain to improper privilege manage-

ment, improper authentication, uncontrolled resource consumption, exposure of resource

to wrong sphere, and server-side request forgery, respectively. Then, we have CWE-611,

improper restriction of XML external entity reference, with 3 occurrences. Additionally,

we found CWE-200 exposure of sensitive information to an unauthorized actor, CWE-

284 improper access control, CWE-326 Inadequate encryption strength, CWE-425 forced

browsing, CWE-434 unrestricted upload of file with dangerous type, CWE-502 deserializa-

tion of untrusted data, CWE-829 inclusion of functionality from untrusted control sphere,

and CWE-863 incorrect authorization vulnerabilities, with 2 occurrences each. Lastly, we

found the following vulnerabilities with only 1 finding: CWE-22 path traversal, CWE-74

injection, CWE-94 code injection, CWE-120 classic buffer overflow, CWE-203 observ-

able discrepancy, CWE-209 generation of error message containing sensitive information,

CWE-281 improper preservation of permissions, CWE-310 cryptographic issues, CWE-521

weak password requirements, CWE-522 insufficiently protected credentials, CWE-525 use

of web browser cache containing sensitive information, CWE-601 open redirect, CWE-640

weak password recovery mechanism for forgotten password, CWE-669 incorrect resource

transfer between spheres, CWE-787 out-of-bounds writeand CWE-1321 prototype pollution.

Table 4.3 shows all the data obtained pertaining to the LCDPs vulnerabilities. From

the example presented, this table presents the metrics calculated for each of the vulnera-

bilities present in Table 4.2.

With this information, the was created intermediate artifact, shown in Table 4.4, which

presents us with the top three most common vulnerabilities for each perspective. The

information for this transitional artifact comes from the interviews with the pen-testers

and the database search. It is important to note that, despite the way that the perspectives

are being presented, there is no hierarchy or most important perspective compared to the

other. We took the decision to create an artifact of top three vulnerabilities for each

perspective because it would result in a total of nine vulnerabilities from the perspectives,

but additional work can be done to extend it. Furthermore, we make sure that they are

not overlapping, thus making a top nine vulnerabilities in LCDPs across all perspectives.

The results show that from the platform perspective, the collected top three LCDP

vulnerabilities are: T.1-1 – cross-site scripting, T.1-2 – SQL injection, T.1-3 – cross-

site request forgery. Regarding the developer perspective, our collected top three LCDP

vulnerabilities are T.2-1 – access control, T.2-2 – business logic, and T.2-3 – administrative

features (privileges). Regarding the plugins perspective, our collected top three LCDP

vulnerabilities are T.3-1 – custom-made plugins and interfaces, T.3-2 – data breaches, and

19

Table 4.3. Metrics calculated for each vulnerability

CWE-ID Total
Weighted

Total % Nº Occur-
rences

Sum
Score

Avg
Score

Max
Score

20 18 2,50% 5 27,8 5,6 7,8
22 1 0,14% 1 5,0 5,0 5,0
74 10 1,39% 1 3,5 3,5 3,5
79 227 31,57% 45 159,3 3,5 9,0
89 19 2,64% 6 32,0 5,3 6,5
94 10 1,39% 1 6,5 6,5 6,5
120 1 0,14% 1 10,0 10,0 10,0
200 15 2,09% 2 9,0 4,5 5,0
203 10 1,39% 1 5,0 5,0 5,0
209 1 0,14% 1 5,0 5,0 5,0
269 26 3,62% 4 26,2 6,6 7,5
281 1 0,14% 1 0,0 0,0 0,0
284 11 1,53% 2 7,5 3,8 7,5
287 8 1,11% 4 21,7 5,4 7,5
310 5 0,70% 1 5,4 5,4 5,4
326 2 0,28% 2 9,3 4,7 5,0
352 27 3,76% 6 24,7 4,1 6,8
400 25 3,48% 4 19,3 4,8 5,0
425 10 1,39% 2 8,0 4,0 4,0
434 11 1,53% 2 13,9 7,0 7,5
502 6 0,83% 2 6,5 3,3 6,5
521 1 0,14% 1 0,0 0,0 0,0
522 1 0,14% 1 0,0 0,0 0,0
525 10 1,39% 1 1,9 1,9 1,9
601 1 0,14% 1 0,0 0,0 0,0
611 21 2,92% 3 16,8 5,6 7,5
640 5 0,70% 1 4,6 4,6 4,6
668 35 4,87% 4 18,4 4,6 5,5
669 1 0,14% 1 6,5 6,5 6,5
787 1 0,14% 1 10,0 10,0 10,0
829 10 1,39% 2 8,6 4,3 4,3
863 20 2,78% 2 10,8 5,4 6,8
918 31 4,31% 4 24,3 6,1 7,5
1321 5 0,70% 1 4,3 4,3 4,3
? 133 18,50% 28 144,3 5,2 10,0
TOTAL 719

T.3-3 – unauthorized access to systems. We note that, in Table 4.4, for each perspective,

the three found vulnerabilities are listed according to their impact, e.g. T.1-1 has a higher

impact than T.1-3.

Table B.1 shows the papers that were reviewed for this work, along with the publishing

year and a short summary.

20

Table 4.4. Intermediate results on top three vulnerabilities, for each
perspective

Perspective Ref. CWE-ID Vulnerability Description

T.1-1 79 Cross-Site Scripting
Platform T.1-2 89 SQL Injection

T.1-3 352 Cross-Site Request Forgery
T.2-1 284 Access Control

Developer T.2-2 840 Business Logic
T.2-3 250 Administrative Features (Privileges)
T.3-1 - Custom-made plugins and interfaces

Plugins T.3-2 200 Data Breaches
T.3-3 285 Unauthorized access to systems

Table 4.5. Examples of answers given in the pen-testers interviews

Examples of Answers (Pen-Testers)
”(...) vulnerabilities are not related to the program-
ming language used on the app, but the programming
language might compromise the platform (...)”
” (...) vulnerabilities on the platforms are found main
in CVE Details (...)”
”(...) most common vulnerabilities are Access Control,
Business Logic, Administrative Features, Inclusion of
third-party components (...)”
”(...) from my experience, the vulnerabilities come
mainly from the developer himself, not from the plat-
form(...)”

Table 4.6. Examples of answers given in the security experts interviews

Examples of Answers (Security Experts)
”I agree with this table, but I would change a thing.”
”(...) put Access Control and Privileges together be-
cause they overlap (...)”
”(...) add Injection from any kind since lack of sanitiza-
tion of input is really common (...)”
”(...) you have to always be careful when integrating a
plugin from an untrusted source (...)”
”(...) not surprised with Access Control being present
(...)”

For the pen-testers interviews, Table 4.5 shows examples of answers from their inter-

views. For the security experts’ interviews, Table 4.6 shows examples of answers given

during the interviews.

All the interviews contributed to the improvement of the artifact because they provided

information that could not be obtained through other means. Therefore, we updated the

artifact one step further by making changes as the experts have said, resulting in a new

table. Table 4.7 shows the final artifact.

21

Table 4.7. Final results on top three vulnerabilities, for each perspective

Perspective Ref. CWE-ID Vulnerability Description

T.1-1 79 Cross-Site Scripting
Platform T.1-2 89 SQL Injection

T.1-3 352 Cross-Site Request Forgery
T.2-1 284 Access Control and Administrative Features

Developer T.2-2 840 Business Logic
T.2-3 74 Injections
T.3-1 - Custom-made plugins and interfaces

Plugins T.3-2 200 Data Breaches
T.3-3 285 Unauthorized access to systems

The results show that from the platform perspective, the collected top three LCDP

vulnerabilities are: T.1-1 – cross-site scripting, T.1-2 – SQL injection, T.1-3 – cross-site

request forgery. Regarding the developer perspective, our collected top three LCDP vul-

nerabilities are: T.2-1 – access control and administrative features, T.2-2 – business logic,

and T.2-3 – injections. Regarding the plugins perspective, our collected top three LCDP

vulnerabilities are: T.3-1 – custom-made plugins and interfaces, T.3-2 – data breaches,

and T.3-3 – unauthorized access to systems. We note that, in Table 4.7, for each individ-

ual perspective, the three found vulnerabilities are listed according to their impact, e.g.

T.1-1 has a higher impact than T.1-3.

Pertaining to Table 4.7 and Table 4.4, some clarifications need to be made. Firstly,

the vulnerabilities T.2-1, T.2-2, T.2-3, T.3-2, and T.3-3 forced a backtracking search in

order to get the corresponding CWE-ID. Secondly, the vulnerabilities T.1-1, T.1-2, and

T.1-3 were already known, not needing to be backtracked to get the CWE-ID to identify

them. Lastly, the vulnerability T.3-1 does not have any CWE-ID associated because there

was not an ID that could possibly represent it the most.

After the creation of the final artifact, experts were consulted to review all the infor-

mation obtained throughout the research. For this, three experts examined all the data

from graphs, tables, images and the search itself, giving no objections. Thus, concluding

the design of the artifact.

22

18

1

10

22
7

19

10

1

15

10

1

26

1

11

8

5

2

27
25

10
11

6

1
1

10

1

21

5

35

1
1

10

20

31

5

13
3

5

1
1

45

6

1
1

2

1
1

4

1

2

4

1

2

6

4

2
2

2

1
1

1
1

3

1

4

1
1

2
2

4

1

28

11522
5

20
22

74
79

89
94

12
0

20
0

20
3

20
9

26
9

28
1

28
4

28
7

31
0

32
6

35
2

40
0

42
5

43
4

50
2

52
1

52
2

52
5

60
1

61
1

64
0

66
8

66
9

78
7

82
9

86
3

91
8

13
21

?

Occurrences/Weight

CW
E-

ID

TO
TA

L
W

EI
G

HT
ED

N
º

O
CU

RR
EN

CE
S

Figure 4.1. Comparison between Number of Occurrences and Total
Weight of a vulnerability 23

CHAPTER 5

Discussion

The focus of this chapter is to discuss all the results obtained and presented in the

previous chapter. We will address the results from the analysis done for this work.

5.1. Lightweight Literature Review

The works analyzed during the research for this work show that the scientific com-

munity covers topics related to the advantages and disadvantages of LCDPs, acceptance

of LCDPs, comparison between platforms, comparison of Low-Code and code-based de-

velopment, and comparison of Low-Code and model-driven approaches when developing

software. This shows that this field is still young as there are recent works addressing the

advantages and disadvantages of said platforms. Of course, not all platforms are equal de-

spite all of them having the same characteristics. Because of this, the use of one platform

over another has to do with the approach that the platform takes that benefits the kind

of project one might develop. This does not mean that a platform is better than another,

it means that each platform focuses on specific characteristics that others do not.

Also, there are few results available pertaining to the LCDPs. For example, some of

the works compare market leaders but there is still limited knowledge of other platforms

are less known. In the analyzed works, there were only brief mentions of the security

aspect of LCDPs, which shows the immaturity of the field and a lack of research on that

topic. This might have been caused by the exclusion of too many papers as some of the

most recent works could have addressed the cybersecurity aspect of these platforms. But,

from the analysed works, there is an absence of knowledge and approaches pertaining to

the cybersecurity aspect of the platforms.

In general, the LCDPs are considered secure for software development since they au-

tomate the work for the developers. Code-based development is not 100% secure since

everything is done by the developer, from the development of the software to its de-

ployment. From the Low-Code development perspective, the developers are not always

experienced in the programming field. This might also cause some security issues as they

do not have the experience and knowledge to create software that complies with cyber-

security standards. Therefore, it comes to the platforms’ developers to ensure that it

enables a secure environment for the development of secure apps.

From this point of view, the security ends up being the responsibility of the platform’s

provider since they are the ones developing and finding solutions for the platforms. Despite

this, the results show that there are still vulnerabilities present in the LCDPs. With this,

we can conclude that platforms have problems and they need to be addressed so as not

25

to influence negatively the development of the software security-wise. Even though the

platforms provide the possibility to add minimal lines of code, it might also bring a

different class of security problems to the software.

5.2. Database Search

Concerning the research done on the CWE Details database, most of the vulnerability

results were expected but some of them were a surprise.

The most recurrent and heaviest vulnerability is CWE-79, the cross-site scripting

vulnerability. This vulnerability was one of the expected results because, as the LCDPs

generally produce web apps, it only happens in a web environment. It has to do with

improper sanitization of input amid the generation of the web page. There are more

vulnerabilities related to lack of sanitization in the results, such as CWE-20 improper

input validation, CWE-74 injection, and CWE-352 cross-site request forgery. These results

relate to the lack of sanitization of input, leading to these vulnerabilities.

Another vulnerability that is recurrent in the results is CWE-668, the exposure of

resource to wrong sphere vulnerability. This vulnerability was expected because the typical

LCDP developer is considered to be inexperienced and not having much knowledge of

programming, in other words, the typical developer is a citizen developer. This liability

has to do with giving undesired actors improper access to a resource by exposing it to

the incorrect control sphere. There are other vulnerabilities related to this one, such as

CWE-22 path traversal, CWE-200 exposure of sensitive information to an unauthorized

actor, and CWE-522 insufficiently protected credentials.

The vulnerabilities that were surprising were the ones related to the privilege man-

agement field, such as CWE-284 improper access control, CWE-269 improper privilege

management, and CWE-287 improper authentication. These vulnerabilities have to do

with incorrect restriction of access to a resource from an unauthorized actor. It is possi-

ble that the platform does have this vulnerability, but, generally, it is caused by citizen

developers that lack cybersecurity knowledge. Hence, these liabilities were a surprising

result since they generally occur in a platform.

Accordingly, follows a list of recommendations for companies and researchers for secure

software development practices using LCDPs. It is vital that, before choosing the right

Low-Code platform for the development of the software, a prospection on the available

LCDPs be made. For this effect, the capabilities to consider on a platform are the type

of apps you can build, security and quality of service, development operations (DevOps)

practices, productivity and platform engineering, integration and APIs, extensibility, and

reputation of the marketplace for plugins. The majority of the LCDPs have inbuilt se-

curity features including automatic testing and interoperability. Suitable LCDPs should

work in conjunction with established DevOps technologies. Nonetheless, some vendors

restrict options to connect with Software Development Life Cycle (SDLC) tools. There-

fore, one needs to be aware of the faults and benefits to make an educated guess on which

platform to use. Perhaps the goal is saving costs on software development and DevOps

26

is not planned at this moment; depends on the goal that one has set. The platforms

should enable the integration of apps with the enterprise databases and systems in use,

and simplify the use of APIs. One should also learn how to use the platforms and take

advantage of their features. Most of the time, the platforms provide useful materials and

features that are neglected, which through demonstrations and training programs on the

platforms can help capitalize on them.

5.3. Interviews

The interviews are a fundamental part of this work. They provide a practical view

of some aspects of this topic that the works and papers do not give. It is important to

note that the results shown in this work were from interviews with industry experts who

work for the company with whom this work was made. These interviews along with the

literature review and database research complement themselves, giving both theoretical

and practical information on the vulnerabilities.

From the results obtained, there is some surprising information worth addressing.

Our results have shown that most of the vulnerabilities in apps developed with LCDPs

are caused by the developers. As stated by the pen-testers interviewed: ”Mainly, the

developers are the cause of vulnerabilities on the apps.” This shows that the citizen

developer should be exposed to, at least, some basic security awareness workshops that

are aimed at closing the gaps identified in the present work.

Another result is that some vulnerabilities pertain to third-party integrations to the

project. The integration feature’s goal is to facilitate development and connect with other

databases and systems used by the developer. Despite this, since the majority of devel-

opers are citizen developers, liabilities like outdated libraries or custom-built interfaces

are problematic. Custom-built interfaces may sometimes interfere with the platform’s in-

terface or not be able to be used in the platform itself. Outdated libraries are dangerous

because very easily they can present a big threat to the app or even add unknown code

that might lead to information leaks and access from outside. For example, some malware

can be present in these libraries and might be fetched to a project and cause problems for

the app. Hence, it is necessary to raise awareness among developers about using untrusted

third-party components, which can also be done in awareness training programs.

The developed artifact in Table 4.7 gives a good guideline on which topics need to be

addressed in awareness training for developers using LCDPs for software development.

According to our experience, the entire workshop should be relatively short, for example

lasting only a couple of hours (two or three hours). Also, according to experience in

the field, these workshops could potentially contribute to significantly reducing security

threats.

The conducted research and the results obtained answer the research questions defined

in Chapter 1. The research questions raised for this thesis are: RQ1: What are the possible

threats and vulnerabilities for Low-Code applications? RQ2: How to model risk for Low-

Code software? RQ3: What are important aspects of the security life-cycle for Low-Code

27

applications? In order to answer RQ1, the database search done on CVE Details indicates

the possible vulnerabilities for Low-Code applications are, generally, related to web apps,

since they are the end product of a LCDP. Table 4.2 shows which are the vulnerabilities

found during the database search process. Therefore, the vulnerabilities presented in

Table 4.2 are possible threats for Low-Code applications, as of February 2023.

To respond to RQ2, we developed an approach, presented in Table 3.1, which shows

the paths followed to obtain knowledge about the topic of this thesis. Each path of the

approach diagram demonstrates the methodologies used to gather information. These

methodologies allowed us to research different perspectives on the topic which other pro-

cedures could not, according to Table 4.1. Therefore, modelling risk for Low-Code software

is possible through research and the use of methodologies that promote it.

Along with the creation and presentation of an artifact, this work also contains guide-

lines based on the knowledge acquired. These guidelines are recommendations for secure

software development, according to the results obtained from the research and the dis-

cussion of these. Hence, this thesis also answers to RQ3.

5.4. Threats to Validity

The present work is a situated research because it was made at a specific company,

which also makes the results situated. Because of this, the results and conclusions obtained

might be limited and situated. Since the Design Science Research paradigm and Literature

Review inspired by Kitchenham’s Systematic Literature Review were used in this work,

it is acceptable for industry use.

The field in which this work is positioned is still young and volatile in the industry.

For this fact, the results presented in this work might change in the future, which is a

problem. During the research, several paths were used to try to make the results valid,

but, since this is a wicked problem, our results can change, becoming a threat to our

conclusions. To counteract this, we recommend doing a periodical review of the results,

as a means not to make them unusable or obsolete to the industry. Nevertheless, the

results presented in this work mark the first step in understanding the vulnerabilities of

LCDPs, something that has not been researched before.

For this work, the number of interviews with industry experts was small. Maybe with

additional feedback, the results could have been different, which presents a threat to the

results presented. However, the advantage of our results is that they are based on field

data, therefore, not only theoretical but also coming from real-world use cases. Because of

this, the results presented in this work can be considered relevant for other practitioners.

Although our results have some possible threats to their validity, our gained knowledge

and work contribute both to the scientific body of knowledge and to the industry.

28

CHAPTER 6

Conclusion

Low-code development platforms constitute a new technology that is a viable alterna-

tive, especially for companies and application developers that do not have much experience

in software development. Thanks to these platforms being end-user friendly, even people

with little or no coding experience can develop software applications according to their

ideas and requirements. Also, their ease of use through the implementation of visual

features helps software development be more efficient and less time-consuming. Because

of this, these platforms are gaining traction and are being considered for adoption by the

industry. Our work shows that, with more convenient access to software development and

the increase of citizen developers, it is necessary to raise awareness of the security aspects

of these platforms. Even though the security of LCDPs is referenced in the industry and

the cybersecurity experts know what the problems are, there are issues that occur due to

a new development process with new challenges. With this work, we aim to understand

the typical vulnerabilities present in LCDPs and in software developed with them. Our

work is carried out through studies of the industry, conducting a Lightweight Literature

Review on works from the industry, analysing openly known platform vulnerabilities, and

interviewing six industry experts in the field. Considering that any person can develop

despite their experience and knowledge of software development and programming, cy-

bersecurity can become a problem. Our results shed light on the top three vulnerabilities

of applications developed using LCDPs into three perspectives: platform, developer and

plugins. We show that not only typical software development vulnerabilities can occur

but also additional vulnerabilities due to the development and deployment platform it-

self and the inclusion of third-party plugins. This work contributes to the industry and

academia, enabling the development of more secure applications, stimulating research in

the field, and contributing to the cybersecurity body of knowledge. Through this work,

we also provide a list of recommendations that can aid LCDP developers in improving

the security of the development of their software. In future work, we intend to look at

possible ways to automate the security evaluation of LCDP apps because of the dynamic

nature of this field, their relevancy and their potential changes.

29

References

[1] OutSystems, “What Is Rapid Application Development?” (accessed in Sep. 18, 2023). [Online].

Available: https://www.outsystems.com/glossary/what-is-rapid-application-development

[2] Wikipedia, “Low-code development platform,” (accessed in Sep. 18, 2023). [Online]. Available:

https://en.wikipedia.org/wiki/Low-code development platform

[3] Kissflow, “The History of Low-Code Platforms : How Development Changed,” (accessed Jul.

10, 2023). [Online]. Available: https://kissflow.com/low-code/history-of-low-code-development-

platforms

[4] Forrester Research Inc., “Forrester Website,” (accessed in Sep. 2, 2023). [Online]. Available:

https://www.forrester.com/bold

[5] C. Richardson and J. Rymer, “New Development Platforms Emerge For Customer-Facing

Applications,” (accessed in Sep. 2, 2023). [Online]. Available: https://www.forrester.com/report/

New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411

[6] Gartner Inc., “Gartner Website,” (accessed in Aug. 12, 2023). [Online]. Available: https:

//www.gartner.com/en

[7] IBM Cloud Education, “Low-Code vs. No-Code: What’s the Difference?” (accessed in Aug. 13,

2023). [Online]. Available: https://www.ibm.com/blog/low-code-vs-no-code

[8] Mendix Technology BV, “Mendix Website,” (accessed in June 2, 2023). [Online]. Available:

https://www.mendix.com

[9] Gartner Inc., “Gartner Forecasts Worldwide Low-Code Development Technolo-

gies Market to Grow 23% in 2021,” (accessed in May 6, 2023). [Online].

Available: https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-

worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021

[10] Gartner Inc., “Gartner Forecasts Worldwide Low-Code Development Technolo-

gies Market to Grow 20% in 2023,” (accessed in May 6, 2023). [Online].

Available: https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-

worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023

[11] Gartner Inc., “Definition of Hyperautomation - Gartner Information Technology Glossary,”

(accessed in May 10, 2023). [Online]. Available: https://www.gartner.com/en/information-

technology/glossary/hyperautomation

[12] Gartner Inc., “Becoming Composable: A Gartner Trend Insight Report,” 2021, (accessed in Aug.

12, 2023). [Online]. Available: https://www.gartner.com/en/doc/becoming-composable-gartner-

trend-insight-report

[13] J. den Haan, “5 Benefits of Low-Code Application Development,” (accessed in Aug. 13, 2023).

[Online]. Available: https://www.mendix.com/blog/benefits-low-code-development

[14] R. Roul, “32 Low-code Development Statistics to Know Before Adopting,” (accessed in Sep. 21,

2023). [Online]. Available: https://www.g2.com/articles/low-code-development-statistics

[15] M. Bargury, “Major Security Breach From Business Users’ Low-Code Apps Could

Come in 2023, Analysts Warn,” (accessed May 5, 2023). [Online]. Avail-

able: https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-

code-apps-could-come-in-2023-analysts-warn

31

https://www.outsystems.com/glossary/what-is-rapid-application-development
https://en.wikipedia.org/wiki/Low-code_development_platform
https://kissflow.com/low-code/history-of-low-code-development-platforms
https://kissflow.com/low-code/history-of-low-code-development-platforms
https://www.forrester.com/bold
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://www.forrester.com/report/New-Development-Platforms-Emerge-For-CustomerFacing-Applications/RES113411
https://www.gartner.com/en
https://www.gartner.com/en
https://www.ibm.com/blog/low-code-vs-no-code
https://www.mendix.com
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-23-percent-in-2021
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/newsroom/press-releases/2022-12-13-gartner-forecasts-worldwide-low-code-development-technologies-market-to-grow-20-percent-in-2023
https://www.gartner.com/en/information-technology/glossary/hyperautomation
https://www.gartner.com/en/information-technology/glossary/hyperautomation
https://www.gartner.com/en/doc/becoming-composable-gartner-trend-insight-report
https://www.gartner.com/en/doc/becoming-composable-gartner-trend-insight-report
https://www.mendix.com/blog/benefits-low-code-development
https://www.g2.com/articles/low-code-development-statistics
https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-code-apps-could-come-in-2023-analysts-warn
https://www.darkreading.com/edge-articles/major-security-breach-from-business-users-low-code-apps-could-come-in-2023-analysts-warn

[16] N. Liu, “Forrester: Low-Code, Citizen Development Will Lead to Major Data Breach in

2023,” (accessed May 5, 2023). [Online]. Available: https://www.sdxcentral.com/articles/analysis/

forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/

[17] B. Kliger, “Hackers Abuse Low-Code Platforms And Turn Them Against Their Owners - Zenity

| Security for Low-Code/No-Code Development,” (accessed in May 12, 2023). [Online]. Available:

https://www.zenity.io/hackers-abuse-low-code-platforms-and-turn-them-against-their-owners

[18] R. Ranjan, “Password Spraying Attack,” (accessed Sep. 3, 2023). [Online]. Available:

https://owasp.org/www-community/attacks/Password Spraying Attack

[19] Kaspersky Lab, “Living off the Land (LotL) attack,” (accessed in May 12, 2023). [Online].

Available: https://encyclopedia.kaspersky.com/glossary/lotl-living-off-the-land

[20] M. Lourenço, T. E. Gasiba, and M. Pinto-Albuquerque, “You Are Doing it Wrong - On Vulnerabilities

in Low Code Development Platforms,” in CYBER 2023, The Eighth International Conference on

Cyber-Technologies and Cyber-Systems, 2023, pp. 12–18.

[21] International Society of Automation, “ISA/IEC 62443 Series of Standards,” (accessed in May 5,

2023). [Online]. Available: https://www.isa.org/standards-and-publications/isa-standards/isa-iec-

62443-series-of-standards

[22] International Organization for Standardization, “ISO/IEC 27000:2018,” (accessed in May 5, 2023).

[Online]. Available: https://www.iso.org/standard/73906.html

[23] Gartner Inc., “Gartner Magic Quadrant,” (accessed in Aug. 12, 2023). [Online]. Available:

https://www.gartner.com/en/research/methodologies/magic-quadrants-research

[24] Y. Natis, J. Hill, P. Iyengar, G. Alvarez, J. Loveland, and C. Howard, “Magic Quadrant for

Enterprise Low-Code Application Platforms,” 09 2021, (accessed in Sep. 29, 2023). [Online].

Available: https://www.gartner.com/en/documents/4022825

[25] OutSystems, “OutSystems Website,” (accessed in June 2, 2023. [Online]. Available: https:

//www.outsystems.com

[26] Microsoft, “Microsoft Power Apps Website,” (accessed in Sep. 1, 2023). [Online]. Available:

https://powerapps.microsoft.com/en-gb

[27] ServiceNow, “ServiceNow Website,” (accessed in May 10, 2023). [Online]. Available: https:

//www.servicenow.com

[28] Salesforce Inc., “Salesforce Website,” (accessed in June 2, 2023. [Online]. Available:

https://www.salesforce.com/eu/

[29] MITRE Corporation, “MITRE Website,” (accessed in Aug. 12, 2023). [Online]. Available:

https://www.mitre.org

[30] MITRE Corporation, “Common Vulnerabilities and Exposures (CVE) Website,” (accessed in Sep.

2, 2023). [Online]. Available: https://www.cvedetails.com

[31] MITRE Corporation, “Common Weakness Enumeration (CWE) Website,” (accessed in May 5,

2023). [Online]. Available: https://cwe.mitre.org/index.html

[32] OWASP Foundation, “OWASP Top Ten,” (accessed in May 5, 2023). [Online]. Available:

https://owasp.org/www-project-top-ten

[33] OWASP Foundation, “OWASP Website,” (accessed in May 5, 2023). [Online]. Available:

https://owasp.org

[34] Gartner Inc., “Definition of Citizen Developer - Gartner Information Technology Glossary,”

(accessed in May 6, 2023). [Online]. Available: https://www.gartner.com/en/information-

technology/glossary/citizen-developer

[35] Mendix Technology BV, “Model Driven Development,” (accessed in Sep. 23, 2023). [Online].

Available: https://www.mendix.com/platform/model-driven-development

32

https://www.sdxcentral.com/articles/analysis/forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/
https://www.sdxcentral.com/articles/analysis/forrester-low-code-citizen-development-will-lead-to-major-data-breach-in-2023/2022/11/
https://www.zenity.io/hackers-abuse-low-code-platforms-and-turn-them-against-their-owners
https://owasp.org/www-community/attacks/Password_Spraying_Attack
https://encyclopedia.kaspersky.com/glossary/lotl-living-off-the-land
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.isa.org/standards-and-publications/isa-standards/isa-iec-62443-series-of-standards
https://www.iso.org/standard/73906.html
https://www.gartner.com/en/research/methodologies/magic-quadrants-research
https://www.gartner.com/en/documents/4022825
https://www.outsystems.com
https://www.outsystems.com
https://powerapps.microsoft.com/en-gb
https://www.servicenow.com
https://www.servicenow.com
https://www.salesforce.com/eu/
https://www.mitre.org
https://www.cvedetails.com
https://cwe.mitre.org/index.html
https://owasp.org/www-project-top-ten
https://owasp.org
https://www.gartner.com/en/information-technology/glossary/citizen-developer
https://www.gartner.com/en/information-technology/glossary/citizen-developer
https://www.mendix.com/platform/model-driven-development

[36] A. Hevner and S. Chatterjee, “Design science research in information systems,” Design research in

information systems: theory and practice, pp. 9–22, 2010.

[37] Interaction Design Foundation, “Wicked Problems,” (accessed in Sep. 23, 2023). [Online]. Available:

https://www.interaction-design.org/literature/topics/wicked-problems

[38] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software

engineering,” Information and Software Technology, vol. 2, 01 2007.

[39] IEEE, “IEEE Xplore Website,” (accessed in May 10, 2023). [Online]. Available: https:

//ieeexplore.ieee.org/Xplore/home.jsp

[40] Association for Computing Machinery, “ACM Digital Library Website,” (accessed in May 10,

2023). [Online]. Available: https://dl.acm.org

[41] Springer Nature, “Springer - International Publisher Website,” (accessed in May 10, 2023). [Online].

Available: https://www.springer.com/gp

[42] ResearchGate GmbH, “ResearchGate Website,” (accessed in May 10, 2023). [Online]. Available:

https://www.researchgate.net

[43] Google, “Google Scholar Website,” (accessed in May 10, 2023). [Online]. Available:

https://scholar.google.com

[44] G2.com, “Top Free Low-Code Development Platforms,” (accessed in May 6, 2023). [Online].

Available: https://www.g2.com/categories/low-code-development-platforms/free

[45] Gartner Inc., “Enterprise Low-Code Application Platforms Reviews and Ratings,” (accessed in

May 6, 2023). [Online]. Available: https://www.gartner.com/reviews/market/enterprise-low-code-

application-platform

[46] Forum of Incident Response and Security Teams, “Common Vulnerability Scoring System

version 3.1: Specification Document,” (accessed in August 12, 2023). [Online]. Available:

https://www.first.org/cvss/specification-document

[47] F. Sufi, “Algorithms in Low-Code-No-Code for Research Applications: A Practical Review,”

Algorithms, vol. 16, no. 2, 2023. [Online]. Available: https://www.mdpi.com/1999-4893/16/2/108

[48] J. Cabot and R. Clarisó, “Low Code for Smart Software Development,” IEEE Software, vol. 40,

no. 1, pp. 89–93, 2023.

[49] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi, and M. Wimmer, “Low-Code Devel-

opment and Model-Driven Engineering: Two Sides of the Same Coin?” Softw. Syst. Model., vol. 21,

no. 2, pp. 437–446, 2022.

[50] A. Trigo, J. Varajão, and M. Almeida, “Low-Code Versus Code-Based Software Development: Which

Wins the Productivity Game?” IT Professional, vol. 24, no. 5, pp. 61–68, 2022.

[51] A. Bucaioni, A. Cicchetti, and F. Ciccozzi, “Modelling in Low-Code Development: A Multi-Vocal

Systematic Review,” Softw. Syst. Model., vol. 21, no. 5, pp. 1959–1981, 2022.

[52] S. Käss, S. Strahringer, and M. Westner, “Practitioners’ Perceptions on the Adoption of Low Code

Development Platforms,” IEEE Access, vol. 11, pp. 29 009–29 034, 2023.

[53] J. Kirchhoff, N. Weidmann, S. Sauer, and G. Engels, “Situational Development of Low-Code

Applications in Manufacturing Companies,” in Proceedings of the 25th International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings, ser. MODELS ’22,

2022, p. 816–825. [Online]. Available: https://doi.org/10.1145/3550356.3561560

[54] D. Pinho, A. Aguiar, and V. Amaral, “What About the Usability in Low-Code Platforms? A

Systematic Literature Review,” Journal of Computer Languages, vol. 74, p. 101185, 2023. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S259011842200082X

[55] F. Khorram, J.-M. Mottu, and G. Sunyé, “Challenges & Opportunities in Low-Code Testing,”

in Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering

33

https://www.interaction-design.org/literature/topics/wicked-problems
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org
https://www.springer.com/gp
https://www.researchgate.net
https://scholar.google.com
https://www.g2.com/categories/low-code-development-platforms/free
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://www.gartner.com/reviews/market/enterprise-low-code-application-platform
https://www.first.org/cvss/specification-document
https://www.mdpi.com/1999-4893/16/2/108
https://doi.org/10.1145/3550356.3561560
https://www.sciencedirect.com/science/article/pii/S259011842200082X

Languages and Systems: Companion Proceedings, ser. MODELS ’20, New York, NY, USA, 2020.

[Online]. Available: https://doi.org/10.1145/3417990.3420204

[56] A. Sahay, A. Indamutsa, D. Di Ruscio, and A. Pierantonio, “Supporting the Understanding and

Comparison of Low-Code Development Platforms,” in 2020 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2020, pp. 171–178.

34

https://doi.org/10.1145/3417990.3420204

APPENDIX A

Time Graph

Figure A.1 defines the activities that took place during the research for this thesis.

All the activities started during my time in Munich, except the Literature Review which

started in September 2022. There were no activities dependent on the other ones, giving

the possibility to execute multiple tasks at the same time. The activities were approved

by the supervisors and closely monitored by them.

35

Figure A.1. Time Graph of all Activities36

APPENDIX B

Works Analysed

Table B.1 shows a list of read works that contributed to the writing of this thesis.

Each work is also followed by the date of publication of the work and a summary of the

topic addressed in it.

Table B.1: List of reviewed articles from Lightweight Literature Review

Title Year Reference Short Summary

Algorithms in

Low-Code-No-Code

for Research

Applications: A

Practical Review

2023 [47] This work gives us

information about

the advantages and

downsides of the

LCDPs, supported

by some examples.

It also shows how

to create artificial

intelligence (AI)

without coding,

followed by an

example of an

algorithm that

monitors

cyber-attacks

through a LCDP.

Continued on next page

37

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Low Code for

Smart Software

Development

2022 [48] In this article, the

authors explore the

potential and

challenges of

low-code

environments,

which enable quick

delivery of

AI-enhanced

software solutions,

and provide a

”wish list” for

developers to

consider in these

tools.

Low-code

development and

model-driven

engineering: Two

sides of the same

coin?

2022 [49] This expert-voice

paper compares

low-code and

model-driven

approaches,

identifying

differences,

commonalities,

strengths, and

weaknesses, and

suggests

cross-pollination

directions.

Continued on next page

38

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Low-Code Versus

Code-Based

Software

Development:

Which Wins the

Productivity

Game?

2022 [50] This article

presents an

experiment

comparing

low-code and

code-based

software

development

technologies,

aiming to answer

which technology

enhances

productivity.

Results show clear

productivity gains

can be achieved

using low-code

technology in

management

information system

development. The

article reviews

concepts,

methodology,

results, discussion,

and limitations and

suggests future

research.

Continued on next page

39

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Modeling in

low-code

development: a

multi-vocal

systematic review

2022 [51] This article

presents a

systematic review

of low-code

development,

focusing on its

relationship with

model-driven

engineering. The

article, based on 58

primary studies,

provides a

comprehensive

snapshot of

low-code

development during

its peak of inflated

expectations

technology

adoption phase.

Continued on next page

40

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Practitioners’

Perceptions on the

Adoption of Low

Code Development

Platforms

2022 [52] In this work, a

study was

conducted in which

17 experts

identified 12 drivers

and 19 inhibitors

for LCDP

adoption. The

consensus was that

these factors are

crucial, but the

ranking is

context-dependent.

The study validates

these factors, adds

six new drivers and

six new inhibitors

to the knowledge,

and analyzes their

importance.

Continued on next page

41

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Situational

development of

low-code

applications in

manufacturing

companies

2022 [53] This paper presents

an initial version of

a situational

software

development

method for

manufacturing

companies,

enabling low-code

application

development. The

method can be

customized based

on application

requirements,

low-code platform

features, and team

characteristics.

Feedback from

expert interviews

supports the

method’s

usefulness.

Continued on next page

42

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

What about the

usability in

low-code

platforms? A

systematic

literature review

2022 [54] In this article, the

authors performed

a Systematic

Literature Review

procedure on the

usability of LCDPs

to understand the

advantages and

disadvantages of

these platforms.

Also, in their work,

they point out that

the drag-and-drop

feature and

end-user ability to

develop software

are among the

characteristics

more commonly

mentioned in

literature.

Continued on next page

43

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Challenges &

Opportunities in

Low-Code Testing

2020 [55] This paper

analyzes five

commercial

Low-Code

Development

Platforms (LCDP)

testing components

to present business

advancements in

low-code testing. It

proposes a feature

list for low-code

testing, a baseline

for comparison,

and a guideline for

building new ones.

Challenges include

the role of citizen

developers,

high-level

automation, and

cloud testing.

Continued on next page

44

Table B.1: List of reviewed articles from Lightweight Literature Review (Continued)

Title Year Reference Short Summary

Supporting the

understanding and

comparison of

low-code

development

platforms

2020 [56] The authors

worked on a

technical review

comparing eight

representative

LCDPs’

characteristics and

a short report on

the experience of

using each one.

They conclude a

set of features

covering

functionalities and

each platform’s

services. This work

aims to raise the

understanding of

how LCDPs can

cover user

requirements.

45

APPENDIX C

Platforms Found and Metrics

Table C.1 shows a list of all the platforms found in the research. It also shows which

searched websites had a reference to each platform.

Table C.1: Platforms found for the database search

Low-Code Development Platform Name Where was it found?

1C:Enterprise G2, Magic Quadrant

4D G2

8base G2

AgilePoint NX G2, Magic Quadrant, Gartner

Airkit G2

Airtable G2, Magic Quadrant, Gartner

Alibaba Magic Quadrant

Alpha Anywhere G2

Amoga G2

App Builder G2

App Sheet Gartner

Appery.io G2

Appian G2, Magic Quadrant, Gartner

AppPlatform Gartner

Astro Zero Gartner

AuraQuantic Gartner

ArcGIS AppStudio G2

AutomationEdge G2

Axpert Low Coding Platform G2

Back4app G2

Betty Blocks Platform G2, Gartner

Bizagi Gartner

Continued on next page

47

Table C.1: Platforms found for the database search (Continued)

Low-Code Development Platform Name Where was it found?

Bryj G2

BRYTER Gartner

Bubble Gartner

Build Gartner

Caspio G2, Gartner

Claris FileMaker G2, Magic Quadrant

ClickPaaS Platform Gartner

Comidor G2

Convertigo G2

cplace G2

Creatio G2, Magic Quadrant

Cyberium G2

dbFront G2

Decisions G2, Magic Quadrant

DefinesysCloud Gartner

Descope G2

Draftbit G2

DronaHQ G2, Gartner

Eccentex AppBase G2

EdgeReady Cloud G2

Fielda G2

Fliplet G2

Flowable G2

FlowWright G2

FOEX Plugin Framework G2

Formidable Forms G2

Frontegg G2

GeneXus G2, Gartner

Graphite Studio G2

Google App Maker Gartner

Continued on next page

48

Table C.1: Platforms found for the database search (Continued)

Low-Code Development Platform Name Where was it found?

HCL Domino G2, Magic Quadrant

Huawei Magic Quadrant

InRule G2

Integrify G2

Interfacing G2

Intrexx G2, Magic Quadrant

Jiandaoyun Gartner

Jitterbit G2

JobRouter G2

Joget G2, Magic Quadrant, Gartner

JourneyApps G2

Kintone Magic Quadrant, Gartner

Kissflow G2, Gartner

Knack G2

Kony Quantum (Formerly Kony App Platform) G2

Linx G2

Mendix G2, Magic Quadrant, Gartner

metaphactory G2

MobileFrame Gartner

Neptune DXP G2, Gartner

Neutrinos Platform G2, Gartner

NewgenONE Digital Transformation Platform Magic Quadrant, Gartner

Ninox G2

OnBase G2

OneBlink LcS G2

Openedge Magic Quadrant

Oracle Apex Magic Quadrant, Gartner

Oreops G2

OutSystems G2, Magic Quadrant, Gartner

Pega Platform G2, Magic Quadrant, Gartner

Continued on next page

49

Table C.1: Platforms found for the database search (Continued)

Low-Code Development Platform Name Where was it found?

Pipefy G2

PixieBrix G2

PowerApps Magic Quadrant, Gartner

PortalCMS G2

PROCESIO G2

ProcessMaker G2, Magic Quadrant

Progress OpenEdge G2

Progress Telerik G2

ProntoForms Gartner

Prophecy G2

Qntrl G2

Quickbase G2, Magic Quadrant, Gartner

Quixy G2, Gartner

RAD Platform Gartner

Ready G2

Reify G2

Retool G2, Magic Quadrant, Gartner

Rintagi G2

RunMyProcess G2

Salesforce Magic Quadrant, Gartner

Scheer PAS G2

ServiceNow Magic Quadrant, Gartner

Servoy G2

Simplifier G2

Skuid G2

Slingr G2

SMARTS Decision Management Platform G2

SS&C Blue Prism Intelligent Automation

Platform

G2, Magic Quadrant

Studio Creatio G2, Gartner

Continued on next page

50

Table C.1: Platforms found for the database search (Continued)

Low-Code Development Platform Name Where was it found?

Superblocks G2

SYDLE ONE G2

TeamDesk G2

ToolJet G2

TrackVia G2, Gartner

Turbo Forms G2

Twixl G2

UI Bakery G2

UiPath: Robotics Process Automation (RPA) G2

Unqork Magic Quadrant, Gartner

Veritone Automate Studio G2

Vinyl G2, Gartner

VisionX G2

Visual LANSA G2

WaveMaker G2, Magic Quadrant

WEBCON BPS G2, Gartner

WEM Gartner

WeWeb G2

Xojo G2

Xpoda G2

Zoho Creator G2, Magic Quadrant, Gartner

Zvolv G2, Gartner

Table C.2 presents all the data obtained from the search of all the platforms through

CVE Details. It provides information on the LCDP name, the CWE-ID of the vul-

nerability, the update date of the vulnerability on CVE Details, the score given to the

vulnerability, the weight given to each platform, the raw data average of the scores of all

the vulnerabilities from each platform and the maximum score of a vulnerability in each

platform.

51

Table C.2: Metrics calculated for the platforms

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

Mendix 284 22/02/2023 0,0 10 4,22 6,80

Mendix 74 20/07/2022 3,5 10

Mendix 269 19/07/2022 5,0 10

Mendix 200 12/07/2022 5,0 10

Mendix 668 13/05/2022 4,9 10

Mendix 668 19/04/2022 4,0 10

Mendix 668 11/03/2022 4,0 10

Mendix 863 12/11/2021 4,0 10

Mendix 863 12/11/2021 6,8 10

Mendix 525 12/11/2021 1,9 10

Mendix 269 22/04/2021 6,5 10

Mendix 918 11/09/2019 5,0 10

OutSystems 79 08/09/2021 4,3 10 5,00 6,40

OutSystems 918 21/04/2021 5,0 10

OutSystems 434 04/12/2020 6,4 10

OutSystems 352 06/03/2020 4,3 10

Salesforce 89 12/01/2023 0,0 10 5,36 7,50

Salesforce 611 12/08/2021 5,0 10

Salesforce 611 01/04/2021 7,5 10

Salesforce 918 01/04/2021 7,5 10

Salesforce ? 01/04/2021 7,5 10

Salesforce 400 12/06/2019 5,0 10

Salesforce 20 31/10/2018 5,0 10

ServiceNow 79 23/01/2023 0,0 10 2,64 6,50

ServiceNow 79 26/08/2022 0,0 10

ServiceNow 79 26/08/2022 0,0 10

ServiceNow 203 22/02/2022 5,0 10

ServiceNow 79 12/05/2020 3,5 10

Continued on next page

52

Table C.2: Metrics calculated for the platforms (Continued)

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

ServiceNow 94 05/10/2018 6,5 10

ServiceNow 79 10/04/2018 3,5 10

Appian 20 08/08/2017 7,8 5 7,80 7,80

Pega 502 07/11/2022 0,0 5 3,99 7,50

Pega 352 23/08/2022 0,0 5

Pega 79 23/08/2022 0,0 5

Pega 79 23/08/2022 0,0 5

Pega ? 01/08/2022 0,0 5

Pega 287 29/07/2022 7,5 5

Pega ? 25/04/2022 4,0 5

Pega 640 03/02/2022 4,6 5

Pega 425 01/01/2022 4,0 5

Pega 425 01/01/2022 4,0 5

Pega 269 23/04/2021 7,5 5

Pega 79 17/12/2020 4,3 5

Pega 79 13/11/2020 4,3 5

Pega 79 20/08/2020 3,5 5

Pega ? 19/08/2020 7,5 5

Pega 79 30/04/2020 6,8 5

Pega 79 30/04/2020 6,0 5

Pega 79 30/04/2020 6,0 5

Pega 668 19/12/2019 5,5 5

Pega 79 08/09/2017 4,3 5

Pega 200 08/09/2017 4,0 5

Oracle Apex 79 03/02/2023 4,3 5 4,81 10,00

Oracle Apex 400 08/12/2022 5,0 5

Oracle Apex 79 08/12/2022 3,5 5

Oracle Apex 79 08/12/2022 3,5 5

Continued on next page

53

Table C.2: Metrics calculated for the platforms (Continued)

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

Oracle Apex 79 07/11/2022 4,3 5

Oracle Apex 79 07/11/2022 4,3 5

Oracle Apex 79 07/11/2022 4,3 5

Oracle Apex 79 04/11/2022 4,3 5

Oracle Apex 79 05/10/2022 3,5 5

Oracle Apex 79 12/09/2022 4,3 5

Oracle Apex 79 12/09/2022 4,3 5

Oracle Apex 400 12/05/2022 5,0 5

Oracle Apex 79 27/04/2022 4,3 5

Oracle Apex 79 25/04/2022 3,5 5

Oracle Apex 1321 06/04/2022 4,3 5

Oracle Apex 400 28/03/2022 4,3 5

Oracle Apex 829 01/03/2022 4,3 5

Oracle Apex 79 28/02/2022 3,5 5

Oracle Apex 79 28/02/2022 3,5 5

Oracle Apex 79 02/12/2021 4,3 5

Oracle Apex 829 01/12/2021 4,3 5

Oracle Apex ? 21/07/2021 4,9 5

Oracle Apex ? 23/10/2020 4,9 5

Oracle Apex ? 23/10/2020 4,9 5

Oracle Apex ? 23/10/2020 4,9 5

Oracle Apex ? 22/10/2020 4,9 5

Oracle Apex ? 22/10/2020 4,9 5

Oracle Apex 79 21/07/2020 3,5 5

Oracle Apex ? 21/07/2020 3,5 5

Oracle Apex ? 21/07/2020 3,5 5

Oracle Apex ? 21/07/2020 3,5 5

Oracle Apex ? 20/07/2020 4,9 5

Continued on next page

54

Table C.2: Metrics calculated for the platforms (Continued)

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

Oracle Apex 79 20/07/2020 3,5 5

Oracle Apex ? 20/07/2020 3,5 5

Oracle Apex ? 17/07/2020 4,9 5

Oracle Apex ? 15/04/2020 4,9 5

Oracle Apex ? 03/10/2019 5,8 5

Oracle Apex ? 17/10/2018 10,0 5

Oracle Apex 79 17/10/2018 9,0 5

Oracle Apex 79 17/10/2018 4,3 5

Oracle Apex 89 16/10/2018 6,0 5

Oracle Apex 79 16/10/2018 4,3 5

Oracle Apex ? 15/10/2018 7,5 5

Oracle Apex ? 11/10/2018 10,0 5

Oracle Apex ? 11/10/2018 5,5 5

Oracle Apex ? 01/09/2017 5,8 5

Oracle Apex ? 01/09/2017 5,0 5

Oracle Apex ? 29/07/2017 5,5 5

Zoho 79 29/10/2020 3,5 5 5,18 6,80

Zoho 352 28/08/2019 6,8 5

Zoho 79 28/08/2019 4,3 5

Zoho 352 29/07/2022 6,8 5

Zoho 79 29/07/2022 4,3 5

Zoho 310 03/10/2014 5,4 5

Claris

Filemaker

611 23/11/2021 4,3 1 4,50 4,60

Claris

Filemaker

287 13/02/2020 4,6 1

Claris

Filemaker

287 13/02/2020 4,6 1

Airtable 522 02/12/2022 0,0 1 0,00 0,00

Continued on next page

55

Table C.2: Metrics calculated for the platforms (Continued)

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

Blueprism

RPA

669 24/08/2020 6,5 1 6,50 6,50

Processmaker 281 15/11/2022 0,0 1 5,20 6,50

Processmaker 89 07/06/2022 6,5 1

Processmaker 89 07/06/2022 6,5 1

Processmaker 89 19/04/2022 6,5 1

Processmaker 502 19/04/2022 6,5 1

Wavemaker 918 21/02/2019 6,8 1 6,80 6,80

HCL Domino 352 07/11/2022 0,0 1 3,88 10,00

HCL Domino ? 07/11/2022 0,0 1

HCL Domino ? 20/09/2022 4,6 1

HCL Domino 521 01/09/2022 0,0 1

HCL Domino 601 01/09/2022 0,0 1

HCL Domino 79 01/09/2022 0,0 1

HCL Domino 20 02/11/2021 5,0 1

HCL Domino 209 21/07/2021 5,0 1

HCL Domino 287 21/07/2021 5,0 1

HCL Domino 79 22/12/2020 4,3 1

HCL Domino 787 16/12/2020 10,0 1

HCL Domino 120 04/12/2020 10,0 1

HCL Domino 20 01/12/2020 5,0 1

HCL Domino 20 01/12/2020 5,0 1

HCL Domino 326 10/07/2020 4,3 1

1C 326 12/07/2022 5,0 1 5,00 5,00

Intrexx 79 19/10/2020 4,3 1 5,37 7,50

Intrexx 434 13/02/2020 7,5 1

Intrexx 79 09/10/2018 4,3 1

Continued on next page

56

Table C.2: Metrics calculated for the platforms (Continued)

LCDPs CWE-

ID

Update

Date

Score Weight Raw

Data

Average

Maximum

Score

Agilepoint

NX

89 14/07/2022 6,5 1 6,50 6,50

Joget Dx 79 06/01/2023 0,0 1 1,17 3,50

Joget Dx 79 24/12/2022 0,0 1

Joget Dx 79 29/03/2022 3,5 1

Openedge 269 10/05/2022 7,2 1 6,80 7,50

Openedge ? 16/10/2018 7,5 1

Openedge 284 22/11/2017 7,5 1

Openedge 22 05/10/2015 5,0 1

Decisions 352 09/06/2016 6,8 1 6,80 6,80

57

	Acknowledgments
	Resumo
	Abstract
	Chapter 1. Introduction
	Chapter 2. State-of-the-Art
	Chapter 3. Methodology & Approach
	3.1. Research Method
	3.2. Approach
	3.2.1. Lightweight Literature Review
	3.2.2. Database Search
	3.2.3. Interviews
	3.2.4. Expert Review

	Chapter 4. Results
	Chapter 5. Discussion
	5.1. Lightweight Literature Review
	5.2. Database Search
	5.3. Interviews
	5.4. Threats to Validity

	Chapter 6. Conclusion
	References
	Appendix A. Time Graph
	Appendix B. Works Analysed
	Appendix C. Platforms Found and Metrics

