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Abstract
In recent years, the proliferation of Artificial Intelligence (A.I.) has revolutionized

decision-making processes across various domains. Deep Learning algorithms, particularly

LSTM and XGBoost models, have emerged as powerful tools for accurate predictions in

complex contexts, such as financial markets. However, the inherent challenge of interpreting

these models has led to a tradeoff between accuracy and transparency. The need for

Explainable Artificial Intelligence (XAI) becomes paramount in critical domains like finance,

where understanding the model's reasoning is crucial for informed decision-making.

Our study comprises two fundamental phases: model development and explanation. The

initial phase focuses on crafting LSTM and XGBoost models, fine-tuning their

hyperparameters, and optimizing their predictive performance for S&P 500 index forecasting.

Rigorous evaluation metrics, encompassing MAE, MSE, MAPE and RMSE, guide our pursuit

of accurate predictions. Dow Jones emerges as one of the most influential variables in

forecasting S&P 500 along with Bitcoin, which, interestingly, wields a consistently negative

impact in both models, penalizing both performance with its effects and unveiling its unique

role. Our findings inform decision-making in finance, advocating for transparency and

advancing predictive models and interpretability.

Key-Words:Machine Learning, Financial Market, Explainability, SHAP, LIME.
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Resumo
Nos últimos anos, a proliferação da Inteligência Artificial (IA) revolucionou os processos de

tomada de decisão em vários domínios. Algoritmos de Aprendizagem Profunda,

particularmente modelos LSTM e XGBoost, emergiram como ferramentas poderosas para

previsões precisas em contextos complexos, como os mercados financeiros. No entanto, o

desafio inerente de interpretar esses modelos levou a um equilíbrio entre precisão e

transparência. A necessidade de Inteligência Artificial Explicável (XAI) torna-se fundamental

em domínios críticos, como finanças, onde entender o raciocínio do modelo é crucial para a

tomada de decisões informadas.

Nosso estudo compreende duas fases fundamentais: desenvolvimento do modelo e

explicação. A fase inicial concentra-se na criação de modelos LSTM e XGBoost, ajuste de

seus hiperparâmetros e otimização do desempenho preditivo para a previsão do índice S&P

500. Métricas rigorosas de avaliação, incluindo MAE, MSE, MAPE e RMSE, orientam nossa

busca por previsões precisas. O índice Dow Jones emerge como uma das variáveis mais

influentes na previsão do S&P 500, juntamente com o Bitcoin, que, interessantemente, exerce

um impacto consistentemente negativo em ambos os modelos, penalizando o desempenho

com seus efeitos e revelando seu papel único. Nossas descobertas informam a tomada de

decisões financeiras, advogando pela transparência e promovendo modelos preditivos e

interpretabilidade avançados.

Palavras-chave:Machine Learning, Financial Market, Explainability, SHAP, LIME.
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CHAPTER 1

Introduction
In the era of big data and Industry 4.0, Artificial Intelligence (A.I.) has emerged as a driving

force behind industrial development and the integration of advanced technologies.

Technologies such as graphic processing units, the Internet of Things (IoT), cloud computing,

and blockchain have further propelled the application of A.I. in diverse systems (Lu, 2019).

All this has sparked increased attention and investment in A.I., with the worldwide revenues

for the A.I. market projected to exceed $432.8 billion by 2022, and a market size expected to

surpass $500 billion in 2023 (International Data Corporation). As the A.I. market continues to

expand, reaching an estimated $997.77 billion by 2028 (Plat A.I.1), the development and

implementation of A.I. systems, particularly machine learning models, are also accelerating

(Rai, 2020).

The rapid adoption of A.I. and Machine Learning (ML) in business decision-making has

heightened the demand for XAI (Bhattacharya, 2022). Organizations and regulatory bodies

recognize the need to demystify black-box algorithms, ensuring transparency, ethics, trust,

and mitigating bias. Initiatives such as the European General Data Protection Regulation

(GDPR) underscore the importance of A.I. ethics and the potential risks associated with

biased or unexplainable A.I. systems (Das, 2020).

When it comes to A.I. and ML, to define the concepts of interpretability and

explainability, there isn't yet a formal and concise explanation of what it is. Many authors

have attempted to define what XAI is, and perhaps D. Gunning (Arrieta et al., 2020) had the

closest idea:
"XAI will create a suite of machine learning techniques that enables hu-
man users to understand, appropriately trust, and effectively manage the
emerging generation of artificially intelligent partners".

Adadi et al. defined XAI in 2018, stating that "XAI is a research field that aims to make

A.I. systems results more understandable to humans". Simply put, both definitions don't fail to

highlight that XAI's primary focus is to solidify the thrust of both non-technical and technical

users further toward the system. Although they are direct and practical definitions, both of

these fall under the problem pointed out by Arrieta et al. (2020), which is the lack of

characterization of the term in question, ignoring critical aspects such as its mission. Still, the

solution to that problem is beyond the scope of this work.

1 https://plat.ai/blog/artificial-intelligence-market-size-and-growth/
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As stated in the beginning, one of the main downsides of Artificial Intelligence and

Machine Learning is their lack of transparency – therefore, the term "black box" associated

with it – keeping them away from a broader adaptation, especially in critical fields where the

"whys" are empirical. According to 56% of executives, the transparency and ethics of an A.I.

system are important when it comes to the well-being of a successful business, and 41% of

companies reported having to suspend the deployment of their A.I. systems due to potential

ethical issues reflected by the lack of transparency of these systems (Dhinakaran, 2021).

The inability to interpret the judgments produced by cutting-edge ML and A.I. systems is

caused by two factors: the gap between the research community and the business sectors; and

the lack of expertise (Arrieta et al., 2020).

This thesis focuses on applying XAI in the context of financial data analysis. Financial

markets present unique challenges due to their complexity and the criticality of

decision-making. As a result, the demand for interpretable A.I. models in finance is

particularly significant. The following section aims to provide a comprehensive review and

analysis of XAI methodologies and strategies, emphasizing their application in financial data

analysis.

The thesis is structured into 6 chapters, starting with the introduction, which provides an

overview of the research. Chapter 2 comprises a comprehensive literature review, delving into

essential subjects relevant to this thesis, including XAI and time series forecasting. Chapter 3

summarizes the data utilized in this research, encompassing details on data processing, model

development, testing methodologies, and an investigation into model explainability. The

subsequent chapters, from chapters 5 to 6, are reserved for presenting the results, engaging in

detailed discussions, and concluding the study.
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CHAPTER 2

Literature review
Explainability and interpretability are huge concerns for decision-makers who rely on

artificial intelligence, analytics, and data science (Hoffman et al., 2018). Such issues can lead

to an abrupt stop in the development and implementation of A.I. and ML systems. These

issues also led to a significant amount of work from researchers over the years toward

providing a better understanding of black-box models. As the decision-making process began

to rely more and more on A.I. and ML systems, the necessity to understand the reasons

behind the decisions also increased.

Through the years, many articles have been published on both explainable artificial

intelligence and the financial market since they are both hot topics. Searching on Google

Scholar for terms like "forecasting" and "financial market" reveals that this trend has received

a significant amount of publications, with each decade providing almost ten times the results

of its previous decade, as observed in Table 1.1.

Time frame <2004 2004-2009 2009-2013 2013-2018 2018-2022

Results 17,000 5,950 6,430 9,480 11,300

Table 1.1 - Results of querying Google Scholar with "forecasting" and "financial market"

A related analysis shows a similar trend when querying for both "explainable ai" and

"financial markets" on one search; the search engine returned 3,620 results for the current

year alone. Querying and filtering by year, we can observe an enormous increase in the

number of publications, especially in the past five years, as seen in Table 1.2. A search on

google trends, shows, as illustrated in Figure 1, a slight trend in searching for keywords like

explainable A.I. starting ruffly in the mid of 2015, which correlates with the number of

publications that have been put out in the same timeframe. This trend can also be observed in

Table 1.2, where we have an exponential increase in published articles over the past ten years.

The amount of results for the past five years surpasses the accumulated results for the years

before the time span, revealing that this trend will possibly continue for the years to come.

The search query for "explainable ai", "financial market" and "forecasting" (Table 1.3)

confirms the increase in the usage of explainable artificial intelligence for explaining forecasts

of the financial market, with a total of 17,100 hits between 2018 and 2022. The query result

indicates that using explainable artificial intelligence for financial market forecasting is a
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research topic yet far from being exhausted as the need for understanding models' predictions

grows simultaneously.

Time frame <2004 2004-2009 2009-2013 2013-2018 2018-2022

Results 2,770 1,050 1,130 2,450 12,700

Table 1.2 - Results of querying Google Scholar with "explainable ai" and "financial market"

Time frame <2004 2004-2009 2009-2013 2013-2018 2018-2022

Results 21,900 19,000 17,600 16,800 17,100

Table 1.3 - Results of querying Google Scholar with "explainable ai", "forecasting" and "financial
market"

Figure 1.1 - Results of searching Explainable A.I. on google trends

Although it might seem like a new research field – since it has been gaining more

popularity recently – the first notions of explainability in Artificial Intelligence had subsided

in expert systems in the mid of 1980s (Buchanan & Shortliffe, 1984; Wick & Thompson,

1992 as cited in Confalonieri et al., 2021). When it comes to explainable artificial

intelligence, there is plenty of work done, but not as much in the financial area. Regarding the
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financial area, some articles were revealed to be relevant to this study and worthy of mention,

considering they also used the SHAP values, an approach based on game theory to describe

the performance of a machine-learning model (Mangalathu et al., 2020) and also one of the

most widely used techniques for model explanations, and LIME methodology alongside ML

models such as XGBoost, Random Forest, Neural Networks (N.N.) and Logistic Regression

(L.R.).

By using gradient boosting decision trees (GBDT), Ohana et al. (2021) conducted an

experiment in which they tried to predict the prices of the S&P 500 using 150 features and

then used the SHAP values to explain why and how the model got the final decision.

Misheva et al. (2021) trained a machine learning-based credit score prediction model on

the P2P Lending Platform (Lending Club) dataset. The paper attempted to secure explanatory

power by applying post hoc XAI techniques (LIME and SHAP explanations). It used LIME to

explain instances locally and SHAP to obtain local and global explanations.

In their work, Agarwal et al. (2022), used a financial time series model based on

XGBoost and Random Forest algorithms to predict the close values of each stock by using the

past 20 days of close values as input, for data range from January 1, 2012, to January 1, 2020.

The authors then explained the models' predictions using LIME and SHAP. In conclusion, the

models used by the authors gave a high accuracy (98%), but due to their nature - labeled as

black box models - they lack explainability and interpretability, which makes them an

unreliable tool for a domain where explainability is valued. The explainability issue was

solved using LIME and SHAP. As stated by the authors, when used alongside empirically

sound machine learning models, you get a forecasting model supported by its empirical

results and intuitive explanations.

Balagopalan et al. (2022) surveyed the quality of explanations for different protected

subgroups using data from finance, healthcare, college admissions, and the U.S. justice

system settings using four explainability methods, both local and global methods, with two

different black-box model architectures, Neural Networks and Logistic Regression. The four

explainability models (two local and two global) were trained, and they found that fidelity

gaps exist between subgroups in many settings. This was done by dividing the data sets

randomly into four subsets. The division was made as follows: a training set for black-box

models (50%), a training set for explanation models (30%), a validation set for explanation

models (10%), and a held-out test set for evaluating both black-box and explanation models

(10%). The models were trained on each dataset to serve as black-box models. As a result of

this fidelity gap experiment over local explainability, the authors found that LIME favors
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disproportionately different subgroups with maximum accuracy (with a threshold of 0.5) gaps

varying from 0.1-21.4%, confirming that explanation can differ dramatically by subgroups.

Also, with the Area under the ROC Curve (AUC)/Accuracy metric varying significantly

(0-6%) between subgroups and, as stated by the author, when explanations are judged to be

"high quality" based on average fidelity, it might be misleading and lead to errors in

decision-making. Secondly, due to the identical features on which the models were trained,

the SHAP's gaps were consistently zero. But, using a subset of features to train the

explanation model may lead to more valuable explanations, increasing the gaps significantly,

indicating that SHAP can also suffer from significant gaps in fidelity when used in practice.

The authors used two surrogate models for global explanations: Generalized Additive Model

(GAM) and a sparse decision tree (Tree). Then, they evaluated the fidelity of each global

method with the original black-box. This experiment showed that the gaps in accuracy

between subgroups differed significantly from the global explanatory model means due to an

imbalanced proportion between subgroups. Thirdly, they found that using fewer features may

lead to more significant gaps in performance between subgroups in sparse decision trees

(Trees).

Furthermore, in attempts to improve the explainability, it was found that strong local and

global models were more effective for a local explanation by reducing the gaps in three out of

the four datasets. Applying Just Train Twice, a more robust version of LIME, achieved this

reduction. As for global explanation, rebalancing the subgroups by randomly oversampling

minority groups, fixing what failed on global explanation, but this common rebalancing

method proved not to be the optimal solution for every case. In conclusion, the authors found

that significant performance gaps exist between groups, indicating that some groups may

receive better explanations than others, and using robust methods can improve the fairness of

explanation models.

One work proposed by Maree et al. (2020), on explaining a deep neural network for

financial transaction classification featured the application of feature extraction using Shapley

values and a hybrid approach of text clustering and decision tree classifier. In this work, the

authors combined and compared explanations from surrogate models (i.e., decision tree,

which was used as a baseline for explanation) and SHAP. In conclusion, surrogate models

used under their conditions showed a tradeoff between explainability and interpretability due

to many nodes. A clear understanding of which features bias the model the SHAP technique

provided the most. The model was tested in terms of robustness via exposure to targeted

evasion attacks.
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Also, Çelik et al. (2023) introduced a successful framework for direct daily direction

prediction in capital markets, emphasizing portfolio diversification opportunities. Machlev et

al. (2022) highlighted the potential of XAI in power systems, addressing challenges and

suggesting future research directions. Freeborough & Van Zyl (2022) explored XAI's

transferability to financial time series prediction, revealing insights into model architectures

and recommending improvements. Park and Yang (2022) proposed an interpretable LSTM

model for economic growth and crisis prediction, considering the impact of COVID-19. Rojat

et al. (2021) provided an overview of XAI methods applied to time series, emphasizing the

need for domain-specific explainable approaches. Dang et al. (2020) presented DeepVix, a

unified system combining machine learning and visual analytics, enabling visual

explainability for multivariate time-series predictions. These studies collectively demonstrate

the growing importance of XAI in diverse applications and highlight opportunities for future

research and development.

All works described here only used XAI or surrogate models to explain a model's

prediction. In this study, we analyzed the most recent period until August 2023 to identify if

the novel developments in explaining predictions over financial markets have produced

changes.

7



8



CHAPTER 3

Methodology and Data Processing
We follow the conventional ML methodology (CRISP-DM), adding the XAI part along the

way. The proposed methodology can be observed in the flowchart illustrated in Figure 3.1.

Figure 3.1 - Pipeline employed before and throughout the modeling and explanation phase

The data collection, cleaning, analysis, and feature engineering phases for preparing the

data for predicting the price of the S&P 500 involved several steps (the modeling phase can

be found in Chapter 4, along with the subsequent phases). The primary dataset used was the

historical price of the S&P 500's index, which was acquired from the website investing.com.

However, several other relevant variables were incorporated as additional/exogenous features

to enhance the model's predictive power. These additional features included the Dow Jones

index, Bitcoin, Ethereum, Gold, Oil, Silver, Copper, United States Dollar (USD), and Gas

prices. Each dataset contained daily values from January 2017 to December 2022, resulting in

a sample with 1563 observations. The data collection process involved direct access to the

website, and navigating to the desired indices before downloading.

Once the data was obtained, the next step was consolidating all the individual datasets

into one comprehensive dataset. For each index collected, only the price information was

preserved and renamed to the corresponding index's name. By merging all the datasets, a

unified dataset containing all the necessary information for modeling was created. Before

proceeding with the modeling phase, the collected data underwent preprocessing to ensure its
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quality and suitability. This included cleaning the data to remove any inconsistencies or errors

that might affect the accuracy of the model, and this mainly consisted of dealing with null

values and preserving only the days-of-the-week data points, as will be discussed further.

The dataset was partitioned into three sets, maintaining an 80-10-10(%) split for the

training, validation and testing subsets. This partitioning strategy aimed to ensure adequate

data for training the model while providing sufficient data for unbiased evaluation during the

testing and validation stages. The training set, comprising 80% of the data, was utilized to

train the model on historical information, allowing it to learn underlying patterns and

relationships. The validation set, constituting 10% of the data, served to fine-tune the model

and gauge its performance further, ensuring it could perform well on completely unseen data

beyond the testing set. Lastly, the testing set, representing 10% of the data, was employed to

assess the model's performance on unseen data, thereby providing an estimate of its

generalization capabilities. This data split enabled a comprehensive evaluation of the model's

effectiveness and facilitated the selection of a well-generalized and reliable predictive model.

In preparing the data for analysis, normalization techniques were crucial to ensure that the

variables representing various aspects of the financial and economic landscape were brought

to a consistent scale. Applying z-score normalization allowed us to standardize the data,

making it comparable across different features. Moreover, certain adjustments were made to

guarantee compatibility with the model training and evaluation process. Type casting was

performed to ensure the appropriate data types were assigned to each feature, facilitating

accurate analysis. Additionally, we accounted for potential discrepancies caused by weekends,

holidays, or non-trading days through a business day adjustment. This comprehensive

preparation allows us to clearly understand the significance of each variable and its distinct

roles in the subsequent analyses.

The variables chosen for analysis represent various aspects of the financial and economic

landscape. Each variable plays a distinct role and carries specific significance in the study

context. The descriptions aim to clearly understand the variables and their role in the

subsequent analyses.

● Spx: This variable represents the value of the S&P 500 index. The S&P 500 is a stock

market index that measures the performance of 500 large companies listed on stock exchanges

in the United States. It is widely regarded as a benchmark for the overall performance of the

U.S. stock market.

● Gold: This variable refers to the price or value of Gold. Gold is a precious metal and a

popular investment asset. It is known for its intrinsic value, durability, and use as a hedge
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against inflation or economic uncertainties. Various factors, such as supply and demand

dynamics, geopolitical events, and market sentiment, influence the price of Gold.

● Btc: This variable represents the price or value of Bitcoin. Bitcoin is a decentralized

digital currency that operates on a peer-to-peer network. It is the first and most well-known

cryptocurrency, and its value is determined by market forces of supply and demand. Bitcoin

has gained significant attention as a speculative investment and a potential alternative to

traditional fiat currencies.

● Dji: This variable represents the performance or value of the Dow Jones Industrial

Average Index (Dji). The Dji is a stock market index that tracks the performance of 30 large,

publicly-owned companies in the United States. It is one of the oldest and most widely

recognized stock market indexes, often used to indicate the overall health of the United

States(U.S.) stock market.

● Eth: This variable refers to the price or value of Ethereum. Ethereum is a

decentralized, open-source blockchain platform that enables the development of decentralized

applications and smart contracts. Ether (Eth) is the native cryptocurrency of the Ethereum

platform and is used to power transactions and computational operations within the network.

● Copper: This variable represents the price or value of copper. Copper is a widely used

industrial metal with various applications, particularly in construction, electronics, and

manufacturing. The price of copper is influenced by factors such as global demand, supply

dynamics, economic indicators, and geopolitical events.

● Oil: This variable refers to the price or value of crude oil. Crude oil is a fossil fuel and

a primary energy source refined into various petroleum products. Oil prices are influenced by

global supply and demand dynamics, geopolitical tensions, production levels, and market

speculation.

● Gas: This variable represents the price or value of natural gas. Natural gas is a fossil

fuel for heating, electricity generation, and industrial processes. Supply and demand

dynamics, weather conditions, storage levels, and global energy markets influence natural gas

prices.

● Silver: This variable refers to the price or value of silver. Silver is a precious metal

often used in jewelry, silverware, and industrial applications. It is also considered an

investment asset influenced by factors such as supply and demand dynamics, economic

indicators, geopolitical events, and market sentiment.

● USD: This variable represents the exchange rate or value of the United States Dollar

(USD). The USD is the official currency of the United States and is widely used as a global
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reserve currency. The exchange rate of the USD against other currencies is influenced by

factors such as interest rates, economic indicators, geopolitical events, and monetary policies.

Additionally, a more detailed exploration of the dataset's characteristics unveils valuable

insights through summary statistics derived from 1563 observations. The mean values range

widely, from 3.28 to 3282.71, highlighting the diverse central tendencies within the dataset.

Likewise, the standard deviation values, varying from 260.51 to 716.96, indicate fluctuations

in data spread. The dataset's minimum and maximum values showcase substantial data ranges,

for instance, ranging from 1163.20 to 2058.40. Furthermore, the percentiles (25%, 50%, 75%)

offer a clear picture of data distribution. The full spectrum of the dataset can be found in

Appendix A.

A distinctive pattern emerges when examining Figure 3.2, which represents the S&P 500's

closing prices from 2017 to 2022. The graph depicts a series of fluctuations, reflecting the

market's inherent volatility during this period. While intermittent downward movements exist,

the overall trend displays an upward trajectory. The closing prices exhibit a mix of rises and

falls, influenced by various economic and market factors that shaped investor sentiment and

market conditions during those years. The decline in 2020 coincided with the onset of the

global COVID-19 pandemic, followed by an upwards trend that indicates a recovery from the

companies.

Figure 3.2 - S&P 500 Index (Spx) over the past five years

12



Figure 3.3 - Line Plot Showing the Time Series Evolution of 10 Variables

Figure 3.3 shows the time series line plot of the feature variables. Stochastic trends and

volatility are patterns that can be observed immediately.

From 2017 onward, an examination of the Dji, Figure 3.4, reveals a discernible positive

long-term trend, marked by periodic corrective movements and the attainment of significant

milestones, and also follows the same trend as of the Spx depicted in Figure 3.2. This

trajectory reflects the overall growth of the stock market; however, it is also characterized by

volatility, frequently influenced by economic events and news. Conversely, Bitcoin prices

during the same period have demonstrated remarkable exponential growth, punctuated by

recurrent cycles of bullish phases marked by rapid price appreciation and bearish phases

13
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featuring corrections or declines. These two indexes significantly impact the Spx's, as we will

see further in Chapter 5, and are also strongly correlated to the Spx, as seen in Figure 3.6.

As we embark on forecasting the S&P 500's price in our work, the correlation matrix

plays a pivotal role in capturing the intricate relationships between the target and exogenous

variables. Notably, we observe a strong positive correlation between the S&P 500 index and

the Dow Jones Industrial Average, indicating a close relationship between these two market

indicators. Additionally, there is a somewhat strong positive correlation between the S&P 500

and Bitcoin, suggesting a potential influence of the cryptocurrency market on the stock

market dynamics.

Thorough analysis reveals weak correlations between the S&P 500 index and Gas and

USD, as seen in Figure 3.6. While correlation provides valuable insights, it is important to

note that it does not imply causality. In order to develop an accurate and effective predictive

model, we have deliberately decided to exclude these two variables from the dataset. This

approach lets us focus on the most influential and statistically significant factors, ensuring the

model's accuracy and effectiveness.

14



Figure 3.6 - Multivariate Analysis: Correlation Matrix of Key Features

During the data collection and preprocessing phase, we obtained the necessary datasets,

merged them, handled missing values, and applied normalization techniques. A correlation

analysis revealed strong positive correlations between Spx and Dji and medium-strong

positive correlation between Spx and Bitcoin. Knowing these two correlations (Spx-Dji and

Spx-Btc) will come in hand when analyzing the results in Chapter 5. The processed data is

now ready for model training and evaluation, offering insights into potential market dynamics

and their impact on the S&P 500.

15



16



CHAPTER 4

Modeling
To advance our investigation, we implemented two Machine Learning algorithms and

compared their performances based on various metrics. The following subsections provide

detailed insights into each model's architecture, methodologies, and parameter optimizations.

The first model, LSTM, is based on recurrent neural networks (RNN), while the second one,

XGBoost, follows a different approach with gradient boosting. For both models, we use seven

exogenous variables (Gold, Dji, Btc, Eth, Oil, Silver and Copper) to achieve our first task – to

predict the Spx's index. We then explain which of these seven variables have more impact on

the target variable. Through a rigorous evaluation of their performance using selected metrics

(MAE, MSE, RMSE, MAPE), we draw valuable conclusions on their suitability for

forecasting the S&P 500 index.

4.1. LSTM

In contrast to its ancestor, RNN, which faced challenges in effectively modeling sequential

data, such as the inability to capture long-term dependencies and the difficulty in parallelizing

the sequential calculation approach (Wang et al., 2019), LSTM emerges as a specialized type

of RNN that overcomes these limitations. LSTM introduces additional capabilities for

capturing and memorizing data sequences. The key feature of LSTM lies in its memory cells

or system modules, where information flows are recorded and stored (Siami-Namini et al.,

2018). This unique architecture allows LSTM to capture long-term dependencies, effectively

modeling complex temporal patterns in sequential data (Goodfellow et al., 2016).

4.1.1 Base Model development

4.1.1.1 LSTMModel architecture

In the base model development phase, the architecture of the LSTM model was designed to

establish a starting point for further improvement. The base model aimed to capture temporal

dependencies and extract meaningful information from the sequential data.

The LSTM model architecture consisted of two layers. The first layer had 32 neurons,

while the second had 16 neurons. The choice of the number of neurons in each layer was

based on experimentation and striking a balance between model complexity and

computational efficiency.

In order to introduce non-linearity and capture complex patterns in the data, the Tanh

(Hyperbolic Tangent) and ReLU (Rectified Linear Unit) activation functions were utilized in

the first and second LSTM layers, respectively. ReLU is a simple and efficient activation
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function that outputs the input value if it is positive and zero otherwise, while the Tanh

function is a mathematical function that maps the input values to a range between -1 and 1.

The parameters utilized on each layer of the base model can be found in Table 4.1.

The base model was also optimized using the Adam optimizer, a popular and efficient

optimization algorithm. Adam combines the benefits of AdaGrad2 and RMSProp3, adapting

the learning rate for each parameter individually. The optimizer's choice aids in efficiently

updating the weights and biases of the neural network during the training process.

Table 4.1 - LSTM base model's layers architecture

4.1.1.2 Input Shape and Temporal Dependencies

The input shape was crucial in capturing the temporal dependencies inherent in the sequential

data. This study considers a three-dimensional input tensor with the following format:

(samples, time steps, features).

Namely, the input shape was (1250, 5, 7), meaning there were 1250 samples, each

consisting of 5-time steps, and each time step contained 7 features. This structure allowed the

LSTM model to process the sequential data meaningfully and leverage the inherent order and

temporal information present in the time series.

By structuring the input data this way, the LSTM model could capture the relationships

between past observations and make informed predictions based on the patterns learned from

the historical data.

4.1.1.3 Base Model evaluation

The base model's performance was evaluated using various metrics to assess its effectiveness

in predicting the price of the S&P 500's index. Standard evaluation metrics were considered,

including MSE (Equation 1), MAE (Equation 2), RMSE (Equation 3) and MAPE (Equation

4). In what follows are the formulas for each of the metrics:

3 https://keras.io/api/optimizers/rmsprop/
2 https://optimization.cbe.cornell.edu/index.php?title=AdaGrad
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Units Activation Function Dropout Rate

1st Layer 64 Tanh 0.2

2nd Layer 32 ReLU 0.2
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the dataset.

The base model's predictions were compared against the ground truth values to calculate

the MSE, MAE, RMSE and MAPE. These metrics provided insights into the performance of

the model's predictions. Additionally, several plots were used to analyze the model's

performance visually.

While the base model served as a starting point, it is important to acknowledge its

limitations and identify space for improvement. The evaluation results helped identify

shortcomings and better understand the model's strengths and weaknesses. Valuable insights

were obtained through the evaluation of the base model, laying the groundwork for the

subsequent steps of optimizing the model and improving its performance through

hyperparameter tuning, as discussed in the next section. The calculated metrics for the base

model's performance can be found in Table 4.2.

4.1.1.4 Hyperparameter tuning

Hyperparameter tuning plays a major role in achieving the optimal performance of a model,

as the default hyperparameters may not always result in the highest accuracy or best

predictive capabilities (Schratz et al., 2019). Fine-tuning the hyperparameters becomes crucial

to ensure the model is effectively adapted to the specific problem. However, hyperparameter

tuning can be complex and time-consuming, mainly when dealing with models that consider

multiple parameters (Liu et al., 2019). It involves iteratively exploring different sets of

hyperparameters to find the optimal configuration that maximizes the model's performance.

Various techniques, such as grid search, random search, and more advanced approaches like

Bayesian optimization, can be employed to explore the hyperparameter space and identify the
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best parameter combination. These techniques help overcome the challenges of

hyperparameter tuning and enable the model to be fine-tuned for optimal results.

In what follows, we briefly explore a commonly employed hyperparameter tuning

technique, the Random Search algorithm.

4.1.1.5 Random Search optimization

The random search optimization algorithm randomly samples from the hyperparameter space

to find the optimal value for the parameters of a model (Nevendra et al., 2022). This

technique offers a more efficient alternative than algorithms such as grid search (which

evaluates all possible combinations for the parameters, making it more time and resource

costly). Instead, it explores a subset of combinations iteratively, which can often yield

comparable results to grid search with significantly fewer evaluations. For each randomly

sampled hyperparameter configuration, the model's performance was evaluated using the

same metrics used for the base model, and all the scores can be found in Table 4.2. Also, loss

graphs were plotted to visualize each randomly sampled configuration's convergence and

training progress, as shown in Figure 4.1. Figures 4.2 to 4.5 depict the result of four

experiments conducted over varying numbers of past observations to find the better fitting

window for future forecasting; refer to Section 4.1.1.7 for more details on this. The

training-validation loss graphs suggest a slight overfit of the model, addressed in the final

version of the model by introducing two regulators, L1 and L24 , which is a common

approach to address overfitting in machine learning models, particularly in the context of

linear regression and neural networks.

Figure 4.1: Random search loss graph for 5 past observations Figure 4.2: Random search loss graph for 10 past observations

4 The L1 regularization approach is the Lasso Regression, while the L2 model is the Ridge Regression. The main
distinction between these two is the penalty term. Ridge regression penalizes the loss function with the "squared
magnitude" of the coefficient. For more information on the L1 and L2 please refer to
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
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Figure 4.3: Random search loss graph for 22 past observations Figure 4.4: Random search loss graph for 60 past observations

Upon initial examination, an intriguing pattern emerges when comparing the four graphs.

The loss function depicted in Figure 4.2 stands out as it suggests a more pronounced

relationship between the training and validation loss than the other graphs. However, it is

important to highlight that this graph uniquely showcases an overfitting scenario where the

model excessively tailors its performance to the training data. Conversely, the observation for

22 lags, as depicted in Figure 4.3, falls significantly shorter in terms of accurately

approximating the relationship between the training and validation loss compared to the graph

in Figure 4.1, which showcases a better relationship between the train and validation when

compared to the other three. It is worth mentioning that Figure 4.1, the experiment in which

we introduce 5 lags, offers the most compelling visualization while indicating the minimum

loss, showcasing the strongest alignment with the metrics presented in Table 4.2. It is also

worth mentioning that the graph in Figure 4.2 could show better results with further parameter

tuning.

4.1.1.6 Hyperparameters tuned

During the hyperparameter tuning phase, several hyperparameters were considered for

optimization. These hyperparameters include:

● Learning Rate: The learning rate determines the step size at which the model

adapts its internal parameters during training.

● Number of Layers: The number of LSTM layers in the model can impact its

capacity to capture complex patterns and represent the data.

● Number of Neurons: The number of neurons in each LSTM layer influences

the model's complexity and ability to learn intricate features.

● Dropout Rate: Dropout is a regularization technique that randomly drops a

fraction of the neurons during training, reducing overfitting.
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● Batch Size: The batch size determines the number of samples processed before

updating the model's internal parameters.

● Activation function: This hyperparameter determines the activation function

used in the neural network. It is represented as a range from 0 to 7, where different values

correspond to other activation functions like sigmoid, tanh, ReLU, etc.

● Optimizer: This hyperparameter specifies the optimization algorithm that

updates the neural network weights during training.

● Normalization: This hyperparameter determines whether input data should be

normalized before being fed into the neural network.

4.1.1.7 Performance Evaluation Metrics

In order to find the right time window for the observations that the model should consider

before making predictions, four experiments were conducted consisting of 5, 10, 20, and 60

lags of historical observations. During these experiments, we also considered the presence and

absence of cryptocurrencies in the dataset to see how the model behaves when exposed to a

specific number of past observations when accounting for crypto and when not.

Accessing the values employed by the metrics allows us to quantify the model's predictive

accuracy and to compare and select the best-performing hyperparameter configuration. The

hyperparameters suggested by the random search5 algorithm using a window with 5 past

observations while having crypto currency in the mix are applied to the LSTM model to

obtain the best predictions since these performed better. The Bayesian optimization6 results

can be found in Appendix B. In Table 4.2, the Bayesian technique consistently ranks second

in every evaluation during this optimization phase, except for two specific cases, with one of

them being the case where the model is trained without the cryptocurrencies with 22 lags and

the other one with the same dataset being fed to the model but with 10 lags.

It is worth mentioning that even though the model performed better in some cases when

fed data without the cryptocurrencies, we proceeded to use the data with the cryptos as the

metrics difference was not too significant. We do this intending to observe later how the

6 https://towardsdatascience.com/bayesian-optimization-concept-explained-in-layman-terms-1d2bcdeaf12f

5 Python was utilized for the entire hyperparameter tuning and modeling process. The tensorflow library was
employed, along with the sklearn.model_selection.TimeSeriesSplit and
sklearn.model_selection.RandomizedSearchCV modules for time series cross-validation and
randomized hyperparameter search, respectively. The
tensorflow.keras.wrappers.scikit_learn.KerasRegressor wrapper was used to make the
model compatible with scikit-learn's estimator interface.
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cryptos influence our models, if it does at all. The results are presented in Table 4.3, which

shows the hyperparameter configuration that yielded the highest predictive accuracy.
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Model with crypto features Model without crypto features

MAE MSE RMSE MAPE(%) MAE MSE RMSE MAPE(%)

Performance for past 60 days Performance for past 60 days

base model metrics 0.26 0. 10 0.32 17.80 base model metrics 0.43 0.24 0.49 27.32

Bayesian model metrics 0.30 0.14 0.38 22.35 Bayesian model metrics 0.65 0.50 0.71 42.49

Random search CV model metrics 0.36 0.20 0.44 23.07
Random search CV model
metrics 0.75 0.79 0.89 49.83

Performance for past 22 days Performance for past 22 days

Base model metrics 0.38 0.20 0.44 21.99 Base model metrics 0.31 0.14 0.37 18.31

Bayesian model metrics 0.26 0.10 0.31 16.80 Bayesian model metrics 0.17 0.04 0.20 10.39

Random search CV model metrics 0.22 0.07 0.26 13.95
Random search CV model
metrics 0.25 0.10 0.32 14.87

Performance for past 10 days Performance for past 10 days

Base model metrics 0.30 0.12 0.35 17.34 Base model metrics 0.30 0.13 0.37 17.71

Bayesian model metrics 0.30 0.12 0.34 17.48 Bayesian model metrics 0.24 0.07 0.27 14.05

Random search CV model metrics 0.40 0.26 0.51 23.71
Random search CV model
metrics 0.18 0.05 0.22 11.09

Performance for past 5 days Performance for past 5 days

Base model metrics 0.25 0.08 0.29 14.70 Base model metrics 0.30 0.13 0.36 17.47

Bayesian model metrics 0.24 0.08 0.29 15.54 Bayesian model metrics 0.26 0.09 0.30 15.65

Random search CV model metrics 0.18 0.04 0.21 10.61
Random search CV model
metrics 0.19 0.05 0.23 12.55

Table 4.2: Model's performance (normalized values)
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Table 4.3: Model's best hyperparameters with Random Search optimization

The table of best hyperparameters suggested by the random search algorithm provides

valuable insights into the optimal configuration for the model. These hyperparameters have

been identified as the most effective choices for maximizing performance based on the search

conducted. These optimal hyperparameters offer a starting point for further fine-tuning and

optimization to enhance the model's overall performance and, with time, can even be more

tuned.

Figure 4.5 - Comparative Analysis of Predicted vs. True Values for S&P 500, Random Search

Optimized Hyperparameters with 5 lags

In Figure 4.5, the model with the hyperparameters suggested by the random search, with

the data in its original scale, resulted in a strong approximation between the predicted and true

values. The optimized model accurately captures the underlying patterns of the regression task

and highlights the model's ability to generalize well to unseen data while minimizing

overfitting, making it a robust solution for our regression problem.

In evaluating our LSTM model's performance over the original values, we computed

several metrics that provided insights into the model's predictive capabilities. Our model's

MAE is 224.18, indicating an average absolute deviation of this magnitude between the
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predicted and actual values. Additionally, the MSE is calculated at 74662.67, reflecting the

average squared deviation between predictions and ground truth values. To provide a more

interpretable measure of prediction accuracy, the RMSE is determined to be 273.24. In the

mean, the predicted value differs by 273$ from the actual value. Lastly, the MAPE is

evaluated to be 4.91%, which quantifies the average percentage difference between predicted

and actual values. These metrics collectively serve as essential indicators of our LSTM

model's performance and will be valuable for assessing its reliability in forecasting tasks, as

discussed in subsequent sections of this thesis.

In conclusion, the application of the random search algorithm significantly improved our

model's performance and its ability to approximate the target values accurately. Table 4.2 also

contains the results (in which the random search algorithm stands out from the others) of all

the experiments performed in searching for the optimal model that best fits our data. The

same model will be used in the explainability chapter based on the lag that yielded the best

results, as shown in Table 4.2. Notably, the RMSE values for the 5-lag experiment with

cryptocurrencies among the exogenous variables for the random search algorithm were the

lowest among all four lags tested, accounting for 0.21, indicating the model's strong predictive

capability in capturing short-term dependencies. When experimenting with the other three

lags(10, 22, 60) the model shows more prominent results when working with 22 lags, with an

RMSE of 0.41, and the falling last with the worse RSME is the 10-lag experiment accounting

for 0.51. As seen in Figure 4.5, when predicting 5 future values (5 lags), the alignment

between the predicted and true values instills confidence in the model's reliability, making it a

promising choice for our specific regression task.

4.2 XGBoost

The extreme gradient boost (XGBoost) algorithm is a powerful implementation of gradient

boosting that has gained widespread popularity in machine learning (Zhang et al., 2021). As

an ensemble method, XGBoost combines the predictions of multiple weak classifiers,

typically decision trees, to create a more robust and accurate classifier.

One of the key advantages of XGBoost is its ability to address some of the limitations of

individual decision tree classifiers. By combining the features of multiple trees, XGBoost can

overcome weaknesses such as handling missing values more effectively, mitigating the risk of

overfitting, and optimizing calculations in parallel, significantly reducing the model's training

and prediction time (Luo et al., 2021).

The versatility and effectiveness of XGBoost have been demonstrated across a wide range

of domains and applications. Its performance has made it popular for various machine
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learning tasks, including classification, regression, and ranking problems (Chen et al. 2016).

Furthermore, XGBoost has been successfully applied in areas such as image recognition,

natural language processing, and financial forecasting.

4.2.1 Model architecture

In order to implement the XGBoost model to predict the price of the S&P 500 using the

exogenous variables, it is essential to define the key parameters that govern its behavior and

performance. The selection of these parameters significantly impacts the model's

performance, complexity, and generalization capabilities. This step outlines the most

important XGBoost parameters and justifies our choices based on relevant literature or

empirical evidence.

The XGBoostRegressor is designed for regression tasks and employs the sum of squared

errors (SSE) as the loss function. By minimizing the squared error, the model aims to reduce

the average squared difference between predicted and target values.

As previously stated, the XGBoostRegressor architecture consists of an ensemble of

decision trees, where each tree is sequentially added to the ensemble to correct the errors

made by the previous trees. The number of trees in the ensemble, known as n_estimators,

determines the model's complexity and capacity. In our study, the optimal number of trees was

determined to be 64, through hyperparameter tuning.

Additionally, the max_depth hyperparameter controls the maximum depth of each

decision tree in the ensemble. A higher max_depth allows the trees to capture more complex

relationships in the data, but it can also lead to overfitting if not regularized properly. Through

hyperparameter optimization and evaluation, we found that a max_depth of 4 balanced

capturing important patterns and avoiding overfitting.

In summary, the XGBoostRegressor, with its ensemble of decision trees and the squared

error loss function, offers a robust framework for regression tasks, and the parameters for this

model were not explored in as much depth as those of the LSTM since a simple set of

parameters performed well, after the hyperparameters optimization process.

4.2.2 Hyperparameters tuning

To optimize the performance of the XGBoostRegressor model, we conducted

hyperparameter tuning using GridSearchCV. GridSearchCV is the process of choosing models

and hyperparameters by testing and evaluating each combination separately (Wu et al., 2022)

and systematically exploring a predefined grid of hyperparameter values to identify the

optimal combination.
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After running the optimizer, we identified the optimal hyperparameter values for our

regression task: n_estimators = 64, max_depth = 4, and learning_rate = 0.2. The fine-tuned

selection aimed to optimize the performance of XGBoostRegressor, considering both

accuracy and generalization capabilities.

4.2.3 Performance evaluation metrics

The XGBoost model's performance was evaluated using various metrics, the same metrics

used to assess the LSTM model. The evaluation showed that the model predictions closely

align with the actual values of the time series data. The MAE of 144.43 indicates an average

difference of approximately 144.43 units between the predicted and actual values. The MSE

of 31727.29 represents the average squared difference between the predicted and actual

values, with a higher weight on larger errors. The RMSE of 190.96 provides an interpretable

measure of the average magnitude of these errors. The MAPE of 4.16% represents the

average percentage difference between the predicted and actual values. These evaluation

metrics indicate the XGBoost model's effectiveness in capturing the time series' underlying

patterns. Furthermore, a visual representation in Figure 4.6 illustrates the model's performance

in forecasting the target variable, showing a close alignment between the predicted and actual

values. The model demonstrated accurate predictions for the target variable with the close

alignment between predicted and actual values and the low values of MAE, MSE, and RMSE,

and MAPE. These results highlight the XGBoost model's potential as a reliable and accurate

forecasting tool for the research problem.

Figure 4.6: XGboost predicted vs actual values
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The XGBoost performance graph in Figure 4.6 shows that the model's predictions are

fairly accurate, closely following the true values. Although they are not extremely close, this

indicates a balanced level of generalization, avoiding overfitting. Overall, Figure 4.6 shows

that the XGBoost model has learned meaningful patterns from the data and can make

reasonably accurate predictions on new, unseen instances.

4.3 LSTM vs XGBoost

The two models were trained to forecast five future values of the S&P 500's price using seven

features: Dji, Gold, Btc, Eth, Copper, Oil, and Silver. The performance of the LSTM and

XGBoost models was evaluated based on RMSE and MAPE metrics.

The LSTM model achieved an RMSE of 705.94 and a MAPE of 11.94%. These results

indicate that the LSTM model exhibited a higher error level in its predictions than the

XGBoost model. The relatively larger RMSE and MAPE values suggest that the LSTM

model had difficulty accurately forecasting the S&P 500 using the given features.

On the other hand, the XGBoost model demonstrated more promising performance, with

an RMSE of 190.96 and a MAPE of 4.16% as seen in Table 4.4. These lower values show that

the XGBoost model yielded more accurate predictions than the LSTM model, providing a

better approximation of the actual S&P 500 values using the given feature set.

Table 4.4: LSTM and XGBoost metrics for 5-day out-of-sample forecast

Based on the shown in Table 4.4, it can be concluded that the XGBoost model

outperformed the LSTM model in terms of forecasting the S&P 500 using the selected

features. The XGBoost model exhibited lower prediction errors, indicating its potential

suitability for this specific forecasting task. However, further analysis and evaluation may be

required to explore other factors contributing to the performance differences between the two

models, such as the model architectures, hyperparameters, and dataset characteristics.

The investigation revealed that removing the cryptocurrencies from the list of exogenous

variables, in both models, had a positive impact on each of the model's performance,

particularly concerning the LSTM model (Table 4.2). When the cryptocurrencies were

excluded, the model demonstrated better performance in 33.3% of all experiments conducted
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LSTM 705.94 11.91

XGBoost 190.96 4.16



in the LSTM model. On the other hand, keeping the crypto variables led to a modest

improvement in both model's performance, making their inclusion a feasible option. Overall,

the XGBoost model outperformed the LSTM one with a difference of approximately 71.19%

and 74.72% on the MAPE and RMSE metrics, respectively. Moreover, results from Table 4.2

suggest that carefully considering cryptocurrency variables can contribute to optimizing the

model's predictive capabilities. However, as we will see in Chapter 5, cryptocurrencies may

not always have the desired impact on a model's performance.
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CHAPTER 5

Explaining the predictions of the LSTM and XGBoost

models
5.1 Applying LIME to the LSTMModel
The LSTM model, with its sequential nature, presents unique challenges and opportunities

when it comes to applying explainability methods. In this section, we delve into applying

LIME7 to interpret the predictions and behaviors of the LSTM model.

Following the literature, due to its ability to explain individual predictions in a local

context, LIME is applied to make local explanations of the LSTM model used for forecasting

the S&P 500's price to gain insights into the relationships between the exogenous variables

and the model's predictions.

The LIME algorithm, initially designed for tabular data, is adapted for LSTM models in

our research by using the module lime_tabular from the lime library itself and then the

RecurrentTabularExplainer which was designed explicitly for recurrent models like LSTM,

taking into account the temporal nature of the data.

Applying LIME to the LSTM model, we gained valuable insights into the significance of

exogenous variables in predicting the S&P 500's price for specific instances. By analyzing 10

instances carefully selected based on the model's confidence, we identified the most

influential variables through the LIME analysis (refer to Table 5.1). These findings shed light

on the factors driving the LSTM model's predictions and provide a deeper understanding of

the impact of various variables on the S&P 500's price in specific market scenarios.

Dji appeared 5 times as a positive variable in all 10 instances, indicating its positive

influence on the S&P 500's price predictions. The positive relationship between Dji and the

S&P 500 is consistent with historical trends, where changes in the Dji have often been

mirrored in the S&P 500 (Liu et al., 2016).

On the negative side, BTC (Bitcoin) appeared in the top 3 negative instances with 21

negative appearances in all 10 cases, suggesting its consistent negative influence on the S&P

500's price prediction. Similar negative impacts were also observed for Dji and Eth, which

also came up in the top 3 negative instances with 15 and 10 negative appearances,

respectively, in all 10 cases.

7 https://homes.cs.washington.edu/~marcotcr/blog/lime/
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Furthermore, the analysis revealed the importance of Gold, which appeared in the top 4,

being the most positive variable among the others.

The updated analysis of 10 confident instances using LSTM-LIME highlights the

importance of Bitcoin, Ethereum, Dji and Gold prices as the most influential variables in the

LSTM model's predictions for the S&P 500's price. The presence of Dji as both a positive and

negative variable underscores its context-dependent relationship with the S&P 500.

Table 5.1 - Top Influential Variables in S&P 500 Price Prediction for the LSTM model

according to LIME

LIME analysis of 10 of the most confident instances reveals essential insights into the

factors driving the LSTM model's predictions for the S&P 500's price. This analysis shed light

on the crucial role played by Dji, BTC, Eth and Gold prices in predicting the S&P 500's price

within the LSTM model. The results highlight BTC as a significant driver, with a weighted

impact of -18, signifying its substantial influence on the target variable. Meanwhile, Dji

emerges as the secondary driver, appearing in all ten instances with a weighted impact of -10,

indicating its significant impact, especially in negative contexts.

The highly negative impact of BTC on the S&P 500's index is also in line with the

findings of Erdas and Caglar(2018), which suggested how changes in cryptocurrency affect

the investor's decision regarding the S&P 500.

The frequent appearances of the variable Dji in the LIME-LSTM analysis suggest its

significant importance in the LSTM model's performance and interpretability. With Dji

appearing in all 10 instances, it becomes evident that Dji holds substantial predictive power

and influences the model's decision-making process. Its repeated occurrence in LIME

explanations indicates that it plays a crucial role in understanding the model's behavior for

specific instances. Consequently, changes in Dji (also in BTC) are likely to have a significant

8 To calculate the weighted impact, we assign a weight of +1 to the positive influence and -1 to the negative
influence and then sum the products. The following formula applies:
w = (num_pos_occurrence * +1) + (num_neg_occurrence * -1)
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(Positive)

Occurrences
(Negative)

Weighted impact8

Btc 24 3 21 -18

Dji 10 5 15 -10

Eth 15 5 10 -5

Gold 8 6 2 4



impact on the model's predictions or explanations, and its relevance may vary depending on

the context or data instances being analyzed. Additionally, the presence of Btc and Eth as

influential variables reflects the changing landscape of financial markets, where the

interactions between traditional and cryptocurrency markets are becoming increasingly

relevant in predicting stock prices.

In order to assess the real impact of these variables, we ran the LSTM model using only

these top three features (Dji, Gold and Eth). The results were remarkable, but not unexpected.

The RMSE dropped significantly from 705.94 to 273.24, substantially improving the model's

predictive accuracy. Additionally, the MAPE also saw a considerable reduction, decreasing

from 11.94% to 4.94%. These compelling metrics demonstrate the critical role played by the

Dji, Gold, and Eth variables in enhancing the LSTM model's performance and overall

predictive power.

It is worth mentioning that even though bitcoin had a substantial appearance in the

instances where the model felt more confident, its highly negative weighted and negative

impact overall also emerged once used among the other three variables and proved to penalize

the model's performance as the metrics only went up and through experimentations when left

aside, the model yielded better results.

Figure 5.1 - Prediction Graph: Comparative Analysis of Predicted vs. True Values Using Top

3 Variables with 5 lags on the LSTM Model

The LSTM performance graph, depicted in Figure 5.1, demonstrates significantly

improved predictions compared to the initial version (illustrated in Figure 4.5). The model

shows high precision by closely aligning its predicted values with the true values, indicating
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robust generalization and avoiding overfitting. The considerable reduction in RMSE and

MAPE further validates the LSTM model's effectiveness for predictive analysis on unseen

instances.

However, it is important to acknowledge that these conclusions are based on local

interpretations for specific instances and should be further validated and generalized through

additional analysis and exploration of more instances.

5.2 Applying SHAP and LIME to the XGBoost Model

The SHAP analysis was successfully conducted on the XGBoost model, providing valuable

insights into the importance of the exogenous variables in predicting the S&P 500's price. The

SHAP values quantify the contribution of each variable to the model's predictions, allowing

us to determine their relative importance.

According to SHAP analysis, the variables' importance in predicting the S&P 500's price

ranked as follows: Dji (Dow Jones Industrial Average) had the highest influence, followed by

Silver, with its dynamics related to industrial demand, inflation expectations, and global

economic conditions, which also had a substantial impact. Gold, known as a safe-haven asset

(Kumar and Padakandla, 2022), appears in the top three, providing insights into investor risk

appetite. Oil, Copper, and Eth were also significant predictors, representing oil price

fluctuations, global economic conditions, and the relevance of the cryptocurrency market. Btc

(Bitcoin) had the least importance, suggesting a lower impact on predictions. These findings

enhance our understanding of factors driving the S&P 500's forecast of the XGBoost model.

Figure 5.2 illustrates the SHAP results.

Figure 5.2: Variables importance according to SHAP

Applying LIME to explain local observations of the XGBoost model also provided

valuable insights. The LIME analysis was conducted on the XGBoost model using multiple

34



instances, aiming to identify the relative importance of the exogenous variables in predicting

the S&P 500's price for each specific instance. The analysis revealed the top influential

variables for predicting the S&P 500's price across these instances, shedding light on the

factors driving the model's predictions, the importance of certain variables, and their impact

on the S&P 500's movements within the XGBoost model.

According to the LIME analysis, the top influential variables for predicting the S&P 500's

price in this instances are as follows (refer to Table 5.2 for more details): the most influential

variable was found to be Dji, appearing in all 10 instances analyzed with positive influence,

indicating that changes in the Dow Jones index have a significant positive impact on the

predicted S&P 500's price for the 10 cases investigated. Oil and Ethereum also appeared in all

10 instances, having a positive effect, signifying their consistent positive influence on the

model's prediction.

Dji, oil, and Eth suggest that these variables are pivotal in driving the S&P 500's price

movements within the XGBoost model. The Dow Jones index reflects overall market

sentiment and investor confidence, while oil and Ethereum are likely influenced by broader

economic conditions and cryptocurrency market growth, respectively.

Furthermore, silver appeared in all 10 instances as a negative variable, indicating its

consistent negative impact on the S&P 500's price prediction for this specific instance.

Similarly, Bitcoin appeared in 8 out of 10 cases with a negative influence and 2 out of 10 as

positive, suggesting that changes in the Bitcoin market had a counteractive effect on the

model's predictions for those 8 particular instances.

Table 5.2 – LIME Top Influential Variables in S&P 500's Price Prediction for the

XGBoost model

After conducting the XGBoost-LIME analysis and identifying the top 3 positive

influential variables, we proceeded to refine the model by running it with these variables. The
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Variables Occurrences Occurrences
(Positive)

Occurrences
(Negative)

Weighted
Impact

Dji 10 10 - 10

Oil 10 10 - 10

Eth 10 10 - 10

Btc 10 2 8 -6

Silver 10 - 10 -10



selected positive variables, namely Dji, Oil, and Eth, were incorporated into the XGBoost

model. As a result of this enhancement, the model's performance notably improved, as

evidenced by enhanced evaluation metrics, with the RMSE decreasing significantly from

190.96 to 155.47, indicating a remarkable reduction in prediction errors. Moreover, the mean

absolute percentage error also experienced a notable improvement, declining from 4.16% to

2.98%. The predictions aligned more accurately with the actual S&P 500's price movements,

demonstrating the significance of these variables in capturing underlying patterns and

contributing to better predictive capabilities.

Oil prices are one of the variables that appeared in the top 3 positive instances in 10 out of

10 cases, indicating its significant impact on the model's prediction. This finding aligns with

existing knowledge in the financial market, such as the work of Kilian and Park (2009), which

suggests that the global crude oil market's demand and supply shocks are collectively

responsible for 22% of the long-term volatility in U.S. real stock returns, as the price of oil

has been recognized as a key driver of the S&P 500's movements. The influence of oil

suggests that fluctuations in the oil market can have a substantial effect on the S&P 500's

price.

Figure 5.3 - Prediction Graph: Comparative Analysis of Predicted vs. True Values Using

Top 3 Variables with 5 lags on the XGBoost Model

In Figure 5.3, we can observe a noteworthy improvement in the alignment between the

predicted and actual values compared to previous results. The graph shows a more refined and

accurate approximation, indicating that the model's predictions are now tracking the actual

S&P 500's price movements more closely.
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The successful integration of the top 3 positive influential variables into the XGBoost

model showcases their importance in capturing relevant signals in the financial markets. This

enhancement not only contributes to a more accurate prediction of the S&P 500's price but

also highlights the potential benefits of utilizing key exogenous variables in bolstering the

model's overall performance.

5.5. Comparison of LIME results
The LIME analysis was performed on both the LSTM and XGBoost models in order to

compare the importance of exogenous variables in predicting the S&P 500's price. For the 10

most confident instances, the LSTM model identified BTC, Dji, Eth and Gold as the four

most important variables. In contrast, the XGBoost model ranked Dji as the top variable,

followed by Oil, and Eth. Interestingly, both models indicated negative importance for BTC,

suggesting a counteractive effect on the predicted S&P 500's price.

Comparing the results, it is notable that Dji consistently emerged as an important variable

in both models. This indicates the significance of the Dow Jones Industrial Average in

predicting the S&P 500's price across different modeling techniques. However, there were

variations in the rankings and inclusion of other variables. The LSTM model gave higher

importance to Gold as the variable with the most positive impact (and the only one with

positive weighted impact), while the XGBoost model emphasized Dji, Oil and Eth.

Additionally, both models shared the observation of negative importance for BTC, implying a

distinct behavior compared to other variables.

These disparities in variable importance highlight the differences in modeling approaches

and algorithms employed by LSTM and XGBoost. Each model might capture unique aspects

of the data and exhibit varying sensitivities to different exogenous variables. Therefore, the

comparison of LIME results provides valuable insights into the strengths and limitations of

each model and the factors they prioritize when predicting the S&P 500's price. The full

LIME output can be found in Appendix C.
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CHAPTER 6

Conclusion
In this work, we implemented two models, LSTM and XGBoost, to predict the S&P 500's

price using a set of exogenous variables. Both models exhibited promising results in

predicting the S&P 500's price given the set of exogenous variables, but their performance

characteristics and interpretability differed due to their unique modeling approaches.

This thesis consists of two parts, with the first one being the model development and S&P

500's price prediction and the second part being the explanation of the prediction made in the

first part.

In the model development phase, we aimed to find the optimal model by creating a base

model with basic and default hyperparameters for both LSTM and XGBoost. This base model

served as a starting point for further improvement during the hyperparameter tuning phase. By

training these initial models, we gained valuable insights into their performance on the dataset

and identified areas for enhancement. We used common evaluation metrics, such as MAE,

MSE, MAPE and RMSE.

After extensive hyperparameter tuning and cross-validation, we fine-tuned the LSTM and

XGBoost models to achieve the best possible performance. Careful consideration was given

to balancing the models' complexity and avoiding overfitting to ensure generalization to

unseen data. Through this iterative process, we arrived at the optimal models, which exhibited

superior predictive power compared to the base models.

With the optimal models in place, we shifted our focus to the explainability phase, a

critical step in building trust and understanding in the predictive models. The primary

objective during this phase was to determine the variables that had the most significant impact

on the models' predictions and to understand how a variable influenced a model and also how

the variable that influenced one model also affected the other one.

Through the application of LIME and SHAP techniques, we gained valuable insights into

the importance of exogenous variables for predicting the S&P 500's price in each model.

Notably, Dow Jones Industrial Average consistently emerged as one of the most influential

variables in both LSTM and XGBoost models, reaffirming its significance in capturing

overall market sentiment and investor confidence.

However, intriguing differences arose in the variable importance rankings between the

two models. For the LSTM model, Dji, Btc, Eth and Gold were identified as important

variables, with Gold rising as the only variable with positive weighted impact in the model,
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reflecting its presence on predicting the S&P 500's price within the context of sequential data

analysis. In contrast, XGBoost didn't even consider Gold as an important variable in all the

cases where it felt most confident about the prediction. This, along with all the other variable

rankings made by the two models and the degree of difference between the variables'

importance according to each model, goes to show that a variable considered to be the most

influential in one model might have negative or even zero impact in the other model.

The XGBoost model further emphasized the importance of additional variables, including

Dji, Oil, Eth, Btc and Silver, with the first three being positive in both weighted and regular

impact underscoring their collective influence on predicting the S&P 500's price in this

modeling approach.

Another interesting finding was that Bitcoin consistently appeared negatively important in

both models, suggesting a counteractive effect on the predicted S&P 500's price. This

observation implies that the behavior of the Bitcoin market has a distinct impact on stock

market movements, irrespective of the modeling technique used.

While both LSTM and XGBoost models effectively demonstrated the ability to leverage

exogenous variables, they exhibited varying sensitivities to different features. The LSTM

model showcased its strength in capturing temporal dependencies, while the XGBoost model

excelled in handling tabular data with non-linear relationships.

We acknowledge the limitations of these models, such as the computational complexity of

LSTM and the sensitivity of XGBoost to feature engineering and hyperparameter tuning,

which may present challenges in real-time applications. Additionally, while LIME and SHAP

provided valuable local interpretability, further research is needed to enhance global

interpretability and comprehend the models' behavior across the entire dataset.

In conclusion, our study sheds light on the predictive capabilities of LSTM and XGBoost

models in the context of the S&P 500's price prediction. The comparison of LIME and SHAP

results deepened our understanding of some commodities' importance in decision-making

processes in each model. As we navigate the intricate landscape of financial markets, this

research contributes to informed decision-making and inspires future advancements in

predictive modeling and interpretability.
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Appendix A

Table A: Dataset's spectrum

45



46



Appendix B

Bayesian optimization

Bayesian optimization is a more advanced technique composed of two components: a

Bayesian statistical model for modeling the objective function and an acquisition function for

deciding where to sample next (Frazier, 2018). The model was then evaluated over the set of

parameters suggested by the Bayesian algorithm using the same metrics as on the base model

(MAE, MASE, RMSE, MAPE), which can be seen in Table 4.2. Similarly to the Random

Search optimization process, as seen in Figures B1 to B4, loss graphs were plotted to

visualize each evaluated configuration's convergence and training progress.

Figure B.1: Bayesian loss graph for 5 past observations
Figure B.2: Bayesian loss graph for 10 past observations

Figure B.3: Bayesian loss graph for 22 past observations Figure B.4: Bayesian loss graph for 60 past observations

The four depicted graphs showcase the intriguing and unconventional behavior of the

model during the training and validation process.

Importantly, these observed graph patterns align with the corresponding metrics,

indicating a poor approximation of the validation set to the training set. This implies that the

model struggles to generalize well beyond the training data, resulting in suboptimal

performance on unseen examples.
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Further analysis and evaluation are necessary to identify the underlying causes of these

unusual behaviors and develop potential strategies to enhance the model's performance and

stability. One hypothesis of this abnormal performance is that the hyperparameters suggested

by the Bayesian algorithm are not suited for this problem's domain, dataset characteristics,

and/or model architecture.
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Appendix C

Lime feature importance for the LSTM Model

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

Instance 6 Instance 7 Instance 8 Instance 9 Instance 10

Lime feature importance for the XGBoost Model

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5

49



Instance 6 Instance 7 Instance 8 Instance 9 Instance 10
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