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Abstract
Industrialization increased air pollution sources, which is a cause of major health problems. As such, air pollution 
became a growing concern and there is a need to monitor and easily visualize air pollution data. There are thousands of 
air quality monitoring stations throughout the world that are used to measure air quality. Moreover, there are plenty of 
applications that have been developed to visualize air pollution that use information gathered by these air quality 
monitoring stations as well as other sources of information, such as traffic intensity or weather forecasts. This paper 
introduces a novel graphical tool that taps on a new source of information: expert knowledge of air pollution sources. 
This tool allows experts to represent air pollution sources and their dynamics, and to assign them to different map 
elements (e.g., buildings, roads). We have performed tool’s usability and viability tests with 30 participants of which 6 
are from environmental sciences. The obtained results and the provided feedback show that the proposed approach is a 
promising complement to sensor-based mapping approaches.

1 Introduction
Air pollution is a serious health issue and is of great concern for Europeans as reported by the European Commission 
(2017). This has led to various efforts to monitor air quality. Historically this has been done with static stations 
equipped with complex and costly equipment. Additionally, these stations are usually located in cities where most 
population live and work. More recently, the advent of low-cost sensors (LCS) has given rise to networks of these 
sensors massively increasing the coverage of monitored areas, as demonstrated by the work of Becnel et al. (2019), 
Hasenfratz et al. (2015), and Lin et al. (2020). Despite lower accuracy and resolution, Morawska et al. (2018) have 
shown that low-cost sensors complement the more complex monitoring stations. Hasenfratz et al. (2015) have also 
shown that the data collected by these low-cost sensor networks can be used to construct highly detailed pollution maps.
However, despite the cheaper deployment cost, there are still major population centers that are not monitored.

There are several tools and programming libraries, such as Breezometer (2020), IQAir (2021), PlumeLabs (2020), 
which can be used for air pollution estimation and visualization. In general, these libraries use data collected by air 
quality monitoring stations in their estimation models. In areas not covered by these stations, it is difficult to obtain an 
accurate air pollution map, given that estimation models that are not based on sensory information are rather 
incomplete. Lakhani et al. (2010), reviews different monitoring methods, all of them requiring in situ measurements of 
the target pollutant.

To improve the representation of air pollution maps, we propose the representation of knowledge-based pollution 
maps, where an environmental expert can represent pollution sources. To realize this, we developed a novel graphical 
tool that taps on exploiting explicit expert knowledge for solving the task at hand. Through this tool, experts can 
graphically and, thus, intuitively represent dynamic air pollution profiles. A profile can depend on weekday, hour, or any
other parameter that the expert finds suitable (e.g., wind orientation). The expert can then associate a pollution profile to
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different map elements (e.g., building, road), thus specifying which map elements are the actual pollution sources of the
associated pollution profile. Once the expert assigns a set of air pollution values to the pollution source profile’s 
parameters, users can visualize the corresponding predicted pollution diffusion pattern through a heat map.

The design of our tool was influenced by existing map-based applications. For instance, in Google Maps users can 
select two types of maps: one that displays polygons and polylines representing different features such as buildings or 
roads among other; a second that displays satellite imagery. On top of these two information layers, users can view 
additional layers (e.g., traffic, terrain elevation). Another example, Open Street Map, is a programming library that 
provides the user with different pictorial representations. The selection of a particular library to develop our graphical 
tool was based on the associated learning curve and map data availability.

This article is an extended version of a previous conference paper (Vital et al., 2021). The focus of this article is to 
introduce the concept of knowledge-based generation of pollution maps, to present a graphical tool and to assess its 
usability to represent expert knowledge. To achieve this goal, we performed a set of usability tests with 30 participants, 
of which 3 were environmental experts and 3 were environmental sciences master students. Participants performed a set
of tasks and filled a usability questionnaire.

The work presented in this article is part of the ExpoLIS project. The goal of this project is to develop a network of 
mobile LCS to monitor air quality and to implement a set of graphical tools to present the gathered sensory data to users
(Santana et al., 2021). The LCS will be installed on the top of city buses and will supply real-time air quality data. As 
mentioned, user-centered graphical tools will use these data to provide up-to-date air quality information for 
environmental experts and to the public, thus increasing the population’s awareness to air pollution. While the tool 
presented in this article is an example of the first type, Santana et al (2021) have implemented a mobile app to display 
air quality to the public and Teles et al. (2020) have developed a 3D game-like virtual environment to visualize air 
pollution data in an engaging way, targeting youngsters.

This article is organized as follows. We start with a survey of related work in Section 2. Then in section 3, we 
present the developed tool. The testing phase is detailed, and the obtained results are presented and analyzed 
subsequently in Section 4. We finish we the discussion, conclusions and future work directions in section 5.

2 Related Work
There is not a universal air pollution measuring index as different countries or applications consider different sets of 
pollutants, time periods, and concentrations. One of the most used in scientific studies, such as in Bumm (2019), 
Karuppasamy et al. (2020), Kumar and Goyal (2011), or Selvam et al. (2020), is the American version of the Air 
Quality Index (AQI). This index uses five major pollutants: ground-level ozone, particulate matter, carbon monoxide, 
sulfur dioxide, and nitrogen dioxide. It consists of six levels, as presented in Table 1.

There are two main types of air pollution maps. The first type only displays data from air quality monitoring 
stations. The World Air Quality Index is such an example. It collects data from more than 30000 monitoring stations 
around 2000 major cities. It combines the data to compute an AQI. Since this map depends on high-cost stations, it does
not provide information with a city block resolution and there are many regions in Earth that are note covered.

The second type of air pollution maps uses data from varying sources, such as monitoring stations, weather, and 
traffic information. These data are processed using proprietary algorithms, machine learning techniques, big data 
analytic, and air pollution dispersion modeling to produce heat maps. An example of this kind of map is Breezometer 
(2020), which claims a city block level resolution air pollution accuracy of 90%. However, the crux of this modeling is 

health concern level value range colour
Good 0-50
Moderate 51-100
Unhealthy for sensitive groups 101-150
Unhealthy 151-200
Very unhealthy 201-300
Hazardous 301-500

Table 1: Meaning, range of values and color of Air Quality Index levels.



the availability of data form high-cost stations. In the absence of these, Breezometer is unable to provide forecasts, as is 
the example of Cuba, despite presenting weather and traffic information.

Recently, we have witnessed an increase of using LCSs to measure air pollution of risen in popularity (Morawska et 
al., 2018). PlumeLabs is a company that sells a LCS called Flow. It is considerably cheap when compared to a typical 
monitoring station. It collects data on particulate matter with diameter less than 1µm (PM1), less than 2.5µm (PM2.5), 
or less than 10µm (PM10), nitrogen dioxide (NO2), and volatile organic compounds every 60 seconds. These data are 
sent to PlumeLabs’s databases, which are then processed to create AQI maps with street level resolution. Although Flow
is deployed in hundreds of major cities, it still lacks global coverage.

One of the drawbacks of current air pollution maps produced with data obtained from modeling techniques is the 
lack of individual pollution emission sources. If we use the Breezometer map to examine the Bełchatów power station 
in Poland, it looks that it has good air quality, despite being one of the most polluting factories in Europe, as reported by
the European Environmental Agency (2017). Without sensors installed in situ, current models cannot accurately infer 
the existence of pollution in every situation. Either we increase the number of deployed sensors, or mathematical 
models have to take into account every single pollution source. The first solution has physical costs, in terms of sensor 
hardware, while the second has increased spatial and time computational complexity costs. This paper addresses these 
limitations as it allows an environmental expert to express one’s knowledge on pollution sources. This knowledge can 
then be used to generate air quality maps in locations where there are no installed sensors.

There are several programming libraries that can be used to develop an air pollution mapping application. As 
selection criteria we chose: access to multiple data providers; intuitive user interface; fast development; cross-platform 
deployment; and customization ability. We have reviewed MapBox GL JS, OpenLayers, and Leaflet. All of them rely on
Open Street Map (OSM) as data provider. OSM is an open-source geographical dataset, to which anyone can make 
contributions (Haklay and Weber, 2008). Maps can be rendered using raster or vector tiles. Every time a user selects a 
new map resolution or style, the application must download a raster tile set which impacts interaction. Moreover, 
anytime a change is done in the geographical dataset, all raster tile sets must be recomputed. Vector tile sets do not 
suffer these problems: the same geographical dataset can be used for any resolution and style combination. Leaflet 
requires a plug-in to work with vector tiles, but it still needs a larger network bandwidth. MapBox GL has better 
documentation compared to OpenLayers. In terms of performance, MapBox GL is slightly better according to Netek et 
al. (2020).

An important feature of the graphical tool that we developed is the ability to assign pollution sources to map entities.
This is a process similar to image annotation. This depends on selecting and identifying key areas in an image. Image 
annotation is used in supervised machine learning (Weston et al., 2011). LabelMe is an example of a web-based 
application that annotates images (Russell et al., 2008). The availability of vast quantities of image data has led to 
research on the topic of semi-automatic segmentation. The result of this effort can be seen in popular applications 
features, such as Microsoft’s Paint3D or Adobe Photoshop’s MagicWand. A basis for semi-automatic segmentation is 
the graph-cut optimization algorithm by Boykov and Jolly (2001). This technique has been extended by Rother et al. 
(2004), by minimizing the amount of interaction that the user must perform. Despite advances in automatic image 
segmentation, there are still edge cases that are not recognized. Consequently, there are a couple of examples in OSM 
data where there is no map entity for specific satellite images.

3 Tool Description
Given the state of art reviewed in the previous section, we have developed a graphical tool with the following features:

1 It enables environmental experts to represent their knowledge of air pollution sources;

2 It generates dynamic air pollution maps that can depend on any expert defined parameter;

3 It allows the user to create map entities whenever the corresponding OSM data is absent.

We have developed the tool in node.js. Figure 1 shows the class diagram focused on the above features. The source 
code of the graphical tool is freely available at http://github.com/ExpoLIS-project/pollution-maps.



3.1 Map Entities
The tool assumes that maps are composed of objects that can represent roads, buildings, or green areas. These maps are 
automatically created by the image segmentation feature that OSM uses when processing satellite images. Then, users 
can add or edit the automatically created map entities in the OSM databases.

For each OSM object that our tool imports, a map entity is created and represented by the class MapEntity, as 

depicted in Figure 1. OSM tags, such as building, and natural, as well as OSM relations, such as line, point, polygons, 
and roads, are used by our tool to classify each entity as a building, road, or vegetation. The tool samples the perimeter 
(outline) of every OSM object to obtain the locations where virtual pollution sources are placed. These virtual pollution 
sources are then used to compute the pollution map over all created map entities. Map entities can be searched by type 
or by tag. This can be used by the user to associate a pollution source profile to multiple map entities.

Figure 2 shows a screenshot of the graphical tool. On the left side of the image, a selected map entity is highlighted, 
and on the right side of the screenshot there is a panel with properties that correspond to the entity’s information 
imported from OSM. Map entities are colored in blue, magenta or green if their type is building, road or vegetation, 
respectively.

Figure 1: Class diagram illustrating the concepts and features of the graphical tool.



Figure 2: Screenshot of the graphical tool showing a selected map entity (red square) with its 
properties displayed on the right side.

3.2 Pollution Heat Map
Pollution sources are represented by a function that decays exponentially and radially, outwards the location of the 
pollution source. A heat map is used to represent pollution levels. We use the AQI scale and colors as shown on Table 1. 
An example of a point source pollution is displayed in Figure 3.

Figure 3: Single point pollution source with 250 AQI units.

Objects in OSM are represented by either polygons or polylines. These are represented in our graphical tool as the 
perimeter of map entities. Class GeoPoint and relation perimeter in Figure 1 represent this concept. To create a 

pollution source, we sample several points along this perimeter. Each point will be the center of a Gaussian function:

pp ( g ,a , r , p )= p⋅exp(‖g−a‖
2

r2 ),         (1)



where g  is the geographical location where we want to know the pollution, a  is a point belonging to the perimeter of

the associated OSM object, r  and p  are the pollution range and pollution level of the pollution source, respectively. 
The user can control the pollution range and level of the pollution source via the interface, which in turn will affect the 
result of the Gaussian functions assigned to each point in the perimeter.

3.3 Pollution Profile
As can be seen in class diagram in Figure 1, every map entity can be associated with a single pollution source. This, in 
turn, only specifies a base pollution level and range, which are represented in class PollutionSource in Figure 1. 

However, pollution can vary depending on many other different factors, such as hour of the day, day of the week, 

weather conditions, or traffic intensity. The expert can express this knowledge as a set of k  functions f i:ℝ→ℝ, with

1⩽i⩽k , one per factor. Hence f i(xi) maps dynamic factor value x i (e.g., a day of the week, a wind direction) to a 

pollution influence, which will then be used to modulate the base (static) pollution level. Functions f i are defined by the

user graphically, as depicted by the plot in Figure 4. In addition to these functions, the expert can also specify the 

weight of each factor to the overall pollution influence level, w≝(w 1, w 2,…w k) , with w i  representing the weight 

of factor i .

Jointly, functions f i and the vectors x and w constitute a set of pollution profiles. Figure 4 illustrates how the expert 

sets up a pollution dynamic profile. It also shows where the expert can specify the relevance or weight of a pollution 
source in the map entities to which it is associated. On the top of the screenshot, the expert can specify the value of all 
factors that influence pollution. Pollution is represented using the color code of the AQI index has shown in Table 1.

Figure 4: Pollution profile that depends on day of week. Pollution is lower on weekends compared 
to weekdays. The user can also specify the relevance of weight of existing pollution sources. On the 
left panel, the highlighted box shows where the expert can select a set of pollution factor values.

Given the set of functions f i, the vector of factor values in a given moment n, xn, the vector of factor weights w, and 

assuming the Gaussian function in equation (1), the pollution contribution of a given point a , belonging to the 

perimeter of a given OSM object, to a position g in the map is given by:

pm(g , a , r , p , xn ,w)= pp (g ,a , r , p)|xn|1
−1

( f (xn)⋅w ) ,         (2)

where r  and p  are the pollution range and pollution level of the pollution source, respectively,

f (xn)≝( f 1(x1) , f 2(x2),… , f k (xk ))  is the vector containing the pollution influences for the input vector xn

factor functions results, and |xn|1
−1

is the L-1 norm of vector xn .



3.4 Pollution Analysis
Pollution scenarios can be created when the expert creates pollution sources, constructs pollution dynamic profiles, 
associates them to map entities, assigns values to the pollution factors, and attributes weights of factors. The result is 
similar to the image shown on the left side of the screenshot in Figure 4.

The user can export the produced pollution heat map to an image file. To achieve this purpose, the tool considers a 
rectangular grid that covers a predefined area. Since the ExpoLIS project is targeted to the city of Lisbon, the area is 
located between the geographical coordinates (38° 40' 54.3216"N, 9° 18' 1.8216"W) and (38° 48' 46.9254"N, 9° 4' 
41.0268"W). We then sample points inside this rectangular grid with a step of 0° 0' 2.0052" latitude degrees and 0° 0' 

2.2716" longitude degrees. The pollution p(g , xn ,w)  computed for each grid point g , given a vector of factor 

values xn  and the vector of factor weights w , is:

pf (g ,xn ,w )= ∑
Φ∈ E

∑
a∈ΦA

pm (g ,a ,Φr ,Φ p ,xn ,w ) ,         (3)

where E  is the set of map entities with pollution sources, ΦA  is the set with the points sampled from the perimeter of

map entity Φ∈E , Φr  is the user-defined pollution range of map entity Φ, and Φp  is the user-defined pollution 

base of map entity Φ . Each perimeter point a  only contributes to the pollution in grid point g  if the distance 

between these points is less than the pollution range Φr . A heat-map resulting from the sum of all these functions, one 

per pollution source, is exemplified in Figure 5.

Figure 5: Resulting pollution heat map after assigning pollution to all roads.

Equation 3 represents a different pollution model from the one presented in our earlier work (Vital et al., 2021). 
Pollution in our previous work was implemented using the heat map functionality of the MapBoxGL programming 
library. The previous model was limited to a fixed zoom level. In the current version of our graphical tool, pollution is 
represented by a grid lattice, which operates independently of zoom level.

3.5 Urban Topology
When characterizing a pollution source, experts need to know the topology of the surrounding area, which can be 
partially determined based on the height of surrounding buildings. The OSM database holds this information for some 
buildings, which is exploited by MapBox library to display a 3D representation of a surrounding area. However, due to 
the incompleteness and inaccuracy of the resulting representation, we opted for an alternative approach, that is, to 
embed the Google Street View application into our tool. This way the user is provided with high quality street-level 
imagery data to determine the topology of the environment. Figure 6 shows a screenshot of this functionality. There is a 



button on the bottom of the screen, that whenever the user presses, a new window is opened with a web page of Google 
Street View.

Figure 6: Example of using Open Street View to examine the urban topology of the area in the 
center of the map.

4 Evaluation
The first phase of evaluating an application consists in discussing and assessing the main functionalities with the target 
users using paper mock-ups, before engaging in its actual implementation. In this sense, we conducted a session with 
environmental experts where interface sketches were discussed to assess the potential of the application. These sketches
focused on selecting map elements, creating a variable pollution profile, and associating map elements with pollution 
profiles to create pollution sources.

In a second evaluation phase, we employed the Cognitive Work Analysis framework (Vicente, 1999) to assess and 
organize all the interface elements. This framework specifies a set of constraints that restrict what the user knows and 
can do in a particular interface. Heuristic evaluation, as proposed by Nielsen (1994), was also carried out to detect 
potential usability issues in the early development phases. We also performed formative evaluations with small groups 
of testers (six people with an average age of 20.7) to identify earlier bugs or misconceptions in the interface. After 
concluding the tool’s development, an extensive summative evaluation session was carried out, whose results are 
discussed in the following sections.

4.1 Summative Evaluation
A total of 30 participants took part of the summative evaluation. Of these, 6 are from environmental science area. They 
are either researchers, Ph.D., or M.Sc. students. This group of 6 people formed the environmental knowledgeable (EK) 
group and only their results and feedback were taken into consideration when assessing the potential of our graphical 
tool. We considered environmental science MSc students as belonging to the knowledgeable group, because they have 
more knowledge about the environment compared to other students. The remaining 24 participants are MSc or BSc 
students, 3 of them from economics area and 21 of them from computing science area. They formed the non-EK group. 
To evaluate the usability of our graphical tool, we considered the results and feedback from all 30 participants.

The evaluation session that each participant went through had the following steps:

1 in the beginning the experimenter gave a brief overview of the graphical tool and its relevance to the 
ExpoLIS project;



2 the experimenter asked the participant to express his/her reasoning while performing the tasks, in order for 
the experimenter to understand which interface element the participant was trying to use;

3 the third step consisted in presenting a tutorial to the participant with seven slides describing the 
functionalities of the graphical tool. This step complemented the brief overview given in the first step;

4 the fourth step marked the evaluation of the graphical tool, where the participant had to perform seven tasks 
related to the main functionalities. Table 2 shows a description of these tasks;

5 the fifth step consisted in requesting the participant to perform an additional final task, which was more 
complex than the previous ones, as it required the participant to create a pollution map from scratch in an 
unfamiliar location. The purpose was to avoid any bias by the participant regarding any pollution knowledge
he may have;

6 the sixth step consisted in filling the user interface evaluation questionnaire, or System Usability Scale 
(SUS), described by Sauro (2011) and Lewis and Sauro (2018). The questionnaire had three additional 
questions for assessing the ability of participants from the EK group to create a pollution map using the tool.
Tables 3 and 4 show the description of these two sets of questions;

7 the seventh and last step consisted in a final debriefing, where participants could comment on the user 
experience and representation capabilities of the tool.

From the fourth and fifth step we obtained task completion rates. For the sixth step, the SUS questionnaire uses a five-
point Likert scale that ranges from strongly disagree to strongly agree. We also used this scale in the last three 
questions. While these results represent quantitative data, we also obtained qualitative data. The qualitative data was 
obtained thanks to the fact that most participants thought aloud throughout the evaluation session as they were trying to 
complete all the tasks. In the final debriefing, participants also provided qualitative data, as they expressed positive and 
negative aspects of their experience with the graphical tool.

# task description
1 Associate a pollution magnitude of 100 AQI units to a specific road
2 Select and associate a pollution magnitude of 150 AQI units to every building 

alongside a specific road
3 Represent week-long variation in the viewport considering that at the weekend 

pollution is reduced to half
4 Select and associate a pollution magnitude value of 100 AQI units to all roads 

currently in the viewport
5 Associate a pollution magnitude of 500 AQI units to a specific non-segmented 

building
6 Represent day-long variation of the previous task's building, considering that this 

variation has half the impact of the week-long variation
7 Create a pollution map in an unfamiliar location

Table 2: Description of the tasks each participant had to perform.



4.2 Results

4.2.1 Tasks 1-6: Assessing the Main Functionalities
The main results of the first six tasks performed by the 30 participants in the fourth step of the evaluation proceeding 
(see Table 2), which aimed to assess the main functionalities of the graphical tool, consisted in completion rates. In 
order to evaluate and compare these completion rates, we created three categories: yes meaning the participant 
completed the tasks within five minutes; middling meaning the participant required more than five minutes; and no 
meaning the participant was unable to complete the task. Figure 7 shows the results of the completion rates of the first 
six tasks. We have divided the results between the one obtained with the normal group and with the EK group. As it can 
be seen, in 80 % of the occasions, participants were able to complete the first five tasks within five minutes. If we do 
not impose a time limit, then, in 94 % of occasions these tasks were completed. If we focus on the participants from the 
EK group, which contains the targeted audience of this graphical tool, the percentage raises to 100 %. In task six, 
participants had more difficulties completing it, with more people requiring more than five minutes to finish.

# SUS question description
1 I think that i would like to use this system frequently.
2 I found the system unnecessarily complex.
3 I thought the system was easy to use.
4 I think that I would need the support of a technical person to be able to use this 

system.
5 I found the various functions in this system were well integrated.
6 I thought there was too much inconsistency in this system.
7 I would imagine that most people would learn to use this system very quickly.
8 I found the system very cumbersome to use.
9 I felt very confident using the system.
10 I needed to learn a lot of things before I could get going with this system.

Table 3: Description of the ten questions of the SUS questionnaire.

# SUS question description
11 In the last task, the tool allowed me to create a pollution map given a zone and its 

properties
12 In the last task, the tool allowed me to express my knowledge on pollution emission

given a zone and its properties
13 The pollution map I created given a zone, and its properties, is representative of 

what I expect is correct

Table 4: Description of the three last questions that are related to the usability of the 
graphical tool as being able to represent pollution maps.



Figure 7: Completion rates of tasks.

The difficulties that participants encountered in the sixth task can be explained by the fact that it requires the 
completion of three sub-tasks. These sub-tasks were not explicitly described to the participant. They consisted in 
creating a new pollution dynamic, adjusting the weight of the pollution, and associating the pollution dynamic to the 
pollution profile that was created in the fifth task. Table 5 shows the percentage of participants that successively 
performed each of these three sub-tasks. In task six a completion rate of yes required that all three sub-tasks were 
successful. A completion rate of middling was attributed if only two sub-tasks were successful. Although most 
participants were able to create a pollution dynamic, editing the pollution profile weight and the pollution factor values 
was more difficult. This then impacted the association of the new pollution dynamic to the pollution profile. In the 
debriefing step, participants expressed doubts on how to manage pollution profiles. The tutorial that was shown on step 
three was not clear on what was the purpose of pollution profiles and what could be done with them. Moreover, when a 
participant selects the pollution profile of a map entity, there is only one pollution profile visible and it is not clear that it
can select other pollution profiles. Perhaps the inclusion of predefined pollution profiles could clarify this functionality.

To assess the usability of the graphical tool by any person from the target population, we computed 95 % confidence
intervals for the completeness rate. We computed one confidence interval that only used the yes completion rate, and a 
second confidence interval that used both yes and middling completion rates. Figure 8 shows that if users are given 
enough time, the confidence intervals for the first five tasks are above the 75 % completion rate mark. If we are strict on
the time users are allowed to complete a task, then only tasks 3 and 5 are above 75 % mark. As for task 6, the 
confidence intervals are low, which is consistent with what we have previously discussed.

sub-task success
create a new pollution variation chart 76 %
adjust the chart's relevance to half 43 %
associate the chart to profile of previous task 33 %

Table 5: Success rate of task six sub-tasks.



Figure 8: Confidence intervals for completion rates of tasks, for two sets of completion rates: one 
considering only the yes category (red circle), a second with the yes and middling categories (cyan 
triangle).

4.2.2 Task 7: Assessing Creation of a Pollution Map
The evaluation of task 7 which involved the creation of a pollution map in step five of the evaluation proceeding, is 
more complex, as participants had to build on the knowledge they obtained in the previous six tasks. Task 7 required the
creation of a pollution map in a location unfamiliar to the participant. In terms of completion rate, all participants did 
create a pollution map, but the kind of map created differed from participant to participant. Most participants (53 %) 
selected multiple entities and just assigned the same pollution magnitude to all of them. Only 13 % of the participants 
assigned different pollution magnitudes to the several map entities.

Note that the experimenter did not tell participants to assign different pollution values. The experimenter just asked 
participants to create a pollution map that reflected what the participant thought what pollution levels could occur in an 
unfamiliar location. Participants from the EK group reported that, when trying to assign a particular pollution level, felt 
they needed more data to make an informed decision regarding pollution values.

Given that the target audience of the graphical tool is environmental experts, the feedback they provided is 
especially relevant. They mentioned that, rather than assigning an AQI value to pollution entities, they would prefer 
assigning individual pollutants, such as nitrogen oxides (NOx), carbon monoxide (CO), or PM. They also lacked other 
sources of information that are relevant for profiling air quality, such as traffic data, which is a considerable source of 
air pollution. Other found issues include the inability of the tool to allow the experts to express the relation between air 
pollution dispersion and buildings height, for instance, that street canyons do not disperse pollutants as easily as open 
areas. Overall, the experts’ provided feedback was useful to set a road map for future improvements of the graphical 
tool.

4.2.3 Usability Tests
After performing the several tasks discussed in the previous sections with the graphical tool, participants filled a two-
part questionnaire that focused on the usability issue. The first part contains generic usability items from SUS, whereas 
the second part contains non-SUS items focused on assessing the viability of the graphical tool to be used by 
environmental experts to express their knowledge. The top and bottom panels of Figure 9 show the results for the SUS 
and viability questionnaire parts, respectively. Results are also divided by non-EK group and EK group participants (left
and right panels, respectively).



Figure 9: Results from the questionnaire.

To evaluate the results of a SUS questionnaire it is customary to compute a score following the method of Lewis and
Sauro (2018). This yields a value between 0 and 100. Sauro (2011) has analyzed several usability questionnaires 
looking for a threshold value above which a tool can be considered with an acceptable usability level, reporting it to be 
68. The graphical tool that we developed achieved a value of 68.83 for the SUS part of the questionnaire, which sits in 
the edge of acceptability. This value can explain the fact that participants had some difficulties using pollution profiles 
and thus this feature can be improved to increase its usability.

Lewis and Sauro (2018) pointed out that the SUS questionnaire has two main dimensions: usability and learning. If 
we compute the value of these two dimensions separately for the results we obtained for the SUS part of the 
questionnaire, we get the values 68.13 and 71.67 for usability and learning, respectively. Again, usability is just above 
the acceptance threshold, whereas the learning component fared a little better but it is still close to the 68 threshold.

As for the questionnaire's last three non-SUS items, which are focused on assessing the viability of our graphical 
tool, most participants either give a neutral answer or disagreed on the ability of being able to represent a pollution map 
with our tool. On the other hand, the feedback and comments participants gave, are useful to fix and improve the 
viability of our graphical tool.

Since the learning dimension is above the 68 threshold, this means the functionalities of our tool can be learned. 
However, as we have already mentioned, the pollution profile feature needs further adjustments to improve its usability. 
The questions related to the viability of our tool, show that additional features are needed to increase the usability of our
tool. The ability to see the urban topology was implemented after conducting the summative evaluation. As we have 
said previously, it was implemented using Google Street View. Other functionalities such as different pollutants, require 
changing the data model. 

5 Discussion, Conclusions and Future Work
In this paper we have presented the concept of knowledge-based generation of air pollution maps. Existing map 
solutions are either based on sensory data from static ground stations or on mathematical models. In this paper we 
propose tap expert knowledge and use this knowledge to create air pollution maps. The aim of this approach is to 
complement static ground stations, which are the major source of information on air pollution. Despite their wide 
deployment, there are still major parts of the world that are not monitored. In order to represent expert knowledge, we 
have developed a graphical tool aimed at air pollution experts. With this tool we aim at predicting air pollution in non-
monitored areas.



This article has two major parts. In the first part, we described the engineering approach we took, in particular how 
we model pollution. In our case we have used multiple single point sources, where each point source is described by a 
Gaussian function. We described the functionalities that we have implemented. One of them is the ability to create 
pollution profiles that can depend on user defined parameters (e.g. day of week). This allows an environmental expert to
express how pollution varies with day of week, hour of day, traffic intensity, wind direction, and so forth.

In the second part of this article, we focused on assessing the usability and viability aspects of the graphical tool. We
have performed a series of experiments in which participants were asked to perform a set of tasks and fill a 
questionnaire afterwards. Most participants were able to complete the tasks of simple or average complexity. Some of 
these tasks involve user-interface interactions that are quite common in an array of commonly used applications. For 
instance, in most applications users must select an object and modify it (e.g., image editing tools). Task one is an 
example of this action, where the user was asked to select a map entity and assign a pollution value, and in our case, 
almost all participants were able to complete it. The task in which participants had to create a pollution map in an 
unknown location revealed a couple of issues with the graphical tool. Nevertheless, the score of SUS part of the 
questionnaire was 68.83, which according to previous empirical evidence indicates a usable interface.

Participants provided useful comments on desired functionalities. Examples include expanding the tool to provide 
the user with better map entity search capabilities, as well as with the ability to express expert knowledge as a function 
of additional sources of information, such as traffic, weather, and urban 3D topology. Pollution profiles allow a user to 
express pollution as a function of user defined parameters. However, this feature was not easily perceived during 
usability tests. As such improvements in this functionality are required. In particular, the ability to access such data 
(traffic, weather, topology) for a given geographical location was a functionality that users asked for in the final 
debriefing.

Concerning the access to urban topology, we have implemented a feature that allows a user to access Google Street 
View. This allows the user to see surrounding buildings and get a sense of street canyons. MapBox has a functionality 
that allows a 3D representation of surrounding buildings. As for traffic data, MapBox also has a functionality that 
presents data in major regions such as North America, Western Europe, Middle East, Australia, New Zealand, Japan, 
and Korea.

Experts also commented on the need to represent different pollutant sources. A specific geographical location may 
be a high emitter of particulate matter but not of carbon monoxide. This feature requires changing the data model, as 
currently, a map entity can have at most a single pollution entity. This also entails the modification of existing user 
interfaces. The most obvious one is the ability to select the pollutant when creating a new pollution source in a map 
entity.

Besides implementing the additional features requested by the participants, we also plan to study how the pollution 
maps generated by the graphical tool can be fruitfully fused with air pollution sensor data. We also plan on using 
machine learning to elicit knowledge from environmental experts to predict air pollution on unclassified areas. Other 
future work includes the use of the graphical tool as a gamified educational asset for children to learn how city entities 
(e.g., roads, buildings) correlate with air pollution sources.
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