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Resumo 
 

Esta tese analisa a forma como os modelos de “machine learning” e os dados provenientes de fontes 

de dados públicas podem ser utilizados para prever o consumo de eletricidade em Portugal. Boas 

previsões são cruciais para uma gestão eficiente do setor energético, nomeadamente devido ao 

aumento da procura global de energia. Portugal apresenta um ótimo caso para a previsão de consumo, 

uma vez que depende significativamente de importações de energia e sofre de pobreza energética. 

O estudo utiliza uma metodologia baseada em dados para analisar doze anos de padrões de 

consumo energético e analisar a forma como a pandemia do COVID-19, os padrões climáticos e o PIB 

afetam o consumo de eletricidade. Foram estudados cinco modelos preditivos - SARIMA, SARIMAX, 

VAR, SVR e LSTM – e os seus indicadores de desempenho em dois períodos diferentes (um para os 

doze anos de analise, incluído durante o Covid-19, e outro apenas para dados antes do Covid-19). 

Assim, este estudo permite avaliar a prestação dos modelos de machine learning em periodos estáveis 

e não estáveis 

O estudo reconhece as suas limitações, como a falta de dados na era pós-COVID, mas continua a 

fornecer informações úteis para o desenvolvimento e a gestão de políticas energéticas. 

 

Palavras-chave: Consumo de eletricidade, Pandemia COVID-19, Modelos preditivos 
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Abstract 
 

This thesis analyzes how data from public data sources and machine learning models can be used to 

forecast electricity consumption in Portugal. Accurate forecasts are crucial for efficient energy 

management, given the rising global demand for energy. Portugal presents a compelling case for 

consumption projections since it significantly relies on energy imports and suffers from poverty. 

The study uses a data-driven methodology to analyze twelve years of consumption patterns and 

examine how the COVID-19 pandemic, weather patterns, and GDP affect electricity use. Five predictive 

models were studied - SARIMA, SARIMAX, VAR, SVR and LSTM - and their performance indicators in 

two different periods (one for the twelve years of analysis, including during Covid-19, and the other 

only for data before Covid-19). Thus, this study makes it possible to evaluate the performance of 

machine learning models in stable and non-stable periods. 

The study acknowledges its limitations, such as the lack of data in the post-COVID era, while 

providing valuable insights for developing and managing energy policies. 

 

Keywords: Electricity consumption, Machine learning, COVID-19 pandemic, Predictive models 
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CHAPTER 1 

Introdution 
 

With the rapid development of the economy and society, economic growth was accompanied by a 

large amount of energy consumption (Nwulu & Agboola, 2012). Worldwide energy consumption is 

rising fast because of increased human population, continuous pressures for better living standards, 

emphasis on large-scale industrialization in developing countries, and the need to sustain positive 

economic growth rates (OECD, 2011). Electricity has become one of the most important forms of 

energy to man, being one of the primary forms of energy that modern life is built upon. It affects a 

society's quality of living and efficiency (Kavaklioglu, 2011) and its versatility has led to an almost 

limitless set of applications, from transport, heating, lighting, communications, etc.  

Most recent state-of-the-art shows that the world's energy consumption increased rapidly 

between 1995 and 2015, going from 8,588.9 to 13,147.3 million tons (Mtoe) (Ahmad et al., 2020; Dong 

et al., 2020). All reputable organizations anticipate a sharp increase in energy consumption shortly due 

to a rapid change in the demand for coal to power production and industry (Ahmad et al., 2020). 

All recent European efforts have been to completely decarbonize the economy by the year 2050, 

a goal that depends on energy efficiency and electrification of the energy supply (Hank et al., 2020). 

Portugal is a country that is heavily dependent on energy imports (78%), with oil and petroleum 

products constituting the primary energy source (68%), mainly used in the transport sector, where 

electrification will be gradually increased until 2050 (IEA, 2022). Other decarbonized options, such as 

biofuels and synthetic (green) fuels, cannot be completely ruled out, and they should be considered 

for the decarbonization targets to be met in 2050. 

One of COVID-19's notable effects is on the world's climate, which will partially improve due to 

the reduction in energy usage (Saadat et al., 2020). Critical fluctuations in energy and consumption 

requirements have been caused by the pandemic's altered productive proportion of Gross Domestic 

Product (GDP) output.  

Given this, a sound forecasting technique is essential for accurate investment planning of energy 

production/ generation and distribution. Identifying adequate and essential information for a decent 

prediction is a common challenge in developing accurate forecasts. If the information level is 

insufficient, the forecasting will be poor; similarly, if the information is useless or redundant, modelling 

will be difficult or skewed (Kaytez, 2020). 

 



 

The research questions guiding this thesis investigation are focused on comprehending and 

predicting Portugal's electricity consumption while taking the COVID-19 pandemic's effects into 

account through machine learning. These investigations include looking at past consumption patterns, 

analyzing the effects of pandemics, figuring out how exogenous factors affect consumption, and 

assessing the suitability of various machine learning models.  

The thesis is divided into five chapters, each of which focuses on a different area of the research.  

The introductory chapter provides an overview of the research problem and its importance.  

The chosen methodology, a thorough literature review, and Portugal's distinctive energy 

landscape are all covered in the Literature Review chapter.  

The data utilized in this thesis is discussed, analyzed, and, when necessary, transformed in the 

Data Analysis chapter. This is important in order to comprehend the data's patterns, trends, and 

correlations. 

The models used (SARIMA, SARIMAX, VAR, SVR, and LSTM) are discussed, and the stationarity of 

the data is evaluated, the models are then compared in the Modeling chapter, allowing the best model 

to be chosen.  

The thesis concludes with a summary of findings, and recommendations for future research in the 

area. 

 

  

2 



 

3 

 

CHAPTER  2 

Literature Review 
 

2.1. Methodology 

Over the past 15 years, the number of papers published on forecasting electric power has increased 

exponentially (Vivas et al., 2020). The studies are typically site-specific, and the outcomes heavily 

depend on the type of model used, the length of the prediction, and a variety of other attributes of 

the data and models. This significant constraint makes it challenging to generalize the findings (Enders 

et al., 2015). 

In order to identify the main streams of relevant literature, a multi-step approach was followed to 

identify articles of scientific value.  First, the search strategy was determined by conceptualizing the 

topic, "Prediction of electricity consumption using machine learning". SCOPUS was used for this 

analysis, limiting the search to only documents in the "final" publication stage and written in English. 

The exclusion criteria was used to select papers that related electricity consumption to economic 

growth and COVID-19. Title and abstract screening was done, and all the documents irrelevant to the 

theme were excluded. Additionally, the references of the analyzed articles were screened to identify 

further articles of relevance. 

An overview of how the scope was ultimately focused in Figure 2.1: 

 

Figure 2. 1 - Research scope 
 
 

2.2. Why energy forecast is important 

The Sustainable Development Goals (SDGs) set by the United Nations were signed by nations from 

both developing and growing economies, officially known as the Agenda for Global Development of 

Sustainable Development Goals (SDGs) 2030 and Corporations (United Nations, 2015; Omer and 

Noguchi, 2020; Ahmad and Zhang, 2020). Energy has drawn much attention as a key pillar for ensuring 
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sustainable and inclusive economic development for every country (Pietrosemoli and Rodrguez-

Monroy, 2019). 

The amount of power used is a major concern for the electricity sector regarding planning and 

strategic considerations. Because in contrast to fuels, electricity is difficult and pricy to store 

(Vishnuraja, et al, 2020), because it is economically non-storable, and the stability of the power system 

needs a continuous balance between the production and consumption of electricity (Weron, 2014). 

Therefore, over the years, it has become vital for accurate and efficient mechanisms to model and 

predict energy consumption. (Nwulu & Agboola, 2012) 

Energy forecasting and planning are also important in energy sector development and policy 

formulation (Ahmad & Chen, 2020). Forecasting electricity use can assist policymakers in making 

effective plans for economic growth. This is possible through energy conservation by avoiding 

excessive electricity consumption through enhanced operational strategy (Khan et al., 2020). Allows 

energy distribution companies to predict their customers' energy needs and provide accordingly. By, 

for example, giving them information about upcoming periods of high energy demand or authorizing 

them to tailor their tariffs to customer consumption, consumption prediction enables those companies 

to improve their processes. (Vishnuraja et al., 2020) 

It is commonly recognized that countries' consumption levels are growing by the day, yet the 

resources required to produce energy are restricted in both quantity and range. Furthermore, the 

global distribution of power generation is unbalanced, with some places having more significant 

energy reserves in quantity and range than others. Such an unequal distribution of energy resources 

is true not only for reserves but also for consumption levels, and there is an imbalance in the use of 

energy resources around the world, not only between regions but also between countries (Pradeep, 

K., & Likhita, T., 2022). When an economy's energy resources run out, it has two options: accept "poor 

economic growth with current power resources" or strive to "enhance growth by using imports to 

meet the uncovered portion for the need of the power resources". Energy costs impact countries' 

production patterns, and budget balances, whether direct or indirect. As a result, ensuring the 

economy's performance and contributing to long-term growth requires sufficient purchases of power 

resources at a low cost (Pradeep, K., & Likhita, T., 2022).  
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Examining economic aspects of energy consumption, mainly income and price elasticities, is very 

important for policymakers. These factors can help policymakers understand two important concepts: 

how, historically, the relationship between electricity use and its economic drivers has changed and 

how projected changes in these drivers will affect future consumption. This information would be 

helpful to demand-side policymakers for managing energy consumption using tools such as energy 

prices, tax rates and tariffs. It could also be useful for supply-side policymakers in planning the level of 

energy supply required to meet future demand adequately (Atalla and Hunt, 2016; Hasanov et al., 

2016a). The protection of the environment would also require benefits from this information. 

(Hasanov, 2021) 

 

2.3. Relationship between energy consumption and economic growth 

The empirical research on the connections between energy use and economic growth can be 

inconclusive and cannot be used to make universally applicable policy recommendations (Shahbaz et 

al., 2015). 

However, as the driving force of modernization, energy has a very close and essential relationship 

with economic growth. Energy consumption promotes economic growth, making it possible to 

improve energy utilization efficiency (Alam & Murad, 2020). Meanwhile, energy exhaustion and the 

environmental problems caused by energy consumption also restrict economic growth.  

So, looking at the relationship between energy consumption and economic growth is important. 

Despite the fact that the "GDP growth-energy relationship" study (Martins et al., 2022) showed a clear 

connection between GDP growth and energy consumption, it has been possible to observe a 

decoupling between economic growth and energy consumption over the past few decades while also 

observing an increase in the electrification of the economy. Electricity power supply, the basic industry 

in almost every country and region, can affect economic development. On the one hand, economic 

growth depends strongly on the electricity power supply; the power supply shortage would negatively 

affect economic growth. On the other hand, the fast growth of the economy would also stimulate the 

power consumption demand. The common situation is that the amount of electricity power 

consumption of a certain city or even a region always has a close relationship with the economic 

development of the corresponding area. Therefore, interpreting the characteristics of previous 

regional electricity power consumption and past economic data, and finding the interrelation between 

them, would be of great reference value in doing the short-term forecasting work together for both. 

The combined forecasting work will undoubtedly be more rational and accurate in giving future 

electricity power consumption tendencies, compared with the work merely based on electricity power 

consumption data. (Li et al., 2020).  



 

When using multivariate time sequence cointegration theory and the established Vector 

autoregression (VAR/VEC) model to analyze the long-term equilibrium relationship among GDP, 

energy consumption, and its components, it was shown by Zhang et al., in 2017, that cointegration 

between GDP and energy consumption and between GDP and electricity consumption may exist. 

Namyan & Popp (2012) analyzed panel data of 93 countries from 1980-2006, and found that the 

increasing energy consumption would reduce GDP in the long term. Xiaoli & Haoran (2013) studied the 

non-linear relationship between energy consumption and economic growth based on the Panel 

Smooth Transition Regression (PSTR) model, which showed that energy consumption would be more 

sensitive to economic growth changes with the economy's further growth. 

The dynamic relationship between energy consumption, electricity consumption, and economic 

growth shows that GDP maintains a positive response when facing the disturbance of energy 

consumption or electricity consumption, which shows that economic growth largely depends on 

energy consumption.  

From a long-term perspective, a two-way causality exists between energy consumption and 

economic growth, which shows that high energy consumption is closely related to economic growth. 

Then, the regression equation shows that global economic growth is important for promoting energy 

consumption. The steady growth of the global economy will inevitably require more energy 

consumption.  

From the short-term perspective, if global energy consumption and economic growth deviate 

from the long-term equilibrium relationship, it will be adjusted at the speed of 83.49%. The adjusting 

speed is fast, which shows that the long-term equilibrium relation between energy consumption and 

economic growth is stable. (Wang et al., 2018) 

 

2.4. Impacts of financial crises (covid-19)  

The connection between energy and the economy in Europe is crucial, critical, and frequently complex. 

It isn't easy to properly incorporate connections between energy prices, growth, competitiveness, and 

employment, as well as relationships between the structure of the energy industry and energy pricing 

(World Economic Forum, 2012). 
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There are several ways that an infectious disease might impact the economy (i.e., direct and 

indirect). Estimates of the macroeconomic effects of the 2003 SARS outbreak revealed that despite 

having a relatively low number of deaths and cases, it did have a significant impact on economies by 

sharply reducing the consumption of various goods and services, increasing business operating costs, 

and reassessing the risks of a region that resulted in higher risk premiums (Lee and McKibbin, 2004). 

Siu and Wong (2004), Hai et al. (2004), Chou et al. (2004), and Bloom et al. (2005) calculated the 

potential economic impact of highly contagious diseases with no vaccine (such as pandemic influenza, 

HIV/AIDS, and SARS) (Aktar et al., 2021). It is abundantly clear that COVID-19 is a highly contagious and 

economically devastating pandemic. 

The outbreak of the COVID-19 pandemic has led to a significant economic shock to the world that 

was never experienced for decades. The Organization for Economic Cooperation and Development 

(OECD) and the World Trade Organization have indicated that the COVID-19 pandemic is the largest 

warning for each nation globally since the 2008–2009 global financial crisis (Sruthi, 2021). Some 

experts even claim that since World War II, the world has not experienced such an unusual state of 

emergency (Chakraborty and Maity, 2020). 

Furthermore, it created a lot of uncertainty for the global electrical market because several 

nations have imposed restrictions to stop the virus's spread. This has affected economies globally. 

Although countries have implemented different strategies to prevent the spread of the virus, 

lockdowns have become the inevitable end for all countries. Except for basic necessities, all economic 

sectors in Europe have experienced an abrupt closure due to an unusual fall in demand and a decline 

in the supply of goods. The energy sector is not an exception; historical consumption patterns have 

changed as people's and industries' daily routines have significantly changed; transportation is kept to 

a minimum; and curfews have increased the importance of cycling and walking (Hauser et al., 2021). 

For European countries, Bahmanyar et al. (2020), determined that different lockdown measures 

and their population activities in countries significantly changed the electricity consumption profile.  

Electricity demand has been significantly reduced worldwide due to lockdown measures being 

imposed and followed, leading to Global electricity demand decreased by 2.5%. Industries were shut 

down during this time, and individuals were urged to stay inside for their safety. As a result, domestic 

power consumption increased while industrial power usage declined. (Gulati et al., 2021) 

Ruan et al. (2020), analyzed the impact of COVID-19 on the US electricity sector. In the entire US 

market, a decrease of 6.36–10.24% in April and 4.44–10.71% in May was observed in electricity 

consumption. It also concluded that a reduction in electricity consumption is associated with an 

increase in COVID-19 cases and the duration of stay-at-home.  



 

Prol and Sungmin (2020), examined the effect of COVID-19 on electricity consumption in the EU 

countries and USA states. In this study, it was observed that electricity consumption decreased by 3–

12% in 5 months. 

Carvalho et al. (2020), examined the impact of the COVID-19 pandemic on Brazil's electricity 

consumption models and consumption between January 1 and May 27, 2020. Electricity consumption 

varied by region, and while a decrease of 7% was observed in the residential area, a decrease of 20% 

to 14% was observed in other regions.  

Ghiani et al. (2020), reported that electricity consumption in Italy decreased by 37% compared to 

the previous year.  Halbrügge et al. (2021), analyzed the effects of the COVID-19 outbreak on the 

electricity sector in Germany and Europe. It was observed that after COVID-19 lockdowns started, less 

electricity was consumed in Germany, France, Italy, Spain, and Sweden than in prior years. 

Many of the improvements recognized for 2020 are feared to be temporary since they do not 

correspond to long-term, systemic changes in the economy, transportation, or energy systems. 

Emissions will increase after the lockdowns are lifted, closed factories reopen, and the world economy 

is back to normal. (McCloskey and Heymann, 2020). 

Since the effects of COVID-19 are changing day by day, it is to be noted that the results are likely 

to change when the same analyses are performed for different periods (Gulati et al., 2021). 

 

2.5. Portugal energy panorama 

Portugal has overcome the protracted economic slump it endured after the 2008 global crisis. GDP 

increased to USD 340 billion in 2019 from USD 325 billion in 2008 before the financial crisis. As opposed 

to 7.6% in 2008, the unemployment rate decreased from a peak of 16.2% in 2013 to 6.5% in 2019. With 

total final consumption per GDP falling by 8% between 2014 and 2019, Portugal is demonstrating signs 

of decoupling economic development from energy demand, accelerating ongoing structural reforms 

away from energy-intensive businesses.  

Additionally, Portugal has attained a high degree of electrification. In 2019, electricity met 25% of 

the world's ultimate energy demand, 56% of the demand for energy in buildings, and 25% of the 

demand for energy in industry. Portugal has also attained significant levels of renewable energy, which 

in 2019 accounted for 30.6% of the country's total final energy demand. Renewable energy sources 

accounted for 54% of electricity output, primarily due to hydropower and wind generation, while 

bioenergy is widely used in buildings and industry. However, recent years have seen only a modest 

increase in renewable energy. 
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The proportion of renewable energy in gross final energy demand increased by 3.8% between 

2014 and 2019. To reach Portugal's 2030 goals, a sustained deployment of renewable energy is 

required in every sector. In 2019, imports of fossil fuels (43% oil, 24% natural gas, and 6% coal) 

comprised 76% of Portugal's primary energy supply. Coal, natural gas, and all types of oil are imported. 

The Covid-19 epidemic had a significant impact on Portugal, causing its GDP to shrink by 8.4% in 

2020—the most since 1936. Portugal and the European Union (EU) have made significant efforts to 

alleviate the pandemic's effects and promote the resumption of economic growth. 

 

2.6. Portugal Energy Panorama Challenges  

Portugal has issues with energy poverty because of its frequently inadequately insulated building stock 

and relatively high energy prices. The EU Energy Poverty Observatory stated in 2018 that 19.4% of 

Portugal's population reported being unable to maintain a sufficient level of heating in their homes 

(the EU average was 7.3%) and also noted difficulties with cooling. 

The government has established social tariffs for electricity and natural gas that offer discounts 

on portions of the distribution tariffs to lower households' electricity and gas bills that meet certain 

socioeconomic criteria. The government places a high priority on energy affordability. In December 

2020, 34 709 homes (2.4% of all households connected to the gas network) and 752 965 households 

(14% of all households) got the natural gas social tariff. 

Portugal heavily relies on energy imports due to the strong demand for fossil fuels (mainly oil and 

natural gas) and the scarcity of native fossil resources. Portugal had one of the highest rates of energy 

import dependency among IEA members in 2019, at 74%. By increasing the percentage of renewable 

energy sources in its energy supply, particularly for electricity, Portugal has made headway in lowering 

its reliance on energy imports. 

The National Energy and Climate Plans (NECP) and “Roteiro para a Neutralidade Carbónica 2050” 

(RNC2050) set aggressive goals for reducing energy import dependence to under 65% by 2030 and 

under 19% by 2050, respectively. Solid and long-lasting steps must be taken to reduce the demand for 

fossil fuels, particularly in the transportation sector, where oil accounted for 94% of energy demand in 

2019, as well as in the industrial sector, where oil and natural gas combined for 51% of energy demand 

in 2019. 

 

2.7. Energy Consumption Forecasting Techniques 

The planning of energy forecasting models and their real-time applications started in 1960 (Nguyen, 

2005). Scholars mainly analyzed the relationship between energy consumption and economic growth 

at the national level, and most of them used the classical econometric theory. Since the 1990s, the 



 

investigation of the link between non-stationary time series has been supported theoretically by the 

joint adoption of cointegration theory and the error correction model. Since then, the technology in 

the energy forecasting research area has also developed rapidly with advances in forecasting theory 

and machine learning. (Ahmad & Chen, 2020) 

The electrical sector is becoming decarbonized, decentralized, and digitalized, increasing the 

importance of artificial intelligence and data analytics. Factors such as the declining costs of 

information and communication technology and the advances in computing power lead to rising data 

availability and new opportunities for analysis. Additionally, the growing share of renewable energy 

sources in the electricity system and the rise in the number of active actors in the electricity system 

adds complexity and new needs for data analytics (Scheidt et al., 2020). With these opportunities, 

further studies have emerged in the energy sector, namely, electricity. 

In the recent past, numerous prediction models have been applied. The goals of the model 

network mechanism, the available data, and the energy planning operation are typically considered 

when choosing a prediction model (Ahmad et al., 2020). But no one-size-fits-all approach exists. The 

most appropriate method always depends on the context. Scheidt et al. (2020), propose some guiding 

questions that researchers can ask themselves to find a suitable approach: What kind of data is 

available? Is time series data used? How volatile is it? How important is the interpretability of results? 

Can a hybrid method that combines several strategies help address the problem's various 

characteristics? What level of computing complexity is acceptable? These factors enable a suitable 

Data Science approach to be customized to each use case. 

The range of applications for energy forecasting models is pretty broad. Benchmarking forecasting 

models are helpful for energy markets, electricity pricing scenarios, ancillary service markets, market 

regulation, and price balancing. (Klæboe, Fleten & Eriksrud, 2015, Ahmad & Chen, 2020). 

Modern time series forecasting techniques primarily rely on historical future predictions. The 

uniqueness of the energy consumption indicators is the existence of multidirectional trends, seasonal 

and cyclical fluctuations, and structural breaks, which impose specific criteria for selecting appropriate 

methodologies and models. The complexity, interpretability, and forecasting precision of the systems 

for extrapolating past data to the future constantly increases (Kalimoldayev et al., 2020). 

10 
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Traditionally, regression analysis has been the most popular modeling technique in predicting 

energy consumption (Tso et al., 2007). Technology advancements prompted the active development 

of machine learning forecasting methodologies, even though statistical techniques based on the 

Gaussian Ordinary Least Squares (OLS), non-linear least squares (NNLS), and maximum likelihood 

(MLE) estimation are still widely utilized (Kalimoldayev et al., 2020). As the advancement in artificial 

intelligence is getting bigger, these techniques can handle large amounts of data efficiently and 

effectively and address the diverse nature of electrical load (Gulati et al., 2021). Because they can 

extract features from the series and incorporate them into the models without specifying the 

parameters, as with typical statistical methods, a variety of artificial intelligence techniques that are 

now in use showed good experimental results (Kalimoldayev et al., 2020). These include Artificial 

Neural Networks (ANNs), Fuzzy Logic Systems, Multi-Layer Perceptron (MLP), Bayesian Neural Network 

(BNN), Generalized Regression Neural Networks (GRNN), K-Nearest Neighbor regression (KNN), 

Classification and Regression Trees (CART), Support Vector Machine (SVM) (Bishop, 2006). 

These models and hybrid systems overcome the problems of irregularity and complexity in 

modern energy systems (Sehgal & Pandey, 2015). They are primarily used in real-time applications and 

achieve higher forecasting accuracy (Debnath & Mourshed, 2018; Ahmad & Chen, 2020). By combining 

various models, ensemble approaches allow us to improve forecasting accuracy. If used correctly, 

artificial neural networks can be a robust choice since they can extract and model unseen relationships 

and features (Ahmad et al., 2020). 

For a better understanding of the most common machine learning models, it is given a brief 

definition of them. The Support Vector Machines (SVM) model forecasts (Sapankevych and Sankar, 

2009) based on support vectors divide into two streams, one relying on classification and assignment 

of some current state to the cluster representative and the other relying on model fitting with support 

vectors regression. The Random Forests (Abuella and Chowdhury, 2017) randomly sample the training 

set to provide inputs to tree-like models and combine them to give the final result. Forecasting based 

on random forests exploits the average of the output of the individual tree models to provide the final 

result. Deep learning (Abdulaziz and Edwards, 2017) can use Long Short-Term Memory networks with 

more than three layers. These recurrent neural networks learn long-term dependencies between time 

steps of sequential data. Hence, the feature vector represents a generic "sequence" from which the 

system learns the relation with the target data. A linear ARMA model identifies and follows time-series 

trends. The input is the observed time series rather than sparse features (Luis, Esteves & Da Silva, 

2020) 



 

As an example of comparison between these models, Ahmad & Chen (2020), studied the daily 

consumption data of a dwelling composed of two people. These data made it possible to know that 

the Linear Regression and Support Vector Regression obtained 85.7% accuracy, partly due to the 

inclusion of the previous day in the training process, with Random Forest being the model with the 

worst result, 79.9%. However, just because RF and SVR fit the dataset's variables (day, weekday, week, 

presence, and so on) better than the other models in this comparison does not imply that they are 

superior. For example, the Kernel-based extreme machine learning models and wavelet transforms 

give high forecast accuracy and shorter computation time than conventional forecasting models 

(Zhang & Li, 2018).  

Still, numerous studies report better model fitting but worse forecasting accuracy of these 

methods than statistical models. Supervised-based ML approaches are susceptible to output and input 

datasets, and their accuracy relies on time-series models. The non-stationary time series with higher 

deviation amounts may lead to lower forecasting performance (Ahmad & Chen, 2020). Regarding their 

improved interpretability and characterization of the uncertainty around the point forecasts, the 

researchers note the need for improvement and continued development of machine learning models  

(Kalimoldaye, et al., 2020) 

Since electrical energy is one of the most needed energy types worldwide and it is a reflection of 

the development in an economy, the consumption amount of this type of energy increases every day 

since electricity can be produced from many energy sources, it does not cause any harm to the 

environment, its area of use is wide and changes alongside with population increases, and the 

technology advances (Cihan, 2022). So, one way to improve the performance of these models is by 

having relevant variables. Many researchers have addressed several features like temperature, rainfall, 

humidity, holidays, population, and other possible scenarios for more accurately predicting electricity 

consumption (Gulati et al., 2021).
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CHAPTER 3 

Data Analysis 
The goal of this chapter is to understand and explore the data in order to have a better comprehension 

of the variables to include in the predictive models. Python programming language and Jupyter 

Notebook - a free computational environment - were used for visualization, data analysis, and 

modeling. 

 

3.1 CRISP-DM Framework 

For the identification of the problem, algorithm selection, and predictive model definition, it was used 

the CRISP-DM framework. This stands for Cross-Industry Standard Process for Data Mining and is an 

industry-independent process model that defines the steps and tasks one must do to develop a 

successful Data Mining project. It consists of six iterative phases, from business understanding to 

deployment. The general schema of the CRISP-DM framework is shown in Figure 3.1. 

 

 

Figure 3. 1 - CRISP-DM Methodology 
 

The first step is business understanding. This initial phase focuses on understanding the project 

objectives and requirements. The second phase is data understanding, which begins with initial data 

collecting and includes efforts to understand the data, find data quality issues, and get initial insights 

from the data. The following phase is data preparation, which consists of all operations related to 

constructing the final dataset (data that will be input into the modeling tool(s)) from the initial raw 

data.  
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Various techniques are chosen and employed throughout the modeling phase, and their 

parameters are adjusted to ideal values. At the project's evaluation stage, the models presented in the 

literature review will be evaluated for the various datasets, and a comparison will be made between 

them to understand which is the best model for predicting electricity consumption in Portugal. Before 

proceeding with the final deployment of the model, it is critical to thoroughly examine the model and 

review the procedures used to develop it to ensure that it meets the business objectives. One 

significant goal is identifying whether any critical business issues have been overlooked. Finally, in the 

Deployment stage, the solution is ready for deployment, with additional monitoring and maintenance. 

Completing and delivering the thesis will be the deployment phase in this case. 

 

3.2 Data understanding and data preparation 

This study aims to investigate the effects of various feature selection and engineering strategies on the 

efficacy of machine learning models in predicting electricity consumption in Portugal and the potential 

impact of the COVID-19 epidemic on Portugal's electricity consumption patterns. Exploratory data 

analysis was performed to validate the literature review, which claims that electricity consumption 

follows predictable patterns on an annual and monthly basis. So, in this section, these trends will be 

investigated. 

 

The database is a compilation of online data from various sources, with some changes made to 

obtain better data analysis. The data, as well as the transformations, are as follows: 

• Data on monthly electrical consumption - was retrieved from the REN - Redes Energéticas 

Nacionais - website. This company is responsible for ensuring mainland Portugal's 

uninterrupted electricity and natural gas supply. 

o Time period: from 2010 until 2022. 

o Transformations: Month_Year column to DateTime format and GWh transformed 

to KWh 

• Data on annual electrical consumption by type - were retrieved from the PODATA 

(database on present-day Portugal with official and certified statistics on the country and 

Europe) website.  

o Time period: from 1994 until 2023 

o Transformations: Month_Year column to DateTime format, and the entries before 

2010 were removed 
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• The weather data, created through collaborations between the International Energy 

Agency (IEA) and the Fondazione Euro-Mediterraneo Sui Cambiamenti Climatici (CMCC), 

found on the IEA website, showcases global data on weather-related variables.  

o Time period: monthly data from 2010 to 2022  

o Transformations: entries for countries besides Portugal were excluded. There was 

a wrong entry for 2013-02-01 in the Wind100int column, so the next value 

replaced it. 

• The monthly GDP data was found on the Federal Reserve Economic Data (FRED) website. 

o Time period: monthly data from 2010 to 2022 

o Transformations: Replace column name “observation_date” with “Mês_ano” and 

change the type to Datetime format and column name “PRTLORSGPNOSTSAM” 

for “GDP” 

The dataset variables and information about them are presented in Table 3.1. 

Table 3. 1 - Data variables 
Serie Description Measure Unit 

KWh Consumption refers to the net production of the central stations / 
per month. 

KWh 

Temperature This parameter is the temperature of air at 2m above the surface of 
land, sea or inland waters 

°C 

Cloud This parameter is the proportion of a grid box covered by a cloud. 
Total cloud cover is a single-level field calculated from the cloud 
occurring at different model levels through the atmosphere. 

% 

Precipitation This parameter is the accumulated liquid and frozen water, 
comprising the rain and snow that falls to the earth's surface. It is 
the sum of largescale precipitation and convective precipitation. 

mm/h 

Wind100int It is the horizontal airspeed, one hundred meters above the earth's 
surface. 

m/s 

Daylight Minutes of sunlight. % 

Humidex Humidity-corrected 2-metre temperature ºC 

GDP Gross domestic product at market prices is the final result of the 
production activity of resident producer units. 

Euro 

Electricity consumption 
by type of consumption 
(kWh) 

Hydroelectric, nuclear, and conventional thermal power stations 
produce energy from wave, tidal, wind, and solar photovoltaic 
sources. 

kWh 
(kilowatt-
hour) 

 

The data collection consists of 151 instances and nine attributes after the transformations: time, 

KWh, Temperature, Wind100int, Daylight, Precipitation, Humidex and GDP. This data collection 

includes the period from 01/01/2010 to 08/01/2022. 

 

3.3 Exploratory Analysis 

On January 30, 2020, the World Health Organization (WHO) declared the Covid-19 outbreak a public 

health emergency of international concern (PHEIC). On March 11, 2020, the Portugal Prime Minister 
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decreed the closure of all public and private educational establishments from March 16 until at least 

April 9. The first lockdown in Portugal ended in May 2020 when the Portuguese government declared 

a state of emergency. The second lockdown lasted from January 15, 2021, to March 15, 2021, with 

slow openings and trade and service restrictions. On May 1, 2021, the Portuguese government lifted 

the State of Emergency and declared a Calamity throughout the country. The WHO ended its PHEIC 

declaration on May 5, 2023, but it is still referred to as a pandemic as of June 2, 2023.   Considering 

this information, this study will assess the period of Covid-19 in Portugal between March 2020 and 

April 2021.  

For this purpose, a new variable was created to analyze the impact of this pandemic in Portugal. 

It is a categorical variable with the value “1” when the date is between March 2020 and April 2021, 

representing the existence of Covid. If the variable takes the value “0”, it describes the non-existence 

of Covid. 

 

Figure 3. 2 - Electricity consumption in Portugal in the last 12 years, by year and month 
 

Figure 3.2 shows a monthly overview of each year's electricity consumption in 2010-2022. Some 

conclusions about consumption patterns can be drawn.  

• From November to March, consumption values are at their highest, with January having 

the highest consumption of all years.  

• In 2010, consumption peaked in December, which did not happen in subsequent years.  

• The months with the lowest electricity consumption are April through October.  
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• Over the past 12 years, consumption has consistently increased in July, followed by a 

return to lower levels in August.  

• It is noticeable that in 2020, there was a significant decrease in March, and the lowest 

electricity consumption value occurred in April of that year. The values returned to normal 

in July of the same year. 

 

 

Figure 3. 3 - Monthly view of electricity consumption and the Covid-19 period 
 

 

Figure 3. 4 - Annual view of electricity consumption and the Covid-19 period 
 

Figure 3.3 illustrates a monthly view of electricity consumption in Portugal, from which it is 

possible to understand better the trend between hot and cold months and how much COVID-19 

affected consumption at the start of 2020.  

Figure 3.4 provides a broader perspective on annual consumption between 2010 and 2022, 

suggesting that while consumption values experienced a significant decline at the beginning of 2020, 

they quickly recovered in the following months, appearing in 2021 with a higher average annual value 

than in 2020. 
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The average electricity consumption before, during, and after COVID-19 was calculated to provide 

a better understanding of the impact of COVID-19 in this situation, and the results are shown in Table 

3.2.  

 

Table 3. 2 - monthly and yearly average electricity consumption 
 Before COVID-10 During COVID-19 After COVID-19 
Average monthly electricity consumption (KWh)  4 162 729 508.2 4 044 500 000.0 4 151 650 000.0 
Average yearly electricity consumption (KWh) 49 789 454 545.5 49 471 000 000 50 354 000 000 

 

It is possible to look into the annual electricity consumption by type with a yearly perspective of 

the average amount of electricity used. Figure 3.5 and Table 3.3 show that during COVID-19, 

government buildings' electricity use dropped significantly (1 776 750 787 KWh), and street light 

consumption dropped by 159 840 520 KWh. All other categories of energy usage increased. 

 

Figure 3. 5 - Annual electricity consumption by type 
 

Table 3. 3 - Annual average electricity consumption by type 
 Before COVID-10 During COVID-19 Difference  
Domestic Electricity 11 803 818 218 14 160 391 660 + 2 356 573 442 
Non-domestic Electricity 9 986 767 297 10 805 171 602 + 818 404 305 
Industry Electricity 17 077 219 095 19 262 138 645 + 2 184 919 550 
Agriculture Electricity 867 845 754 1 015 287 423 + 147 441 669 
Street lighting Electricity 1 310 989 040 1 151 148 520 - 159 840 520 
Government buildings 
Electricity 

1 922 971 561 146 220 774 - 1 776 750 787 

Others Electricity 418 814 468 449 768 659 + 30 954 191 
 

It is crucial to comprehend how weather variables behave and their patterns because, as was seen 

in the previous chapter, doing so can improve the performance of models. 
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Figures 3.6 and 3.7, which represent Daylight and Temperature, show somewhat similar trends, 

with low values in the winter and high values in the summer. There hasn't been a significant shift in 

this pattern since 2010. It is clear from the relationship between these factors and electricity usage 

that consumption is higher when temperature and solar radiation are at their lowest levels and vice 

versa. 

 

Figure 3. 6 - Monthly electricity consumption and Daylight 

 

Figure 3. 7 - Monthly Electricity Consumption and Temperature 
 

Figures 3.8, 3.9, 3.10 and 3.11 show the opposite behavior of the previous figures for Humidity, 

Precipitation, Clouds, and Wind, with the highest values occurring in the coldest and the lowest in the 

hottest months. Since 2010, the behavior of these variables has been relatively consistent. 

Consumption of electricity is positively correlated with the factors, as expected. 

 

Figure 3. 8 - Monthly electricity consumption and Precipitation 
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Figure 3. 9 - Monthly electricity consumption and Humidex 
 

 

Figure 3. 10 - Monthly electricity consumption and Cloud 
 

 

Figure 3. 11 - Monthly electricity consumption and Wind 
 

The literature review said that energy consumption is closely related to economic growth since 

the steady growth of the global economy will require more energy consumption, which can be 

observed in Figure 3.12. 

 

Figure 3. 12 - Monthly electricity consumption and GDP 
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Even though GDP fluctuates less than power consumption, it is still easy to see that starting in 

2011, GDP decreased slightly, just like electricity consumption. Beginning in 2013, the GDP grew 

gradually along with the progressive increase in power usage. Both variables see a sharp decline in 

value in 2020, but by 2022, they have already returned to "normal" levels. 

 

3.4 Feature engineering 

As seen, energy consumption patterns experienced some disruptions due to the pandemic, and 

understanding these changes is crucial for accurate forecasting, so to analyze the impact of the COVID-

19 pandemic on the performance of the models, the work was divided into two parts:  

In the first part of the analysis (total period), it was considered the entire dataset, including data 

from before and after the COVID-19 pandemic. This provides an overview of how the variables and 

predictive models performed when trained on a dataset spanning the pre-pandemic and pandemic 

periods.  

In the second part (pre-COVID period), the focus was exclusively on the dataset containing values 

from before the start of the COVID-19 pandemic. So, the analysis aims to evaluate the effectiveness of 

predictive models in capturing trends and prevalent seasonality patterns before the pandemic.  

 

Robust predictive models are crucial for predicting electricity consumption in both stable (before 

COVID) and non-stable (period where COVID existed) contexts. This section describes feature 

engineering, an essential stage in developing predictive models that bridge the gap between raw data 

and model-driven insights. It includes creating, modifying, and choosing features that impact the 

performance of a predictive model.  

The availability of date-time information allows for creating additional columns for data 

visualization and as features for predictive models. The new columns correspond to the year, month, 

day of the year, week of the year, and quarter, and the pair-plot (a grid of scatterplots that allows one 

to visualize the relationships between multiple pairs of variables) of KWh and the new date variables 

are shown in Figure 3.13. 

 

Figure 3. 13 - time series features based on time series index 
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This aggregation of data on energy consumption by time period and the correlation between 

variables is essential for identifying patterns and behaviors in energy consumption that are important 

for the modeling phase.  

The correlation between all variables was studied to help understand how different factors affect 

the predictive results. Because it is critical to analyze the relationship between variables to create a 

robust predictive model, the method for identifying those relationships must also be applied correctly. 

The Pearson Correlation Coefficient was calculated for each period in order to analyze the linear 

relation between numerical time series.  

Eta - correlation ratio was also used to examine the correlation between the categorical variables 

"covid", “year”, “month”, “day of the year”, “week of the year”, and “quarter” and the non-categorical 

variable "KWh" over the entire period. This statistical measure was chosen because, when one variable 

is categorical and the other is not, it allows quantifying the degree to which the dispersion in the 

variable of interest, in this case, "KWh," can be attributed to changes within various categories of the 

categorical variables. Eta can have values between 0 and 1, with values closer to 0 indicating that no 

single category significantly influences the variable "KWh" more than any other. On the other hand, 

values nearer to 1 imply that one or more categories are substantially different from the others and 

have a more significant impact on the variable "KWh". Table 3.4 shows the results of this test for the 

entire period. 

 

Table 3. 4 - Correlation Matrix for categorical variables for the entire period 
  KWh covid quarter month year dayofyear weekofyear 

KWh 1.000000 0.962279 0.973001 0.974022 0.959979 0.965818 0.968596 
covid 0.962279 0.962990 0.066003 0.107928 0.812861 0.412924 0.357672 

quarter 0.973001 0.066003 1.000000 1.000000 0.084324 1.000000 1.000000 
month 0.974022 0.107928 1.000000 1.000000 0.054366 1.000000 1.000000 

year 0.959979 0.812861 0.084324 0.054366 1.000000 0.269800 0.272239 
dayofyear 0.965818 0.412924 1.000000 1.000000 0.269800 1.000000 0.729416 

weekofyear 0.968596 0.357672 1.000000 1.000000 0.272239 0.729416 1.000000 
 

The correlation matrix for the variables, including energy consumption (KWh) and various 

temporal factors such as quarter, month, year, day of the year, and week of the year, reveals a strong 

positive correlations with quarter, month, year, day of the year, and week of the year, emphasizing 

the profound influence of time-related variables on energy consumption. Furthermore, the very high 

correlation between KWh and Covid suggests a significant impact of pandemic-related changes on 

energy demand. 
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Figure 3. 14 - Variables correlation heatmap of the entire period 
 

Throughout the entire data period, it was observed intriguing correlations among electricity 

consumption and various meteorological and economic variables (Figure 3.14). Firstly, temperature 

exhibits a negative correlation with energy consumption (KWh), implying that as temperatures rise, 

energy usage tends to decrease. This finding may be attributed to energy-efficient cooling systems in 

warmer weather or other unmeasured factors influencing the relationship. Conversely, wind intensity 

shows a positive correlation with energy consumption, indicating that windier days are associated with 

slightly higher energy usage, possibly due to increased heating or cooling demands. Additionally, GDP, 

a measure of economic activity, exhibits a weak positive correlation with energy consumption, 

suggesting that as the economy grows, energy consumption tends to increase, reflecting the energy 

demands of expanding industrial and commercial sectors. Daylight has a negative correlation with 

energy consumption, signifying that longer daylight hours are linked to reduced energy usage. This 

relationship aligns with the idea that ample natural daylight can reduce the need for artificial lighting 

and heating. Cloud cover and precipitation display weak positive correlations with energy 

consumption, suggesting that cloudier or rainy days might lead to slightly higher energy usage, possibly 

due to increased indoor activities. The humidex, a combined measure of temperature and humidity, 

also exhibits a moderate negative correlation with energy consumption, indicating that as humidex 

levels rise, energy consumption tends to decrease.  
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These findings collectively illustrate the intricate interplay of meteorological and economic factors 

on energy consumption, emphasizing the need for comprehensive modeling and analysis to fully 

understand these relationships and inform energy management strategies. 

 

For the categorical variables before Covid, the correlation matrix is shown in table 3.5 

 
Table 3. 5 - Correlation Matrix for categorical variables for the pré-covid period  

KWh quarter month year dayofyear weekofyear 

KWh 1.000000 0.971918 0.977008 0.965896 0.975900 0.962599 
quarter 0.971918 1.000000 1.000000 0.130136 1.000000 1.000000 
month 0.977008 1.000000 1.000000 0.093707 1.000000 1.000000 

year 0.965896 0.130136 0.093707 1.000000 0.303815 0.309857 
dayofyear 0.975900 1.000000 1.000000 0.303815 1.000000 0.742323 

weekofyear 0.962599 1.000000 1.000000 0.309857 0.742323 1.000000 
 

The correlation matrix among energy consumption (KWh) and time-related variables—quarter, 

month, year, day of the year, and week of the year—reveals remarkable associations. Energy 

consumption (KWh) displays strong positive correlations with all temporal factors, indicating 

pronounced seasonality and consistent patterns in energy usage across different time intervals. 

Quarter and month exhibit perfect positive correlations, implying mutual redundancy. At the same 

time, the year variable moderately correlates with the day and week of the year, illustrating their roles 

in marking the annual cycle. The robust relationships in this matrix underscore the significant influence 

of time-related factors on energy consumption trends, emphasizing the importance of seasonality in 

energy management and forecasting. 

 

Figure 3. 15 - Variables correlation heatmap of the pre-covid period 
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Before the COVID-19 pandemic, a deeper analysis of the correlations matrix revealed interesting 

insights, as can be observed in Figure 3.15. Temperature displays a moderate negative correlation with 

energy consumption, suggesting lower energy use during warmer periods. Cloud cover has a weak 

positive correlation with energy consumption, while longer daylight hours negatively correlate with 

energy use. Wind intensity shows a moderate positive correlation, likely linked to increased heating or 

cooling needs during windy conditions. The humidex exhibits a moderate negative correlation, 

indicating reduced energy consumption during high humidity. Precipitation has a weak positive 

correlation with energy consumption, possibly due to increased indoor activities on rainy days. Lastly, 

the correlation between Gross Domestic Product (GDP) and energy consumption is weakly positive, 

reflecting the energy demands of economic growth. These insights underscore the intricate interplay 

of meteorological and economic factors influencing energy usage patterns.  

 

After examining correlations, it is crucial to conduct VIF (Variance Inflation Factor) tests for 

multicollinearity. When two or more independent variables in a regression analysis have a high degree 

of correlation, multicollinearity occurs, resulting in unstable and unreliable regression coefficients. 

Consequently, it becomes challenging to accurately determine the specific impact of each independent 

variable on the dependent variable. 

The Variance Inflation Factor (VIF) tests were carried out to check the multicollinearity among 

particular variables in each studied time period. The results can be found in the appendix (Table 1). 

Following the thorough analysis that included correlation and VIF evaluations, the following 

independent variables were chosen as the final set for each period: 

• Entire period: KWh, Wind100int, Precipitation, GDP, Covid, Month, Cloud and Daylight; 

• Before covid period: KWh, Wind100int, GDP, Month, Cloud and Daylighg 
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CHAPTER 4 

Modeling 
 

Time series forecasting methods mainly focus on past patterns to predict the future. The presence of 

multidirectional trends, seasonal and cyclical changes, and structural gaps in energy consumption 

indicators requires selecting appropriate models  (Kalimoldayev et al., 2020). This chapter builds on 

the previous one using predictive models for the analyzed data. Each predictive model is briefly 

described, and the chapter concludes by comparing and recommending the best model for 

implementing accurate energy consumption forecasts using public data for the Portugal case.  

Based on the literature review (Chapter 2), it was considered the set of the most successful 

models. The three categories below can be used to group the five selected models:   

• Classical methods: SARIMA, SARIMAX, and VAR 

• Machine learning method: Support Vector Regression (SVR) 

• Deep learning algorithms: Long Short-Term Memory (LSTM) neural network 

For each of the periods explained in the previous chapter, the following was done: 

• Evaluate the stationarity of each variable in the dataset and transform the data 

accordingly. 

• Train and test each of the five selected predictive models on the respective datasets. 

• Evaluate and compare the model's performance using appropriate metrics such as Mean 

Absolute Percentage Error (MAPE), Coefficient of Determination (𝑅!), and Root Mean 

Square Error (RMSE). 

 

The predictive models applied to the dataset were developed with the open-source Python 

programming language (version 3.9.13) with the usage of the following libraries:  Pandas; Numpy; 

Matplotlib; Seaborn; Statsmodels; Keras; Tensorflow, and Scikit-Learn.  

The data was sequentially split into training and test sets for each period. Table 4.1 outlines how 

the data was divided. 

 

Table 4. 1 - Train and test split for the 2 periods 
 Entire period Pre-covid 
Train 127 105 
Test 24 16 
Nr of variables 8 6 
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The key evaluation metric used to determine the effectiveness of the different predictive models 

was the Mean Absolute Percentage Error (MAPE). MAPE measures the average percentage difference 

between predicted and actual values. Lower MAPE values indicate better performance, providing a 

straightforward assessment of predictive accuracy. The formula for MAPE is as follows: 

𝑀𝐴𝑃𝐸 =	
1
𝑛
*

|𝐴𝑐𝑡𝑢𝑎𝑙" − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑"|
|𝐴𝑐𝑡𝑢𝑎𝑙"|

#

"$%

 

( 1) 

Where: 

• n is the total number of data points. 

• 𝐴𝑐𝑡𝑢𝑎𝑙" represents the actual value at time t 

• 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑"	represents the predicted value at time t 

For the model comparison, in addition to MAPE it was used the Coefficient of Determination (𝑅!), 

and the Root Mean Square Error (RMSE).  

The "R-squared" value, also referred to as 𝑅!, measures the goodness-of-fit of regression models. 

It ranges from 0 to 1, with higher values indicating better fit, and it denotes the percentage of variance 

in the dependent variable that can be accounted for by independent variables. The formula for 𝑅! is 

as follows: 

𝑅! = 1	 −
∑ (𝐴𝑐𝑡𝑢𝑎𝑙" − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑")#
"$%

!

∑ (𝐴𝑐𝑡𝑢𝑎𝑙" − 𝐴𝑐𝑡𝑢𝑎𝑙)#
"$%

!  

( 2) 

Where: 

• n is the total number of data points. 

• 𝐴𝑐𝑡𝑢𝑎𝑙" represents the actual value at time t 

• 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑" represents the predicted value at time t 

• 𝐴𝑐𝑡𝑢𝑎𝑙	is the mean of actual values. 

 

The model's accuracy in predicting absolute values can be determined by the RMSE, which 

computes the average magnitude of errors between predicted and actual values. Higher predictive 

accuracy is reflected by lower RMSE values. The formula for RMSE is as follows: 

𝑅𝑀𝑆𝐸 =	:
1
𝑛
	*(𝐴𝑐𝑡𝑢𝑎𝑙" − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑")!
#

"$%

 

( 3) 
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Where: 

• n is the total number of data points. 

• 𝐴𝑐𝑡𝑢𝑎𝑙"	 represents the actual value at time t 

• 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑"	represents the predicted value at time t 

 

4.1 Stationarity unit root and stationarity tests 

An iterative modeling methodology includes looking at trend and seasonality patterns, identifying and 

estimating model parameters using the maximum likelihood or non-linear least squares approach, and 

testing the model's adequacy and forecast accuracy (Hyndman and Athanasopoulos, 2018).  

A time series is stationary if it has constant mean, variance, and covariance over time, i.e., the 

mean of a stationary time series does not change, causing cycles to eventually "die out", and if the 

series fluctuates around a constant long-term mean, it will have a time-independent, finite variance.   

A series can be non-stationary for various reasons, including a linear or non-linear trend, 

seasonality, and a non-constant variance. However, there are ways to make them stationary; for 

example, if the series has a linear trend, the first or second difference operator (non-seasonal 

difference) is applied. 

The data need to be stationary for applying the VAR model, so the data was examined in this 

direction.  The stationarity concept, primarily concerned with the statistical characteristics of 

numerical data over time, does not apply to Month and Covid in the same way because they are 

qualitative variables. Two key features of the time series data can be seen through the exploratory 

analysis and reviewed literature. Therefore, the GDP trend and the seasonality of Daylight variables 

were handled before analyzing the remaining time series. This was done for both considered periods. 

Daylight variables (in both datasets) displayed distinct seasonal patterns that showed consistent 

fluctuations. The seasonality was eliminated to enable a focus on underlying patterns and connections 

in the data. Also, a clear linear trend was visible for the GDP time series, which was removed 

accordingly. 

For time series stationarity, there are some tests (called unit roots tests) - such as Dickey-Fuller 

(DF) - which only contains a lag, Augmented Dickey-Fuller (ADF) - is an improvement of DF since it 

allows the addition of more lags to guarantee the independence of the variable -, and Philips Perron 

(PP) - allows to apply in series where the variance is not constant. 

The unit root tests ADF and PP were used and present the following test hypotheses: 

▪ H0: Existence of unit root (non-stationary time series) 

▪ H1: No unit root (stationary time series). 
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To decide whether to reject or not the null hypothesis, the p-value indicator is used, which will be 

compared with the significance levels - α  (1%, 5% and 10%). A significance level of 5% was considered 

for all tests. If the p-value is less than α, H0 is rejected, and the time series is stationary. If the p-value 

exceeds α, H0 is not rejected, and we conclude that the series has a unit root( is non-stationary). 

If the ADF and PP tests do not agree, i.e., one rejects the null, and the other does not reject H0, 

the KPSS test is used, which is a stationarity test, where the hypotheses are: 

▪ H0: Stationary time series 

▪ H1: Non-stationary time series. 

Since the mean and the variance of some of the series are not constant, the ADF, the PP, and the 

KPSS tests were performed for both datasets. The month and COVID variables were not tested because 

they are qualitative exogenous variables by default. Therefore, they are used in the models as they 

are. The stationarity results of the remaining variables can be observed in the following tables (Table 

4.2).  

 

Table 4. 2 - Unit root tests (ADF and PP) and stationarity test (KPSS) of the entire period 
 ADF PP Conclusion 
KWh 0.0479 0.000 stationary 
Wind100int 0.0 0.000 stationary 
Precipitation 0.0 0.000 stationary 
GDP_detrended 0.0 0.006 stationary 
Daylight_deseasonal 0.0 0.029 stationary 
Cloud 0.0429 0.000 stationary 

 

For the dataset of the entire period, after removing the trend for GDP and removing the 

seasonality for Daylight, all variables were stationary.  

Now, for the dataset containing values before COVID, the results of the tests ADF, PP, and KPSS 

can be observed in Table 4.3. 

 

Table 4. 3 - Unit root tests (ADF and PP) and stationarity test (KPSS) of the pre-covid period 
 ADF PP KPSS Conclusion 
KWh 0.0463 0.000 - stationary 
cloud  0.0 0.000 - stationary 
Daylight_deseasonal 0.0 0.072 0.0228 stationary 
Wind100int 0.0 0.000 - stationary 
GDP_detrended 0.0114 0.001 - stationary 

 

For the dataset of the pre-COVID data, the tests concluded that all series were stationary; 

however, the KPSS test was performed on the variable Daylight_deseasonal since the other unit root 

tests do not agree. 
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4.2 SARIMA and SARIMAX 

Autoregressive Moving Average (ARMA) or Autoregressive Integrated Moving Average (ARIMA) 

models, which employ the Box-Jenkins approach, are among the most frequently applied traditional 

"ad-hoc" time series techniques (Box et al., 2016). The ARIMA model has parameters p (the 

autoregressive order or lag of the model), d (the integration or differencing order), and q (the moving 

average order) that forecast the future values of a time series based on a linear combination of its 

previous values and disturbances. The model is explained in Equation (4). 

	𝑌" 	= 	𝜇	 +	∑ 𝜙𝑗?𝑌"&'	&	)@
*
'$% +	∑ 𝜓'𝜀"&'

*
'$% 	+ 	𝜀"                                       ( 4) 

 

Where: 

• 𝑌"	represents the value of the time series at time t 

• 𝜇 is the constant term or mean of the time series 

• ∑ 𝜙𝑗?𝑌"&'	&	)@
*
'$% 	 is the autoregressive (AR) component of the ARIMA model. The AR 

component involves lagged values of the time series (𝑌) weighted by coefficients 𝜙𝑗.  

• 𝑝 represents the order of the autoregressive component, which indicates how many 

lagged values are included in the model. 

• ∑ 𝜓'𝜀"&'
*
'$%  is the moving average (MA) component of the ARIMA model. The MA 

component involves lagged values of the error term ε (the difference between the 

observed value and the predicted value) weighted by coefficients 𝜓'.  

• 𝜀" represents the error term at time t 

 

To handle the trend in the data, the integrated term "i" is used, turning the non-stationary data 

into stationary and naming the model ARIMA.  

It is clear from the previous sections that seasonal patterns can be found in the data. The ARIMA 

model is extended to a Seasonal ARIMA (SARIMA) model to account for seasonality, denoted as (p, d, 

q)(P, D, Q)s, where s is the seasonal duration, which is commonly set to 12 for monthly series. SARIMA 

(p, d, q)(P, D, Q)s capture both non-seasonal and seasonal components of time series data, where p, 

d, q, P, D, and Q are non-negative integers that reflect the polynomial order of the model's 

autoregressive (AR), integrated (I), and moving average (MA) components ( Vagropoulos et al., 2016). 

SARIMA models outperformed typical ARIMA models regarding forecast accuracy (Verdejo et al., 

2017).  
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SARIMAX models, an extension of SARIMA, go a step further by including exogenous variables in 

the model, joining the historical energy consumption data. The additional information has the 

potential to enhance forecasting performance significantly.  

For both periods, it was analyzed the Autocorrelation function (ACF) and Partial Autocorrelation 

Function (PACF) to visually determine the values for the Autoregression component (AR) and the 

Moving average component (MA). The ACF can be described as the linear relationship between two 

data points in time as a function of their time difference; the PACF of a specific lag is the partial 

correlation between the time series and itself at that lag when all the in-between information is 

considered constant (Su, 2018). The results can be seen in the appendix (in Figure 1 and 2) 

The model selection process for both periods also involved utilizing automated methods for 

parameter tuning, resulting in the identification of the best SARIMA model for each case. To assess the 

model's predictive performance, the best model was applied to the test dataset, and the forecasts 

were generated with the "dynamic=False" setting, allowing each prediction to be based on the entire 

historical data up to that point. 

Table 4.4 provides the best-tested models for the two periods, the hyperparameters, the 

exogenous variables, and the Mean Absolute Percentage Error. 

 

Table 4. 4 - Parameters of SARIMA and SARIMAX models 

 

Model Variables MAPE 

Entire period 

SARIMA(1,0,0)(0,1,1,12)  
- 

3.995 

SARIMAX(1,0,1)(1,0,1,12) 'Daylight' , 'Wind100int', 'Precipitation', 'GDP', 'covid' 2.254 
SARIMAX(1,1,1)(0,1,1,12) GDP 2.256 
SARIMAX(0,1,0)(1,0,1,12) GDP, 'Wind100int' 2.139 

Pre-covid period 

SARIMA(1,0,1)(1,0,0,12) - 3.596 
 

SARIMAX(0,0,1)(1,0,1,12) 'Daylight' , 'Wind100int', 'GDP', 'month', 'Cloud' 2.778 
 

SARIMAX(1,0,0)(1,0,1,12) GDP, Cloud 2.617 

SARIMAX(1,0,0)(1,0,1,12) GDP, Wind100int 2.409 
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Among the various predictive models evaluated for forecasting Portugal's electricity consumption 

in the non-stable market, the SARIMA(1,0,0)(0,1,1,12) model, which does not include any additional 

predictor variables, exhibited a Mean Absolute Percentage Error (MAPE) of 3.995%. While this model 

provides a baseline for forecasting, it is clear that incorporating additional variables can significantly 

improve predictive accuracy. In this period analysis, the SARIMAX(1,0,1)(1,0,1,12) model, which 

includes the predictor variables 'Daylight,' 'Wind100int,' 'Precipitation,' 'GDP,' and 'covid,' achieved a 

MAPE of 2.254%. This result highlights the importance of considering multiple factors, including 

weather-related variables, economic indicators (GDP), and external factors like the COVID-19 

pandemic, to enhance the accuracy of electricity consumption forecasts. Additionally, the 

SARIMAX(1,1,1)(0,1,1,12) model, which solely relies on GDP as the predictor variable, performed 

similarly well with a MAPE of 2.256%, underlining the significant role of economic conditions in shaping 

energy demand during periods of instability. Moreover, the SARIMAX(0,1,0)(1,0,1,12) model, 

incorporating GDP and 'Wind100int' as predictor variables, achieved the lowest MAPE of 2.139%. This 

indicates that a combination of economic indicators and wind conditions can also effectively predict 

electricity consumption patterns during non-stable market conditions. 

During the pre-COVID era, a relatively stable market, the SARIMA(1,0,1)(1,0,0,12) model exhibited 

a MAPE of 3.596% without any additional predictor variables. However, it's worth noting that this 

model's performance is lower than those in the non-stable market analysis, emphasizing the different 

dynamics at play during stable and unstable market conditions. Among the pre-COVID models that 

included additional predictor variables, the SARIMAX(0,0,1)(1,0,1,12) model, featuring 'Daylight,' 

'Wind100int,' 'GDP,' 'month,' and 'Cloud' as predictors, achieved a MAPE of 2.778%. This demonstrates 

that a combination of weather-related variables, economic indicators, and temporal factors can be 

valuable for forecasting electricity consumption during stable periods. Additionally, the 

SARIMAX(1,0,0)(1,0,1,12) model, considering GDP and 'Cloud' as predictor variables, achieved a MAPE 

of 2.617%, while the SARIMAX(1,0,0)(1,0,1,12) model with GDP and 'Wind100int' as predictors 

achieved the lowest MAPE of 2.409%. Again, these results highlight the importance of considering 

economic indicators and specific weather-related variables when forecasting electricity consumption 

during stable market conditions. 

These findings emphasize the need for a multidimensional approach when forecasting electricity 

consumption, as the relative importance of different factors may vary depending on the market's 

stability. Incorporating a combination of economic indicators, weather-related variables, and external 

factors can lead to more accurate predictions in both stable and non-stable market conditions. 
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4.3 VAR  

Christopher Sims pioneered the multilinear Vector Autoregressive (VAR(p)) model in 1980, which is a 

generalization of the ARMA models introduced by Box and Jenkins in 1978 (Fotsing et al., 2014). The 

introduction of VAR models constituted a significant advance in investigating dynamic interactions 

within connected time series data. These models are made up of equations for each variable that 

explain its evolution based on its lag values as well as the lag values of other variables.  

VAR models are distinguished from standard dynamic simultaneous equation models by their 

symmetrical treatment of all variables as endogenous. In contrast to these models, VAR models do not 

impose "incredible identification restrictions" and provide a theory-free technique for finding 

economic linkages.  

VAR models have been used successfully to investigate the complex relationships between energy 

use and economic growth (Alsaedi & Tularam, 2019). In its basic form, a VAR consists of a set of K 

endogenous variables 𝑦𝑡 = (𝑦1𝑡, … , 𝑦𝑘𝑡, … , 𝑦𝐾𝑡) for 𝑘 = 1,… , 𝐾.		After including 𝜌 lags of the 

endogenous variables, the VAR(𝜌) model may be defined as: 

 

𝑦! = 𝐴1𝑦𝑡 − 1+⋯+ 𝐴𝑝𝑦𝑡 − 𝑝+ 𝐷𝑡+ 𝑢𝑡 

( 7) 

Where: 

• 𝐴1, … ,𝐴𝑝		are coefficients associated with the lagged values of the dependent variable y.  

• 𝑦𝑡 is the current value of the dependent variable at time t. 

• 𝑦𝑡 − 𝑝 are lagged values of the dependent variable y at earlier time points.  

• 𝐷𝑡 represents any deterministic components or factors that affect the dependent variable 

at time t but are not related to the past values of y. These components can include things 

like trends, seasonality, and exogenous variables. 

• 𝑢𝑡 is the error term or residual at time t.  

Another benefit of multivariate data is the possibility of analyzing Granger causality, which aids in 

determining the direction of causality among variables. Granger causality tests, if a variable, may be 

used to predict another variable. This is significant because it allows the variables to be eliminated and 

individually modeled if there is no relationship between them. On the other hand, if a causal 

relationship exists, the variables must be considered at the modeling stage. In doing so, the regression 

equation's zero-coefficient of past values null hypothesis is tested (variable X is not Granger causing 

variable Y, if all X coefficients in Y equation are null). The null hypothesis is rejected if the p-value from 

the test is less than the significance level of 0.05.  
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Granger causality tests were employed to investigate causal relationships between time series. 

The VAR model was applied to the data, enabling an in-depth exploration of the temporal interactions 

between variables. Various lag orders were considered, and model selection criteria, including AIC, 

BIC, FPE, and HQIC, were harnessed to pinpoint the most suitable model. Table 4.5 shows the order of 

the tested VAR models, the set of variables, and the MAPE metrics. 

 

Table 4. 5 – Variables and parameters of VAR models 
Model Variables MAPE 

Entire period 
Var(1) KWh, covid, month 6.740 
VAR(1) KWh, month, GDP_detrended 5.346 
VAR(1) KWh, GDP_detrended 5.250 

Pre-covid period 
Var(1) KWh, month 4.763 
VAR(1) KWh, Wind100int, month 4.747 
VAR(1) KWh, wind100int, Month, 

Daylight_deseasonal 
4.784 

 

When evaluating the performance of the VAR model, the choice of variables had noticeable effects 

on predictive accuracy.  

Among the models considered for the entire period, three VAR(1) models stand out. The first, 

incorporating electricity consumption (KWh), the COVID-19 variable, and the month, resulted in a 

MAPE of 6.740%. While it provides reasonable predictions, there is room for improvement. The second 

model, which included electricity consumption, month, and GDP_detrended, achieved a lower MAPE 

of 5.346%. The inclusion of GDP_detrended as an economic indicator appears to enhance predictive 

accuracy. The third model, considering only electricity consumption and GDP_detrended, resulted in 

a MAPE of 5.250%. This underscores the importance of economic factors in electricity consumption 

prediction during the entire period. 

In the pre-COVID era, the three VAR(1) models evaluated that performed the best were the model 

featuring electricity consumption and month achieved a MAPE of 4.763%, indicating that temporal 

factors play a significant role in electricity consumption forecasting during stable periods. The second 

model, including electricity consumption, Wind100int (wind conditions), and month, achieved a 

slightly lower MAPE of 4.747%. Wind conditions appear to have a modest impact on improving 

forecasting accuracy during stable periods. The third model, which included electricity consumption, 

Wind100int, month, and Daylight, resulted in a MAPE of 4.784%, suggesting that incorporating Daylight 

as an additional variable did not substantially improve forecasting accuracy during stable periods. 
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Again, the analysis demonstrates that the choice of variables and the market conditions 

significantly impact the performance of VAR models in predicting electricity consumption in Portugal. 

Economic indicators, such as GDP_detrended, play a crucial role during the entire period, while 

temporal factors and specific weather-related variables, like Wind100int, have more influence during 

stable market conditions.  

 

4.4 SVR 

Vapnik's (1995) Support Vector Machine (SVM) algorithm is based on statistical learning theory and 

structural risk minimization. Support Vector Machines (SVM) is a widely used technique that has shown 

effectiveness in various areas, including pattern recognition, classification, and non-linear regression 

tasks like electricity price predictions (Weron, 2014). SVM's central principle is to convert the original 

variables into a high-dimensional feature space and incorporate a penalty component in the error 

function to control complexity. The fundamental goal is to minimize forecast error on a training dataset 

while maintaining as flat a functional shape as possible. SVM leverages Kernel functions to address 

non-linear relationships in data (Deb et al., 2017). Kernel functions are critical in SVM because they 

allow the model to capture complicated patterns and non-linearities in the data. Linear, Polynomial, 

Gaussian Radial Basis, and Multilayer Perceptron are some of the most frequent Kernel functions used 

in SVM (Chou & Tran, 2018). 

The Support Vector for Regression (SVR) is a variant of SVM specifically tailored for addressing 

non-linear regression problems. In cases of non-linear regression, the data suffer a transformation via 

a nonlinear kernel function, which maps the inputs to a higher-dimensional feature space. The overall 

performance of an SVM regression model hinges on the appropriate selection of kernel parameters 

(Shi et al., 2018). The equation for the SVR model is shown in equation (8). 

𝑓(𝑥) =*(𝛽%∗ − 𝛽,)𝐾(𝜒, − 𝜒) + 𝑏
-

,$%

 

( 8) 

Where: 

• 𝑓(𝑥)	represents the predicted output or response variable for the input feature vector x. 

• 𝑁 is the number of support vectors in the SVR model.  

• 𝛽%∗	 is a coefficient associated with the support vector that has the most influence on the 

model's predictions. It's the weight given to the first support vector. 

• 𝛽, 	represents the coefficients associated with the other support vectors (i ≠ 1).  

• 𝐾(𝜒, − 𝜒) is the kernel function. The kernel function computes the similarity or distance 

between the input feature vector x and the support vectors 𝜒,.  
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• 𝑏 is the bias term or intercept. It's an offset added to the sum of the weighted kernel 

function evaluations to make the prediction. 

 

As before, a collection of variables was explored and tested in the context of energy consumption. 

The SVR model was trained with different hyperparameters for each case, since a grid search was 

applied to find the best ones. Table 4.6 shows the various models tested. 

 

Table 4. 6 - Parameters of SVR models 
Model Variables MAPE 

Entire period 
C:0.1, epsilon:0.01, gamma:0.01 , 
kernel: poly 

'Daylight' , 'Wind100int', 'Precipitation', 'GDP’, 'covid', ‘month’ 5.399 

C:0.1, epsilon:0.1, gamma: 0.01, 
kernel: poly 

'Daylight’ , 'Wind100int', 'Precipitation',  4.205 

C:1, epsilon:0.01, gamma: 1, 
kernel: poly 

 'GDP’, 'covid', ‘month’ 3.998 

Pre-covid period 
kernel': 'poly', 'gamma': 0.01, 
'epsilon': 0.01, 'C':0.1 

'Daylight’ , 'Wind100int’, 'GDP’, ‘Cloud’, ‘month’ 4.111 

'kernel': 'poly', 'gamma': 0.01, 
'epsilon': 0.1, 'C': 0.1 

'Daylight’ , 'Wind100int’, ‘Cloud’, 3.530 

'kernel': 'poly', 'gamma': 1, 'epsilon': 
0.01, 'C': 0.1 

'Wind100int’, 'GDP’, ‘month’ 3.609 

 

Three different configurations of support vector regression (SVR) models were scrutinized in the 

entire period analysis. The first model included a comprehensive set of predictor variables, yielding a 

MAPE of 5.399%. With a simplified set of predictor variables, the second SVR model achieved a lower 

MAPE of 4.205%. The third SVR model, focusing solely on economic and temporal factors, performed 

even better with a MAPE of 3.998%. 

In the pre-COVID period analysis, three SVR models were also considered, each with a polynomial 

kernel and different hyperparameters. The first model featured a moderate predictive accuracy with 

a MAPE of 4.111%. The second model, adopting a simplified approach, demonstrated improved 

forecasting accuracy with a MAPE of 3.530%. The third model underscored the significance of wind 

conditions, economic indicators, and temporal factors, achieving a MAPE of 3.609%. 

 

4.4 LSTM 

The Long Short-Term Memory (LSTM) Neural Network is one of the most advanced models used for 

time series forecasting, as explained by Korstanje in 2021. 
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The LSTM model provides an evolutionary breakthrough in neural network models, outperforming 

standard RNN constraints. While RNNs are frequently employed for time series prediction, they often 

struggle with long-term data-dependent problems (Hochreiter & Schmidhuber, 1997). Hochreiter and 

Schmidhuber introduced the LSTM model in 1997, fitted with memory units designed to address the 

inherent difficulty of recording long-term data dependencies. The self-linking memory unit that keeps 

the network's temporal state is the key feature of LSTM. Three gates control this memory unit: the 

input gate, the output gate, and the forget gate (Yu et al., 2019). 

The input and output gates control the data flow into and out of the memory unit, while the forget 

gate allows for the selective retention of important information, allowing high-weighted output 

information to be sent from one neuron to the next. Neurons house memories within their pipelines 

in the LSTM architecture, allowing them to keep and manipulate earlier knowledge, update it, and 

effortlessly transfer it to succeeding layers or cells, all without losing crucial data (Feng et al., 2022) . 

Two LSTM models were used and tested for time series forecasting: energy consumption 

depending only on its history and energy consumption depending on several variables.  

In the first case, the energy consumption time series was preprocessed, including scaling using 

MinMaxScaler to bring it within the (0,1) interval. An LSTM-based deep learning model was then 

constructed using TensorFlow and Keras. The model architecture included an LSTM layer with 100 units 

and a rectified linear unit (ReLU) activation function, followed by a dense layer with one output unit. 

The model was compiled using the mean squared error (MSE) as the loss function and trained for 20 

epochs. 

In the second approach, we proceed similarly: the input was defined as a dataframe (variables and 

history of variables), and MinMaxScaler was applied to the variables. The LSTM model was trained for 

this multivariate approach, and its performance was assessed using similar evaluation metrics. It is 

important to note that these metrics, were calculated based on the normalized series.  

Table 4.7 shows the characteristics of the employed models for both considered datasets. 

 

Table 4. 7 - Parameters of LSTM models 
Model Variables 𝑹𝟐 

Entire period 
LSTM(100, activation = relu, input_shape = (12,1)= 
Sequential, Dense(1), Optimizer=adam, Loss=mse 

KWh 
 

0.534 

Past_history=127, Step=1 
Future_target=12, Lstm(16, activation=relu, Dense=12 

'Daylight' , 'Wind100int', 'Precipitation', 
'GDP', 'covid', ‘month’ 

0.883 

Pre-covid period 
LSTM(100, activation='relu', input_shape=(12, 1), Dense(1) 
optimizer='adam', loss='mse' 

KWh 
 

0.258 

Past_history=80, Step=1 
Future_target=6, Lstm(16), activation=relu, Dense=6 

'Daylight' , 'Wind100int’, 'GDP', ‘Cloud’, 
‘month’ 

0.978 
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For the entire period, the LSTM model, focusing solely on electricity consumption (KWh), yielded 

an 𝑅! value of 0.534 during the entire period. While this model displayed predictive capabilities, its 

accuracy left room for improvement. In contrast, the second LSTM model, with a more complex 

architecture, including parameters like past_history=127, step=1, and future_target=12, 

demonstrated a substantially higher 𝑅! value of 0.883. This model also incorporated a broader set of 

predictor variables, encompassing 'Daylight,' 'Wind100int,' 'Precipitation,' 'GDP,' 'covid,' and 'month.' 

The notable improvement in accuracy underscores the importance of including diverse variables in 

electricity consumption forecasting during the entire period. 

During the pre-COVID era, it was observed different trends in model performance. The first LSTM 

model, which primarily focused on electricity consumption (KWh) while maintaining a simpler 

architecture, achieved a relatively low 𝑅! value of 0.258. This suggests that electricity consumption 

might be less predictable during this period using this model configuration. Conversely, the second 

LSTM model, with adjusted parameters (past_history=80, step=1, and future_target=6) and the 

inclusion of specific predictor variables such as 'Daylight,' 'Wind100int,' 'GDP,' 'Cloud,' and 'month,' 

delivered an outstanding 𝑅! value of 0.978. This exceptionally high accuracy highlights the 

effectiveness of this model configuration and the significance of carefully selected predictor variables 

in accurately forecasting electricity consumption, particularly in stable market conditions. 

 

4.4 Comparison of models and model selection 

To thoroughly compare the predictive model efficacy, two tables show the top-performing models for 

each period dataset along with the predictor variables and the corresponding MAPE, 𝑅! and RMSE 

values. In order to establish a benchmark for model evaluation and to help compare relative model 

performance, the mean of the test set values for each period was also computed. 

Because the metrics for the LSTM model were calculated based on normalized values, a ratio between 

the RMSE and the test set mean was done to compare this model’s predictive ability to the others. 

 

Table 4. 8 - Results of the entire period dataset models 
Model Variables  𝑹𝟐 RMSE MAPE Test mean  
SARIMAX(1,1,1)(0,1,1,12) GDP 0.746 142421992.5 2.139 

4164958333.3 

VAR(1) KWh, GDP_detrended 0.133 280850282.1917 5.346 
SVR, C:1, epsilon:0.01, 
gamma: 1, kernel: poly  'GDP’, 'covid', ‘month’ 0.150 260698279.6995 3.998 

LSTM, Past_history=127, 
Step=1 
Future_target=12, 
Lstm(16, activation=relu, 
Dense=12 

'Daylight' , 'Wind100int', 
'Precipitation', 'GDP', 'covid', 
‘month’ 

0.883 14.079 7.605 
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In examining Portugal's electricity consumption patterns over the entire period, it becomes 

evident that the predictive models exhibited varying degrees of success. When focusing on the critical 

metrics of RMSE and MAPE, the SARIMAX model with GDP as a predictor stands out as a reliable choice 

for accurate electricity consumption forecasting. Its low MAPE, around 2%, indicates it can provide 

forecasts with minor percentage errors compared to the test set mean value. In contrast, the VAR 

model, which includes KWh and GDP_detrended variables, shows less ability in prediction, as indicated 

by its high MAPE and RMSE, but is still well-performing a short-term forecast. The SVR model, with 

'GDP,' 'covid,' and 'month' as predictors, presents a promising alternative, offering more reliable 

forecasts than the VAR model, although a more comprehensive assessment is required. The LSTM 

model, while displaying a solid fit to the data, exhibits the highest RMSE and MAPE values (around 7%), 

suggesting that further fine-tuning may be necessary to enhance its predictive accuracy and reduce 

forecasting errors. 

 

Table 4. 9 - Results of the pre-covid period dataset models 
Model Variables  𝑹𝟐 RMSE MAPE Test mean 

SARIMAX(1,0,0)(1,0,1,12) GDP, Wind100int 0.770 130164812.8 2.409 

4250750000.0 
 

VAR(1) KWh, month 
 0.014 248666907.32 4.763 

SVR, 'kernel': 'poly', 
'gamma': 0.01, 'epsilon': 
0.1, 'C': 0.1 

'Daylight’ , 'Wind100int’, ‘Cloud’, 0.275 231078789 3.530 

LSTM, Past_history=80, 
Step=1 
Future_target=6, 
Lstm(16), 
activation=relu, Dense=6 

'Daylight' , 'Wind100int’, 'GDP', 
‘Cloud’, ‘month’ 0.978 7.853 5.012 

 

During the pre-COVID era, the modeling landscape exhibited noteworthy differences in predictive 

performance compared to the entire period. When focusing on RMSE and MAPE as critical evaluation 

metrics, the SARIMAX model with GDP and Wind100int as predictors emerges as a reliable choice for 

forecasting electricity consumption. It demonstrates competitive performance with a relatively low 

MAPE, indicating the ability to provide accurate forecasts with small percentage errors. The VAR 

model, incorporating KWh and 'month' as predictors, performs a bit worse than the SARIMAX model, 

but the predictive accuracy is still competitive. The SVR model, with 'Daylight,' 'Wind100int,' and 

'Cloud' as predictors, delivers accurate forecasts when considering RMSE and MAPE, making it a good 

alternative for forecasting electricity consumption. The LSTM model, despite its strong 𝑅!, indicates 

potential issues with accuracy when assessed based on RMSE and MAPE, necessitating further 

refinement to enhance its predictive capabilities. 
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When comparing the two distinct periods, the pre-COVID era exhibited more favorable predictive 

performance in most models, signifying potential shifts in electricity consumption habits or external 

factors impacting consumption patterns. Comparing the entire and pre-COVID periods, the SARIMAX 

model emerges as a consistently reliable choice for electricity consumption forecasting, demonstrating 

strong accuracy in both contexts. Its robustness in capturing market fluctuations and stability in stable 

conditions make it a versatile option. Conversely, the VAR model exhibits limitations in both periods, 

suggesting its inadequacy for precise forecasting. The SVR model maintains moderate accuracy across 

different timeframes, while the LSTM model requires refinement to improve its forecasting capabilities 

in both stable and fluctuating market conditions. 

 

The choice of model and predictor variables should be tailored to the specific period under 

consideration, as different time frames may require distinct modeling approaches. Therefore, the 

selection of the best model for each period is based on the models' respective strengths and the 

specific dynamics of each period. 

For the entire period, the SARIMAX model with GDP as a predictor emerges as the most suitable 

choice. This recommendation is based on the model's consistent accuracy and robustness in capturing 

electricity consumption patterns across fluctuating market conditions. With a low MAPE of 2.409%, 

the SARIMAX model demonstrates its reliability by providing forecasts with small percentage errors 

relative to the high test mean. Furthermore, the SARIMAX model's interpretability is an asset. GDP as 

the sole predictor variable aligns with economic principles, reinforcing the model's trustworthiness in 

explaining electricity consumption trends.  

In contrast, for the pre-COVID period characterized by relative stability, the SVR model with 

'Daylight,' 'Wind100int,' and 'Cloud' predictors is recommended. This choice is based on the model's 

accuracy, adaptability, and suitability for stable market conditions. The SVR model delivers forecasts 

with a MAPE of 3.530%, indicating its capability to provide predictions with smaller percentage errors 

than the test set mean. 
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CHAPTER 5 

Conclusions and Future Work 
 

Around the world, the energy sector faces several challenges, including rising consumption and 

efficiency, shifting supply and demand trends, and a lack of analytics required for efficient 

management. Understanding the future level of energy consumption is critical for both short-term and 

long-term planning. Many users, from government agencies to local development authorities to 

financial and trading institutions, are interested in a realistic forecast of future consumption 

portfolios.  

Portugal, in particular, has experienced energy poverty, characterized by poorly insulated 

buildings and very high energy expenditures, affecting a significant percentage of its 

population.  Besides that, Portugal has a high reliance on energy import, and when such an energy 

dependence rate is high, accurate energy consumption prediction (directly related to the energy 

efficiency indicator) is essential. This is because, through this, energy-related problems can be 

effectively addressed along with planning the stable growth of the economy. In response to these 

concerns, this study aimed to forecast Portugal's electricity consumption using publicly accessible data 

sources and machine learning models through stable (pre-covid) and non-stable (post-covid) 

periods.  Its insights may be extrapolated to provide valuable guidance for developing energy policies 

and improving energy efficiency, with broad ramifications for energy conservation. 

The methodology chosen for this study was the CRISP-DM, which has six action stages (business 

understanding, data understanding, data preparation, modeling, evaluation, and deployment). The 

study included a thorough investigation of Portugal's twelve-year electricity consumption trends, 

revealing underlying patterns like seasonality, trends, and notable anomalies.  

The objective of this analysis was to comprehend and predict Portugal's electricity consumption, 

with a particular focus on the COVID-19 pandemic's impact, utilizing machine learning techniques. The 

investigation included a look at historical consumption patterns, a look at pandemic effects, an 

assessment of the impact of exogenous factors (such as weather factors - temperature, humidity, and 

precipitation - economic factors, and external - COVID - factors) on consumption, and a look at various 

machine learning models. 
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This was possible by using data compiled from various online sources and then adjusted for better 

data analysis. It includes COVID-19 data, weather data, GDP data, monthly electrical consumption data, 

and annual electrical consumption data by type. This data helped to understand and gather insights 

into the problem and ultimately helped with the predictive model selection. Moreover, when 

projecting total energy consumption, the period under consideration was divided into - the relatively 

stable market era before the COVID-19 epidemic and the unstable market with data before and after 

the epidemic. 

When analyzing the data quality, the Pearson Correlation Coefficient and Eta-correlation ratio 

were used to identify the correlations between variables.  Higher temperatures are linked to reduced 

energy consumption, potentially due to the efficiency of cooling systems, while windier days 

correspond to slightly increased energy usage, likely driven by heating or cooling demands. As reflected 

in GDP, economic growth is associated with higher energy consumption due to expanding industrial 

and commercial activities. Longer daylight hours reduce energy usage, as natural light reduces the 

need for artificial lighting and heating. Cloud cover and precipitation have weak positive correlations 

with energy consumption, possibly indicating increased indoor activities during cloudy or rainy days. 

Humid conditions are linked to energy savings, and these patterns persist even before the COVID-19 

pandemic, emphasizing the intricate interplay of meteorological and economic variables in shaping 

energy consumption trends and providing valuable insights for energy management and forecasting. 

These thorough evaluations influenced each period's final set of independent variables, providing a 

solid foundation for the predictive models and subsequent analyses. 

The structure for subsequent modeling was established during the data analysis phase, which 

revealed vital insights into variable relationships and energy consumption patterns. Stationarity, 

seasonality, parameter identification, and model validation were the main focuses of the iterative 

modeling process.  
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Five different predictive models—SARIMA, SARIMAX, VAR, SVR, and LSTM—were evaluated to 

determine how well they predicted electricity consumption. These conclusions highlight the 

significance of tailoring predictive models to the specific characteristics of the dataset and market 

conditions. The SARIMAX model with GDP as a predictor consistently delivers accurate forecasts, 

making it an excellent choice for capturing electricity consumption variations over time. In contrast, 

the VAR model struggles to maintain accuracy in both periods, indicating its less ability for this 

particular task. The SVR model's moderate accuracy and adaptability in the pre-COVID period 

emphasize the importance of considering different modeling approaches for stable and unstable 

market conditions. However, its performance should be evaluated cautiously, given the SARIMAX 

model's consistent superiority. The LSTM model's potential, indicated by a strong 	

𝑅!, suggests that it may benefit from further fine-tuning and variable selection to enhance its 

predictive capabilities and mitigate the high RMSE and MAPE observed in both periods. 

It is evident that no single model can adequately address the diverse dynamics of energy 

consumption. The appropriate model selection must align with the dataset's specific characteristics 

and temporal considerations. 

As Portugal grapples with energy-related challenges, the findings of this study can serve as a 

valuable resource for policymakers, energy providers, and researchers seeking to enhance energy 

efficiency, address energy poverty, and plan for a sustainable energy future. 

The thesis study advances energy forecasting by using publicly available data to estimate 

Portugal's electricity consumption.  

First, it recognizes the crucial need to account for external shocks, as exemplified by the inclusion 

of the COVID-19 pandemic's impact on energy consumption. This consideration reflects the growing 

importance of adapting forecasting models to address unforeseen disruptions in energy markets. 

Secondly, the study promotes a holistic modeling approach by employing various predictive 

models, including SARIMA, SARIMAX, VAR, SVR, and LSTM. This multifaceted strategy underscores the 

intricate nature of electricity consumption dynamics and highlights the value of incorporating diverse 

factors such as economic indicators, meteorological data, and exogenous variables. 

Moreover, the meticulous variable selection and analysis process underscores the significance of 

understanding the nuanced relationships between different factors and electricity consumption. This 

insight can guide future research in more precise feature engineering and variable selection, thereby 

improving the accuracy of energy forecasting models. 

Finally, the temporal aspect of the study, differentiating between stable and non-stable market 

periods, underscores the necessity of temporal considerations in energy forecasting. The findings 

emphasize the importance of adaptive modeling techniques that can adapt to changing consumption 

patterns over time, thus enhancing predictive accuracy. 
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However, it is essential to recognize some restrictions and set a course for upcoming research 

projects. First and foremost, it's crucial to understand that selecting datasets and variable 

configurations can significantly affect model analysis and predictive accuracy, especially when dealing 

with periods of data scarcity. The availability of enhanced and real-time data, including high-resolution 

weather information and more comprehensive economic indicators, can significantly contribute to 

more accurate predictions. Improved data quality and accessibility will be crucial for advancing 

forecasting capabilities. 

Secondly, exploring advanced machine learning techniques like deep learning models, ensemble 

methods, and reinforcement learning could yield even more precise forecasts, especially in complex 

and dynamic energy markets. 

Thirdly, researchers can focus on identifying and integrating additional exogenous variables that 

influence electricity consumption, such as policy changes, technological innovations, and social trends. 

This expanded scope of variables can further refine forecasting models. 

In the future, when there is more data regarding the period after the COVID-19 pandemic, an 

identical study can be performed to understand the changes in the performance of these machine 

learning models to a dataset containing only pos-covid values. 

Additionally, spatial analysis could be employed to predict electricity consumption at regional or 

local levels, acknowledging the variations in consumption patterns across different areas within 

Portugal. Furthermore, developing models with enhanced interpretability can aid stakeholders in 

gaining a deeper understanding of the drivers behind electricity consumption, facilitating better-

informed decision-making. This study can also be expanded by incorporating more sophisticated data 

treatment methods for daily and monthly data. Investigating alternative models for particular data 

aggregations, like daily data, may also be a helpful strategy for enhancing predictive accuracy.  

These research directions aim to address the issues brought about by external factors like the 

Covid-19 pandemic while improving the robustness and applicability of energy consumption 

forecasting models in a constantly changing energy environment. Finally, future research should 

consider sustainability aspects, including the transition to renewable energy sources, carbon 

emissions, and environmental impact, to align energy forecasting with evolving ecological and policy 

considerations. 

In conclusion, this study represents a significant step forward in energy forecasting, addressing 

the challenges posed by external shocks and advocating for comprehensive modeling approaches. 

Future research should build upon these foundations by leveraging advanced techniques, 

incorporating additional variables, and embracing emerging technologies to enhance the precision and 

applicability of energy forecasting models in a rapidly evolving energy landscape. 
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Appendix 

 

Figure 1 - ACF and PACF of the entire period dataset 

 

Figure 2 - ACF and PACF of the pre-covid period dataset 
 

Table 1 - VIF tests for the entire and pre-covid periods 
Entire period Features           VIF 

0 const   8122.246783 

1 Temperature    254.103606 

2 Cloud       5.469940 

3 Daylight       4.378297 

4 Wind100int       2.798599 

5 Humidex     224.959510 

6 Precipitation       4.644341 

7 GDP       3.472925 

8 covid 3.432013 

9 month       1.917578 

Pre-covid Features            VIF 

0 const   14525.692150 

1 Temperature     245.494390 



 

2 Cloud       5.470317 

 

 

 


