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Resumo

A transição para fontes de energia mais limpas na União Europeia prioriza o gás natural,

no entanto, a Guerra Russo-Ucraniana causou flutuações impreviśıveis nos preços. Nosso

estudo visou aprimorar modelos preditivos explorando dados do GDELT, analisando o

desempenho pré e pós-guerra, e comparando modelos de ”Deep Learning” (RNN, LSTM,

GRUNN). A incorporação de dados de petróleo bruto e sentimento médio da nóticia mel-

horou significativamente as previsões. Fatores geopoĺıticos exigem mais pesquisas para

garantir segurança energética e desenvolvimento econômico. Empregando a metodolo-

gia CRISP-DM, estabelecemos uma abordagem sistemática para enfrentar esses desafios.

Nosso estudo contribui com insights valiosos para aprimorar as previsões e adaptar mod-

elos aos complexos mercados de energia.
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Abstract

The transition to cleaner energy in the European Union prioritizes natural gas, yet the

Russo-Ukrainian War caused unpredictable price fluctuations. Our study aimed to en-

hance predictive models by exploring GDELT data, analyzing pre- and post-war per-

formance, and comparing deep learning models (RNN, LSTM, GRUNN). Incorporating

crude oil and average tone data significantly improved predictions. Geopolitical factors

necessitate further research to ensure energy security and economic development. Em-

ploying CRISP-DM methodology, we established a systematic approach to address these

challenges. Our study contributes valuable insights to enhance predictions and adapt

models to complex energy markets.
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CHAPTER 1

Introduction

The shift towards cleaner energy sources is a top priority for the European Union, with

natural gas being widely embraced by countries to achieve emission reduction goals. This

energy resource is predominantly transported through pipelines and o↵ers convenient stor-

age options.

However, the stability of natural gas prices was significantly impacted by the Russo-

Ukrainian War. The weaponization of gas sales by Russia during the conflict caused a

drastic increase in gas prices, leading to unprecedented price fluctuations. As a result,

the predictive models developed in this study were not trained to anticipate such extra-

ordinary events, and their performance was a↵ected.

This unforeseen instability in natural gas prices during the war highlights the need for

further research and model adaptation to account for geopolitical factors that can influ-

ence energy markets. The ability to forecast such events accurately will be crucial for

ensuring energy security and sustainable economic development in the future.

The primary objectives of this study are as follows:

(1) To investigate whether the utilization of data extracted from GDELT (Global

Database of Events, Language, and Tone) contributes to an enhancement in

model performance.

(2) To assess whether the predictive model trained with data before the Russo-

Ukrainian War demonstrates a similar performance to the model that did not

anticipate this historical phase.

(3) To compare the performance of di↵erent deep learning models, including Recur-

rent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated

Recurrent Unit Neural Networks (GRUNN), and determine which one yields the

best results.

The dataset of TTF natural gas price, obtained from the yfinance Python library1,

spans from October 23, 2017. Our focus in this study was specifically on the time period

between January 2, 2018, and December 30, 2022, comprising a total of 1292 data points.

To train the models, we utilized only the data from the first year of the war, employing

an 80/20 ratio for training and testing data.

In anticipation of the modeling phase, a set of 15 distinctive features was meticulously

1https://pypi.org/project/yfinance/
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constructed, encompassing a diverse range of attributes. An exhaustive examination of

the collective attributes was undertaken, as detailed in Table 4.1 at page 40. However, this

process of evaluation led to a deliberate focus on the distinct constituent elements within

the feature set. The ensuing selection comprised three pivotal features: natural gas price,

crude oil price, and average tone. The strategic amalgamation of these selected features

is delineated in Table 4.3 at page 45, guided by a rationale anchored in the incorporation

of a natural gas price baseline intertwined with the nuanced interplay of crude oil price

and average tone attributes.

Throughout our study, we observed that no prior research had attempted to forecast

natural gas prices during periods of war. Additionally, none of the existing studies utilized

the Cameo list of events2 to predict natural gas prices.

The employed methodology was CRISP-DM, and the basic flow can be observed in

Figures 3.3, 3.1, 3.5, and 4.1, at pages 23, 21, 27, and 37, respectively:

Step 1: Extraction of natural gas, crude oil, GDELT news, and weather data.

Step 2: Data analysis.

Step 3: Individual transformation and preprocessing of data.

Step 4: Training and fitting of models using Keras Tuner to select the best

hyperparameters.

Step 5: Evaluation of models.

The dissertation is structured as follows:

(1) Introduction: This part gives a quick overview of why the research is important

and what it aims to achieve. It introduces the main problem, goals, and questions

that the rest of the dissertation will explore.

(2) Methodology and Literature Review: In this section, we explain how we did the

research, like collecting and studying data. We also talk about what other people

have researched on this topic before. This helps set the groundwork for our own

research.

(3) Data and Preprocessing: Now we talk about the information we used for the

research. We describe where we got it from, what it includes, and how we made

sure it was good to use. This step is really important to make sure our analysis

is accurate.

(4) Conclusion: This is the last chapter of the dissertation. We summarize what we

found out from our research and discuss how it answers the questions we had.

We also talk about what our findings mean for the subject and how they could be

useful in real life. We mention any limitations in our research and suggest ideas

2http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
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for future studies. This chapter gives a nice ending to our whole research journey.

Each of these segments assumes a distinctive and pivotal function in molding the

framework and substance of the dissertation, contributing to a comprehensive and unified

scholarly composition.
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CHAPTER 2

Methodology and Literature Review

2.1. Methodology

The methodology adopted for this study was CRISP-DM (Cross-Industry Standard Pro-

cess for Data Mining), a widely recognized framework that guides data mining and ma-

chine learning projects. CRISP-DM o↵ers a structured approach, breaking down complex

problems into manageable steps and ensuring a systematic and well-documented process.

The detailed flow of the CRISP-DM methodology is presented in Figures 3.3, 3.1, 3.5, and

4.1 at pages 23, 21, 27, and 37 respectively. This methodology encompasses the following

key steps:

(1) Business Understanding: In the initial phase, we defined the research objec-

tives and formulated research questions to address the challenges of predicting

natural gas prices.

(2) Data Understanding: The subsequent step involved data collection and ex-

ploration. We obtained and thoroughly examined data on natural gas, crude oil,

GDELT news, and weather.

(3) Data Preparation: After collecting the data, we performed extensive clean-

ing and preprocessing, handling missing values, and outliers, and ensuring data

quality.

(4) Modeling: Various machine learning models, including Recurrent Neural Net-

works (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit

Neural Networks (GRUNN), were employed for forecasting natural gas prices.

The Keras Tuner was utilized to select the most suitable hyperparameters for

the models.

(5) Evaluation: The performance of each model was evaluated using metrics like

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

By adhering to the CRISP-DM methodology, our research followed a systematic and

transparent approach, e↵ectively addressing the challenges of predicting natural gas prices.

2.2. Literature Review

2.2.1. Europe Natural Gas Market

Energy is an important part of social progress and economic development (Kaufmann &

Connelly, 2020).

Europe has increased the consumption of natural gas over the years and is transitioning

toward a renewable-based energy system (Berrisch & Ziel, 2022).
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After the European Union liberalization process in 1998, the market grew fast. These

directives issued by the European Commission have given access to infrastructure to third-

party companies. Another advantage is creating a Virtual Trading Point, and now natural

gas can be traded in any location (Hamie et al., 2020).

The network code was also a game changer because it allows e�cient transmission that

avoids the congestion in EU gas transmission pipelines is reduced (Hamie et al., 2020).

Investment in cross-border capacity contributes to creating a cross-border relationship

between Transmission System Operators via the European Network for Gas long-term

contracts. The same investment was also aggregated into the new system, old legacy, or

long-term contracts into the new system (Hamie et al., 2020).

The main natural gas hubs in the European Union are presented in Figure 2.1, the red

dots indicate the mature hubs with the highest trade rate. Blue dots show active hubs,

and yellow dots show hubs with lower trade (Heather, 2021). The two most representative

hubs are the Dutch TTF and the British NBP, both classified as mature with 46690 TWh

and 10060 TWh in 2020 (Heather, 2021).

Figure 2.1. Map the main natural gas hubs in Europe

The Russian invasion of Ukraine began on Thursday, February 24, 2022. The war has

since killed thousands of people, taken the place of millions, and destroyed entire cities

(Psaropoulos, 2022).

After the invasion, Russia used the natural gas trade as a weapon, taking advantage of

the shortage of European natural gas and the dependence on Russian supply to negotiate

6



Figure 2.2. Map of Gas pipelines between Europe, Russia and Caucasia
Sources : Gazprom export ; Gazprom ; Tanap ; Trans Adriatic Pipeline ;
BP ; Natural Gaz Europe ; Nord Stream ; South Stream Transport

with European countries not to get involved in the war. In the first 14 days of the invasion,

the natural gas price increased by around 180% and Russia started to deliver 60% less

gas through the Yamal pipeline (Figure 2.2), this reduction a↵ected imports to France,

Austria, Italy, the Czech Republic and Germany. Furthermore, in response to Russia’s

weaponization of natural gas, the European Union reduced imports through Nord Stream

I (Figure 2.2) (Economic Bulletin Issue 4, 2022; Halser & Paraschiv, 2022).

The fear of a natural gas shortage in winter made the European Commission propose a

new legal obligation to fill underground gas storage to 80% of its capacity by 1 November

2022. Besides, the European Union signed a memorandum for delivering 15 bcm of

liquified natural gas with the United States and Qatar (Fabian et al., 2022; Refilling gas

storage for next winter, 2022).

2.2.2. Forecasting Natural Gas Price

The oldest paper analysed was published in 2010 and the newest was brought out in 2022,

in this decade, 2019 was the year with more articles produced, the Figure 2.3 at page 8

presents the number of articles per year.

Table ?? at page ?? shows the most frequent models used to predict natural gas prices

found in the literature review. The models are grouped into neural networks, regression,
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Figure 2.3. The number of papers about natural gas prices forecast, per year

Table 2.1. Grouped Models in the Literature Review

Grouped Models Count
Artificial Neural Networks (ANN) 15
Support Vector Regression (SVR) 8
Time Series Models 5
Ensemble Models 3
Regression Models 6
Other Machine Learning Models 8
Other Models 3

auto-regression, decision trees, and other types. Artificial Neural Networks and Support

Vector Regression are the most common methods for forecasting natural gas prices as

showed in the word cloud in Figure 2.4 at page 9.

The number of hybrid models is slightly more than the traditional method that uses

only one model, with 55% and 45% respectively presented on Figure 2.5 at page 9.

The input variables can be a simple natural gas price time series or a list of features

(Naderi et al., 2021). After the features related to natural gas, the second most used

feature is the input variables linked to Crude oil (Abrishami & Varahrami, 2011; Čeperić

et al., 2017; Li et al., 2021; Moting et al., 2019; Naderi et al., 2019; Viacaba et al., 2012).

Table 2.2 shows all the features used and counts the occurrences of the exact name. The

features are grouped into energy, macroeconomics, weather, and others. The energy group

has subgroups such as price, demand, production, consumption, etc.

Carbon, electricity, and natural gas are most a↵ected by meteorological factors (Naderi

et al., 2021). The result of Li et al. (2021) presents that the proportion of extremely

8



Figure 2.4. Word cloud of all models used to forecast natural gas price

Figure 2.5. Percentage of model types

high-temperature weather, the proportion of extremely low-temperature weather, monthly

West Texas Intermediate (WTI) crude oil spot prices, natural gas consumption, and

natural gas gross withdrawals, all of it come up to predict in di↵erent levels of the long-

term prices in the Henry Hub natural gas spot, that is the most liquid, but also the most

9



unpredictable natural gas market in the world (Čeperić et al., 2017). Natural gas prices

are insensitive to energy-related and stock-related indexes (Naderi et al., 2021).

Another meaningful connection is between crude oil prices and natural gas prices,

the movement of crude oil prices used to influence the natural gas price. Moreover,

fluctuations in weather and temperature are used to influence natural gas prices (Moting

et al., 2019). The daily total electricity demand in Great Britain has two seasonality

e↵ects when it is possible to see less consumption at weekends and a pattern that shows

a higher consumption annually during the coldest days of the year (Nguyen & Nabney,

2010).

The analysis of Li et al. (2021) shows that the implementation of natural gas con-

sumption and monthly WTI crude oil prices provides better prediction accuracy for the

model that predicts monthly natural gas prices.

News sentiments added as features proved to contain complementary information and

can increase the performance of the model by 14.40% compared to a model without the

news sentiment (Y. Tang et al., 2019).

Di↵erent from the common logic that says ”more data is better”, Čeperić et al. (2017)

finds that for Henry Hub spot prices of natural gas price when it comes to short-term

prediction, ”less data is better”.

The dataset encompassing daily natural gas records presents a substantial variability,

spanning from a minimum of 230 data points to a maximum of 5470 data points, as

referenced by Naderi et al. (2019) and Siddiqui (2019) respectively. This substantial

disparity in the dataset size underscores the diversity in temporal granularity and data

availability.

When considering weekly prediction models, Čeperić et al. (2017) employed the dataset

with the smallest temporal scope, while Moting et al. (2019a) worked with a significantly

larger dataset, containing 886 data points. This wide spectrum in dataset sizes emphasizes

the di↵ering preferences and objectives within the field of weekly prediction.

Transitioning to monthly prediction, the dataset sizes exhibit a range of 420 to 2091

records, as reported in studies by Jianwei et al. (2019) and Berrisch and Ziel (2022)

respectively. This variation in dataset sizes underscores the distinct temporal resolutions

and availability of data within the monthly prediction context.

For the prediction of yearly trends, the sole study conducted by Azadeh et al. (2012)

utilized a dataset comprising 40 data points. This notably limited dataset size reflects

the challenges inherent in yearly prediction due to the scarcity of available observations.

For a comprehensive overview of these data sizes, refer to Table 5.1, which encapsulates

the aforementioned ranges and sizes, encapsulating the diversity and nuances present in

the datasets utilized across various prediction timeframes.

For all types of energy prediction studied in the literature review by Naderi et al.

(2021) the application of feature engineering led to an average increase of 54.59% in

accuracy in the models analyzed (see Table 2.3 at page 12).
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Table 2.2. List of features used to forecast natural gas price

Input variable(s) Count
Historical gas price 22
Crude oil price 2
Heating oil price 2
Annual interest rate 1
Proportion of extreme high temperature weather 1
Natural gas price di↵erences 1
Natural gas price rotary rigs 1
Natural gas total consumption 1
Natural gas underground storage volume 1
News 1
OPEC cut production 1
Population 1
Taxes placed on gas price 1
Natural gas imports 1
Temperature 1
Total renewable energy consumption 1
U.S. LNG imports 1
U.S. natural gas gross withdrawals 1
U.S. natural gas marketed production 1
U.S. natural gas pipeline imports 1
U.S. natural gas total consumption 1
WTI crude oil prices 1
WTI crude oil prices di↵erences 1
Natural gas marketed production 1
Natural gas gross withdrawals 1
Natural gas consumption 1
Annual natural gas consumption 1
Coal price 1
Coal price di↵erences 1
Consumer price index 1
Cooling degree-days 1
Economic parameters 1
Electricity price 1
Environmental policy 1
GDP 1
Global demand for crude oil 1
Global demand for gas 1
Heating degree-days 1
Heating oil price di↵erence 1
Historical data of energy demand 1
Internet search 1
Meteorological parameters 1
Monthly WTI crude oil prices 1
Monthly oil price 1
WTI oil spot price 1

11



Table 2.3. List of feature engineering methods provided on models

feature engineering method(s) Count
Ensemble Empirical Mode Decomposition (EEMD) 2
Variational Mode Decomposition (VMD) 2
Discrete Wavelet Decomposition (DWD) 1
Feature Selection (FS) 1
Group Method of Data Handling (GMDH) 1
Improved Pattern Sequence Similarity Search (IPSS) 1
Independent Component Analysis (ICA) 1

Table 2.4. List of optimization methods provided on models

Optimizer(s) Count
Particle Swarm Optimization (PSO) 3
Adaptive Learning Strategy (ALS) 1
Bat Algorithm (BA) 1
Genetic Algorithm (GA) 1

The most common optimization method applied is Particle Swarm Optimization (PSO),

which shows an increase in the performance of final models (Čeperić et al., 2017; Li et al.,

2021; J. Wang et al., 2021). In our study, we utilized the random search method to find

the optimal configuration for our model. We focused on three critical hyperparameters:

the number of layers, units, and epochs. The epoch value was consistently set to 20,

and we implemented early stopping after 5 epochs without improvement. To explore the

impact of the layer count, we conducted trials with a range of one to five layers, increasing

by one layer for each attempt. For the units, we varied the values between 32 and 512,

with increments of 32 units for each trial.

In the second trial using Keras Tuner, we refined our search based on the best-performing

models from the previous round. We restricted the number of layers to either one or two,

and the units were limited to the range of 32 to 512, maintaining the same increment value.

It is possible to see in Figure 2.6 that the most common period to forecast is the daily

price of natural gas, on which 14 of the articles are working. The second period is the

monthly period for 7 papers. The third period is the weekly period with six publications.

The last one with only one paper is the yearly period. Researchers do not predict the

natural gas price with a horizon of two months, quarters, and semesters.

The single model most used to forecast the price of natural gas are artificial neural

networks (ANN), and the second model most used is auto-regressive moving average

(ARMA) and support vector regression (SVR).

The idea behind the hybrid model is to combine more than one model to get better

performance. Table 2.6 at 15 lists all the models used to develop hybrid models.

The combination varies between two and five models, which can be di↵erent or similar,

Naderi et al. (2019) worked in a combination of four models of least squares support

12



Figure 2.6. Forecast period horizon

Table 2.5. List of single models

Models Count
Artificial Neural Networks (ANN) 3
Auto-Regressive Moving Average (ARMA) 2
Support Vector Regression (SVR) 2
Back-Propagation Neural Networks (BPNN) 1
Dynamic Local Linear Regression (DLLR) 1
Extreme Learning Machine (ELM) 1
Gamma test (GT) 1
Gaussian Process Regression (GPR) 1
Autoregressive Neural Networks (ARNN) 1
Group Method of Data Handling (GMDH) 1
Least Square Support Vector Machine (LSSVM) 1
Least squares Regression Boosting (LSBoost) 1
Local Linear Regression (LLR) 1
Random Kitchen Sink (RKS) 1
Random Vector Functional Links (RVFL) 1
Support Vector Machines (SVM) 1
Gradient boosting machines (GBM) 1

vector machine (LSSVM), genetic programming (GP), artificial neural networks (ANN),

13



and auto-regressive integrated moving average (ARIMA) to predict the price of oil, the

annual interest rate, and the daily price of gas.

The study of Li et al. (2021) and J. Wang et al. (2020) compare the hybrid model with

a single model and find that the hybrid model performs better. J. Wang et al. (2020)

complement with hybrid models when combined with di↵erent time-series methods tend

to have a better performance. The hybrid model of Li et al. (2021) is a combination of a

Deep Belief Network (DBN) with feature engineering of variational mode decomposition

(VMD) and particle swarm optimization (PSO).

The study of Čeperić et al. (2017) compared hybrid model applies Support Vector

Regression (SVR), Steepwise (SW), and Feature Selection (FS) with another hybrid model

that uses Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO), and

Feature Selection (FS), and find out that first has a better performance.

The article presented by Jin and Kim (2015) shows that not all hybrid models perform

better. The combination of artificial neural networks with wavelet decomposition does

not improve the model when compared with Artificial Neural Networks without wavelet

decomposition. The other experiment with Auto-Regressive Integrated Moving Average

with Wavelet decomposition in the same study demonstrated only a small improvement.

But the combination of Auto-Regressive Integrated Moving Average with Wavelet decom-

position created the best case for a four-step forecast (Jin & Kim, 2015).

Figure 2.7. Word cloud of hybrid models used to forecast natural gas price

2.2.3. GDELT

Global Database of Events, Language, and Tone (GDELT) (https://www.gdeltproject.org/)

is a platform that scans news media as printed media, broadcast, and web formats.

GDELT creates a database that saves important information in more than 100 languages.

The managed data links between every person, organization, location, theme, news source,

and event in each corner of the planet. The sentiment extracted from this massive data-

base can be precious in finding the world’s feelings (GDELT Project, n.d.).

14



Table 2.6. List of hybrid models

Reference / Abbreviations Models

Nguyen and Nabney, 2010 Wavelet Transform (WT)
Radial Basis Functions Neural Networks (RBFNN)
Linear Regression (LR)
Group Method of Data Handling (GMDH)

Abrishami and Varahrami, 2011 Group Method of Data Handling (GMDH)
Genetic Algorithm (GA)
Rule-based Exert System (RES)

Azadeh et al., 2012 Artificial neural networks (ANN)
Fuzzy linear regression (FLR)
Conventional regression (CR)

Thakur et al., 2015 Moving Average Neural Networks (MANN)
Back-Propagation Neural Networks (BPNN)

Jin and Kim, 2015 Discrete Wavelet Decomposition (DWD)
Auto-Regressive Integrated Moving Average (ARIMA)
Artificial neural networks (ANN)

Dey and Salem, 2017 Gated Recurrent Unit (GRU)
Recurrent neural networks (RNN)

Čeperić et al., 2017 Strategic seasonality-adjusted (SSA)
Support vector regression machines (SVR)
Neural networks (NN)
Feature selection (FS)
Particle Swarm Optimization (PSO)

Jianwei et al., 2019 Variational Mode Decomposition (VMD)
Independent Component Analysis (ICA)
Gated Recurrent Unit Neural Networks (GRUNN)

Qin et al., 2019 Ensemble Empirical Mode Decomposition (EEMD)
Local Linear Prediction (LLP)

Naderi et al., 2019 Bat Algorithm (BA)
Least Square Support Vector Machine (LSSVM)
Genetic Programming (GP)
Artificial Neural Networks (ANN)
Auto-Regressive Integrated Moving Average (ARIMA)

J. Wang et al., 2020 Improved Pattern Sequence Similarity Search (IPSS)
Support Vector Regression (SVR)
Long-term and Short-term Memory Networks (LSTM)

Li et al., 2021 Variational Mode Decomposition (VMD)
Particle Swarm Optimization (PSO)
Deep Belief Networks (DBN)

J. Wang et al., 2021 Complete ensemble empirical mode decomposition (CEEMD)
Adaptive noise-sample entropy (AN-SE)
Particle Swarm Optimization (PSO)
Adaptive learning strategy (ALS)
Gated Recurrent Unit (GRU)

GDELT is an open platform for research and analysis available for unlimited and

unrestricted use for academic, commercial, or government without a fee. The data can

be accessed by API from the GDELT website or via the Google Cloud Platform (GCP)

(Google Cloud Platform Blog, 2014).

The GDELT project has two versions of event databases, the ”GDELT 1.0 Event

Database” and the ”GDELT 2.0 Event Database”. Version 1.0 starts in 1979 through

March 31, 2013, and it was updated daily and does not include events reported in the

65 live translated languages. The latest version starts April 1, 2013, has new features,

updates every 15 minutes, and includes events reported in articles published in 65 live
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translated languages. Furthermore, the project GDELT also has the Global Knowledge

Graph data source to analyze images, and other data sets normalized, such as ”GDELT

1.0 Event Database Normalization Files” (GDELT Project, n.d.).

The GDELT project has been used in many areas of knowledge. Kwak and An (2014)

showed the structure of global news coverage of disasters and their cause. The article

finds strong regionalism in the geography news.

To detect events of occupied protests, Qiao et al. (2015) compared the results using

a base model using the GDELT database. Models with GDELT features proved to be

better with higher accuracy. Hammond and Weidmann (2014) used GDELT to study

political violence.

The literature review applied by W. Wang et al. (2016) compared the GDELT project

with other similar databases. The study anticipates that there should be a high correla-

tion between GDELT and another database, but the overall correlation does not match

the expectations, returning a small correlation. But when the comparison is filtered in

each database by country, the experience results in a better correlation.

To analyze public opinion on the energy policy of the Spanish government, Bodas-Sagi

and Labeaga (2016) shows a negative feeling about the solar energy policy introduced in

2016.

To predict social unrest events, studies are applying several models such as the hidden

Markov model, neural networks, random forest, LSBoost, LSTM, and others (Galla &

Burke, 2018; Qiao et al., 2017).

The GDELT project is also successfully employed by Bourgeois et al. (2018) to identify

bias in news with success. In the financial field, the GDELT project is used to help pre-

dict political crises, oil prices, stock market, and macroeconomic index with considerable

improvement (Alamro et al., 2019; Elshendy et al., 2018; Tilly et al., 2020; Zhang et al.,

2019).

No paper used the GDELT project to predict the price of natural gas, Y. Tang et al.

(2019) used news but from a di↵erent source with a single model to predict the price of

natural gas.

2.2.4. Results

Table 2.7 presents results of the prediction of the natural gas price by single models. The

articles use di↵erent performance metrics making the MSE the most common. The best
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Table 2.7. List of results of single models to predict daily natural gas price

Reference Performance
L. Tang et al., 2018 EEMD-based model MAPE=0.5850
Moting et al., 2019a LSBoost MAE=0.4493

MSE=0.4376
RMSE=0.6615
R2=0.91

Berrisch and Ziel, 2022 ARMA MAE=0.3863
CRPS=0.2834
RMSE=1.0843

Salehnia et al., 2013 LLR / DLLR / ANN LLR (t)
MSE=0.29113
DLLR (t)
MSE=0.13977
ANN (t)
MSE=0.3366

Al-Sharoot and Alramadhan, 2019 ARMA / GMDH MAE=0.01539
MSE=0.0214

Y. Tang et al., 2019 ANN MAE = 0.0956; 0.1002; 0.0987; 0.0902
RMSE = 0.1368; 0.137; 0.133; 0.1284

Hu and Trafalis, 2011 SVR MSE=0.0903
R2=0.9822

Siddiqui, 2019 ARNN MSE=0.026

Table 2.8. List of results of single models to predict weekly natural gas price

Reference Performance
Moting et al., 2019a LSBoost MAE=0.4761

MSE=0.5116
RMSE=0.7153
R2=0.9

Salehnia et al., 2013 LLR / DLLR / ANN LLR (t)
MSE=3.4317
DLLR (t)
MSE=0.25566
ANN (t)
MSE=0.8268

Viacaba et al., 2012 SVR RMSE <0.03

result for daily prediction using a single model is MSE equal to 0.0214 by Al-Sharoot and

Alramadhan (2019) with an ARMA-GARCH model.

The results of single models that forecast natural gas prices weekly are presented in

Table 2.8 with just a few articles, and the best precision comes from the study of Salehnia

et al. (2013) with an MSE equal to 0.25566 by applying the dynamic local linear regression

model (DLLR).
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Table 2.9. List of results of single models to predict monthly natural gas price

Reference Performance
Moting et al., 2019 ANN/SVM/GBM/GPR ANN

R2=0.8904
MAE=0.5115
MSE=0.5363
RMSE=0.7247
MAPE=0.1117

SVM
R2=0.8437
MAE=0.5673
MSE=0.7673
RMSE=0.8757
MAPE=0.1202

GBM
R2=0.8006
MAE=0.6490
MSE=0.9786
RMSE=0.9888
MAPE=0.1366

GPR
R2=0.8374
MAE=0.6026
MSE=0.7980
RMSE=0.8932
MAPE=0.1270

Moting et al., 2019a LSBoost MAE=0.6859
MSE=1.1166
RMSE=1.0567
R2=0.78

Berrisch and Ziel, 2022 SVR CRPS=0.2126
MAE=0.3010
RMSE=0.3995

Salehnia et al., 2013 ARMA Monthly
LLR (t)
MSE=3.864
DLLR (t)
MSE=2.5932
ANN (t)
MSE=0.9831

Table 2.9 shows the articles that predict natural gas prices monthly, and the best

result is obtained by an Artificial Neural Networks with an MSE = 0.5663 (Moting et al.,

2019).

The only article that predicts yearly natural gas prices applies a single model of Arti-

ficial neural networks (ANN), fuzzy linear regression (FLR), and conventional regression

(CR). These models archive the best result from conventional regression with MAPE =

0.260. Table 2.10 shows all results.
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Table 2.10. List of results of hybrid models to predict yearly natural gas price

Reference Performance
Azadeh et al., 2012 ANN-FLR-CR MAPE (Average)

CR = 0.2260
ANN = 0.2978
FLR = 0.2470

Table 2.11. List of results of hybrid models to predict daily natural gas price

Reference Performance
Qin et al., 2019 EEMD-LLP RMSE = 0.035

MAPE = 0.01244
Dstat = 0.908

J. Wang et al., 2020 IPSS-SVR-LSTM MAPE = 0.0555
MER = 0.0549

Abrishami and Varahrami, 2011 GMDH-GA-RES Dstat ¿ 0.7
RMSE ¡ 2.942

Thakur et al., 2015 MANN / BPNN MSE ¡ 0.1
Naderi et al., 2019 BA-LSSVM-GP-ANN-ARIMA R2 = 0.9611

RMSE = 0.06
Čeperić et al., 2017 SSA-SVR/NN-FS-PSO 5 variables SVR SW (Steepwise)

MAPE = 0.221
RMSE = 0.1401

10 variables
SVR SW (Steepwise)
MAPE = 0.218
RMSE = 0.1375

The most widely used evaluation metric is the root mean square error (RMSE). Table

2.11 shows all models that forecast daily natural gas prices using di↵erent hybrid models.

The most accurate prediction is given by a combination of Ensemble Empirical Mode

Decomposition (EEMD) and Local Linear Prediction (LLP), resulting in an RMSE =

0.035 developed (Qin et al., 2019).

The list of articles that predict the price of natural gas weekly is in Table 2.12. The

best result is proposed by Jin and Kim (2015) using a hybrid model of discrete wavelet

decomposition (DWD) and artificial neural networks (ANN) with RMSE = 0.1278 preci-

sion.

For a monthly forecast of natural gas prices, Table 2.13 lists three articles, the one

with the best results has a MAPE between 0.001691 and 0.00413. The models that meet

this precision are the combination of Variational Mode Decomposition (VMD), Indepen-

dent Component Analysis (ICA), and Gated Recurrent Unit Neural Networks (GRUNN),

applied by Jianwei et al. (2019).
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Table 2.12. List of results of hybrid models to predict weekly natural gas price

Reference Performance
Jin and Kim, 2015 DWD-ANN / DWD-ARIMA Wavelet with ANN

MAE = 0.0985
MAPE = 0.033747
RMSE = 0.1278

Wavelet with ARIMA
MAE = 0.1112
MAPE = 0.037018
RMSE = 0.1366

J. Wang et al., 2021 CEEMDAN-SE-SO-ALS-GRU Dstat = 0.519
MAE = 0.114
MSE = 0.025
RMSE = 0.158
R2 = 0.889

Čeperić et al., 2017 SSA-SVR / NN-FS-PSO 5 variables SVR SW (Steepwise)
MAPE = 0.423
RMSE = 0.2904

10 variables
SVR SW (Steepwise)
MAPE = 0.431
RMSE = 0.2782

Table 2.13. List of results of hybrid models to predict monthly natural gas price

Reference Performance
Jianwei et al., 2019 VMD–ICA–GRUNN–SVR Dstat = 0.730159-0.845238

MAD = 0.0201-0.0776
MAPE = 0.001691-0.00413
RMSE = 0.0407-0.1196
R2 = 0.95-0.991

Li et al., 2021 VMD-PSO-DBN MAE = 0.125
MAPE = 0.0481
RMSE = 0.082
FLR = 0.2470

Nguyen and Nabney, 2010 WT-RBFNN-LR-GARCH MAE = 0.01699
MAPE = 2.019
MSE = 0.15384
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CHAPTER 3

Exploratory Data Analysis and Preprocessing

3.1. Exploratory Data Analysis

We utilized four primary data sources for our analysis, namely natural gas price, news

data, weather data, and crude oil price. The integration of these features to the main

dataset was done individually, the flow of the ETL process is illustrated in Figure 3.3

at page 23. The news data, extracted from the GDELT project, underwent a separate

integration process. A Spark environment was created due the number of lines to be

processed, the first step of the flow was a extraction of the raw data from GDELT API,

after that we analyzed, cleaned, trandformed, and evaluated the news data, last step we

exported the data into a parquet data format to optimize the size of our dataset (Figure

3.1). The final integration step involved combining these two features with weather data

and crude oil price at the same level, as shown in Figure 3.5.

Figure 3.1. ETL process for extraction, analysis, cleaning, transforma-
tion, and evaluation of news data from GDELT API, with exportation to a
parquet file.

Multiple trading hubs exist for natural gas prices, and for our forecasting purposes,

we chose to focus on the Dutch Title Transfer Facility (TTF) hub price like Berrisch and

Ziel (2022). We obtained the necessary data using the Yahoo Finance API through the

yfinance Python library. The description of each column can be found in Table 3.1, and

Figure 3.2 shows natural gas prices, and 3.4 presents the natural gas price volume.
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The dataset of TTF natural gas prices spans from October 23, 2017 and has been updated

daily. For our study, we focused on the period between January 2, 2018, and December

30, 2022, which encompasses a total of 1260 daily natural gas prices. However, it is im-

portant to note that there are 32 missing values within this time frame, resulting in a

total of 1292 days included in our analysis.

The initial analysis involved performing a statistical summary on Open, High, Low, Vol-

ume, Dividends, Stock Splits, and Close columns, as presented in Table ??. Through

this analysis, we observed that both the Dividends and Stock Splits variables exhibited a

consistent value of zero across rows.

After conducting the statistical analysis and examining the time-series visualization on

natural gas price, during this analysis columns Open, High, Low, and Volume did not

match the correlation criteria between -0.70 and 0.70 and do not have strong Granger

Causality, and Dividends and Stock Splits all values is equal to zero, is this case we made

a decision to retain only the ”Close” column as variable and target.

Figure 3.2. Natural gas price time-series.

Table 3.1. Natural Gas Price TTF Data Columns

Column Description

Open The opening price of the natural gas
High The highest price of the natural gas during the day
Low The lowest price of natural gas during the day

Volume The trading volume of the natural gas
Dividends Any dividends issued for the natural gas
Stock Splits Any stock splits that occurred for the natural gas

Close The closing price of the natural gas
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Figure 3.3. ETL process for extraction, analysis, cleaning, transforma-
tion, cross-validation, and evaluation of TTF natural gas price data from
Yahoo API, with Exportation to a CSV file.

3.1.1. GDELT - Global Database of Events, Language, and Tone

In order to handle the large volume of data, we utilized a Spark environment and de-

veloped a function to extract news data from the GDELT API. The function includes

a filtering mechanism to retrieve only the news articles based on specific Cameo codes

from Event Data Project, Department of Political Science, Pennsylvania State University

(March 2012), as listed in Table 3.2. Subsequently, the extracted news data was saved in

a Parquet format for further processing. The entire process of integrating the news data

extracted from the GDELT API is illustrated in Figure 3.1.

The total number of lines obtained from the extraction process amounted to 18,700,299,

comprising 58 columns. These columns can be categorized into di↵erent types, The main

topic of the news is actors, for example, the Actor of news that informs about the deal of

European Union with US to deliver natural gas price, the Actor one is European Union

and Actor two is US. Actor one and two columns have informations about the name,

country, ethnic, religion, and location, shown in Tables 5.2 and 5.3. Geographic informa-

tion is summarized in Table 5.4. Numeric variables store numbers about the news, as the

tone of the news, number articles related to the event, and number of sources reporting

the event, all numeric variables of GDELT are described in Table 5.5, and columns slated

for deletion can be found in Table 3.3.

3.1.2. Crude Oil Price

The data source of crude oil price was obtained from Investing.com (Accessed on July

19, 2023) with the same period of natural gas price. The structure of the columns is
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Figure 3.4. Visualization of natural gas prices volume.

Table 3.2. Cameo event root codes used.

Event Root Code Event Root Name

13 Threaten
14 Protest
15 Exhibit force posture
16 Reduce relations
19 Fight
20 Use unconventional mass violence

very similar to the natural gas price, with Open price, High price, Low price, and Change

percentage price compared with previous date, as can be see in Table 3.5 Following the

completion of the statistical analysis and a thorough examination of the time-series visu-

alization for crude oil time series, it was observed that the columns labeled Open price,

High price, Low price, and Change percentage price did not meet the correlation criteria

falling within the range of -0.70 to 0.70. Furthermore, these columns did not exhibit sig-

nificant Granger Causality and based on this we only used the column Price oil as feature.
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Table 3.3. Deleted columns from GDELT.

Column Name Description

MonthYear Month and year of the event
Year Year of the event
FractionDate Fractional date representation of the event
EventCode Code representing the event category
Actor1Geo FeatureID Feature ID of the geographic location for Actor 1
Actor2Geo FeatureID Feature ID of the geographic location for Actor 2
ActionGeo FeatureID Feature ID of the geographic location for the action
DATE ADDED Date the record was added
SOURCEURL URL of the source for the event

Table 3.4. Sum of null values for each GDELT column that has null values.

Column Name Sum of Null

IsRootEvent 18604188
Actor1Geo Lat 2274519
Actor1Geo Long 2271529
Actor2Geo Lat 5505621
Actor2Geo Long 5503481
AActionGeo Lat 563853
ActionGeo Long 560217

Table 3.5. Description of Columns in Crude Oil Price Data

Column Description

Dates The dates corresponding to the crude oil price observations
Price oil The closing price of crude oil for the given date
Open oil The opening price of crude oil for the given date
High oil The highest price of crude oil reached during the date
Low oil The lowest price of crude oil reached during the date
Change % oil The percentage change in crude oil price compared to the previous date

3.1.3. Weather

The weather dataset used in this study was obtained from NCEI (Accessed on July 19,

2023), specifically from the Rhein-Main station located in Germany. The dataset includes

various weather measurements such as precipitation, snowfall, snow depth, maximum

temperature, minimum temperature, and average temperature. However, for our analysis,

we focused solely on the average temperature time series as it was the relevant variable

for our study. The detailed description of each column can be found in Table 3.6.

3.1.4. Data Integration

The integration of all the features was conducted within a Spark environment due to the

voluminous nature of the data being processed. The natural gas price, news data, and

other relevant features were combined by joining them together into a Spark data frame.
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Table 3.6. Description of Columns in Weather Data

Column Description

PRCP Precipitation (Rainfall)
SNOW Snowfall
SNWD Snow Depth
TMAX Maximum Temperature
TMIN Minimum Temperature
TAVG Average Temperature

Table 3.7. Sum of null values for each weather column that has null values.

Column Name Sum of Null

Prcp temp 60
Prcp temp 1824
Snow temp 60
Wind temp 60
Max temp 60
Min temp 60
Avg temp 3

Table 3.8. Days with average temperature null.

Dates Prcp temp Snow temp Wind temp Max temp Min temp

20210211 0 null 10 -9 -9.7
20210212 0 null 10 -5 -7.3
20210211 0 null 0 16.5 8

Following this integration, a series of steps were executed, including analysis, data clean-

ing, transformation, and evaluation. As a result, a comprehensive file containing all the

features was generated and saved for further analysis. For a visual representation of this

integration process, please refer to Figure 3.5.

3.2. Preprocessing

In order to preprocess the dataset, several steps were undertaken to optimize the data

before training the model. The preprocessing began with addressing missing values by

employing backward and forward fill, the next method was linear, cubic, and quadratic

interpolation, another one was imputation of mean value, and the last one was seasonal

decomposition, that we replaced the null values by trend and seasonal. Subsequently, the

data was categorized, with textual information transformed into index codes. Correlations

and causality between variables were identified to filter and select the correlated features

between -0.7 and 0.7. Outliers were also detected and handled, by taking the mean value

of before and after data of time series. Lastly, statistical and mathematical operations

were performed to aggregate the data on a daily basis. These preprocessing steps aimed
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Figure 3.5. ETL process for analysis, cleaning, and integration of features
into a parquet file.

to ensure the quality and preparedness of the dataset for subsequent modeling tasks.

3.2.1. Replacement of Null Values

For natural gas prices, a unique scenario arises where the identification of missing data

points is not solely based on their absence. Instead, an additional step is taken to de-

termine if these null values coincide with weekends or holidays. Through this analysis,

it was revealed that there were 32 missing values that required further handling. Several

methods were then applied to impute these missing values, aiming to obtain the most

accurate representation of the actual values.

The first approach employed for filling the missing values was backward and forward fill-

ing techniques. Backward filling involved propagating the last observed value backward

in time to fill the missing values, ensuring a smooth and continuous representation of the

data. This method is illustrated in Figure 5.11. Similarly, forward filling was applied to

propagate the next observed value forward in time to fill any remaining missing values.

The application of forward filling can be visualized in Figure 5.12 (van Buuren, 2012).

In addition to backward and forward filling, another method used for imputing missing

values was interpolation. Cubic interpolation is shown in Figure 5.13, linear interpolation

is shown in Figure 5.14, and quadratic interpolation is shown in Figure 5.15. The visual

analysis indicates a satisfactory evolution of the time series after applying these interpo-

lation techniques (van Buuren, 2012).

Another method employed was seasonal decomposition filling. Seasonal decomposition
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with the trend is depicted in Figure 5.19, while seasonal values are presented in Figure

5.17. However, it was observed that this method did not provide a natural substitution

for the null values. Therefore, a mean value substitution was also utilized, as shown in

Figure 5.16 applying the value for time-series (van Buuren, 2012).

In Figure 3.6, it is evident that many of the applied methods did not result in a natural

filling of the null values. To gain a better understanding of the filled values, a closer

look is provided in Figures 3.7 and 3.8, which depict a specific slice of the data with a

null value in the middle. These zoomed-in plots clearly show that the mean and seasonal

decomposition methods do not naturally fill the missing values, as the substituted values

noticeably di↵er from the surrounding data points.

To determine the most suitable method for handling missing values in the natural gas price

dataset, we conducted a correlation analysis. The results of this analysis, as presented

in Table 3.9, indicated that the mean and seasonal decomposition with trend methods

performed well. These results suggest that the natural gas price exhibits a tendency to-

wards the mean value and a seasonal pattern. However, instead of choosing one of these

methods, we decided to use forward filling. This decision was based on the observation

that forward filling e↵ectively fills the null values without introducing significant devia-

tions from the surrounding data points.

Table 3.9. R-square results of cross-validation for all methods used to fill
null values of natural gas price.

Methods R2

Mean 0.999298
Seasonal Decompose: Trend 0.999135
Forward fill 0.999126
Interpolation: linear 0.999125
Backward fill 0.999105
Interpolation: Cubic 0.999087
Interpolation: Quadratic 0.999081
Seasonal Decompose: Seasonal 0.998753

3.2.2. Categorization

The categorical columns in the dataset were derived from the news data and can be

observed in Table 3.10, which provides the distinct count for each category. In order

to preprocess these categorical columns, we utilized the Pyspark machine learning func-

tion called StringIndexer. This function was selected for its e�ciency in handling large

datasets, as memory management is crucial for successful transformation. The outcome of

this categorization process was a more compact and manageable dataset (Apache Spark,

Accessed on July 19, 2023).
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Figure 3.6. Compilation of methods to fill null natural gas prices for all
time series.

3.2.3. Correlations

The initial step involved generating a Pearson Correlation Matrix to examine the linear

relationships between all variables in the dataset. This matrix can be visualized in Figure

3.9, and the corresponding correlation values were presented in Table 5.7 for negative

correlations and Table 5.8 for positive correlations. Upon analysis, it was observed that

the natural gas price exhibited a positive correlation of 0.722026 with the crude oil price.

To further investigate this finding, a zoomed-in plot (Figure 3.10) focusing on these two

columns was generated (Downey, Accessed on July 19, 2023).

In order to filter the columns based on their correlation values, a criterium was set to

include only those with correlations greater than 0.7 and less than -0.7 (see Table 5.6)

(Downey, Accessed on July 19, 2023).

A series of scatter plots was generated to explore potential non-linear correlations.

The columns ”Actor1Name Idx” and ”Actor1Code Idx” did not exhibit any significant

correlation with the natural gas price, as depicted in Figures 5.2 and 5.1. Similarly, the

”Avg temp” feature displayed a discernible pattern, but it was not conclusive in deter-

mining its correlation with the natural gas price, as shown in Plot 5.3.
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Figure 3.7. Compilation of methods to fill null natural gas prices for 2018-
01-15.

On the other hand, the ”Avg Tone” feature revealed a wider range of tone values when

the price of natural gas was below 50, as depicted in Figure 5.4. This trend was also ob-

served for the ”NumArticles,” ”NumMentions,” and ”NumSources” columns, indicating

a higher volume of articles when the natural gas price was low (respectively in Figures

5.5, 5.6, and 5.7).

Regarding the weather variables, ”Prcp temp” and ”Wind temp” did not display any

clear patterns or correlations with the natural gas price, as seen in Figures 5.8 and 5.9.

Overall, the most visually correlated feature with the natural gas price was the crude

oil price, as demonstrated in Figure 5.10. This observation is consistent with the results

obtained from the Pearson Correlation analysis, indicating a strong correlation between

the prices of natural gas and crude oil.

30



Figure 3.8. Compilation of methods to fill null natural gas prices for 2021-
05-31.

3.2.4. Granger Causality

Granger causality is a statistical technique employed to evaluate whether a given time

series can anticipate or project the behavior of another time series. This entails examin-

ing whether past data points from one-time series o↵er valuable insights into anticipating

future data points from another, suggesting a plausible causal connection within time-

dependent datasets. It’s crucial to emphasize that Granger causality doesn’t necessarily

establish a direct cause-and-e↵ect relationship; instead, it identifies predictive correlations

rooted in statistical trends.

To conduct the Granger Causality analysis, we set the significance level (alpha) to 0.05,

and the lag parameter to values of 1, 5, and 10. The analysis was performed for the

following features:

When analyzing Granger causality with lag parameters of 1, 5, and 10, consistent findings

emerged. Specifically, the variables Wind temp, Price oil, and Avg temp displayed a lack

of substantial Granger causality. Tables 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.18, 3.17, and
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Table 3.10. Sum of distinct values for all category features.

Columns Value
IsRootEvent 1
EventBaseCode 38
EventRootCode 6
Actor1Code Idx 10499
Actor1Name Idx 8697
Actor1CountryCode Idx 220
Actor1KnownGroupCode Idx 56
Actor1EthnicCode Idx 357
Actor1Religion1Code Idx 16
Actor1Religion2Code Idx 20
Actor1Type1Code Idx 34
Actor1Type2Code Idx 27
Actor1Type3Code Idx 24
Actor2Code Idx 9754
Actor2Name Idx 8159
Actor2CountryCode Idx 221
Actor2KnownGroupCode Idx 55
Actor2EthnicCode Idx 344
Actor2Religion1Code Idx 16
Actor2Religion2Code Idx 20
Actor2Type1Code Idx 33
Actor2Type2Code Idx 28
Actor2Type3Code Idx 23
QuadClass Idx 2
Actor1Geo Type Idx 6
Actor1Geo FullName Idx 189346
Actor1Geo CountryCode Idx 255
Actor1Geo ADM1Code Idx 4136
Actor2Geo Type Idx 6
Actor2Geo FullName Idx 163323
Actor2Geo CountryCode Idx 253
Actor2Geo ADM1Code Idx 4088
ActionGeo Type Idx 6
ActionGeo FullName Idx 200253
ActionGeo CountryCode Idx 255
ActionGeo ADM1Code Idx 4160

3.19 presents details of the Granger causality result.

Features GoldsteinScale, NumMentions, NumSources, NumArticles, QuadClass, Avg-

Tone, Threaten, Protest, Exhibit force posture, Reduce relations, Fight, and Use unconvetional mass violence

show a strong causality relationship with the natural gas price.
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Table 3.11. Granger causality results of feature Wind temp with one lag,
without a strong Granger causality.

Wind temp - Lag = 1
ssr based F test F=2.8113 p=0.0938 df denom=1288 df num=1
ssr based chi2 test chi2=2.8179 p=0.0932 df=1
likelihood ratio test chi2=2.8148 p=0.0934 df=1
parameter F test F=2.8113 p=0.0938 df denom=1288 df num=1

Table 3.12. Granger causality results of feature Price oil with one lag,
without a strong Granger causality.

Price oil - Lag = 1
ssr based F test F=0.2684 p=0.6045 df denom=1288 df num=1
ssr based chi2 test chi2=0.2690 p=0.6040 df=1
likelihood ratio test chi2=0.2690 p=0.6040 df=1
parameter F test F=0.2684 p=0.6045 df denom=1288 df num=1

Table 3.13. Granger causality results of feature Avg temp with one lag,
without a strong Granger causality.

Avg temp - Lag = 1
ssr based F test F=0.4324 p=0.5110 df denom=1288 df num=1
ssr based chi2 test chi2=0.4334 p=0.5103 df=1
likelihood ratio test chi2=0.4333 p=0.5104 df=1
parameter F test F=0.4324 p=0.5110 df denom=1288 df num=1

Table 3.14. Granger causality results of feature Wind temp with five lags,
without a strong Granger causality.

Wind temp - Lag = 5
ssr based F test F=0.5456 p=0.7418 df denom=1288 df num=5
ssr based chi2 test hi2=2.7518 p=0.7382 df=5
likelihood ratio test hi2=2.7518 p=0.7382 df=5
parameter F test F=0.5456 p=0.7418 df denom=1288 df num=5

Table 3.15. Granger causality results of feature Price oil with five lags,
without a strong Granger causality.

Price oil - Lag = 5
ssr based F test F=1.8175 p=0.1065 df denom=1288 df num=5
ssr based chi2 test chi2=9.1659 p=0.1026 df=5
likelihood ratio test chi2=9.1334 p=0.1039 df=5
parameter F test F=1.8175 p=0.1065 df denom=1288 df num=5

Table 3.16. Granger causality results of feature Avg temp with five lags,
without a strong Granger causality.

Avg temp - Lag = 5
ssr based F test F=1.4011 p=0.2210 df denom=1288 df num=5
ssr based chi2 test chi2=7.0660 p=0.2158 df=5
likelihood ratio test chi2=7.0467 p=0.2172 df=5
parameter F test F=1.4011 p=0.2210 df denom=1288 df num=5

33



Figure 3.9. Pearson correlation heatmap of all features.

Table 3.17. Granger causality results of feature Price oil with ten lags,
without a strong Granger causality.

Price oil - Lag = 10
ssr based F test F=1.8175 p=0.1065 df denom=1288 df num=10
ssr based chi2 test chi2=9.1659 p=0.1026 df=10
likelihood ratio test chi2=9.1334 p=0.1039 df=10
parameter F test F=1.8175 p=0.1065 df denom=1288 df num=10

3.2.5. Outliers

The columns Avg temp, Avg tone, and Price oil exhibited outliers, as observed in Figure

5.23, Figure 5.24, and Figure 5.25, respectively. The total count of outliers can be found

in Table 3.20. To address these outliers, a mean value was computed using the values

before and after the outlier, and the outlier value was replaced with the computed mean.

It is important to note that not all outliers were removed, as they provide valuable insights

into real-world occurrences.
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Figure 3.10. Pearson correlation heatmap between natural gas features
and crude oil features.

Table 3.18. Granger causality results of feature Wind temp with ten lags,
without a strong Granger causality.

Wind temp - Lag = 10
ssr based F test F=0.5456 p=0.7418 df denom=1288 df num=10
ssr based chi2 test chi2=2.7518 p=0.7382 df=10
likelihood ratio test chi2=2.7488 p=0.7386 df=10
parameter F test F=0.5456 p=0.7418 df denom=1288 df num=10

3.2.6. Aggregation and Lags

In this preprocessing step, the first action performed was pivoting the variable EventRoot-

Code into separate columns: Threaten, Protest, Exhibit force posture, Reduce relations,

Fight, and Use unconventional mass violence. Following this, the news features were ag-

gregated on a daily basis. The columns subjected to summation during the aggregation

process were NumMentions, NumSources, NumArticles, QuadClass Idx, and the columns
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Table 3.19. Granger causality results of feature Avg temp with ten lags,
without a strong Granger causality.

Avg temp - Lag = 10
ssr based F test F=1.4011 p=0.2210 df denom=1288 df num=10
ssr based chi2 test chi2=7.0660 p=0.2158 df=10
likelihood ratio test chi2=7.0467 p=0.2172 df=10
parameter F test F=1.4011 p=0.2210 df denom=1288 df num=10

Table 3.20. Summary of outliers

Column q1 q3 iqr lower bound upper bound count outliers perc outliers
AvgTone -6.404 -2.046 4.358 -12.941 4.491 224133 1.210
Price oil 52.64 70.73 18.09 25.505 97.865 454154 2.453
Avg temp 58.0 178.0 120.0 -122.0 358.0 23309 0.126

derived from the EventRootCode column. Additionally, the columns Wind temp, Avg-

Tone, Price oil, and Avg temp were averaged.

To ensure that no calculations were performed on the label column, the minimum value

of the natural gas price was selected.

As part of the preprocessing phase, we introduced a lag of 5 and 10 days to all time series.

This lagging process entails shifting the values of each column backward in time by the

specified number of days. By incorporating these lagged values as additional features, our

objective was to capture the temporal relationships in the data. The inclusion of lagged

features enables the models to take into account the historical values of each variable

when making predictions.

3.2.7. Scaler

In the last preprocessing step, we used a min-max scaler to transform the data. The

min-max scaler rescales the values of each feature to a range between zero and one. This

normalization technique, implemented using the Scikit-learn library, helps to ensure that

all features are on a comparable scale. By applying the min-max scaler, we aimed to

facilitate the training process of the models by reducing the impact of varying feature

magnitudes (Pedregosa et al., 2011).
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CHAPTER 4

Modeling and Performance Evaluation

The deep learning models chosen for this study were the Recurrent Neural Networks

(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit Neural Networks

(GRUNN) from Tensorflow library. The selection of these models was complemented with

the use of Keras Tuner, a framework for hyperparameter optimization. This allowed us

to automatically search for the best hyperparameters for each model.

To assess the performance of the models, several evaluation metrics were employed, includ-

ing Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage

Error (MAPE), Median Absolute Error (MedAE), R-Squared (R2), Explained Variance

Score (EVS), and Root Mean Squared Error (RMSE).

The complete modeling workflow is depicted in Figure 4.1, illustrating the sequential steps

involved in model development and evaluation.

Figure 4.1. ETL process for column selection, data scaler, keras tuner,
and evaluation of the best model.
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4.1. Modeling

4.1.1. Keras Tuner - Hyperparameters

Keras Tuner is a specialized library that optimizes hyperparameters in deep learning

models built using Keras. Hyperparameters are external settings that impact the train-

ing process, such as the learning rate, number of layers, and units per layer.

Keras Tuner automates the search for the best hyperparameters by utilizing algorithms

like random search, grid search, and Bayesian optimization. These strategies e�ciently

explore the hyperparameter space to identify the combination of settings that yield opti-

mal model performance (O’Malley et al., 2019).

In our study, we specifically used the random search approach to find the best model

configuration. We focused on three key hyperparameters: the number of layers, units,

and epochs. The epoch value was consistently set to 20, with early stopping applied after

5 epochs without improvement. For the number of layers, we tested a range from one

to five, incrementing by one layer per trial. The units were varied between 32 and 512,

incrementing by 32 units per trial. Commencing with a modest value like 32 and gradu-

ally increasing it by steps of 32 covers a diverse spectrum of options without needing to

meticulously test each and every value. This method achieves a harmonious equilibrium

between exploring a su�ciently extensive hyperparameter space and preventing excessive

consumption of computational resources and time.

In the second Keras Tuner trial, we refined the search based on the best models from the

previous attempt. We limited the number of layers to one or two, and the units were

constrained to the range of 32 to 512, maintaining the same increment value.

4.1.2. Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are specialized neural networks designed to process

sequential data, such as time series or natural language sequences. Unlike traditional neu-

ral networks, RNNs have connections that allow them to retain information from previous

time steps, enabling them to capture the temporal relationships in sequential data. At the

core of an RNN is the hidden state, which acts as a memory of past inputs and is updated

at each time step. This hidden state the current input and past information, allowing

RNNs to learn and model the patterns and dynamics of sequential data. However, a limi-

tation of RNNs is the vanishing gradient problem, which hampers their ability to capture

long-term dependencies. To address this issue, advanced variants like Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) has been developed. These variants

incorporate gating mechanisms to alleviate the vanishing gradient problem and improve

the RNNs’ capacity to capture and remember long-term dependencies (Goodfellow et al.,

2016).

Our investigation employed the random search strategy to find the optimal model config-

uration. We focused on three crucial hyperparameters: the number of layers, units, and
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epochs.

4.1.3. Long Short Term Memory (LSTM)

LSTM, a variation of Recurrent Neural Networks (RNNs), addresses the challenge of cap-

turing long-term dependencies in sequential data. By incorporating specialized memory

cells, LSTM models can retain information for extended periods, enabling them to ef-

fectively learn and represent temporal dependencies. Unlike traditional RNNs, LSTM

networks employ a gating mechanism that allows for selective retention and forgetting of

information at each time step. This mechanism comprises three gates: the input gate,

forget gate, and output gate. The input gate controls the flow of new information, while

the forget gate determines which information to discard. The output gate regulates the

output of the memory cell. Through dynamic memory updates and control, LSTM net-

works excel in capturing and preserving long-term dependencies, making them highly

suitable for tasks such as speech recognition, language modeling, and machine translation

(Goodfellow et al., 2016).

4.1.4. Gated Recurrent Unit Neural Networks (GRUNN)

Gated Recurrent Unit for Neural Networks (GRUNN) is an advanced variation of recurrent

neural networks (RNNs) that overcomes limitations found in traditional RNN architec-

tures. GRUNN incorporates gating mechanisms to control the flow of information within

the network, allowing it to selectively retain or update information at each time step. This

addresses the issue of the vanishing gradient problem, which can hinder training in deep

neural networks. By selectively preserving relevant information and discarding irrelevant

information, GRUNN models can e↵ectively capture long-term dependencies in sequential

data. The gated recurrent units in GRUNN consist of a reset gate and an update gate,

which govern the information flow through the network. The reset gate determines what

information from previous time steps should be forgotten, while the update gate controls

the blending of new input with the existing hidden state. This adaptive gating mecha-

nism empowers GRUNN models to capture intricate temporal patterns and dependencies,

making them highly suitable for tasks involving time series forecasting, natural language

processing, and speech recognition (Goodfellow et al., 2016).

The GRUNN has its function, which dynamically uses the Keras tuner to find the best

layer and unit number. The compile is set with Adam optimizer, loss is MSE, and the

metric is RMSE.

4.2. Performance Evaluation

In each model, we developed a baseline with either 5 or 10 lagged values, consisting solely

of the natural gas price feature. Subsequently, we conducted model training using all

available features listed in Table 4.1.
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With a test dataset of 258 data points, we predicted the same size time daily.

Abbreviations for the di↵erent feature combinations can be found in Table 4.3. The

optimal hyperparameters for each trained model are presented in Table 4.2, while the

performance of each model is ranked in Table 4.4.

Table 4.1. All features applied to the model.

Column Name Descritption

GoldsteinScale Numeric measure indicating the level of conflict or cooperation in political events.
NumMentions Represents the number of mentions of an event in various sources
NumMentions Number of mentions of the event
NumArticles Number of articles related to the event
QuadClass Idx Index for the QuadClass category
AvgTone Average tone of the event
Price oil Crude oil price
Avg temp Average temperature
Threaten Cameo code to threaten
Protest Cameo code to protest
Exhibit force posture Cameo code to exhibit force posture
Reduce relations Cameo code to reduce relations
Fight Cameo code to fight
Use unconvetional mass violence Cameo code to use unconventional mass violence
Price ngp Natural gas price

4.2.1. Best model: Recurrent Neural Networks (RNN)

Among all the models trained, the RNN model outperformed the others. This model

incorporated the features of natural gas price, crude oil price, and average tone of the

extracted news. With ten lagged values, one layer, and 224 units, the RNN model achieved

an RMSE of 11.925 euros. The prediction made by the RNN model is illustrated in Figure

4.2 in the form of a time-series plot.

4.2.2. Best model: Long Short Term Memory (LSTM)

The LSTM model, which utilized the same set of features as the best model (natural gas

price, crude oil price, and average tone), ranked fourth among the best models. With ten

lagged values, one layer, and 320 units, the LSTM model achieved an RMSE of 11.954.

The prediction made by the LSTM model is depicted in Figure 4.4 as a time-series plot.

4.2.3. Best model: Gated Recurrent Unit Neural Networks (GRUNN)

The GRUNN model, utilizing natural gas price and crude oil price as features, secured

the second position among the best models. With five lagged values, one layer, and 480

units, the GRUNN model obtained an RMSE of 11.935. The prediction generated by the

GRUNN model is illustrated in Figure 4.3 in the form of a time-series plot.
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Figure 4.2. Prediction plot curve of RNN model with natural gas price,
crude oil price, and average tone as features, and lag equal to 10.

4.2.4. Comparative Analysis

The literature review covered various prediction horizons, utilizing di↵erent models, fea-

tures, and preprocessing methods. Our comparison focuses on single and hybrid models

for predicting daily natural gas prices, similar to other studies.

Among the single models reviewed, the study by Al-Sharoot and Alramadhan (2019)

achieved the best performance using Auto-regressive moving average (ARMA) and Group

Method of Data Handling (GMDH) models with 527 observations from August 29, 2016,

to August 27, 2018, without exogenous variables. Their mean squared error (MSE) was

0.0214.

Another notable single model from Qin et al. (2019) employed Ensemble Empirical Mode

Decomposition (EEMD) and Local Linear Prediction (LLP) with 1678 observations from

January 4, 2010, to August 15, 2016, also without exogenous variables. Their root mean

squared error (RMSE) was 0.035.

Our study’s best-performing model was a Recurrent Neural Network (RNN) with 10 lags,

incorporating natural gas price, crude oil price, and average tone as exogenous variables.

We used 1292 observations from January 2, 2018, to December 30, 2022, and achieved an

RMSE of 11.925.

However, it is important to note that our results were not as favorable as the best results

in the literature. This disparity is primarily attributed to the complexity of the prediction

41



Figure 4.3. Prediction plot curve of GRUNN model with natural gas price
and crude oil price as features, and lag equal to 5.

period chosen, which coincided with the Russo-Ukrainian War. The geopolitical situation

during this period likely contributed to the model’s reduced performance.
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Figure 4.4. Prediction plot curve of LSTM model with natural gas price,
crude oil price, and average tone as features, and lag equal to 10.
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Table 4.2. All models with the best hyperparameter selected by Keras Tuner.

Model Name Features Code RMSE Best Num Layers Best Num Units

RNN ngp oil tone 11,925 1 224
GRUNN ngp oil 11,935 1 480
RNN ngp oil 11,942 1 96
LSTM ngp oil tone 11,954 1 320
LSTM ngp oil 11,962 1 96
RNN base line 11,964 1 192
GRUNN base line 11,979 1 224
GRUNN ngp oil 11,996 1 32
GRUNN all features 12,001 1 32
RNN base line 12,010 1 32
GRUNN base line 12,023 1 32
GRUNN ngp oil 12,043 1 32
LSTM all features 12,045 1 384
RNN ngp oil 12,060 1 160
GRUNN all features 12,066 1 128
RNN ngp tone 12,077 1 32
GRUNN ngp oil 12,087 2 32
LSTM ngp oil tone 12,090 1 128
GRUNN all features 12,098 1 160
GRUNN ngp oil tone 12,116 2 32
RNN all features 12,124 1 320
GRUNN ngp oil tone 12,125 1 96
LSTM ngp oil tone 12,129 1 192
RNN ngp oil tone 12,141 1 96
LSTM ngp oil tone 12,142 1 256
RNN ngp oil 12,145 1 96
GRUNN ngp tone 12,161 1 128
GRUNN ngp tone 12,165 1 160
RNN ngp tone 12,178 1 96
RNN all features 12,206 1 128
LSTM all features 12,244 1 384
GRUNN ngp oil tone 12,250 2 64
LSTM base line 12,258 1 32
GRUNN all features 12,268 1 192
LSTM ngp tone 12,279 1 64
GRUNN ngp oil tone 12,282 2 64
RNN ngp tone 12,293 1 480
RNN ngp oil tone 12,302 1 384
LSTM ngp oil 12,323 1 96
LSTM ngp tone 12,338 1 64
LSTM base line 12,339 1 224
RNN ngp tone 12,340 2 64
LSTM ngp oil 12,341 1 160
RNN ngp oil 12,363 1 32
RNN ngp oil tone 12,369 1 32
LSTM ngp oil 12,384 1 320
LSTM ngp tone 12,483 1 160
RNN all features 12,520 1 64
GRUNN ngp tone 12,555 1 480
LSTM all features 12,606 1 416
RNN all features 12,617 1 416
LSTM ngp tone 12,717 1 32
GRUNN ngp tone 13,286 3 512

44



Table 4.3. Features code description.

Code Description

ngp oil tone Natural gas price, crude oil price, and average tone
ngp oil Natural gas price and crude oil price
base line Natural gas price
all features All features
ngp tone Natural gas price and average tone
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Table 4.4. Result for each model executed with features applied, lags
used, MAE, MSE, MAPE, MedAE, R2, EVS, and RMSE performance met-
rics.

Model Name Features Code Lags MAE MSE MAPE MedAE R2 EVS RMSE

RNN ngp oil tone 10 7,846 142,215 5,759 4,759 0,946 0,946 11,925
GRUNN ngp oil 5 7,811 142,438 5,712 4,470 0,946 0,946 11,935
RNN ngp oil 10 7,955 142,604 5,795 4,925 0,946 0,947 11,942
LSTM ngp oil tone 10 7,902 142,907 5,777 4,609 0,946 0,946 11,954
LSTM ngp oil 10 7,956 143,096 5,836 4,791 0,946 0,946 11,962
RNN base line 5 7,881 143,142 5,749 4,989 0,946 0,946 11,964
GRUNN base line 5 7,903 143,498 5,732 4,771 0,946 0,946 11,979
GRUNN ngp oil 5 7,838 143,903 5,705 4,780 0,946 0,946 11,996
GRUNN all features 10 7,941 144,028 5,760 4,957 0,946 0,946 12,001
RNN base line 10 8,028 144,248 5,860 4,859 0,946 0,946 12,010
GRUNN base line 10 7,987 144,543 5,770 5,030 0,946 0,947 12,023
GRUNN ngp oil 10 7,890 145,023 5,763 4,802 0,945 0,946 12,043
LSTM all features 10 8,005 145,089 5,896 4,964 0,945 0,945 12,045
RNN ngp oil 5 7,940 145,433 5,744 4,961 0,945 0,946 12,060
GRUNN all features 5 7,851 145,579 5,814 5,044 0,945 0,945 12,066
RNN ngp tone 10 8,139 145,842 5,918 5,222 0,945 0,947 12,077
GRUNN ngp oil 10 8,071 146,096 5,795 5,006 0,945 0,946 12,087
LSTM ngp oil tone 5 7,968 146,174 5,743 4,711 0,945 0,946 12,090
GRUNN all features 10 7,859 146,367 5,814 4,869 0,945 0,945 12,098
GRUNN ngp oil tone 10 8,053 146,788 5,834 4,928 0,945 0,946 12,116
RNN all features 5 8,046 146,984 5,857 4,786 0,945 0,945 12,124
GRUNN ngp oil tone 5 7,901 147,023 5,722 4,785 0,945 0,945 12,125
LSTM ngp oil tone 10 8,027 147,106 5,786 5,038 0,945 0,945 12,129
RNN ngp oil tone 5 7,965 147,411 5,826 5,232 0,944 0,945 12,141
LSTM ngp oil tone 5 7,960 147,423 5,756 4,870 0,944 0,945 12,142
RNN ngp oil 10 8,019 147,511 5,852 4,585 0,944 0,945 12,145
GRUNN ngp tone 10 8,132 147,880 5,857 5,268 0,944 0,946 12,161
GRUNN ngp tone 5 8,061 147,980 5,830 5,080 0,944 0,946 12,165
RNN ngp tone 5 8,111 148,306 5,917 5,085 0,944 0,945 12,178
RNN all features 10 8,196 148,987 5,925 5,143 0,944 0,945 12,206
LSTM all features 10 8,143 149,917 6,098 5,279 0,943 0,944 12,244
GRUNN ngp oil tone 5 8,112 150,070 5,782 4,965 0,943 0,945 12,250
LSTM base line 5 8,231 150,256 5,883 5,011 0,943 0,945 12,258
GRUNN all features 5 8,106 150,505 6,006 5,217 0,943 0,944 12,268
LSTM ngp tone 5 8,259 150,777 5,892 5,405 0,943 0,945 12,279
GRUNN ngp oil tone 10 8,319 150,853 5,973 5,515 0,943 0,946 12,282
RNN ngp tone 5 8,061 151,108 5,928 5,040 0,943 0,943 12,293
RNN ngp oil tone 5 8,125 151,348 5,947 5,258 0,943 0,944 12,302
LSTM ngp oil 5 8,182 151,856 5,836 4,919 0,943 0,945 12,323
LSTM ngp tone 10 8,293 152,219 5,897 5,398 0,943 0,945 12,338
LSTM base line 10 8,271 152,239 5,943 5,230 0,943 0,945 12,339
RNN ngp tone 10 8,343 152,281 6,017 5,541 0,943 0,945 12,340
LSTM ngp oil 5 8,189 152,294 5,848 4,932 0,943 0,944 12,341
RNN ngp oil 5 8,226 152,839 5,886 5,420 0,942 0,945 12,363
RNN ngp oil tone 10 8,262 152,999 6,021 5,089 0,942 0,945 12,369
LSTM ngp oil 10 8,244 153,367 5,887 4,949 0,942 0,944 12,384
LSTM ngp tone 10 8,388 155,832 5,953 5,604 0,941 0,945 12,483
RNN all features 5 8,414 156,747 6,014 5,639 0,941 0,944 12,520
GRUNN ngp tone 5 8,443 157,629 5,970 5,639 0,941 0,945 12,555
LSTM all features 5 8,229 158,906 6,101 5,023 0,940 0,940 12,606
RNN all features 10 8,557 159,199 6,246 5,302 0,940 0,941 12,617
LSTM ngp tone 5 8,573 161,718 6,010 5,560 0,939 0,944 12,717
LSTM all features 5 9,072 171,336 6,681 6,078 0,935 0,936 13,090
GRUNN ngp tone 10 9,162 176,510 6,437 6,370 0,933 0,942 13,286
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CHAPTER 5

Conclusions

Throughout our study, we explored various features for predicting natural gas prices, con-

sidering di↵erent scenarios such as using only natural gas prices or combinations with

crude oil prices and average tone from news sources. Among the top five performing

models, incorporating crude oil price as an exogenous variable significantly enhanced the

predictive accuracy, consistent with previous findings (Li et al., 2021). Surprisingly, the

best model emerged when we included the feature of average tone in our input data, re-

sulting in a 7.82% improvement compared to the same model without it.

By filtering the extensive GDELT Big Data using specific Cameo codes (see Table 3.2), we

achieved improved performance during conflict times. Contrary to the notion proposed

by Čeperić et al. (2017), who suggested ”less data is better” for short-term prediction, we

found that using the relevant variables is crucial for accurate predictions.

Our optimization process, employing the Random Search optimizer, demonstrated an ef-

ficient selection of hyperparameters and facilitated in-depth analysis of each interaction.

Despite these e↵orts, the best model’s RMSE of 11.925 fell short when compared to the

literature, mainly due to an abrupt change in values caused by the Russo-Ukrainian War

and Europe’s high dependence on Russian natural gas prices.

Nonetheless, our study’s best-performing model remained the Recurrent Neural Networks

(RNN) with 10 lags, incorporating natural gas price, crude oil price, and average tone as

exogenous variables. The entire observation has 1292 data points from January 2, 2018, to

December 30, 2022, we achieved promising results, although the worst model, a GRUNN

with natural gas price and average tone, had an RMSE of 13.286 (see Table 4.4).

In conclusion, this study highlights the negative impact on the performance of natu-

ral gas price models during war times and emphasizes the positive influence of specific

Cameo codes on model results. Moreover, the findings reinforce the strong correlation

and causation between crude oil and natural gas prices, contributing to improved model

performance.

To enhance the methodology, implementing version management tools like MLFlow could

have been beneficial. Additionally, further exploration of di↵erent Cameo codes and ex-

haustive testing of all possible feature combinations extracted from GDELT could have

been conducted.
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Appendix

Table 5.1. Data size used to forecast natural gas price

References Daily Weekly Monthly Yearly

Naderi et al., 2019 230
Al-Sharoot and Alramadhan, 2019 527

J. Wang et al., 2021 1042
Thakur et al., 2015 1146

Hu and Trafalis, 2011 1457
Qin et al., 2019 1678

Čeperić et al., 2017 1800 260
Abrishami and Varahrami, 2011 1825

Berrisch and Ziel, 2022 2068 2091
Y. Tang et al., 2019 2372
Salehnia et al., 2013 3803 792 182
Moting et al., 2019a 4260 886 204
L. Tang et al., 2018 4873

Siddiqui, 2019 5470
Nguyen and Nabney, 2010 130

Moting et al., 2019 240
Azadeh et al., 2012 40
Jianwei et al., 2019 420
Jin and Kim, 2015 726
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Table 5.2. Category columns related to actor number one in the articles.

Column Description

Actor1Code Code representing the primary actor involved in the
event

Actor1Name Name of the primary actor involved in the event
Actor1CountryCode Country code associated with the primary actor
Actor1KnownGroupCode Code representing a known group associated with the

primary actor
Actor1EthnicCode Code representing the ethnic group associated with

the primary actor
Actor1Religion1Code Code representing the primary religion associated

with the primary actor
Actor1Religion2Code Code representing the secondary religion associated

with the primary actor
Actor1Type1Code Code representing the primary type of the primary

actor
Actor1Type2Code Code representing the secondary type 1 of the primary

actor
Actor1Type3Code Code representing the secondary type 2 of the primary

actor
QuadClass Code representing the high-level category of the event
Actor1Geo Type Type of the geographic location associated with the

primary actor
Actor1Geo FullName Full name of the geographic location associated with

the primary actor
Actor1Geo CountryCode Country code associated with the geographic location

of the primary actor
Actor1Geo ADM1Code ADM1 code associated with the geographic location

of the primary actor

iv



Table 5.3. Category columns related to actor number two in the articles.

Column Description

Actor2Code Code representing the secondary actor involved in the
event

Actor2Name Name of the secondary actor involved in the event
Actor2CountryCode Country code associated with the secondary actor
Actor2KnownGroupCode Code representing a known group associated with the

secondary actor
Actor2EthnicCode Code representing the ethnic group associated with

the secondary actor
Actor2Religion1Code Code representing the primary religion associated

with the secondary actor
Actor2Religion2Code Code representing the secondary religion associated

with the secondary actor
Actor2Type1Code Code representing the primary type of the secondary

actor
Actor2Type2Code Code representing the secondary type 1 of the sec-

ondary actor
Actor2Type3Code Code representing the secondary type 2 of the sec-

ondary actor
Actor2Geo Type Type of the geographic location associated with the

secondary actor
Actor2Geo FullName Full name of the geographic location associated with

the secondary actor
Actor2Geo CountryCode Country code associated with the geographic location

of the secondary actor
Actor2Geo ADM1Code ADM1 code associated with the geographic location

of the secondary actor

Table 5.4. Category geographic columns.

Column Description

ActionGeo Type Type of the geographic location associated with the
action

ActionGeo FullName Full name of the geographic location associated with
the action

ActionGeo CountryCode Country code associated with the geographic location
of the action

ActionGeo ADM1Code ADM1 code associated with the geographic location
of the action
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Table 5.5. Integer and decimal columns of GDELT.

Column Name Description

GKGRECORDID Unique identifier for the GKG record
Date Date of the event
EventBaseCode Code representing the base event category
EventRootCode Code representing the root event category
Actor1Geo Lat Latitude of the geographic location for Actor 1
Actor1Geo Long Longitude of the geographic location for Actor 1
Actor2Geo Lat Latitude of the geographic location for Actor 2
Actor2Geo Long Longitude of the geographic location for Actor 2
ActionGeo Lat Latitude of the geographic location for the action
ActionGeo Long Longitude of the geographic location for the action
NumMentions Represents the number of mentions of an event in var-

ious sources
NumSources Number of sources reporting the event
NumArticles Number of articles related to the event
AvgTone Average tone of the event
GoldsteinScale Numeric measure indicating a level of conflict or co-

operation in political events.

Table 5.6. Pearson correlation with values between -0.7 and 0.7 with nat-
ural gas price.

Variable Correlation

Price ngp 1.000000
Price oil 0.722026
Open oil 0.725523
High oil 0.737906
Low oil 0.710763
Open ngp 0.999004
High ngp 0.999524
Low ngp 0.999375
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Table 5.7. Pearson correlation with negative values with natural gas price.

Variable Correlation

Volume ngp -0.189236
Wind temp -0.040241
Actor2Geo Type Idx -0.023385
Actor1Geo Type Idx -0.020253
QuadClass Idx -0.019151
ActionGeo Type Idx -0.018957
GoldsteinScale -0.017096
Prcp temp -0.016933
NumSources -0.015359
NumArticles -0.013915
NumMentions -0.013703
Actor2Type1Code Idx -0.010697
Actor1Type1Code Idx -0.010565
Actor2Name Idx -0.008764
Actor1Name Idx -0.008247
Actor2Type2Code Idx -0.006322
Actor1Religion1Code Idx -0.004739
Actor2Code Idx -0.004414
AvgTone -0.004131
ActionGeo CountryCode Idx -0.003934
Actor1Code Idx -0.003631
Actor2Religion1Code Idx -0.003412
Actor1Type2Code Idx -0.003282
Actor2Geo CountryCode Idx -0.003195
Actor1Geo CountryCode Idx -0.002933
Actor1Religion2Code Idx -0.002894
Actor2Religion2Code Idx -0.002311
Actor1Type3Code Idx -0.001329
Actor2Type3Code Idx -0.001270
Actor1EthnicCode Idx -0.001230
Actor2EthnicCode Idx -0.001021
Actor2CountryCode Idx -0.000579
Actor1CountryCode Idx -0.000467
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Table 5.8. Pearson correlation with positive values with natural gas price.

Variable Correlation

ActionGeo FullName Idx 0.000369
Actor2Geo FullName Idx 0.000370
Actor1Geo FullName Idx 0.000572
Actor2KnownGroupCode Idx 0.003669
ActionGeo ADM1Code Idx 0.005056
Actor2Geo ADM1Code Idx 0.005138
Actor1Geo ADM1Code Idx 0.005856
Actor1KnownGroupCode Idx 0.005979
EventRootCode 0.013956
EventBaseCode 0.015387
Change % oil 0.017322
Max temp 0.055238
Avg temp 0.068243
Min temp 0.078298
Low oil 0.710763
Price oil 0.722026
Open oil 0.725523
High oil 0.737906
Open ngp 0.999004
Low ngp 0.999375
High ngp 0.999524
Price ngp 1.000000
IsRootEvent NaN

Table 5.9. Pearson correlation matrix with values between -0.7 and 0.7
with natural gas price.

Variable Price oil Open oil High oil Low oil Open ngp High ngp Low ngp Price ngp

Price oil 1.000000 0.992711 0.994759 0.997807 0.721894 0.722315 0.721408 0.722026
Open oil 0.992711 1.000000 0.997544 0.994174 0.725619 0.725832 0.725099 0.725523
High oil 0.994759 0.997544 1.000000 0.992507 0.737587 0.738181 0.737114 0.737906
Low oil 0.997807 0.994174 0.992507 1.000000 0.710740 0.711108 0.710183 0.710763
Open ngp 0.721894 0.725619 0.737587 0.710740 1.000000 0.999309 0.999440 0.999004
High ngp 0.722315 0.725832 0.738181 0.711108 0.999309 1.000000 0.998746 0.999524
Low ngp 0.721408 0.725099 0.737114 0.710183 0.999440 0.998746 1.000000 0.999375
Price ngp 0.722026 0.725523 0.737906 0.710763 0.999004 0.999524 0.999375 1.000000
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Figure 5.1. Scatter plot between natural gas price and Actor1Code Idx feature.
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Figure 5.2. Scatter plot between natural gas price and Actor1Name Idx feature.
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Figure 5.3. Scatter plot between natural gas price and average tempera-
ture feature.
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Figure 5.4. Scatter plot between natural gas price and average tone feature.
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Figure 5.5. Scatter plot between natural gas price and the number of
articles feature.
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Figure 5.6. Scatter plot between natural gas price and the number of
mentions feature.
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Figure 5.7. Scatter plot between natural gas price and the number of
sources feature.
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Figure 5.8. Scatter plot between natural gas price and precipitation feature.
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Figure 5.9. Scatter plot between natural gas price and wind feature.
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Figure 5.10. Scatter plot between natural gas price and crude oil price feature.
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Figure 5.11. Visualization of natural gas prices with null values filled
with the backward values method.
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Figure 5.12. Visualization of natural gas prices with null values filled
with the forward values method.
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Figure 5.13. Visualization of natural gas prices with null values filled
with the interpolation cubic values method.
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Figure 5.14. Visualization of natural gas prices with null values filled
with the interpolation linear values method.
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Figure 5.15. Visualization of natural gas prices with null values filled
with the interpolation quadratic values method.
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Figure 5.16. Visualization of natural gas prices with null values filled
with mean value.
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Figure 5.17. Visualization of natural gas prices with null values filled
with the seasonal values from the seasonal decomposition method.
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Figure 5.18. Visualization of natural gas prices with null values filled
with the trend values from the seasonal decomposition method.
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Figure 5.19. Visualization of natural gas prices with null values filled
with the trend values from the seasonal decomposition method.
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Figure 5.20. Validation curve of RNN model with natural gas price, crude
oil price, and average tone as features, and lag equal to 10.
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Figure 5.21. Validation curve of GRUNN model with natural gas price
and crude oil price as features, and lag equal to 5.
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Figure 5.22. Prediction plot of RNN model with natural gas price and
crude oil price as features, and lag equal to 10.
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Figure 5.23. Boxplot of average temperature.
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Figure 5.24. Boxplot of average tone.
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Figure 5.25. Boxplot of crude oil price.
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Resumo

A transição para fontes de energia mais limpas na União Europeia prioriza o gás natural,

no entanto, a Guerra Russo-Ucraniana causou flutuações impreviśıveis nos preços. Nosso

estudo visou aprimorar modelos preditivos explorando dados do GDELT, analisando o

desempenho pré e pós-guerra, e comparando modelos de ”Deep Learning” (RNN, LSTM,

GRUNN). A incorporação de dados de petróleo bruto e sentimento médio da nóticia mel-

horou significativamente as previsões. Fatores geopoĺıticos exigem mais pesquisas para

garantir segurança energética e desenvolvimento econômico. Empregando a metodolo-

gia CRISP-DM, estabelecemos uma abordagem sistemática para enfrentar esses desafios.

Nosso estudo contribui com insights valiosos para aprimorar as previsões e adaptar mod-

elos aos complexos mercados de energia.
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Abstract

The transition to cleaner energy in the European Union prioritizes natural gas, yet the

Russo-Ukrainian War caused unpredictable price fluctuations. Our study aimed to en-

hance predictive models by exploring GDELT data, analyzing pre- and post-war per-

formance, and comparing deep learning models (RNN, LSTM, GRUNN). Incorporating

crude oil and average tone data significantly improved predictions. Geopolitical factors

necessitate further research to ensure energy security and economic development. Em-

ploying CRISP-DM methodology, we established a systematic approach to address these

challenges. Our study contributes valuable insights to enhance predictions and adapt

models to complex energy markets.
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CHAPTER 1

Introduction

The shift towards cleaner energy sources is a top priority for the European Union, with

natural gas being widely embraced by countries to achieve emission reduction goals. This

energy resource is predominantly transported through pipelines and o↵ers convenient stor-

age options.

However, the stability of natural gas prices was significantly impacted by the Russo-

Ukrainian War. The weaponization of gas sales by Russia during the conflict caused a

drastic increase in gas prices, leading to unprecedented price fluctuations. As a result,

the predictive models developed in this study were not trained to anticipate such extra-

ordinary events, and their performance was a↵ected.

This unforeseen instability in natural gas prices during the war highlights the need for

further research and model adaptation to account for geopolitical factors that can influ-

ence energy markets. The ability to forecast such events accurately will be crucial for

ensuring energy security and sustainable economic development in the future.

The primary objectives of this study are as follows:

(1) To investigate whether the utilization of data extracted from GDELT (Global

Database of Events, Language, and Tone) contributes to an enhancement in

model performance.

(2) To assess whether the predictive model trained with data before the Russo-

Ukrainian War demonstrates a similar performance to the model that did not

anticipate this historical phase.

(3) To compare the performance of di↵erent deep learning models, including Recur-

rent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated

Recurrent Unit Neural Networks (GRUNN), and determine which one yields the

best results.

The dataset of TTF natural gas price, obtained from the yfinance Python library1,

spans from October 23, 2017. Our focus in this study was specifically on the time period

between January 2, 2018, and December 30, 2022, comprising a total of 1292 data points.

To train the models, we utilized only the data from the first year of the war, employing

an 80/20 ratio for training and testing data.

In anticipation of the modeling phase, a set of 15 distinctive features was meticulously

1https://pypi.org/project/yfinance/
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constructed, encompassing a diverse range of attributes. An exhaustive examination of

the collective attributes was undertaken, as detailed in Table 4.1 at page 42. However, this

process of evaluation led to a deliberate focus on the distinct constituent elements within

the feature set. The ensuing selection comprised three pivotal features: natural gas price,

crude oil price, and average tone. The strategic amalgamation of these selected features

is delineated in Table 4.3 at page 47, guided by a rationale anchored in the incorporation

of a natural gas price baseline intertwined with the nuanced interplay of crude oil price

and average tone attributes.

Throughout our study, we observed that no prior research had attempted to forecast

natural gas prices during periods of war. Additionally, none of the existing studies utilized

the Cameo list of events2 to predict natural gas prices.

The employed methodology was CRISP-DM, and the basic flow can be observed in

Figures 3.3, 3.1, 3.5, and 4.1, at pages 25, 23, 29, and 39, respectively:

Step 1: Extraction of natural gas, crude oil, GDELT news, and weather data.

Step 2: Data analysis.

Step 3: Individual transformation and preprocessing of data.

Step 4: Training and fitting of models using Keras Tuner to select the best

hyperparameters.

Step 5: Evaluation of models.

The dissertation is structured as follows:

(1) Introduction: This part gives a quick overview of why the research is important

and what it aims to achieve. It introduces the main problem, goals, and questions

that the rest of the dissertation will explore.

(2) Methodology and Literature Review: In this section, we explain how we did the

research, like collecting and studying data. We also talk about what other people

have researched on this topic before. This helps set the groundwork for our own

research.

(3) Data and Preprocessing: Now we talk about the information we used for the

research. We describe where we got it from, what it includes, and how we made

sure it was good to use. This step is really important to make sure our analysis

is accurate.

(4) Conclusion: This is the last chapter of the dissertation. We summarize what we

found out from our research and discuss how it answers the questions we had.

We also talk about what our findings mean for the subject and how they could be

useful in real life. We mention any limitations in our research and suggest ideas

2http://data.gdeltproject.org/documentation/CAMEO.Manual.1.1b3.pdf
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for future studies. This chapter gives a nice ending to our whole research journey.

Each of these segments assumes a distinctive and pivotal function in molding the

framework and substance of the dissertation, contributing to a comprehensive and unified

scholarly composition.
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CHAPTER 2

Methodology and Literature Review

2.1. Methodology

The methodology adopted for this study was CRISP-DM (Cross-Industry Standard Pro-

cess for Data Mining), a widely recognized framework that guides data mining and ma-

chine learning projects. CRISP-DM o↵ers a structured approach, breaking down complex

problems into manageable steps and ensuring a systematic and well-documented process.

The detailed flow of the CRISP-DM methodology is presented in Figures 3.3, 3.1, 3.5, and

4.1 at pages 25, 23, 29, and 39 respectively. This methodology encompasses the following

key steps:

(1) Business Understanding: In the initial phase, we defined the research objec-

tives and formulated research questions to address the challenges of predicting

natural gas prices.

(2) Data Understanding: The subsequent step involved data collection and ex-

ploration. We obtained and thoroughly examined data on natural gas, crude oil,

GDELT news, and weather.

(3) Data Preparation: After collecting the data, we performed extensive clean-

ing and preprocessing, handling missing values, and outliers, and ensuring data

quality.

(4) Modeling: Various machine learning models, including Recurrent Neural Net-

works (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit

Neural Networks (GRUNN), were employed for forecasting natural gas prices.

The Keras Tuner was utilized to select the most suitable hyperparameters for

the models.

(5) Evaluation: The performance of each model was evaluated using metrics like

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE).

By adhering to the CRISP-DM methodology, our research followed a systematic and

transparent approach, e↵ectively addressing the challenges of predicting natural gas prices.

2.2. Literature Review

2.2.1. Europe Natural Gas Market

Energy is an important part of social progress and economic development (Kaufmann &

Connelly, 2020).

Europe has increased the consumption of natural gas over the years and is transitioning

toward a renewable-based energy system (Berrisch & Ziel, 2022).
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After the European Union liberalization process in 1998, the market grew fast. These

directives issued by the European Commission have given access to infrastructure to third-

party companies. Another advantage is creating a Virtual Trading Point, and now natural

gas can be traded in any location (Hamie et al., 2020).

The network code was also a game changer because it allows e�cient transmission that

avoids the congestion in EU gas transmission pipelines is reduced (Hamie et al., 2020).

Investment in cross-border capacity contributes to creating a cross-border relationship

between Transmission System Operators via the European Network for Gas long-term

contracts. The same investment was also aggregated into the new system, old legacy, or

long-term contracts into the new system (Hamie et al., 2020).

The main natural gas hubs in the European Union are presented in Figure 2.1, the red

dots indicate the mature hubs with the highest trade rate. Blue dots show active hubs,

and yellow dots show hubs with lower trade (Heather, 2021). The two most representative

hubs are the Dutch TTF and the British NBP, both classified as mature with 46690 TWh

and 10060 TWh in 2020 (Heather, 2021).

Figure 2.1. Map the main natural gas hubs in Europe

The Russian invasion of Ukraine began on Thursday, February 24, 2022. The war has

since killed thousands of people, taken the place of millions, and destroyed entire cities

(Psaropoulos, 2022).

After the invasion, Russia used the natural gas trade as a weapon, taking advantage of

the shortage of European natural gas and the dependence on Russian supply to negotiate
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Figure 2.2. Map of Gas pipelines between Europe, Russia and Caucasia
Sources : Gazprom export ; Gazprom ; Tanap ; Trans Adriatic Pipeline ;
BP ; Natural Gaz Europe ; Nord Stream ; South Stream Transport

with European countries not to get involved in the war. In the first 14 days of the invasion,

the natural gas price increased by around 180% and Russia started to deliver 60% less

gas through the Yamal pipeline (Figure 2.2), this reduction a↵ected imports to France,

Austria, Italy, the Czech Republic and Germany. Furthermore, in response to Russia’s

weaponization of natural gas, the European Union reduced imports through Nord Stream

I (Figure 2.2) (Economic Bulletin Issue 4, 2022; Halser & Paraschiv, 2022).

The fear of a natural gas shortage in winter made the European Commission propose a

new legal obligation to fill underground gas storage to 80% of its capacity by 1 November

2022. Besides, the European Union signed a memorandum for delivering 15 bcm of

liquified natural gas with the United States and Qatar (Fabian et al., 2022; Refilling gas

storage for next winter, 2022).

2.2.2. Forecasting Natural Gas Price

The oldest paper analysed was published in 2010 and the newest was brought out in 2022,

in this decade, 2019 was the year with more articles produced, the Figure 2.3 at page 8

presents the number of articles per year.

Table ?? at page ?? shows the most frequent models used to predict natural gas prices

found in the literature review. The models are grouped into neural networks, regression,
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Figure 2.3. The number of papers about natural gas prices forecast, per year

Table 2.1. Grouped Models in the Literature Review

Grouped Models Count
Artificial Neural Networks (ANN) 15
Support Vector Regression (SVR) 8
Time Series Models 5
Ensemble Models 3
Regression Models 6
Other Machine Learning Models 8
Other Models 3

auto-regression, decision trees, and other types. Artificial Neural Networks and Support

Vector Regression are the most common methods for forecasting natural gas prices as

showed in the word cloud in Figure 2.4 at page 9.

The number of hybrid models is slightly more than the traditional method that uses

only one model, with 55% and 45% respectively presented on Figure 2.5 at page 9.

The input variables can be a simple natural gas price time series or a list of features

(Naderi et al., 2021). After the features related to natural gas, the second most used

feature is the input variables linked to Crude oil (Abrishami & Varahrami, 2011; Čeperić

et al., 2017; Li et al., 2021; Moting et al., 2019; Naderi et al., 2019; Viacaba et al., 2012).

Table 2.2 shows all the features used and counts the occurrences of the exact name. The

features are grouped into energy, macroeconomics, weather, and others. The energy group

has subgroups such as price, demand, production, consumption, etc.

Carbon, electricity, and natural gas are most a↵ected by meteorological factors (Naderi

et al., 2021). The result of Li et al. (2021) presents that the proportion of extremely
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Figure 2.4. Word cloud of all models used to forecast natural gas price

Figure 2.5. Percentage of model types

high-temperature weather, the proportion of extremely low-temperature weather, monthly

West Texas Intermediate (WTI) crude oil spot prices, natural gas consumption, and

natural gas gross withdrawals, all of it come up to predict in di↵erent levels of the long-

term prices in the Henry Hub natural gas spot, that is the most liquid, but also the most
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unpredictable natural gas market in the world (Čeperić et al., 2017). Natural gas prices

are insensitive to energy-related and stock-related indexes (Naderi et al., 2021).

Another meaningful connection is between crude oil prices and natural gas prices,

the movement of crude oil prices used to influence the natural gas price. Moreover,

fluctuations in weather and temperature are used to influence natural gas prices (Moting

et al., 2019). The daily total electricity demand in Great Britain has two seasonality

e↵ects when it is possible to see less consumption at weekends and a pattern that shows

a higher consumption annually during the coldest days of the year (Nguyen & Nabney,

2010).

The analysis of Li et al. (2021) shows that the implementation of natural gas con-

sumption and monthly WTI crude oil prices provides better prediction accuracy for the

model that predicts monthly natural gas prices.

News sentiments added as features proved to contain complementary information and

can increase the performance of the model by 14.40% compared to a model without the

news sentiment (Y. Tang et al., 2019).

Di↵erent from the common logic that says ”more data is better”, Čeperić et al. (2017)

finds that for Henry Hub spot prices of natural gas price when it comes to short-term

prediction, ”less data is better”.

The dataset encompassing daily natural gas records presents a substantial variability,

spanning from a minimum of 230 data points to a maximum of 5470 data points, as

referenced by Naderi et al. (2019) and Siddiqui (2019) respectively. This substantial

disparity in the dataset size underscores the diversity in temporal granularity and data

availability.

When considering weekly prediction models, Čeperić et al. (2017) employed the dataset

with the smallest temporal scope, while Moting et al. (2019a) worked with a significantly

larger dataset, containing 886 data points. This wide spectrum in dataset sizes emphasizes

the di↵ering preferences and objectives within the field of weekly prediction.

Transitioning to monthly prediction, the dataset sizes exhibit a range of 420 to 2091

records, as reported in studies by Jianwei et al. (2019) and Berrisch and Ziel (2022)

respectively. This variation in dataset sizes underscores the distinct temporal resolutions

and availability of data within the monthly prediction context.

For the prediction of yearly trends, the sole study conducted by Azadeh et al. (2012)

utilized a dataset comprising 40 data points. This notably limited dataset size reflects

the challenges inherent in yearly prediction due to the scarcity of available observations.

For a comprehensive overview of these data sizes, refer to Table 5.1, which encapsulates

the aforementioned ranges and sizes, encapsulating the diversity and nuances present in

the datasets utilized across various prediction timeframes.

For all types of energy prediction studied in the literature review by Naderi et al.

(2021) the application of feature engineering led to an average increase of 54.59% in

accuracy in the models analyzed (see Table 2.3 at page 12).
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Table 2.2. List of features used to forecast natural gas price

Input variable(s) Count
Historical gas price 22
Crude oil price 2
Heating oil price 2
Annual interest rate 1
Proportion of extreme high temperature weather 1
Natural gas price di↵erences 1
Natural gas price rotary rigs 1
Natural gas total consumption 1
Natural gas underground storage volume 1
News 1
OPEC cut production 1
Population 1
Taxes placed on gas price 1
Natural gas imports 1
Temperature 1
Total renewable energy consumption 1
U.S. LNG imports 1
U.S. natural gas gross withdrawals 1
U.S. natural gas marketed production 1
U.S. natural gas pipeline imports 1
U.S. natural gas total consumption 1
WTI crude oil prices 1
WTI crude oil prices di↵erences 1
Natural gas marketed production 1
Natural gas gross withdrawals 1
Natural gas consumption 1
Annual natural gas consumption 1
Coal price 1
Coal price di↵erences 1
Consumer price index 1
Cooling degree-days 1
Economic parameters 1
Electricity price 1
Environmental policy 1
GDP 1
Global demand for crude oil 1
Global demand for gas 1
Heating degree-days 1
Heating oil price di↵erence 1
Historical data of energy demand 1
Internet search 1
Meteorological parameters 1
Monthly WTI crude oil prices 1
Monthly oil price 1
WTI oil spot price 1
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Table 2.3. List of feature engineering methods provided on models

feature engineering method(s) Count
Ensemble Empirical Mode Decomposition (EEMD) 2
Variational Mode Decomposition (VMD) 2
Discrete Wavelet Decomposition (DWD) 1
Feature Selection (FS) 1
Group Method of Data Handling (GMDH) 1
Improved Pattern Sequence Similarity Search (IPSS) 1
Independent Component Analysis (ICA) 1

Table 2.4. List of optimization methods provided on models

Optimizer(s) Count
Particle Swarm Optimization (PSO) 3
Adaptive Learning Strategy (ALS) 1
Bat Algorithm (BA) 1
Genetic Algorithm (GA) 1

The most common optimization method applied is Particle Swarm Optimization (PSO),

which shows an increase in the performance of final models (Čeperić et al., 2017; Li et al.,

2021; J. Wang et al., 2021). In our study, we utilized the random search method to find

the optimal configuration for our model. We focused on three critical hyperparameters:

the number of layers, units, and epochs. The epoch value was consistently set to 20,

and we implemented early stopping after 5 epochs without improvement. To explore the

impact of the layer count, we conducted trials with a range of one to five layers, increasing

by one layer for each attempt. For the units, we varied the values between 32 and 512,

with increments of 32 units for each trial.

In the second trial using Keras Tuner, we refined our search based on the best-performing

models from the previous round. We restricted the number of layers to either one or two,

and the units were limited to the range of 32 to 512, maintaining the same increment value.

It is possible to see in Figure 2.6 that the most common period to forecast is the daily

price of natural gas, on which 14 of the articles are working. The second period is the

monthly period for 7 papers. The third period is the weekly period with six publications.

The last one with only one paper is the yearly period. Researchers do not predict the

natural gas price with a horizon of two months, quarters, and semesters.

The single model most used to forecast the price of natural gas are artificial neural

networks (ANN), and the second model most used is auto-regressive moving average

(ARMA) and support vector regression (SVR).

The idea behind the hybrid model is to combine more than one model to get better

performance. Table 2.6 at 16 lists all the models used to develop hybrid models.

The combination varies between two and five models, which can be di↵erent or similar,

Naderi et al. (2019) worked in a combination of four models of least squares support
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Figure 2.6. Forecast period horizon

Figure 2.7. Word cloud of single models used to forecast natural gas price

vector machine (LSSVM), genetic programming (GP), artificial neural networks (ANN),

and auto-regressive integrated moving average (ARIMA) to predict the price of oil, the

annual interest rate, and the daily price of gas.

The study of Li et al. (2021) and J. Wang et al. (2020) compare the hybrid model with

a single model and find that the hybrid model performs better. J. Wang et al. (2020)
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Table 2.5. List of single models

Models Count
Artificial Neural Networks (ANN) 3
Auto-Regressive Moving Average (ARMA) 2
Support Vector Regression (SVR) 2
Back-Propagation Neural Networks (BPNN) 1
Dynamic Local Linear Regression (DLLR) 1
Extreme Learning Machine (ELM) 1
Gamma test (GT) 1
Gaussian Process Regression (GPR) 1
Autoregressive Neural Networks (ARNN) 1
Group Method of Data Handling (GMDH) 1
Least Square Support Vector Machine (LSSVM) 1
Least squares Regression Boosting (LSBoost) 1
Local Linear Regression (LLR) 1
Random Kitchen Sink (RKS) 1
Random Vector Functional Links (RVFL) 1
Support Vector Machines (SVM) 1
Gradient boosting machines (GBM) 1

complement with hybrid models when combined with di↵erent time-series methods tend

to have a better performance. The hybrid model of Li et al. (2021) is a combination of a

Deep Belief Network (DBN) with feature engineering of variational mode decomposition

(VMD) and particle swarm optimization (PSO).

The study of Čeperić et al. (2017) compared hybrid model applies Support Vector

Regression (SVR), Steepwise (SW), and Feature Selection (FS) with another hybrid model

that uses Artificial Neural Networks (ANN), Particle Swarm Optimization (PSO), and

Feature Selection (FS), and find out that first has a better performance.

The article presented by Jin and Kim (2015) shows that not all hybrid models perform

better. The combination of artificial neural networks with wavelet decomposition does

not improve the model when compared with Artificial Neural Networks without wavelet

decomposition. The other experiment with Auto-Regressive Integrated Moving Average

with Wavelet decomposition in the same study demonstrated only a small improvement.

But the combination of Auto-Regressive Integrated Moving Average with Wavelet decom-

position created the best case for a four-step forecast (Jin & Kim, 2015).

2.2.3. GDELT

Global Database of Events, Language, and Tone (GDELT) (https://www.gdeltproject.org/)

is a platform that scans news media as printed media, broadcast, and web formats.

GDELT creates a database that saves important information in more than 100 languages.

The managed data links between every person, organization, location, theme, news source,

and event in each corner of the planet. The sentiment extracted from this massive data-

base can be precious in finding the world’s feelings (GDELT Project, n.d.).
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Figure 2.8. Word cloud of hybrid models used to forecast natural gas price

GDELT is an open platform for research and analysis available for unlimited and

unrestricted use for academic, commercial, or government without a fee. The data can

be accessed by API from the GDELT website or via the Google Cloud Platform (GCP)

(Google Cloud Platform Blog, 2014).

The GDELT project has two versions of event databases, the ”GDELT 1.0 Event

Database” and the ”GDELT 2.0 Event Database”. Version 1.0 starts in 1979 through

March 31, 2013, and it was updated daily and does not include events reported in the

65 live translated languages. The latest version starts April 1, 2013, has new features,

updates every 15 minutes, and includes events reported in articles published in 65 live

translated languages. Furthermore, the project GDELT also has the Global Knowledge

Graph data source to analyze images, and other data sets normalized, such as ”GDELT

1.0 Event Database Normalization Files” (GDELT Project, n.d.).

The GDELT project has been used in many areas of knowledge. Kwak and An (2014)

showed the structure of global news coverage of disasters and their cause. The article

finds strong regionalism in the geography news.

To detect events of occupied protests, Qiao et al. (2015) compared the results using

a base model using the GDELT database. Models with GDELT features proved to be

better with higher accuracy. Hammond and Weidmann (2014) used GDELT to study

political violence.

The literature review applied by W. Wang et al. (2016) compared the GDELT project

with other similar databases. The study anticipates that there should be a high correla-

tion between GDELT and another database, but the overall correlation does not match

the expectations, returning a small correlation. But when the comparison is filtered in
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Table 2.6. List of hybrid models

Reference / Abbreviations Models

Nguyen and Nabney, 2010 Wavelet Transform (WT)
Radial Basis Functions Neural Networks (RBFNN)
Linear Regression (LR)
Group Method of Data Handling (GMDH)

Abrishami and Varahrami, 2011 Group Method of Data Handling (GMDH)
Genetic Algorithm (GA)
Rule-based Exert System (RES)

Azadeh et al., 2012 Artificial neural networks (ANN)
Fuzzy linear regression (FLR)
Conventional regression (CR)

Thakur et al., 2015 Moving Average Neural Networks (MANN)
Back-Propagation Neural Networks (BPNN)

Jin and Kim, 2015 Discrete Wavelet Decomposition (DWD)
Auto-Regressive Integrated Moving Average (ARIMA)
Artificial neural networks (ANN)

Dey and Salem, 2017 Gated Recurrent Unit (GRU)
Recurrent neural networks (RNN)

Čeperić et al., 2017 Strategic seasonality-adjusted (SSA)
Support vector regression machines (SVR)
Neural networks (NN)
Feature selection (FS)
Particle Swarm Optimization (PSO)

Jianwei et al., 2019 Variational Mode Decomposition (VMD)
Independent Component Analysis (ICA)
Gated Recurrent Unit Neural Networks (GRUNN)

Qin et al., 2019 Ensemble Empirical Mode Decomposition (EEMD)
Local Linear Prediction (LLP)

Naderi et al., 2019 Bat Algorithm (BA)
Least Square Support Vector Machine (LSSVM)
Genetic Programming (GP)
Artificial Neural Networks (ANN)
Auto-Regressive Integrated Moving Average (ARIMA)

J. Wang et al., 2020 Improved Pattern Sequence Similarity Search (IPSS)
Support Vector Regression (SVR)
Long-term and Short-term Memory Networks (LSTM)

Li et al., 2021 Variational Mode Decomposition (VMD)
Particle Swarm Optimization (PSO)
Deep Belief Networks (DBN)

J. Wang et al., 2021 Complete ensemble empirical mode decomposition (CEEMD)
Adaptive noise-sample entropy (AN-SE)
Particle Swarm Optimization (PSO)
Adaptive learning strategy (ALS)
Gated Recurrent Unit (GRU)

each database by country, the experience results in a better correlation.

To analyze public opinion on the energy policy of the Spanish government, Bodas-Sagi

and Labeaga (2016) shows a negative feeling about the solar energy policy introduced in

2016.

To predict social unrest events, studies are applying several models such as the hidden

Markov model, neural networks, random forest, LSBoost, LSTM, and others (Galla &

Burke, 2018; Qiao et al., 2017).
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Table 2.7. List of results of single models to predict daily natural gas price

Reference Performance
L. Tang et al., 2018 EEMD-based model MAPE=0.5850
Moting et al., 2019a LSBoost MAE=0.4493

MSE=0.4376
RMSE=0.6615
R2=0.91

Berrisch and Ziel, 2022 ARMA MAE=0.3863
CRPS=0.2834
RMSE=1.0843

Salehnia et al., 2013 LLR / DLLR / ANN LLR (t)
MSE=0.29113
DLLR (t)
MSE=0.13977
ANN (t)
MSE=0.3366

Al-Sharoot and Alramadhan, 2019 ARMA / GMDH MAE=0.01539
MSE=0.0214

Y. Tang et al., 2019 ANN MAE = 0.0956; 0.1002; 0.0987; 0.0902
RMSE = 0.1368; 0.137; 0.133; 0.1284

Hu and Trafalis, 2011 SVR MSE=0.0903
R2=0.9822

Siddiqui, 2019 ARNN MSE=0.026

The GDELT project is also successfully employed by Bourgeois et al. (2018) to identify

bias in news with success. In the financial field, the GDELT project is used to help pre-

dict political crises, oil prices, stock market, and macroeconomic index with considerable

improvement (Alamro et al., 2019; Elshendy et al., 2018; Tilly et al., 2020; Zhang et al.,

2019).

No paper used the GDELT project to predict the price of natural gas, Y. Tang et al.

(2019) used news but from a di↵erent source with a single model to predict the price of

natural gas.

2.2.4. Results

Table 2.7 presents results of the prediction of the natural gas price by single models. The

articles use di↵erent performance metrics making the MSE the most common. The best

result for daily prediction using a single model is MSE equal to 0.0214 by Al-Sharoot and

Alramadhan (2019) with an ARMA-GARCH model.

The results of single models that forecast natural gas prices weekly are presented in

Table 2.8 with just a few articles, and the best precision comes from the study of Salehnia

et al. (2013) with an MSE equal to 0.25566 by applying the dynamic local linear regression

model (DLLR).
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Table 2.8. List of results of single models to predict weekly natural gas price

Reference Performance
Moting et al., 2019a LSBoost MAE=0.4761

MSE=0.5116
RMSE=0.7153
R2=0.9

Salehnia et al., 2013 LLR / DLLR / ANN LLR (t)
MSE=3.4317
DLLR (t)
MSE=0.25566
ANN (t)
MSE=0.8268

Viacaba et al., 2012 SVR RMSE <0.03

Table 2.9 shows the articles that predict natural gas prices monthly, and the best

result is obtained by an Artificial Neural Networks with an MSE = 0.5663 (Moting et al.,

2019).

The only article that predicts yearly natural gas prices applies a single model of Arti-

ficial neural networks (ANN), fuzzy linear regression (FLR), and conventional regression

(CR). These models archive the best result from conventional regression with MAPE =

0.260. Table 2.10 shows all results.

The most widely used evaluation metric is the root mean square error (RMSE). Table

2.11 shows all models that forecast daily natural gas prices using di↵erent hybrid models.

The most accurate prediction is given by a combination of Ensemble Empirical Mode

Decomposition (EEMD) and Local Linear Prediction (LLP), resulting in an RMSE =

0.035 developed (Qin et al., 2019).

The list of articles that predict the price of natural gas weekly is in Table 2.12. The

best result is proposed by Jin and Kim (2015) using a hybrid model of discrete wavelet

decomposition (DWD) and artificial neural networks (ANN) with RMSE = 0.1278 preci-

sion.

For a monthly forecast of natural gas prices, Table 2.13 lists three articles, the one

with the best results has a MAPE between 0.001691 and 0.00413. The models that meet

this precision are the combination of Variational Mode Decomposition (VMD), Indepen-

dent Component Analysis (ICA), and Gated Recurrent Unit Neural Networks (GRUNN),

applied by Jianwei et al. (2019).
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Table 2.9. List of results of single models to predict monthly natural gas price

Reference Performance
Moting et al., 2019 ANN/SVM/GBM/GPR ANN

R2=0.8904
MAE=0.5115
MSE=0.5363
RMSE=0.7247
MAPE=0.1117

SVM
R2=0.8437
MAE=0.5673
MSE=0.7673
RMSE=0.8757
MAPE=0.1202

GBM
R2=0.8006
MAE=0.6490
MSE=0.9786
RMSE=0.9888
MAPE=0.1366

GPR
R2=0.8374
MAE=0.6026
MSE=0.7980
RMSE=0.8932
MAPE=0.1270

Moting et al., 2019a LSBoost MAE=0.6859
MSE=1.1166
RMSE=1.0567
R2=0.78

Berrisch and Ziel, 2022 SVR CRPS=0.2126
MAE=0.3010
RMSE=0.3995

Salehnia et al., 2013 ARMA Monthly
LLR (t)
MSE=3.864
DLLR (t)
MSE=2.5932
ANN (t)
MSE=0.9831

Table 2.10. List of results of hybrid models to predict yearly natural gas price

Reference Performance
Azadeh et al., 2012 ANN-FLR-CR MAPE (Average)

CR = 0.2260
ANN = 0.2978
FLR = 0.2470
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Table 2.11. List of results of hybrid models to predict daily natural gas price

Reference Performance
Qin et al., 2019 EEMD-LLP RMSE = 0.035

MAPE = 0.01244
Dstat = 0.908

J. Wang et al., 2020 IPSS-SVR-LSTM MAPE = 0.0555
MER = 0.0549

Abrishami and Varahrami, 2011 GMDH-GA-RES Dstat ¿ 0.7
RMSE ¡ 2.942

Thakur et al., 2015 MANN / BPNN MSE ¡ 0.1
Naderi et al., 2019 BA-LSSVM-GP-ANN-ARIMA R2 = 0.9611

RMSE = 0.06
Čeperić et al., 2017 SSA-SVR/NN-FS-PSO 5 variables SVR SW (Steepwise)

MAPE = 0.221
RMSE = 0.1401

10 variables
SVR SW (Steepwise)
MAPE = 0.218
RMSE = 0.1375

Table 2.12. List of results of hybrid models to predict weekly natural gas price

Reference Performance
Jin and Kim, 2015 DWD-ANN / DWD-ARIMA Wavelet with ANN

MAE = 0.0985
MAPE = 0.033747
RMSE = 0.1278

Wavelet with ARIMA
MAE = 0.1112
MAPE = 0.037018
RMSE = 0.1366

J. Wang et al., 2021 CEEMDAN-SE-SO-ALS-GRU Dstat = 0.519
MAE = 0.114
MSE = 0.025
RMSE = 0.158
R2 = 0.889

Čeperić et al., 2017 SSA-SVR / NN-FS-PSO 5 variables SVR SW (Steepwise)
MAPE = 0.423
RMSE = 0.2904

10 variables
SVR SW (Steepwise)
MAPE = 0.431
RMSE = 0.2782
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Table 2.13. List of results of hybrid models to predict monthly natural gas price

Reference Performance
Jianwei et al., 2019 VMD–ICA–GRUNN–SVR Dstat = 0.730159-0.845238

MAD = 0.0201-0.0776
MAPE = 0.001691-0.00413
RMSE = 0.0407-0.1196
R2 = 0.95-0.991

Li et al., 2021 VMD-PSO-DBN MAE = 0.125
MAPE = 0.0481
RMSE = 0.082
FLR = 0.2470

Nguyen and Nabney, 2010 WT-RBFNN-LR-GARCH MAE = 0.01699
MAPE = 2.019
MSE = 0.15384
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CHAPTER 3

Exploratory Data Analysis and Preprocessing

3.1. Exploratory Data Analysis

We utilized four primary data sources for our analysis, namely natural gas price, news

data, weather data, and crude oil price. The integration of these features to the main

dataset was done individually, the flow of the ETL process is illustrated in Figure 3.3

at page 25. The news data, extracted from the GDELT project, underwent a separate

integration process. A Spark environment was created due the number of lines to be

processed, the first step of the flow was a extraction of the raw data from GDELT API,

after that we analyzed, cleaned, trandformed, and evaluated the news data, last step we

exported the data into a parquet data format to optimize the size of our dataset (Figure

3.1). The final integration step involved combining these two features with weather data

and crude oil price at the same level, as shown in Figure 3.5.

Figure 3.1. ETL process for extraction, analysis, cleaning, transforma-
tion, and evaluation of news data from GDELT API, with exportation to a
parquet file.

Multiple trading hubs exist for natural gas prices, and for our forecasting purposes,

we chose to focus on the Dutch Title Transfer Facility (TTF) hub price like Berrisch and

Ziel (2022). We obtained the necessary data using the Yahoo Finance API through the

yfinance Python library. The description of each column can be found in Table 3.1, and

Figure 3.2 shows natural gas prices, and 3.4 presents the natural gas price volume.
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The dataset of TTF natural gas prices spans from October 23, 2017 and has been updated

daily. For our study, we focused on the period between January 2, 2018, and December

30, 2022, which encompasses a total of 1260 daily natural gas prices. However, it is im-

portant to note that there are 32 missing values within this time frame, resulting in a

total of 1292 days included in our analysis.

The initial analysis involved performing a statistical summary on Open, High, Low, Vol-

ume, Dividends, Stock Splits, and Close columns, as presented in Table ??. Through

this analysis, we observed that both the Dividends and Stock Splits variables exhibited a

consistent value of zero across rows.

After conducting the statistical analysis and examining the time-series visualization on

natural gas price, during this analysis columns Open, High, Low, and Volume did not

match the correlation criteria between -0.70 and 0.70 and do not have strong Granger

Causality, and Dividends and Stock Splits all values is equal to zero, is this case we made

a decision to retain only the ”Close” column as variable and target.

Figure 3.2. Natural gas price time-series.

Table 3.1. Natural Gas Price TTF Data Columns

Column Description

Open The opening price of the natural gas
High The highest price of the natural gas during the day
Low The lowest price of natural gas during the day

Volume The trading volume of the natural gas
Dividends Any dividends issued for the natural gas
Stock Splits Any stock splits that occurred for the natural gas

Close The closing price of the natural gas
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Figure 3.3. ETL process for extraction, analysis, cleaning, transforma-
tion, cross-validation, and evaluation of TTF natural gas price data from
Yahoo API, with Exportation to a CSV file.

3.1.1. GDELT - Global Database of Events, Language, and Tone

In order to handle the large volume of data, we utilized a Spark environment and de-

veloped a function to extract news data from the GDELT API. The function includes

a filtering mechanism to retrieve only the news articles based on specific Cameo codes

from Event Data Project, Department of Political Science, Pennsylvania State University

(March 2012), as listed in Table 3.2. Subsequently, the extracted news data was saved in

a Parquet format for further processing. The entire process of integrating the news data

extracted from the GDELT API is illustrated in Figure 3.1.

The total number of lines obtained from the extraction process amounted to 18,700,299,

comprising 58 columns. These columns can be categorized into di↵erent types, The main

topic of the news is actors, for example, the Actor of news that informs about the deal of

European Union with US to deliver natural gas price, the Actor one is European Union

and Actor two is US. Actor one and two columns have informations about the name,

country, ethnic, religion, and location, shown in Tables 5.2 and 5.3. Geographic informa-

tion is summarized in Table 5.4. Numeric variables store numbers about the news, as the

tone of the news, number articles related to the event, and number of sources reporting

the event, all numeric variables of GDELT are described in Table 5.5, and columns slated

for deletion can be found in Table 3.3.

3.1.2. Crude Oil Price

The data source of crude oil price was obtained from Investing.com (Accessed on July

19, 2023) with the same period of natural gas price. The structure of the columns is
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Figure 3.4. Visualization of natural gas prices volume.

Table 3.2. Cameo event root codes used.

Event Root Code Event Root Name

13 Threaten
14 Protest
15 Exhibit force posture
16 Reduce relations
19 Fight
20 Use unconventional mass violence

very similar to the natural gas price, with Open price, High price, Low price, and Change

percentage price compared with previous date, as can be see in Table 3.5 Following the

completion of the statistical analysis and a thorough examination of the time-series visu-

alization for crude oil time series, it was observed that the columns labeled Open price,

High price, Low price, and Change percentage price did not meet the correlation criteria

falling within the range of -0.70 to 0.70. Furthermore, these columns did not exhibit sig-

nificant Granger Causality and based on this we only used the column Price oil as feature.
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Table 3.3. Deleted columns from GDELT.

Column Name Description

MonthYear Month and year of the event
Year Year of the event
FractionDate Fractional date representation of the event
EventCode Code representing the event category
Actor1Geo FeatureID Feature ID of the geographic location for Actor 1
Actor2Geo FeatureID Feature ID of the geographic location for Actor 2
ActionGeo FeatureID Feature ID of the geographic location for the action
DATE ADDED Date the record was added
SOURCEURL URL of the source for the event

Table 3.4. Sum of null values for each GDELT column that has null values.

Column Name Sum of Null

IsRootEvent 18604188
Actor1Geo Lat 2274519
Actor1Geo Long 2271529
Actor2Geo Lat 5505621
Actor2Geo Long 5503481
AActionGeo Lat 563853
ActionGeo Long 560217

Table 3.5. Description of Columns in Crude Oil Price Data

Column Description

Dates The dates corresponding to the crude oil price observations
Price oil The closing price of crude oil for the given date
Open oil The opening price of crude oil for the given date
High oil The highest price of crude oil reached during the date
Low oil The lowest price of crude oil reached during the date
Change % oil The percentage change in crude oil price compared to the previous date

3.1.3. Weather

The weather dataset used in this study was obtained from NCEI (Accessed on July 19,

2023), specifically from the Rhein-Main station located in Germany. The dataset includes

various weather measurements such as precipitation, snowfall, snow depth, maximum

temperature, minimum temperature, and average temperature. However, for our analysis,

we focused solely on the average temperature time series as it was the relevant variable

for our study. The detailed description of each column can be found in Table 3.6.

3.1.4. Data Integration

The integration of all the features was conducted within a Spark environment due to the

voluminous nature of the data being processed. The natural gas price, news data, and

other relevant features were combined by joining them together into a Spark data frame.
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Table 3.6. Description of Columns in Weather Data

Column Description

PRCP Precipitation (Rainfall)
SNOW Snowfall
SNWD Snow Depth
TMAX Maximum Temperature
TMIN Minimum Temperature
TAVG Average Temperature

Table 3.7. Sum of null values for each weather column that has null values.

Column Name Sum of Null

Prcp temp 60
Prcp temp 1824
Snow temp 60
Wind temp 60
Max temp 60
Min temp 60
Avg temp 3

Table 3.8. Days with average temperature null.

Dates Prcp temp Snow temp Wind temp Max temp Min temp

20210211 0 null 10 -9 -9.7
20210212 0 null 10 -5 -7.3
20210211 0 null 0 16.5 8

Following this integration, a series of steps were executed, including analysis, data clean-

ing, transformation, and evaluation. As a result, a comprehensive file containing all the

features was generated and saved for further analysis. For a visual representation of this

integration process, please refer to Figure 3.5.

3.2. Preprocessing

In order to preprocess the dataset, several steps were undertaken to optimize the data

before training the model. The preprocessing began with addressing missing values by

employing backward and forward fill, the next method was linear, cubic, and quadratic

interpolation, another one was imputation of mean value, and the last one was seasonal

decomposition, that we replaced the null values by trend and seasonal. Subsequently, the

data was categorized, with textual information transformed into index codes. Correlations

and causality between variables were identified to filter and select the correlated features

between -0.7 and 0.7. Outliers were also detected and handled, by taking the mean value

of before and after data of time series. Lastly, statistical and mathematical operations

were performed to aggregate the data on a daily basis. These preprocessing steps aimed
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Figure 3.5. ETL process for analysis, cleaning, and integration of features
into a parquet file.

to ensure the quality and preparedness of the dataset for subsequent modeling tasks.

3.2.1. Replacement of Null Values

For natural gas prices, a unique scenario arises where the identification of missing data

points is not solely based on their absence. Instead, an additional step is taken to de-

termine if these null values coincide with weekends or holidays. Through this analysis,

it was revealed that there were 32 missing values that required further handling. Several

methods were then applied to impute these missing values, aiming to obtain the most

accurate representation of the actual values.

The first approach employed for filling the missing values was backward and forward fill-

ing techniques. Backward filling involved propagating the last observed value backward

in time to fill the missing values, ensuring a smooth and continuous representation of the

data. This method is illustrated in Figure 5.11. Similarly, forward filling was applied to

propagate the next observed value forward in time to fill any remaining missing values.

The application of forward filling can be visualized in Figure 5.12 (van Buuren, 2012).

In addition to backward and forward filling, another method used for imputing missing

values was interpolation. Cubic interpolation is shown in Figure 5.13, linear interpolation

is shown in Figure 5.14, and quadratic interpolation is shown in Figure 5.15. The visual

analysis indicates a satisfactory evolution of the time series after applying these interpo-

lation techniques (van Buuren, 2012).

Another method employed was seasonal decomposition filling. Seasonal decomposition
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with the trend is depicted in Figure 5.19, while seasonal values are presented in Figure

5.17. However, it was observed that this method did not provide a natural substitution

for the null values. Therefore, a mean value substitution was also utilized, as shown in

Figure 5.16 applying the value for time-series (van Buuren, 2012).

In Figure 3.6, it is evident that many of the applied methods did not result in a natural

filling of the null values. To gain a better understanding of the filled values, a closer

look is provided in Figures 3.7 and 3.8, which depict a specific slice of the data with a

null value in the middle. These zoomed-in plots clearly show that the mean and seasonal

decomposition methods do not naturally fill the missing values, as the substituted values

noticeably di↵er from the surrounding data points.

To determine the most suitable method for handling missing values in the natural gas price

dataset, we conducted a correlation analysis. The results of this analysis, as presented

in Table 3.9, indicated that the mean and seasonal decomposition with trend methods

performed well. These results suggest that the natural gas price exhibits a tendency to-

wards the mean value and a seasonal pattern. However, instead of choosing one of these

methods, we decided to use forward filling. This decision was based on the observation

that forward filling e↵ectively fills the null values without introducing significant devia-

tions from the surrounding data points.

Table 3.9. R-square results of cross-validation for all methods used to fill
null values of natural gas price.

Methods R2

Mean 0.999298
Seasonal Decompose: Trend 0.999135
Forward fill 0.999126
Interpolation: linear 0.999125
Backward fill 0.999105
Interpolation: Cubic 0.999087
Interpolation: Quadratic 0.999081
Seasonal Decompose: Seasonal 0.998753

3.2.2. Categorization

The categorical columns in the dataset were derived from the news data and can be

observed in Table 3.10, which provides the distinct count for each category. In order

to preprocess these categorical columns, we utilized the Pyspark machine learning func-

tion called StringIndexer. This function was selected for its e�ciency in handling large

datasets, as memory management is crucial for successful transformation. The outcome of

this categorization process was a more compact and manageable dataset (Apache Spark,

Accessed on July 19, 2023).
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Figure 3.6. Compilation of methods to fill null natural gas prices for all
time series.

3.2.3. Correlations

The initial step involved generating a Pearson Correlation Matrix to examine the linear

relationships between all variables in the dataset. This matrix can be visualized in Figure

3.9, and the corresponding correlation values were presented in Table 5.7 for negative

correlations and Table 5.8 for positive correlations. Upon analysis, it was observed that

the natural gas price exhibited a positive correlation of 0.722026 with the crude oil price.

To further investigate this finding, a zoomed-in plot (Figure 3.10) focusing on these two

columns was generated (Downey, Accessed on July 19, 2023).

In order to filter the columns based on their correlation values, a criterium was set to

include only those with correlations greater than 0.7 and less than -0.7 (see Table 5.6)

(Downey, Accessed on July 19, 2023).

A series of scatter plots was generated to explore potential non-linear correlations.

The columns ”Actor1Name Idx” and ”Actor1Code Idx” did not exhibit any significant

correlation with the natural gas price, as depicted in Figures 5.2 and 5.1. Similarly, the

”Avg temp” feature displayed a discernible pattern, but it was not conclusive in deter-

mining its correlation with the natural gas price, as shown in Plot 5.3.
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Figure 3.7. Compilation of methods to fill null natural gas prices for 2018-
01-15.

On the other hand, the ”Avg Tone” feature revealed a wider range of tone values when

the price of natural gas was below 50, as depicted in Figure 5.4. This trend was also ob-

served for the ”NumArticles,” ”NumMentions,” and ”NumSources” columns, indicating

a higher volume of articles when the natural gas price was low (respectively in Figures

5.5, 5.6, and 5.7).

Regarding the weather variables, ”Prcp temp” and ”Wind temp” did not display any

clear patterns or correlations with the natural gas price, as seen in Figures 5.8 and 5.9.

Overall, the most visually correlated feature with the natural gas price was the crude

oil price, as demonstrated in Figure 5.10. This observation is consistent with the results

obtained from the Pearson Correlation analysis, indicating a strong correlation between

the prices of natural gas and crude oil.
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Figure 3.8. Compilation of methods to fill null natural gas prices for 2021-
05-31.

3.2.4. Granger Causality

Granger causality is a statistical technique employed to evaluate whether a given time

series can anticipate or project the behavior of another time series. This entails examin-

ing whether past data points from one-time series o↵er valuable insights into anticipating

future data points from another, suggesting a plausible causal connection within time-

dependent datasets. It’s crucial to emphasize that Granger causality doesn’t necessarily

establish a direct cause-and-e↵ect relationship; instead, it identifies predictive correlations

rooted in statistical trends.

To conduct the Granger Causality analysis, we set the significance level (alpha) to 0.05,

and the lag parameter to values of 1, 5, and 10. The analysis was performed for the

following features:

When analyzing Granger causality with lag parameters of 1, 5, and 10, consistent findings

emerged. Specifically, the variables Wind temp, Price oil, and Avg temp displayed a lack

of substantial Granger causality. Tables 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, 3.18, 3.17, and
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Table 3.10. Sum of distinct values for all category features.

Columns Value
IsRootEvent 1
EventBaseCode 38
EventRootCode 6
Actor1Code Idx 10499
Actor1Name Idx 8697
Actor1CountryCode Idx 220
Actor1KnownGroupCode Idx 56
Actor1EthnicCode Idx 357
Actor1Religion1Code Idx 16
Actor1Religion2Code Idx 20
Actor1Type1Code Idx 34
Actor1Type2Code Idx 27
Actor1Type3Code Idx 24
Actor2Code Idx 9754
Actor2Name Idx 8159
Actor2CountryCode Idx 221
Actor2KnownGroupCode Idx 55
Actor2EthnicCode Idx 344
Actor2Religion1Code Idx 16
Actor2Religion2Code Idx 20
Actor2Type1Code Idx 33
Actor2Type2Code Idx 28
Actor2Type3Code Idx 23
QuadClass Idx 2
Actor1Geo Type Idx 6
Actor1Geo FullName Idx 189346
Actor1Geo CountryCode Idx 255
Actor1Geo ADM1Code Idx 4136
Actor2Geo Type Idx 6
Actor2Geo FullName Idx 163323
Actor2Geo CountryCode Idx 253
Actor2Geo ADM1Code Idx 4088
ActionGeo Type Idx 6
ActionGeo FullName Idx 200253
ActionGeo CountryCode Idx 255
ActionGeo ADM1Code Idx 4160

3.19 presents details of the Granger causality result.

Features GoldsteinScale, NumMentions, NumSources, NumArticles, QuadClass, Avg-

Tone, Threaten, Protest, Exhibit force posture, Reduce relations, Fight, and Use unconvetional mass violence

show a strong causality relationship with the natural gas price.
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Table 3.11. Granger causality results of feature Wind temp with one lag,
without a strong Granger causality.

Wind temp - Lag = 1
ssr based F test F=2.8113 p=0.0938 df denom=1288 df num=1
ssr based chi2 test chi2=2.8179 p=0.0932 df=1
likelihood ratio test chi2=2.8148 p=0.0934 df=1
parameter F test F=2.8113 p=0.0938 df denom=1288 df num=1

Table 3.12. Granger causality results of feature Price oil with one lag,
without a strong Granger causality.

Price oil - Lag = 1
ssr based F test F=0.2684 p=0.6045 df denom=1288 df num=1
ssr based chi2 test chi2=0.2690 p=0.6040 df=1
likelihood ratio test chi2=0.2690 p=0.6040 df=1
parameter F test F=0.2684 p=0.6045 df denom=1288 df num=1

Table 3.13. Granger causality results of feature Avg temp with one lag,
without a strong Granger causality.

Avg temp - Lag = 1
ssr based F test F=0.4324 p=0.5110 df denom=1288 df num=1
ssr based chi2 test chi2=0.4334 p=0.5103 df=1
likelihood ratio test chi2=0.4333 p=0.5104 df=1
parameter F test F=0.4324 p=0.5110 df denom=1288 df num=1

Table 3.14. Granger causality results of feature Wind temp with five lags,
without a strong Granger causality.

Wind temp - Lag = 5
ssr based F test F=0.5456 p=0.7418 df denom=1288 df num=5
ssr based chi2 test hi2=2.7518 p=0.7382 df=5
likelihood ratio test hi2=2.7518 p=0.7382 df=5
parameter F test F=0.5456 p=0.7418 df denom=1288 df num=5

Table 3.15. Granger causality results of feature Price oil with five lags,
without a strong Granger causality.

Price oil - Lag = 5
ssr based F test F=1.8175 p=0.1065 df denom=1288 df num=5
ssr based chi2 test chi2=9.1659 p=0.1026 df=5
likelihood ratio test chi2=9.1334 p=0.1039 df=5
parameter F test F=1.8175 p=0.1065 df denom=1288 df num=5

Table 3.16. Granger causality results of feature Avg temp with five lags,
without a strong Granger causality.

Avg temp - Lag = 5
ssr based F test F=1.4011 p=0.2210 df denom=1288 df num=5
ssr based chi2 test chi2=7.0660 p=0.2158 df=5
likelihood ratio test chi2=7.0467 p=0.2172 df=5
parameter F test F=1.4011 p=0.2210 df denom=1288 df num=5
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Figure 3.9. Pearson correlation heatmap of all features.

Table 3.17. Granger causality results of feature Price oil with ten lags,
without a strong Granger causality.

Price oil - Lag = 10
ssr based F test F=1.8175 p=0.1065 df denom=1288 df num=10
ssr based chi2 test chi2=9.1659 p=0.1026 df=10
likelihood ratio test chi2=9.1334 p=0.1039 df=10
parameter F test F=1.8175 p=0.1065 df denom=1288 df num=10

3.2.5. Outliers

The columns Avg temp, Avg tone, and Price oil exhibited outliers, as observed in Figure

5.23, Figure 5.24, and Figure 5.25, respectively. The total count of outliers can be found

in Table 3.20. To address these outliers, a mean value was computed using the values

before and after the outlier, and the outlier value was replaced with the computed mean.

It is important to note that not all outliers were removed, as they provide valuable insights

into real-world occurrences.
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Figure 3.10. Pearson correlation heatmap between natural gas features
and crude oil features.

Table 3.18. Granger causality results of feature Wind temp with ten lags,
without a strong Granger causality.

Wind temp - Lag = 10
ssr based F test F=0.5456 p=0.7418 df denom=1288 df num=10
ssr based chi2 test chi2=2.7518 p=0.7382 df=10
likelihood ratio test chi2=2.7488 p=0.7386 df=10
parameter F test F=0.5456 p=0.7418 df denom=1288 df num=10

3.2.6. Aggregation and Lags

In this preprocessing step, the first action performed was pivoting the variable EventRoot-

Code into separate columns: Threaten, Protest, Exhibit force posture, Reduce relations,

Fight, and Use unconventional mass violence. Following this, the news features were ag-

gregated on a daily basis. The columns subjected to summation during the aggregation

process were NumMentions, NumSources, NumArticles, QuadClass Idx, and the columns
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Table 3.19. Granger causality results of feature Avg temp with ten lags,
without a strong Granger causality.

Avg temp - Lag = 10
ssr based F test F=1.4011 p=0.2210 df denom=1288 df num=10
ssr based chi2 test chi2=7.0660 p=0.2158 df=10
likelihood ratio test chi2=7.0467 p=0.2172 df=10
parameter F test F=1.4011 p=0.2210 df denom=1288 df num=10

Table 3.20. Summary of outliers

Column q1 q3 iqr lower bound upper bound count outliers perc outliers
AvgTone -6.404 -2.046 4.358 -12.941 4.491 224133 1.210
Price oil 52.64 70.73 18.09 25.505 97.865 454154 2.453
Avg temp 58.0 178.0 120.0 -122.0 358.0 23309 0.126

derived from the EventRootCode column. Additionally, the columns Wind temp, Avg-

Tone, Price oil, and Avg temp were averaged.

To ensure that no calculations were performed on the label column, the minimum value

of the natural gas price was selected.

As part of the preprocessing phase, we introduced a lag of 5 and 10 days to all time series.

This lagging process entails shifting the values of each column backward in time by the

specified number of days. By incorporating these lagged values as additional features, our

objective was to capture the temporal relationships in the data. The inclusion of lagged

features enables the models to take into account the historical values of each variable

when making predictions.

3.2.7. Scaler

In the last preprocessing step, we used a min-max scaler to transform the data. The

min-max scaler rescales the values of each feature to a range between zero and one. This

normalization technique, implemented using the Scikit-learn library, helps to ensure that

all features are on a comparable scale. By applying the min-max scaler, we aimed to

facilitate the training process of the models by reducing the impact of varying feature

magnitudes (Pedregosa et al., 2011).
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CHAPTER 4

Modeling and Performance Evaluation

The deep learning models chosen for this study were the Recurrent Neural Networks

(RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit Neural Networks

(GRUNN) from Tensorflow library. The selection of these models was complemented with

the use of Keras Tuner, a framework for hyperparameter optimization. This allowed us

to automatically search for the best hyperparameters for each model.

To assess the performance of the models, several evaluation metrics were employed, includ-

ing Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage

Error (MAPE), Median Absolute Error (MedAE), R-Squared (R2), Explained Variance

Score (EVS), and Root Mean Squared Error (RMSE).

The complete modeling workflow is depicted in Figure 4.1, illustrating the sequential steps

involved in model development and evaluation.

Figure 4.1. ETL process for column selection, data scaler, keras tuner,
and evaluation of the best model.

39



4.1. Modeling

4.1.1. Keras Tuner - Hyperparameters

Keras Tuner is a specialized library that optimizes hyperparameters in deep learning

models built using Keras. Hyperparameters are external settings that impact the train-

ing process, such as the learning rate, number of layers, and units per layer.

Keras Tuner automates the search for the best hyperparameters by utilizing algorithms

like random search, grid search, and Bayesian optimization. These strategies e�ciently

explore the hyperparameter space to identify the combination of settings that yield opti-

mal model performance (O’Malley et al., 2019).

In our study, we specifically used the random search approach to find the best model

configuration. We focused on three key hyperparameters: the number of layers, units,

and epochs. The epoch value was consistently set to 20, with early stopping applied after

5 epochs without improvement. For the number of layers, we tested a range from one

to five, incrementing by one layer per trial. The units were varied between 32 and 512,

incrementing by 32 units per trial. Commencing with a modest value like 32 and gradu-

ally increasing it by steps of 32 covers a diverse spectrum of options without needing to

meticulously test each and every value. This method achieves a harmonious equilibrium

between exploring a su�ciently extensive hyperparameter space and preventing excessive

consumption of computational resources and time.

In the second Keras Tuner trial, we refined the search based on the best models from the

previous attempt. We limited the number of layers to one or two, and the units were

constrained to the range of 32 to 512, maintaining the same increment value.

4.1.2. Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are specialized neural networks designed to process

sequential data, such as time series or natural language sequences. Unlike traditional neu-

ral networks, RNNs have connections that allow them to retain information from previous

time steps, enabling them to capture the temporal relationships in sequential data. At the

core of an RNN is the hidden state, which acts as a memory of past inputs and is updated

at each time step. This hidden state the current input and past information, allowing

RNNs to learn and model the patterns and dynamics of sequential data. However, a limi-

tation of RNNs is the vanishing gradient problem, which hampers their ability to capture

long-term dependencies. To address this issue, advanced variants like Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) has been developed. These variants

incorporate gating mechanisms to alleviate the vanishing gradient problem and improve

the RNNs’ capacity to capture and remember long-term dependencies (Goodfellow et al.,

2016).

Our investigation employed the random search strategy to find the optimal model config-

uration. We focused on three crucial hyperparameters: the number of layers, units, and
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epochs.

4.1.3. Long Short Term Memory (LSTM)

LSTM, a variation of Recurrent Neural Networks (RNNs), addresses the challenge of cap-

turing long-term dependencies in sequential data. By incorporating specialized memory

cells, LSTM models can retain information for extended periods, enabling them to ef-

fectively learn and represent temporal dependencies. Unlike traditional RNNs, LSTM

networks employ a gating mechanism that allows for selective retention and forgetting of

information at each time step. This mechanism comprises three gates: the input gate,

forget gate, and output gate. The input gate controls the flow of new information, while

the forget gate determines which information to discard. The output gate regulates the

output of the memory cell. Through dynamic memory updates and control, LSTM net-

works excel in capturing and preserving long-term dependencies, making them highly

suitable for tasks such as speech recognition, language modeling, and machine translation

(Goodfellow et al., 2016).

4.1.4. Gated Recurrent Unit Neural Networks (GRUNN)

Gated Recurrent Unit for Neural Networks (GRUNN) is an advanced variation of recurrent

neural networks (RNNs) that overcomes limitations found in traditional RNN architec-

tures. GRUNN incorporates gating mechanisms to control the flow of information within

the network, allowing it to selectively retain or update information at each time step. This

addresses the issue of the vanishing gradient problem, which can hinder training in deep

neural networks. By selectively preserving relevant information and discarding irrelevant

information, GRUNN models can e↵ectively capture long-term dependencies in sequential

data. The gated recurrent units in GRUNN consist of a reset gate and an update gate,

which govern the information flow through the network. The reset gate determines what

information from previous time steps should be forgotten, while the update gate controls

the blending of new input with the existing hidden state. This adaptive gating mecha-

nism empowers GRUNN models to capture intricate temporal patterns and dependencies,

making them highly suitable for tasks involving time series forecasting, natural language

processing, and speech recognition (Goodfellow et al., 2016).

The GRUNN has its function, which dynamically uses the Keras tuner to find the best

layer and unit number. The compile is set with Adam optimizer, loss is MSE, and the

metric is RMSE.

4.2. Performance Evaluation

In each model, we developed a baseline with either 5 or 10 lagged values, consisting solely

of the natural gas price feature. Subsequently, we conducted model training using all

available features listed in Table 4.1.

41



With a test dataset of 258 data points, we predicted the same size time daily.

Abbreviations for the di↵erent feature combinations can be found in Table 4.3. The

optimal hyperparameters for each trained model are presented in Table 4.2, while the

performance of each model is ranked in Table 4.4.

Table 4.1. All features applied to the model.

Column Name Descritption

GoldsteinScale Numeric measure indicating the level of conflict or cooperation in political events.
NumMentions Represents the number of mentions of an event in various sources
NumMentions Number of mentions of the event
NumArticles Number of articles related to the event
QuadClass Idx Index for the QuadClass category
AvgTone Average tone of the event
Price oil Crude oil price
Avg temp Average temperature
Threaten Cameo code to threaten
Protest Cameo code to protest
Exhibit force posture Cameo code to exhibit force posture
Reduce relations Cameo code to reduce relations
Fight Cameo code to fight
Use unconvetional mass violence Cameo code to use unconventional mass violence
Price ngp Natural gas price

4.2.1. Best model: Recurrent Neural Networks (RNN)

Among all the models trained, the RNN model outperformed the others. This model

incorporated the features of natural gas price, crude oil price, and average tone of the

extracted news. With ten lagged values, one layer, and 224 units, the RNN model achieved

an RMSE of 11.925 euros. The prediction made by the RNN model is illustrated in Figure

4.2 in the form of a time-series plot.

4.2.2. Best model: Long Short Term Memory (LSTM)

The LSTM model, which utilized the same set of features as the best model (natural gas

price, crude oil price, and average tone), ranked fourth among the best models. With ten

lagged values, one layer, and 320 units, the LSTM model achieved an RMSE of 11.954.

The prediction made by the LSTM model is depicted in Figure 4.5 as a time-series plot.

4.2.3. Best model: Gated Recurrent Unit Neural Networks (GRUNN)

The GRUNN model, utilizing natural gas price and crude oil price as features, secured

the second position among the best models. With five lagged values, one layer, and 480

units, the GRUNN model obtained an RMSE of 11.935. The prediction generated by the

GRUNN model is illustrated in Figure 4.3 in the form of a time-series plot.
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Figure 4.2. Prediction plot curve of RNN model with natural gas price,
crude oil price, and average tone as features, and lag equal to 10.

4.2.4. Comparative Analysis

The literature review covered various prediction horizons, utilizing di↵erent models, fea-

tures, and preprocessing methods. Our comparison focuses on single and hybrid models

for predicting daily natural gas prices, similar to other studies.

Among the single models reviewed, the study by Al-Sharoot and Alramadhan (2019)

achieved the best performance using Auto-regressive moving average (ARMA) and Group

Method of Data Handling (GMDH) models with 527 observations from August 29, 2016,

to August 27, 2018, without exogenous variables. Their mean squared error (MSE) was

0.0214.

Another notable single model from Qin et al. (2019) employed Ensemble Empirical Mode

Decomposition (EEMD) and Local Linear Prediction (LLP) with 1678 observations from

January 4, 2010, to August 15, 2016, also without exogenous variables. Their root mean

squared error (RMSE) was 0.035.

Our study’s best-performing model was a Recurrent Neural Network (RNN) with 10 lags,

incorporating natural gas price, crude oil price, and average tone as exogenous variables.

We used 1292 observations from January 2, 2018, to December 30, 2022, and achieved an

RMSE of 11.925.

However, it is important to note that our results were not as favorable as the best results

in the literature. This disparity is primarily attributed to the complexity of the prediction
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Figure 4.3. Prediction plot curve of GRUNN model with natural gas price
and crude oil price as features, and lag equal to 5.

period chosen, which coincided with the Russo-Ukrainian War. The geopolitical situation

during this period likely contributed to the model’s reduced performance.

44



Figure 4.4. Validation curve of RNN model with natural gas price and
crude oil price as features, and lag equal to 10.
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Table 4.2. All models with the best hyperparameter selected by Keras Tuner.

Model Name Features Code RMSE Best Num Layers Best Num Units

RNN ngp oil tone 11,925 1 224
GRUNN ngp oil 11,935 1 480
RNN ngp oil 11,942 1 96
LSTM ngp oil tone 11,954 1 320
LSTM ngp oil 11,962 1 96
RNN base line 11,964 1 192
GRUNN base line 11,979 1 224
GRUNN ngp oil 11,996 1 32
GRUNN all features 12,001 1 32
RNN base line 12,010 1 32
GRUNN base line 12,023 1 32
GRUNN ngp oil 12,043 1 32
LSTM all features 12,045 1 384
RNN ngp oil 12,060 1 160
GRUNN all features 12,066 1 128
RNN ngp tone 12,077 1 32
GRUNN ngp oil 12,087 2 32
LSTM ngp oil tone 12,090 1 128
GRUNN all features 12,098 1 160
GRUNN ngp oil tone 12,116 2 32
RNN all features 12,124 1 320
GRUNN ngp oil tone 12,125 1 96
LSTM ngp oil tone 12,129 1 192
RNN ngp oil tone 12,141 1 96
LSTM ngp oil tone 12,142 1 256
RNN ngp oil 12,145 1 96
GRUNN ngp tone 12,161 1 128
GRUNN ngp tone 12,165 1 160
RNN ngp tone 12,178 1 96
RNN all features 12,206 1 128
LSTM all features 12,244 1 384
GRUNN ngp oil tone 12,250 2 64
LSTM base line 12,258 1 32
GRUNN all features 12,268 1 192
LSTM ngp tone 12,279 1 64
GRUNN ngp oil tone 12,282 2 64
RNN ngp tone 12,293 1 480
RNN ngp oil tone 12,302 1 384
LSTM ngp oil 12,323 1 96
LSTM ngp tone 12,338 1 64
LSTM base line 12,339 1 224
RNN ngp tone 12,340 2 64
LSTM ngp oil 12,341 1 160
RNN ngp oil 12,363 1 32
RNN ngp oil tone 12,369 1 32
LSTM ngp oil 12,384 1 320
LSTM ngp tone 12,483 1 160
RNN all features 12,520 1 64
GRUNN ngp tone 12,555 1 480
LSTM all features 12,606 1 416
RNN all features 12,617 1 416
LSTM ngp tone 12,717 1 32
GRUNN ngp tone 13,286 3 512
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Table 4.3. Features code description.

Code Description

ngp oil tone Natural gas price, crude oil price, and average tone
ngp oil Natural gas price and crude oil price
base line Natural gas price
all features All features
ngp tone Natural gas price and average tone

Figure 4.5. Prediction plot curve of LSTM model with natural gas price,
crude oil price, and average tone as features, and lag equal to 10.
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Table 4.4. Result for each model executed with features applied, lags
used, MAE, MSE, MAPE, MedAE, R2, EVS, and RMSE performance met-
rics.

Model Name Features Code Lags MAE MSE MAPE MedAE R2 EVS RMSE

RNN ngp oil tone 10 7,846 142,215 5,759 4,759 0,946 0,946 11,925
GRUNN ngp oil 5 7,811 142,438 5,712 4,470 0,946 0,946 11,935
RNN ngp oil 10 7,955 142,604 5,795 4,925 0,946 0,947 11,942
LSTM ngp oil tone 10 7,902 142,907 5,777 4,609 0,946 0,946 11,954
LSTM ngp oil 10 7,956 143,096 5,836 4,791 0,946 0,946 11,962
RNN base line 5 7,881 143,142 5,749 4,989 0,946 0,946 11,964
GRUNN base line 5 7,903 143,498 5,732 4,771 0,946 0,946 11,979
GRUNN ngp oil 5 7,838 143,903 5,705 4,780 0,946 0,946 11,996
GRUNN all features 10 7,941 144,028 5,760 4,957 0,946 0,946 12,001
RNN base line 10 8,028 144,248 5,860 4,859 0,946 0,946 12,010
GRUNN base line 10 7,987 144,543 5,770 5,030 0,946 0,947 12,023
GRUNN ngp oil 10 7,890 145,023 5,763 4,802 0,945 0,946 12,043
LSTM all features 10 8,005 145,089 5,896 4,964 0,945 0,945 12,045
RNN ngp oil 5 7,940 145,433 5,744 4,961 0,945 0,946 12,060
GRUNN all features 5 7,851 145,579 5,814 5,044 0,945 0,945 12,066
RNN ngp tone 10 8,139 145,842 5,918 5,222 0,945 0,947 12,077
GRUNN ngp oil 10 8,071 146,096 5,795 5,006 0,945 0,946 12,087
LSTM ngp oil tone 5 7,968 146,174 5,743 4,711 0,945 0,946 12,090
GRUNN all features 10 7,859 146,367 5,814 4,869 0,945 0,945 12,098
GRUNN ngp oil tone 10 8,053 146,788 5,834 4,928 0,945 0,946 12,116
RNN all features 5 8,046 146,984 5,857 4,786 0,945 0,945 12,124
GRUNN ngp oil tone 5 7,901 147,023 5,722 4,785 0,945 0,945 12,125
LSTM ngp oil tone 10 8,027 147,106 5,786 5,038 0,945 0,945 12,129
RNN ngp oil tone 5 7,965 147,411 5,826 5,232 0,944 0,945 12,141
LSTM ngp oil tone 5 7,960 147,423 5,756 4,870 0,944 0,945 12,142
RNN ngp oil 10 8,019 147,511 5,852 4,585 0,944 0,945 12,145
GRUNN ngp tone 10 8,132 147,880 5,857 5,268 0,944 0,946 12,161
GRUNN ngp tone 5 8,061 147,980 5,830 5,080 0,944 0,946 12,165
RNN ngp tone 5 8,111 148,306 5,917 5,085 0,944 0,945 12,178
RNN all features 10 8,196 148,987 5,925 5,143 0,944 0,945 12,206
LSTM all features 10 8,143 149,917 6,098 5,279 0,943 0,944 12,244
GRUNN ngp oil tone 5 8,112 150,070 5,782 4,965 0,943 0,945 12,250
LSTM base line 5 8,231 150,256 5,883 5,011 0,943 0,945 12,258
GRUNN all features 5 8,106 150,505 6,006 5,217 0,943 0,944 12,268
LSTM ngp tone 5 8,259 150,777 5,892 5,405 0,943 0,945 12,279
GRUNN ngp oil tone 10 8,319 150,853 5,973 5,515 0,943 0,946 12,282
RNN ngp tone 5 8,061 151,108 5,928 5,040 0,943 0,943 12,293
RNN ngp oil tone 5 8,125 151,348 5,947 5,258 0,943 0,944 12,302
LSTM ngp oil 5 8,182 151,856 5,836 4,919 0,943 0,945 12,323
LSTM ngp tone 10 8,293 152,219 5,897 5,398 0,943 0,945 12,338
LSTM base line 10 8,271 152,239 5,943 5,230 0,943 0,945 12,339
RNN ngp tone 10 8,343 152,281 6,017 5,541 0,943 0,945 12,340
LSTM ngp oil 5 8,189 152,294 5,848 4,932 0,943 0,944 12,341
RNN ngp oil 5 8,226 152,839 5,886 5,420 0,942 0,945 12,363
RNN ngp oil tone 10 8,262 152,999 6,021 5,089 0,942 0,945 12,369
LSTM ngp oil 10 8,244 153,367 5,887 4,949 0,942 0,944 12,384
LSTM ngp tone 10 8,388 155,832 5,953 5,604 0,941 0,945 12,483
RNN all features 5 8,414 156,747 6,014 5,639 0,941 0,944 12,520
GRUNN ngp tone 5 8,443 157,629 5,970 5,639 0,941 0,945 12,555
LSTM all features 5 8,229 158,906 6,101 5,023 0,940 0,940 12,606
RNN all features 10 8,557 159,199 6,246 5,302 0,940 0,941 12,617
LSTM ngp tone 5 8,573 161,718 6,010 5,560 0,939 0,944 12,717
LSTM all features 5 9,072 171,336 6,681 6,078 0,935 0,936 13,090
GRUNN ngp tone 10 9,162 176,510 6,437 6,370 0,933 0,942 13,286
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CHAPTER 5

Conclusions

Throughout our study, we explored various features for predicting natural gas prices, con-

sidering di↵erent scenarios such as using only natural gas prices or combinations with

crude oil prices and average tone from news sources. Among the top five performing

models, incorporating crude oil price as an exogenous variable significantly enhanced the

predictive accuracy, consistent with previous findings (Li et al., 2021). Surprisingly, the

best model emerged when we included the feature of average tone in our input data, re-

sulting in a 7.82% improvement compared to the same model without it.

By filtering the extensive GDELT Big Data using specific Cameo codes (see Table 3.2), we

achieved improved performance during conflict times. Contrary to the notion proposed

by Čeperić et al. (2017), who suggested ”less data is better” for short-term prediction, we

found that using the relevant variables is crucial for accurate predictions.

Our optimization process, employing the Random Search optimizer, demonstrated an ef-

ficient selection of hyperparameters and facilitated in-depth analysis of each interaction.

Despite these e↵orts, the best model’s RMSE of 11.925 fell short when compared to the

literature, mainly due to an abrupt change in values caused by the Russo-Ukrainian War

and Europe’s high dependence on Russian natural gas prices.

Nonetheless, our study’s best-performing model remained the Recurrent Neural Networks

(RNN) with 10 lags, incorporating natural gas price, crude oil price, and average tone as

exogenous variables. The entire observation has 1292 data points from January 2, 2018, to

December 30, 2022, we achieved promising results, although the worst model, a GRUNN

with natural gas price and average tone, had an RMSE of 13.286 (see Table 4.4).

In conclusion, this study highlights the negative impact on the performance of natu-

ral gas price models during war times and emphasizes the positive influence of specific

Cameo codes on model results. Moreover, the findings reinforce the strong correlation

and causation between crude oil and natural gas prices, contributing to improved model

performance.

To enhance the methodology, implementing version management tools like MLFlow could

have been beneficial. Additionally, further exploration of di↵erent Cameo codes and ex-

haustive testing of all possible feature combinations extracted from GDELT could have

been conducted.
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Appendix

Table 5.1. Data size used to forecast natural gas price

References Daily Weekly Monthly Yearly

Naderi et al., 2019 230
Al-Sharoot and Alramadhan, 2019 527

J. Wang et al., 2021 1042
Thakur et al., 2015 1146

Hu and Trafalis, 2011 1457
Qin et al., 2019 1678

Čeperić et al., 2017 1800 260
Abrishami and Varahrami, 2011 1825

Berrisch and Ziel, 2022 2068 2091
Y. Tang et al., 2019 2372
Salehnia et al., 2013 3803 792 182
Moting et al., 2019a 4260 886 204
L. Tang et al., 2018 4873

Siddiqui, 2019 5470
Nguyen and Nabney, 2010 130

Moting et al., 2019 240
Azadeh et al., 2012 40
Jianwei et al., 2019 420
Jin and Kim, 2015 726
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Table 5.2. Category columns related to actor number one in the articles.

Column Description

Actor1Code Code representing the primary actor involved in the
event

Actor1Name Name of the primary actor involved in the event
Actor1CountryCode Country code associated with the primary actor
Actor1KnownGroupCode Code representing a known group associated with the

primary actor
Actor1EthnicCode Code representing the ethnic group associated with

the primary actor
Actor1Religion1Code Code representing the primary religion associated

with the primary actor
Actor1Religion2Code Code representing the secondary religion associated

with the primary actor
Actor1Type1Code Code representing the primary type of the primary

actor
Actor1Type2Code Code representing the secondary type 1 of the primary

actor
Actor1Type3Code Code representing the secondary type 2 of the primary

actor
QuadClass Code representing the high-level category of the event
Actor1Geo Type Type of the geographic location associated with the

primary actor
Actor1Geo FullName Full name of the geographic location associated with

the primary actor
Actor1Geo CountryCode Country code associated with the geographic location

of the primary actor
Actor1Geo ADM1Code ADM1 code associated with the geographic location

of the primary actor
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Table 5.3. Category columns related to actor number two in the articles.

Column Description

Actor2Code Code representing the secondary actor involved in the
event

Actor2Name Name of the secondary actor involved in the event
Actor2CountryCode Country code associated with the secondary actor
Actor2KnownGroupCode Code representing a known group associated with the

secondary actor
Actor2EthnicCode Code representing the ethnic group associated with

the secondary actor
Actor2Religion1Code Code representing the primary religion associated

with the secondary actor
Actor2Religion2Code Code representing the secondary religion associated

with the secondary actor
Actor2Type1Code Code representing the primary type of the secondary

actor
Actor2Type2Code Code representing the secondary type 1 of the sec-

ondary actor
Actor2Type3Code Code representing the secondary type 2 of the sec-

ondary actor
Actor2Geo Type Type of the geographic location associated with the

secondary actor
Actor2Geo FullName Full name of the geographic location associated with

the secondary actor
Actor2Geo CountryCode Country code associated with the geographic location

of the secondary actor
Actor2Geo ADM1Code ADM1 code associated with the geographic location

of the secondary actor

Table 5.4. Category geographic columns.

Column Description

ActionGeo Type Type of the geographic location associated with the
action

ActionGeo FullName Full name of the geographic location associated with
the action

ActionGeo CountryCode Country code associated with the geographic location
of the action

ActionGeo ADM1Code ADM1 code associated with the geographic location
of the action
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Table 5.5. Integer and decimal columns of GDELT.

Column Name Description

GKGRECORDID Unique identifier for the GKG record
Date Date of the event
EventBaseCode Code representing the base event category
EventRootCode Code representing the root event category
Actor1Geo Lat Latitude of the geographic location for Actor 1
Actor1Geo Long Longitude of the geographic location for Actor 1
Actor2Geo Lat Latitude of the geographic location for Actor 2
Actor2Geo Long Longitude of the geographic location for Actor 2
ActionGeo Lat Latitude of the geographic location for the action
ActionGeo Long Longitude of the geographic location for the action
NumMentions Represents the number of mentions of an event in var-

ious sources
NumSources Number of sources reporting the event
NumArticles Number of articles related to the event
AvgTone Average tone of the event
GoldsteinScale Numeric measure indicating a level of conflict or co-

operation in political events.

Table 5.6. Pearson correlation with values between -0.7 and 0.7 with nat-
ural gas price.

Variable Correlation

Price ngp 1.000000
Price oil 0.722026
Open oil 0.725523
High oil 0.737906
Low oil 0.710763
Open ngp 0.999004
High ngp 0.999524
Low ngp 0.999375
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Table 5.7. Pearson correlation with negative values with natural gas price.

Variable Correlation

Volume ngp -0.189236
Wind temp -0.040241
Actor2Geo Type Idx -0.023385
Actor1Geo Type Idx -0.020253
QuadClass Idx -0.019151
ActionGeo Type Idx -0.018957
GoldsteinScale -0.017096
Prcp temp -0.016933
NumSources -0.015359
NumArticles -0.013915
NumMentions -0.013703
Actor2Type1Code Idx -0.010697
Actor1Type1Code Idx -0.010565
Actor2Name Idx -0.008764
Actor1Name Idx -0.008247
Actor2Type2Code Idx -0.006322
Actor1Religion1Code Idx -0.004739
Actor2Code Idx -0.004414
AvgTone -0.004131
ActionGeo CountryCode Idx -0.003934
Actor1Code Idx -0.003631
Actor2Religion1Code Idx -0.003412
Actor1Type2Code Idx -0.003282
Actor2Geo CountryCode Idx -0.003195
Actor1Geo CountryCode Idx -0.002933
Actor1Religion2Code Idx -0.002894
Actor2Religion2Code Idx -0.002311
Actor1Type3Code Idx -0.001329
Actor2Type3Code Idx -0.001270
Actor1EthnicCode Idx -0.001230
Actor2EthnicCode Idx -0.001021
Actor2CountryCode Idx -0.000579
Actor1CountryCode Idx -0.000467
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Table 5.8. Pearson correlation with positive values with natural gas price.

Variable Correlation

ActionGeo FullName Idx 0.000369
Actor2Geo FullName Idx 0.000370
Actor1Geo FullName Idx 0.000572
Actor2KnownGroupCode Idx 0.003669
ActionGeo ADM1Code Idx 0.005056
Actor2Geo ADM1Code Idx 0.005138
Actor1Geo ADM1Code Idx 0.005856
Actor1KnownGroupCode Idx 0.005979
EventRootCode 0.013956
EventBaseCode 0.015387
Change % oil 0.017322
Max temp 0.055238
Avg temp 0.068243
Min temp 0.078298
Low oil 0.710763
Price oil 0.722026
Open oil 0.725523
High oil 0.737906
Open ngp 0.999004
Low ngp 0.999375
High ngp 0.999524
Price ngp 1.000000
IsRootEvent NaN

Table 5.9. Pearson correlation matrix with values between -0.7 and 0.7
with natural gas price.

Variable Price oil Open oil High oil Low oil Open ngp High ngp Low ngp Price ngp

Price oil 1.000000 0.992711 0.994759 0.997807 0.721894 0.722315 0.721408 0.722026
Open oil 0.992711 1.000000 0.997544 0.994174 0.725619 0.725832 0.725099 0.725523
High oil 0.994759 0.997544 1.000000 0.992507 0.737587 0.738181 0.737114 0.737906
Low oil 0.997807 0.994174 0.992507 1.000000 0.710740 0.711108 0.710183 0.710763
Open ngp 0.721894 0.725619 0.737587 0.710740 1.000000 0.999309 0.999440 0.999004
High ngp 0.722315 0.725832 0.738181 0.711108 0.999309 1.000000 0.998746 0.999524
Low ngp 0.721408 0.725099 0.737114 0.710183 0.999440 0.998746 1.000000 0.999375
Price ngp 0.722026 0.725523 0.737906 0.710763 0.999004 0.999524 0.999375 1.000000
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Figure 5.1. Scatter plot between natural gas price and Actor1Code Idx feature.
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Figure 5.2. Scatter plot between natural gas price and Actor1Name Idx feature.
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Figure 5.3. Scatter plot between natural gas price and average tempera-
ture feature.
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Figure 5.4. Scatter plot between natural gas price and average tone feature.
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Figure 5.5. Scatter plot between natural gas price and the number of
articles feature.
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Figure 5.6. Scatter plot between natural gas price and the number of
mentions feature.

xiv



Figure 5.7. Scatter plot between natural gas price and the number of
sources feature.
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Figure 5.8. Scatter plot between natural gas price and precipitation feature.
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Figure 5.9. Scatter plot between natural gas price and wind feature.
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Figure 5.10. Scatter plot between natural gas price and crude oil price feature.
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Figure 5.11. Visualization of natural gas prices with null values filled
with the backward values method.
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Figure 5.12. Visualization of natural gas prices with null values filled
with the forward values method.
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Figure 5.13. Visualization of natural gas prices with null values filled
with the interpolation cubic values method.
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Figure 5.14. Visualization of natural gas prices with null values filled
with the interpolation linear values method.
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Figure 5.15. Visualization of natural gas prices with null values filled
with the interpolation quadratic values method.
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Figure 5.16. Visualization of natural gas prices with null values filled
with mean value.
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Figure 5.17. Visualization of natural gas prices with null values filled
with the seasonal values from the seasonal decomposition method.
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Figure 5.18. Visualization of natural gas prices with null values filled
with the trend values from the seasonal decomposition method.
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Figure 5.19. Visualization of natural gas prices with null values filled
with the trend values from the seasonal decomposition method.
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Figure 5.20. Validation curve of RNN model with natural gas price, crude
oil price, and average tone as features, and lag equal to 10.
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Figure 5.21. Validation curve of GRUNN model with natural gas price
and crude oil price as features, and lag equal to 5.
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Figure 5.22. Prediction plot of RNN model with natural gas price and
crude oil price as features, and lag equal to 10.
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Figure 5.23. Boxplot of average temperature.
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Figure 5.24. Boxplot of average tone.
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Figure 5.25. Boxplot of crude oil price.
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