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Explainable artificial intelligence (XAI), known to produce explanations so that predictions from AI models can be
understood, is commonly used to mitigate possible AI mistrust. The underlying premise is that the explanations of the
XAI models enhance AI trust. However, such an increase may depend on many factors. This article examined how trust
in an AI recommendation system is affected by the presence of explanations, the performance of the system, and the level
of risk. Our experimental study, conducted with 215 participants, has shown that the presence of explanations increases AI
trust, but only in certain conditions. AI trust was higher when explanations with feature importance were provided than
with counterfactual explanations. Moreover, when the system performance is not guaranteed, the use of explanations seems
to lead to an overreliance on the system. Lastly, system performance had a stronger impact on trust, compared to the
effects of other factors (explanation and risk).

1. Introduction

The use of artificial intelligence (AI) systems is becoming
increasingly common, with applications such as driverless
cars, automated health diagnostics, automated financial
decisions, and smart buildings. For AI systems to be relied
upon, they must be trustworthy to some extent. This trust-
worthiness is determined by the AI model’s ability to adhere
to a specific contract [1], such as those related to privacy and
data governance, diversity, nondiscrimination and fairness,
and accountability [2]. Ultimately, it is the user who must
trust the system to take advantage of its capabilities effec-
tively, and this trust may not necessarily be related to the
trustworthiness of the system [3]. This has led to an
increased focus on AI trust, with research being conducted
in both academia and the AI industry. In healthcare, for
example, there is already relevant work on AI trust and the
problems associated with it [4], such as the disuse of AI tools
and inefficient collaboration with clinical decision support
tools [5].

Of the many concerns that can be raised about trusting
an AI system, we highlight the following: a mismatch
between AI trust (how much someone trusts it) and its
inherent trustworthiness [6]. This mismatch can lead to
either overreliance on the AI system, or underreliance on it
[7]. Recent research has shown that even in scenarios where
an AI system assists on a human decision-related task and
where its suggested outcome is improved, people might still
doubt the provided information from it [8]. One of the most
used techniques to mitigate mistrust in AI and even increase
its trust is the use of explainable artificial intelligence (XAI)
models. These models are developed with the goal of gener-
ating explanations about how a system derives its predic-
tions/recommendations so that the user can better
understand its inner workings [9]. This approach is based
on two premises: (1) explanations are required to elucidate
the logic of AI systems for better comprehension, and (2)
the explanations generated from XAI models are sufficient
to enhance AI trust in the system. Premise 1 is still under
open debate, as it is unclear whether the future of AI systems
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should be based on black box models or not, at least in high-
risk domains [10]. Many researchers believe that the best
solution is the development and use of AI systems that are
intrinsically interpretable themselves [10]. Regarding pre-
mise 2, there is still no strong evidence that the explanations
generated by XAI models are sufficient to enhance AI trust.
There is evidence that certain explanations can help, but it
depends on the type and/or context of the XAI model [11].

Our primary objective is to delve into the intricate inter-
play between XAI models and AI trust, while also examining
potential moderating variables. This investigation seeks to
gain insight into user trust in AI. To achieve this, we formu-
lated a hypothesis regarding the impact of XAI models on AI
trust, taking into consideration the risk level and the perfor-
mance (or trustworthiness) of the AI system. With this goal
in mind, we conducted an experimental study centred
around a decision-making task featuring a recommendation
system. Through the analysis of various variables, we aimed
to disentangle the concepts of the “intrinsic trustworthiness”
of a system and the trust attributed to it by users.

This paper addresses the following three research
questions:

RQ1. How do different explanations affect user’s trust in
AI systems?

RQ2. How do the levels of risk of the user’s decision-
making play a role in the user’s trust in AI systems?

RQ3. How does the performance of the AI system play a
role in the user’s AI trust even when an explanation is
present?

2. Related Work

2.1. XAI Models. The utilization of AI systems is on the rise;
however, they often operate as complex black box models
that defy human comprehension [12]. Explainable AI
(XAI) research strives to address this challenge by devising
methods to elucidate the reasoning behind AI predictions.
The simplest approach for model explanation involves
deriving meaning directly from the model itself, leading to
interpretable machine learning (ML) models [10]. These
models are straightforward and comprehensible in their
behaviour. They typically encompass logistic and linear
regressions, decision trees, k-nearest neighbours, and rule-
based learners [13]. In contrast, post hoc explanations [14]
materialize after training the ML model and result from a
separate system whose sole function is generating explana-
tions. This category encapsulates diverse techniques that
diverge in their mechanisms, objectives, and outputs. In
response, efforts have been made to categorize and group
these techniques [9, 15]. Among these categorizations, three
major classes of XAI post hoc explanations have emerged:
feature importance explanations, example-based explana-
tions, and explanations through simplification [15].

2.1.1. Feature Importance Explanations. This category of
techniques is aimed at pinpointing the contributions of indi-
vidual variables to the AI system’s predictions [16]. This can
occur either on a local scale, involving the significance of
each feature for a single observation, or globally, encompass-

ing the importance of each feature for the entire model.
Prominent techniques in this group include the Shapley
values [17], the LIME technique [18], and saliency maps [19].

2.1.2. Explanations by Example. This category presents out-
comes in the form of examples akin to the observation with
identical model predictions or counterfactual examples illus-
trating divergent model predictions. The underlying concept
is that users can comprehend the model’s rationale by con-
trasting examples with original observations, thus drawing
informed conclusions [20–22].

In this context, counterfactual examples are hypothetical
instances demonstrating how a distinct model prediction
could have been achieved based on a given observation
[23]. They illustrate variations of the same observation with
slight alterations that would result in a different outcome.

2.1.3. Explanations by Simplification. This category stream-
lines the model’s rationale by formulating straightforward
general rules that elucidate its behaviour. Rule-based
learners such as decision trees and genetic programming
rule-based extractions can be applied atop the ML model.

In the realm of AI, the most prevalent explanations fall
under the feature importance category. This holds true when
utilizing explanations to bolster trust. Similarly, example-
based explanations, which showcase counterfactual
instances, are deemed a method to emulate human thought
processes and reconstruct counterfactual scenarios [24].
Consequently, this study centres on these two explanation
categories, given their frequent association with AI trust.

2.2. Trust on AI Systems. The primary incentive for employ-
ing XAI lies in its potential to bolster user trust in reliable AI
systems. However, while prior research has established a
positive correlation between explainability and enhanced
trust [25, 26], there is also evidence that challenges this
notion. A controlled experiment suggested that when users
engage in providing feedback to an AI system to enhance
its performance, both user trust and their perception of
model accuracy decline [27]. In contexts of human-AI col-
laboration, the perception of an AI system has been found
to be influenced by several variables, including communica-
tion direction and the nature of the model underpinning the
AI system [28]. Beyond the usual human aversion to algo-
rithms [29], research indicates that individuals prefer human
decision-making discretion over algorithms that rigidly
apply human-derived fairness principles to specific cases
[30]. This preference stems from humans’ capacity for inde-
pendent judgment, allowing them to transcend fairness prin-
ciples as necessary.

These investigations underscore the delicate nature of
user trust in AI systems and cast doubt on the assumed ben-
efits of XAI. An additional pertinent study evaluated the uti-
lization of interpretability tools by data scientists as part of
their regular workflow [31]. The findings revealed instances
of misapplication and unjustified trust due to interpretability
tools. The authors proposed that the mere presence of XAI
models might lead to unwarranted overtrust. This study
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introduces the intriguing notion that XAI explanations
could potentially enhance trust in AI systems, irrespective
of the AI system’s actual performance or trustworthiness.

Moreover, a strand of research has delved into the
dynamics of collaboration between AI systems and humans
functioning as a unified team. Bansal et al. [32, 33] under-
scored the significance of user-mental models of AI systems
in collaborative settings. They showcased that a parsimoni-
ous AI system with an error boundary aligned with the
user’s mental model could enhance team performance (com-
prising both AI systems and humans) more effectively than
mere model accuracy [32]. This is because humans and AI
systems can synergistically operate, with humans compre-
hending the model’s error boundaries and identifying inac-
curacies in its predictions. Additionally, the concept of
compatibility was introduced to describe updates in model
performance [33]. These updates should harmonize with
prior model versions, ensuring coherency with the user’s
mental model and maintaining team performance.

Similarly, Wang et al. [34] investigated how human
decision-makers in collaborative human-AI settings adopt
AI recommendations. Their findings indicate that, in AI-
assisted decision-making, human decisions are influenced
by their individual judgment and confidence in the
decision-making process. People often lean on their own
judgment to assess whether to adopt AI recommendations.
Moreover, as the stakes of decisions intensify, individuals
tend to diminish their faith in AI recommendations’ accu-
racy and rely more heavily on their own judgments.

Studies exploring collaborative human-AI scenarios also
examined trust in AI assistants with varying levels of exper-
tise [35]. The outcomes revealed that participants could dis-
tinguish between expert and nonexpert AI assistants for a
given task, enabling them to calibrate their reliance on AI
to optimize team performance.

The consensus is that explainable AImodels play a pivotal
role in understanding AI system decisions and enhancing
user confidence and trust in these systems [6]. Previous
research has indeed explored and substantiated the
assumption that AI explainability positively impacts trust
[25, 36]. Additionally, evidence suggests that counterfac-
tual explanations, due to their natural contrastive attri-
butes aligning with human causal reasoning, offer a
valuable means of explaining models [24, 37]. However,
despite this, the most widely adopted XAI technique con-
tinues to be feature importance explanations.

Looking at the risk involved in a decision-making task,
Jacovi et al. [1] posit that trust in AI cannot exist without
an element of risk, while Mayer et al. [38] introduced a social
trust model that perceives risk as an outcome of trust. These
distinct perspectives on risk within trust scenarios can be
harmonious. Nevertheless, a consensus on how risk impacts
trust in AI when explanations are incorporated remains
absent. These studies contribute insights into trust in AI
and users’ expectations. Factors such as interactions, system
communication, and the system’s mental model are pivotal
in decision-making tasks. However, to our current knowl-
edge, the impact of incorporating explanations into
decision-making scenarios on trust in AI remains uncharted

territory in cases where the system’s trustworthiness is
uncertain, and task stakes are high.

3. Hypotheses

The following hypotheses state our expectations regarding
the effect of explanations on AI trust in decision-making sce-
narios, taking into account the stakes of the decision and the
trustworthiness of the AI model. The hypotheses were based
on the body of literature on AI trust and XAI presented in
the previous section.

H1. Trust in AI systems is higher when explanations of
the system are present (specifically explanations of the
importance of features and counterfactual explanations)
compared to the absence of explanations

H2. The presence of explanations enhances trust in AI
systems, regardless of the AI performance

H3. Trust in AI is lower when the level of risk is high

4. Method

To address our hypotheses, we created a web-based game as
an experimental platform. This game features a recom-
mender system (AI) that assists players in making a series
of decisions. The context of the game and the AI model
was centred around the problem of detecting the edibility
of mushrooms, a scenario commonly employed in AI appli-
cations. Both the game and the AI model were built from the
ground up. In the upcoming sections, we outline the devel-
opment process of both the game and the AI model.

4.1. Game Development. The mushroom game is a virtual
game in which players evaluate the edibility of mushrooms,
determining whether to consume them or avoid them. On
the screen, information is presented on the characteristics
of mushrooms and a cartoon depiction of them to aid in
decision-making. For additional guidance, an AI recom-
mender system suggests whether the mushroom should be
eaten or avoided.

The game encompasses a series of 12 mushrooms, each
requiring a decision from the player. Thus, there are 12 dis-
tinct decision-making tasks to complete. Following each
decision (to eat or avoid the mushroom), the player receives
feedback on its soundness, indicating whether it was a
favourable choice or not. Upon completing the sequence,
the player receives a final score reflecting the count of edible
and poisonous mushrooms consumed. The ultimate objec-
tive of the game is to consume as many mushrooms as pos-
sible while avoiding any poisonous ones.

4.2. AI Model Development. The AI recommender system
utilized in the game was developed to predict the edibility
of mushrooms. To create this AI model, data was collected
from the Mushroom’s dataset, available in the UCI Machine
Learning Repository [39]. This dataset contains 8124 entries,
encompassing 22 categorical variables and a binary target
variable indicating the mushroom’s edibility. These variables
span various aspects of the mushroom, including odour,
habitat, and physical characteristics of the cap, gill, stalk,
and veil.
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To suit the game’s context, the AI model was con-
structed with a limited set of features for two primary rea-
sons: (1) to maintain a realistic AI model with a nonzero
error rate and (2) to present only a manageable number of
features to players, reducing cognitive load. Consequently,
a feature selection process was performed based on the sig-
nificance of features in a decision tree baseline model. The
evaluation of the importance of the characteristic revealed
that odour stood out as the most influential attribute, posses-
sing a substantial predictive capacity to determine the edibil-
ity of mushrooms in most observations. Surprisingly, certain
characteristics commonly deemed significant for classifica-
tion, such as cap colour and gill colour, held relatively low
importance. Given the game’s objectives, our aim was to
present mushroom features that were both easily compre-
hensible and resonated with laypeople’s perceptions. Thus,
attributes like odour were retained to enhance the AI
model’s comprehensibility. Similarly, colour attributes were
valuable to align with people’s mental models of mush-
rooms. Following this rationale, certain relevant features
were omitted, while others initially considered less relevant
were retained. Ultimately, the final model incorporated only
8 features: odour, cap colour, cap shape, cap surface, gill col-
our, gill size, gill spacing, and ring number.

4.2.1. Trustworthy AI Model: Good Performance. The final
model was a decision tree classifier trained with 70% of the
dataset and with a depth of 12 nodes. The accuracy of the
model was 96% in the test set. This level of performance
was desired to have some examples misclassified, yet still
obtain a good performance. This model was used as the
trustworthy AI recommender system in the game.

4.2.2. Untrustworthy AI System: Poor Performance. In the
context of the user study, it was imperative to have an
“untrustworthy” AI model that mirrored its performance
accurately. In pursuit of this goal, the creation of the second
AI model entailed manipulating the target variable, edibility,
within the dataset. Specifically, 30% of the target observa-
tions were altered to their opposing values. Subsequently,
we retained the same variables as utilized in the high-
performance model and proceeded to train a decision tree
classifier. The outcome of this data manipulation was an
accuracy of 60% when evaluated on the test set. This model
was intentionally designed to represent a lower level of per-
formance, thereby establishing an “untrustworthy” counter-
part for the user study.

4.3. User Study. In the study, we wanted to assess AI trust in
a decision-making task, where users had the help of an AI
system. Consequently, we asked the participants to play the
mushroom game as an experiment and collected their behav-
iour when playing.

4.4. Independent Variables. The user study was structured to
manipulate three key factors within the mushroom game:
the type of explanations of the XAI model, the level of risk
involved, and the performance of the AI model.

4.4.1. Type of XAI Model. To test our initial hypothesis con-
cerning the influence of explanations on decision-making,
we established three task conditions: a control condition
without any AI recommendation explanations and two other
conditions wherein users received distinct explanation types
during the decision-making process. In one condition, users
were presented with a local feature importance explanation
generated through the widely recognized LIME technique
[18]. In the third condition, users encountered an example-
based explanation using the DICE technique, which pro-
vides state-of-the-art counterfactual explanations [22]. The
variations in the mushroom task, along with the manipula-
tion of XAI types, are illustrated in Figure 1.

4.4.2. The Risk Level. We further manipulated the stakes
within the mushroom game across two levels: low and high.
In the high-risk scenario, participants were informed that
consuming a single poisonous mushroom would result in
sickness and consuming a second poisonous mushroom
would lead to their character’s demise (game over). In con-
trast, the low-risk scenario conveyed that participants would
fall ill only after consuming three poisonous mushrooms.

4.4.3. Model Performance. Lastly, we controlled the perfor-
mance of the AI recommender system to serve as an indica-
tor of the model’s reliability. This manipulation involved two
performance levels, “high performance” and “low perfor-
mance,” which were designed to reflect the accuracy of the
AI system. The construction of these models was detailed
in the previous section.

4.5. Outcomes. Given the intricate nature of assessing trust in
AI systems [1], our approach encompassed a blend of self-
reported and behavioural trust measurements for the AI sys-
tem. This was supplemented by evaluations of AI under-
standability and XAI quality. Consequently, following each
game instance, participants completed a survey employing
the Likert scale responses to gauge these dimensions. To
evaluate subjective trust in the AI system, we employed
two measures:

(1) The multidimensional measure of trust (MDMT)
[40], which gauges indirect subjective trust through
participants’ assessments of eight-related traits asso-
ciated with the AI system (reliable, predictable, con-
sistent, skilled, capable, competent, precise, and
transparent). Responses were provided on a scale
from 0 (not at all) to 7 (very) and were averaged

(2) Direct subjective trust, using a single item that
directly inquired about participants’ perceived trust
in the AI system, utilizing the same Likert-type
response format

Additionally, we assessed the system’s understandability
(AI understandability) using two items (“How well did the
game help you understand how the AI system works?” and
“How would you rate your understanding of how the AI sys-
tem works?”). The quality of the XAI model’s explanations
(XAI quality) was measured with four items, such as “The
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information presented on the screen for making decisions
had sufficient details” and “The information presented on
the screen for making decisions was satisfying.” Similar to
the subjective trust evaluation, these measures utilized the
same response format, with averaged values calculated for
each measure.

Additionally, we gathered data on participants’ behav-
iour. We assessed behavioural trust by calculating the per-
centage of instances in which participants agreed with the
recommendations provided by the AI system and subse-
quently made decisions based on those recommendations.
We measured Delegation by considering whether partici-
pants chose to delegate the decision-making to the AI or
not, representing this as a binary variable.

4.6. Participants and Procedure. We recruited a total of 215
participants from Prolific, a crowdsourcing platform
designed for extensive data collection. To ensure data qual-
ity, we specifically selected participants who were proficient
in English. After eliminating responses that indicated a lack
of attention (using attention check questions), we retained

data from 211 participants. Within this sample, 114 identi-
fied as women, 94 as men, and 3 as nonbinary. The partici-
pants reported an average age of 27 years, ranging from 19 to
61 years. For participation in the study, each respondent was
fairly compensated and received a payment of 2.50 GBP. On
average, participants took around 12.12 minutes to complete
the task, translating to a median hourly compensation rate
of 11.41 GBP.

The allocation of participants to the XAI model and risk
conditions followed a between-subject approach, while AI
system performance was manipulated within subjects. Con-
sequently, each participant was randomly assigned to a spe-
cific XAI manipulation and risk condition. In addition,
participants participated in the game twice, undergoing both
high and low AI performance conditions in a counterba-
lanced sequence. Therefore, participants underwent the
following procedure. They began the experiment upon vol-
untarily providing their consent. Then answered general
demographic questions, covering age, gender, nationality,
and education level. Subsequently, participants received
instructions and rules for the mushroom game, followed by

(a) Control layout (b) LIME layout

(c) DICE layout

Figure 1: Layouts of the mushroom game presented on the screen to the participants corresponding to each XAI model condition. In the
mushroom game, participants could see the mushroom characteristics, a cartoon picture of the mushroom, and the AI
recommendation. In the case of the two conditions with the presence of explanations, participants were also provided with explanations of
the AI recommender system.
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a straightforward tutorial to acquaint them with the game-
play. Upon completing the tutorial, they proceeded to the
first game. In the last stage of the game, participants indi-
cated whether they would delegate the upcoming action to
the AI recommender system. Once the mushroom game
ended, a final score was displayed, prompting participants
to participate in a survey that gauged their views about the
game and the AI recommendation system. Afterward, par-
ticipants engaged in a second round with a different AI per-
formance level and subsequently filled out a survey
pertaining to this round as well. Figure 2 illustrates the
experimental setup.

5. Results

To examine our hypotheses, we employed two main
approaches. Firstly, we utilized a mixed-design analysis of
variance (ANOVA) through SPSS Statistics 26. This
involved a 3 × 2 × 2 design, considering the factors of the
XAI model, risk level, and model performance, and applied
to five key dependent variables. Secondly, we employed a
chi-squared test to analyse the dependent variable Delega-
tion. The significance level was set at 0.05, and for adjust-
ments due to multiple testing, we employed a Bonferroni
alpha correction.

Our primary focus is on the outcomes that pertain to our
hypotheses. Additionally, a succinct overview of the study’s
findings can be found in a preceding paper that reports on
initial results [41].

Table 1 shows how the participants (N = 211) were dis-
tributed on the two between-subject factors: risk and XAI
model type.

5.1. Self-Reported Measures. The effects on self-reported
measures direct MDMT, direct subjective trust, AI under-
standability, and XAI quality were similar.

Significant main effects of model performance were
observed on the variables MDMT, direct subjective trust, AI
understandability, and XAI quality. Model performance
exhibited the most substantial influence on all four of these
dependent variables. As anticipated, reported levels of trust
in the AI system displayed a notable increase when the AI
system’s performance was high, in contrast to instances of
lower AI system performance. Similarly, both the compre-
hensibility of the AI system and the perceived quality of
explainable AI (XAI) were heightened in cases where the
AI model’s performance was high. Detailed means, standard
errors, and statistical outcomes are presented in Table 2.

Furthermore, the XAI factor exhibits a significant main
effect on MDMT, AI understandability, and XAI quality.
However, in the case of the direct subjective trust measure,
the XAI factor does not show a significant main effect.
Detailed statistical results are presented in Table 3.

The results of pairwise tests specify that participants
exposed to the LIME XAI condition (explanations incorporat-
ing feature importance) reported higher levels of subjective
trust (measured by MDMT) and greater understanding of
the AI system and perceived the explanations as having higher
quality compared to those in the other two conditions (DICE
with counterfactual explanations and the control group).
However, the comparison between the DICE and control
conditions did not show statistically significant differences
between these three variables. Mean values and standard
deviations can be located in Table 3, with statistically signif-
icant pairs of groups (p < 0 05) denoted by a pair of ∗ or †
symbols.

None of the four self-reported dependent variables
exhibited significant interactions between the XAI model
and the other independent variables in the 3 × 2 × 2 ANO-
VAs. This consistent pattern persisted when examining
various levels of risk and AI system performance. The
findings presented in Figure 3 illustrate that the pattern
of subjective trust in the AI system, whether assessed
directly or indirectly through the MDMT scale, remained
consistent across different XAI conditions, irrespective of
the model’s performance.

Procedure

Study
starts

Participant’s
consent

Binary question: should
you delegate to AI?

Demographics
profile questions

Brief explanation of
the task and tutorial

Study
ends

Game 1:

Mushroom task
Decision
making

12 times

Questionnaire on game
1 

Game 2: Same level of risk and XAI type

Mushroom task
Feedback on

decision 

Feedback on
decision 

Decision
making

12 times

Questionnaire on game
2 

Figure 2: Experiment workflow.

Table 1: Number of participants in each condition of risk and XAI
model.

Risk
XAI condition

Total
LIME DICE Control

High 33 33 31 97

Low 35 39 40 114

Total 68 72 71 211
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Regarding the impact of risk, a consistent pattern
emerged across all four self-reported measures, revealing sig-
nificant interactions between risk and performance. Partici-
pants displayed less trust, less comprehension, and lower
evaluations of AI explanation quality in the high-risk condi-
tion compared to the low-risk condition, but solely when the
AI system’s performance was low. Conversely, when the AI
system’s performance was high, no noteworthy differences
were observed in any of the dependent variables. Detailed
mean values, standard errors, and statistical outcomes can
be found in Table 4.

5.2. Behavioural Trust and Delegation. In relation to the
assessment of behavioural trust, which gauges the extent of
compliance with AI recommendations, a significant main
effect of model performance was identified, as presented in
Table 2.The rate of alignment with AI recommendations is
higher when the AI system’s performance is higher, com-
pared to when it is lower.

The influence of the XAI model on behavioural trust
revealed a distinctive pattern compared to the findings
obtained using self-reported measures. While the primary
effect of the XAI condition did not reach statistical signifi-
cance, a notable interaction emerged between the XAI model
and AI system performance (F 2,205 = 25 40, p < 0 001,
η2p = 0 20). As depicted in Figure 3(c), when AI system per-
formance was elevated, participants exposed to the LIME
condition (0 93 ± 0 02) exhibited greater trust by adhering

more closely to system recommendations than participants
in other conditions (0 84 ± 0 02 in DICE and control).
However, in cases where performance was lower, partici-
pants in the LIME condition (0 75 ± 0 02) displayed signif-
icantly reduced behavioural trust compared to the other
two conditions (0 81 ± 0 02 in DICE and 0 84 ± 0 02 in
the control condition). Once again, behavioural trust
between the DICE and control conditions did not exhibit
statistically significant differences. These outcomes mirror
the trends observed in MDMT, AI understandability, and
XAI quality.

Unlike the self-reported measures, the results for behav-
ioural trust did not reveal any significant effects of risk
(F 1,205 = 0 566, p = 0 453, η2p = 0 003). Participants’ com-
pliance with recommendations did not differ based on risk,
even when the model’s performance was low. Consistent
with the self-reported findings, the factor that most signifi-
cantly impacted behavioural trust was model performance.
Participants demonstrated a stronger tendency to adhere to
system recommendations when the AI system’s performance
was higher rather than lower. Mean values and standard
errors can be found in Table 2.

Regarding Delegation, an effect of risk was identified spe-
cifically when model performance was low. The inclination
to automate decisions by allowing the AI system to decide
appeared to be contingent on risk, but only when the AI sys-
tem’s performance was low. Delegation was more pro-
nounced in instances of low risk (X 1 = 9 52, p = 0 002).

Table 2: ANOVA results for the main effects of performance on the dependent variables. All the dependent variables show statistically
significant results on AI performance. When the AI system has high performance, trust, understandability, and XAI quality perception
are also high compared to low AI performance.

Dependent variable High performance ± SE Low performance ± SE F 1,205 p value η2p

MDMT 5 34 ± 0 85 4 05 ± 0 97 172.83 <0.001 0.46

Direct subjective trust 4 84 ± 0 11 3 46 ± 0 12 125.64 <0.001 0.38

Behavioural trust 0 87 ± 0 01 0 8 ± 0 01 37.71 <0.001 0.16

AI understandability 4 53 ± 0 12 3 92 ± 0 13 45.34 <0.001 0.18

XAI quality 4 85 ± 0 10 4 11 ± 0 11 92.03 <0.001 0.31

Table 3: ANOVA results for the main effect of the XAI type on the dependent variables. Among these dependent variables, MDMT, AI
understandability, and XAI quality exhibit a significant main effect related to the XAI model. In particular, direct subjective trust
demonstrates trends analogous to other self-reported measures: trust levels were elevated when LIME explanations were presented.
Pairwise statistically significant comparisons are shown by the symbols ∗ and †. Furthermore, a strong correlation is observed between
the two subjective trust measures, MDMT and direct subjective trust (r = 0 80, p < 0 001).

Dependent variable DICE ± SE LIME ± SE Control ± SE F 2,205 p value η2p

MDMT 4 60 ± 0 13∗ 4 98 ± 0 14∗† 4 50 ± 0 13† 3.50 0.032 0.033

Direct subjective trust 4 02 ± 0 17 4 45 ± 0 18 3 97 ± 0 17 2.26 0.10 0.022

Behavioural trust 0 83 ± 0 02 0 84 ± 0 02 0 84 ± 0 02 0.23 0.79 0.002

AI understandability 3 99 ± 0 20∗ 4 70 ± 0 20∗† 4 00 ± 0 20† 4.10 0.018 0.038

XAI quality 4 40 ± 0 16∗ 5 01 ± 0 17∗† 4 04 ± 0 17† 8.61 <0.001 0.078
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Figure 3: The average values of the three trust measures in relation to the XAI condition and AI system performance are presented. In terms
of subjective trust measures, it becomes evident that when the AI model’s performance is reduced, reported trust diminishes in comparison
to instances where the system performs better. When considering each type of explanation, participants who were exposed to LIME
explanations consistently reported greater trust compared to the other type of explanations (DICE and no explanations), regardless of
the performance of the AI system’s performance.

Table 4: Results of ANOVA for the risk and performance interaction on the dependent variables.

Dependent variable
High performance Low performance

F 2,205 p value η2pHigh risk Low risk High risk Low risk

MDMT 5 29 ± 0 13 5 39 ± 0 12 3 68 ± 0 14∗ 4 41 ± 0 13∗ 10.02 0.002 0.047

Direct subjective trust 4 62 ± 0 16 5 06 ± 0 15 2 93 ± 0 18∗ 3 98 ± 0 17∗ 5.99 0.015 0.028

Behavioural trust 0 86 ± 0 02 0 86 ± 0 01 0 79 ± 0 02 0 81 ± 0 02 0.130 0.72 0.001

AI understandability 4 45 ± 0 18 4 62 ± 0 16 3 65 ± 0 19∗ 4 19 ± 0 17∗ 4.33 0.039 0.021

XAI quality 4 77 ± 0 15 4 93 ± 0 13 3 83 ± 0 16∗ 4 39 ± 0 15∗ 6.51 0.011 0.031
∗ indicates significant results at the significance level of 0.05. In all self-reported measures, when the performance of the AI system is low, trust levels are higher
when the risk is low compared to a high-risk scenario.
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No other significant effects were observed for the variable of
Delegation.

6. Discussion

This user experiment was conducted to evaluate how XAI
explanations affect the level of trust in the AI system when
it is making decisions in tasks assisted by AI. In the next sec-
tion, we will dive into the findings of our research.

6.1. AI Trust in Presence of Explanations. This research
sought to investigate the effect of providing explanations
(counterfactual and feature importance) in decision-
making on trust in AI systems. When feature importance
explanations (specifically LIME explanations) were pro-
vided, users exhibited higher subjective trust and under-
standing of the AI system. However, the measure of
behavioural trust yielded contrasting outcomes based on
AI performance levels. For good AI performance, users fol-
lowing LIME explanations adhered more to AI recommen-
dations, but for lower performance, users deviated from AI
recommendations. This suggests that users comprehended
LIME explanations, which highlighted the importance of
different variables in predictions and the associated uncer-
tainty. When using a low-performance model, users faced
uncertain recommendations, leading them to rely more on
their own judgments, indicating their continued under-
standing and trust in the system. These findings align with
previous research underlining the effectiveness of presenting
prediction confidence intervals in calibrating trust in AI
systems [42].

Contrary to the expected effect, the presentation of
counterfactual explanations generated by DICE did not lead
to increased trust, and this was similar to the absence of any
explanation (control condition). This finding challenges the
common belief that counterfactual explanations, which sim-
ulate AI reasoning, are easily understandable and enhance
trust [24]. While previous research had indicated that
experts feel more competence with AI systems when using
counterfactual explanations [25], our study’s outcomes dif-
fered. Notably, our experiment involved nonexperts, who
might lack the technical background to grasp counterfactual
examples without prior knowledge, potentially diminishing
the explanation’s effectiveness.

The results suggest that our initial hypothesis lacks com-
plete support, as only feature importance explanations led to
higher trust compared to no explanations. Referencing
Zhang et al.’s study [42] on explainability and confidence
intervals’ impact on trust calibration, it was observed that
presenting confidence intervals with AI predictions results
in more calibrated user trust, unlike the effect of local feature
explanations that did not show this effect. This observation
raises doubts about the actual influence of explainability
on trust.

The study also investigated the impact of XAI explana-
tions when the model’s trustworthiness is in doubt. The
hypothesis was that XAI explanations would boost trust
regardless of the system’s performance. Figures depicting
indirect and direct trust measures indicated that the effect

of XAI model type remained consistent regardless of high
or low system performance. This suggests that even when
dealing with untrustworthy AI systems, users exhibited more
trust when presented with feature importance explanations
compared to seeing only basic decision-making information.
Despite lower trust levels for systems with poor perfor-
mance, the presence of feature importance elevated trust.
Consequently, subjective trust was directed towards the sys-
tem due to the presence of specific explanations, rather than
the system’s reliability. This finding is aligned with another
research where data scientist practitioners overtrusted the
XAI methods without a careful evaluation of their explana-
tions [31].

Our hypothesis suggested that higher risk would lower
AI trust. The results revealed lower trust in the participants
when the risk was high in all measures, but significance
was seen only in low-performing AI systems. While risk
does impact AI trust, model trustworthiness is a stronger
factor; risk’s significance diminishes with guaranteed model
trustworthiness. The initial hypothesis is partially supported,
as risk mainly affects low-performing models. High AI
model performance is crucial, especially in high-stakes con-
texts. Model trustworthiness emerges as the primary predic-
tor of AI trust, in line with previous studies in human-robot
interaction scenarios [43]. This trend extends to perceived
AI understandability and XAI quality: users report better
understanding and higher quality explanations from high-
performing systems. This connection, though unexpected,
can be attributed to an unambiguous high-performing AI
system being easier to comprehend and explain. Another
possibility is that a well-performing model might create a
misleading impression of understanding. The exact contrib-
utor remains unclear.

6.2. General Implications and Future Work. This user exper-
iment has contributed to the growing research literature on
the effect of explanations of AI trust. The study evidenced
the contextual dependency of the effect of explanations on
AI trust in AI-assisted decision-making. The actual impact
of explanations can be influenced by various factors, includ-
ing task difficulty [44], decision-maker expertise, decision
design [45], and the cognitive load required to comprehend
the explanation [46] and also the type of explanations and
the way it is presented.

It is also plausible that systematic errors might arise
when assessing explanations in decision-making tasks,
thereby impeding the development of trust. These errors
encompass factors such as a lack of curiosity during deci-
sion-making, absence of context, confirmatory search, mis-
interpretation of explanations, or the formation of habitual
responses [47]. These aspects underscore the challenge of
accurately assessing the true impact of explanations and pro-
vide insight into the reasons behind conflicting results. The
effect of explanation on trust hinges not solely on the expla-
nations themselves but also on the genuine understanding of
the explanations, which is complex to evaluate.

Furthermore, the findings about overtrust in untrust-
worthy scenarios have substantial implications. They suggest
that users might align with an AI system primarily due to the
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presence of explanations, creating the illusion of increased
trustworthiness. In critical domains, these implications
could ripple through numerous decisions, potentially result-
ing in significant injustices and malpractices.

For future work, it is crucial to increase the level of
research on the various factors influencing the impact of
explanations on the decision-making process and AI trust.
This step is essential to enable the effective use of explana-
tions in practical scenarios. Additionally, research and devel-
opment of XAI techniques to effectively convey the
trustworthiness of AI-assisted models are crucial. This
approach helps mitigate issues of overtrust in cases involving
untrustworthy AI systems.

7. Limitations

One aspect that we need to acknowledge in our current
study is the limited scope of XAI types that we focused on.
Specifically, we concentrated our assessment on two primary
categories of XAI models: counterfactual explanations and
feature importance explanations. While these classifications
represent substantial subsets of XAI models, we recognize
that there are other types that we did not explore in this
research.

Furthermore, our experimental design was centred
around a decision-making task involving participants from
an online recruitment platform, whom we assumed to be
individuals without specialized expertise in the particular
task. This approach has two important implications. First,
we considered the participants’ familiarity with assessing
mushroom edibility as that of lay users. Second, we acknowl-
edge that our findings might not extend directly to scenarios
that involve collaboration between experts and AI. Notably,
other studies suggest that counterfactual explanations might
be particularly advantageous for decision-making when con-
sidering expert knowledge [25].

Lastly, we operated on the premise that an AI system
achieving 60% accuracy is indicative of poor performance
and lack of trustworthiness. However, this point invites fur-
ther discussion. It is worth exploring whether 60% accuracy
truly corresponds to an untrustworthy scenario and whether
our findings regarding this accuracy level can be extrapo-
lated to scenarios with even lower performance.

8. Conclusion

The primary objective of this research was to examine how
explainable artificial intelligence (XAI) models influence
users’ confidence in AI systems when making decisions. This
investigation took into account factors such as risk and the
reliability of the model as potential influencing factors. The
outcomes partly confirmed the original expectations, sug-
gesting that explanations have the capacity to strengthen
trust in AI. However, this effect varies depending on the spe-
cific kind of explanation given. Visual explanations high-
lighting the importance of features are more effective for
individuals without expertise in the field compared to expla-
nations involving counterfactual reasoning.

An intriguing discovery from the research was that
explanations can increase trust in AI even when the AI
model itself is not reliable. This observation raises apprehen-
sions regarding the potential misapplication of explanations.
They might inadvertently contribute to fostering trust in the
AI system rather than instigating a healthy sense of scepti-
cism. Moreover, the investigation unveiled a decline in trust,
particularly in situations involving high risk, especially if the
AI model lacks reliability. The trustworthiness of the model
was identified as a pivotal element with a notable influence
on raising the trust and comprehensibility of the AI system.

The practical implications drawn from these findings
underscore the importance of establishing a trustworthy
model as a means to boost both trust and comprehensibility.
Additionally, it highlights the necessity of formulating expla-
nations that are precisely tailored to fine-tune trust levels
within the system. The study also underscores the need for
more in-depth research to devise ways to present explana-
tions that are comprehensible and contribute to a well-
calibrated level of trust, steering clear of excessive reliance
on AI systems.
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