
Improving Code Merging Accuracy with Transformations and
Member Identity

André Duarte Rocha Teles

Master's in Computer Science and Engineering

Supervisor:
Prof. Dr. André L. Santos, Assistant Professor
Iscte – Instituto Universitário de Lisboa

September, 2023

Department of Information Science and Technology

Improving Code Merging Accuracy with Transformations and
Member Identity

André Duarte Rocha Teles

Master's in Computer Science and Engineering

Supervisor:
Prof. Dr. André L. Santos, Assistant Professor
Iscte – Instituto Universitário de Lisboa

September, 2023

Acknowledgements

While developing this work, I had a lot of support and help.

I would like to thank my supervisor, Professor André Santos, for all his support, enthusiasm,

suggestions, close follow-up and belief in my abilities. I would also like to thank him for helping

me in the process of finding a job, especially in developing a better Curriculum Vitae, which is

beyond the scope of this work.

I would like to thank my parents, Duarte and Mercês, for all the support, for providing all the

conditions to develop this work in the best way possible, and for being reasonable in some weeks

of a lot of work when the deadlines of the research paper were tight.

I would like to thank my grandmother, Conceição, for keeping me company and taking care of

me during some working afternoons in her house during all these weeks, and for always praying

for me.

I would like to thank my girlfriend, Isabel, for motivating me to do better and better, for being

proud of me, for being understanding during the stressful weeks of less attention, and for always

finding activities together to clear my head.

Finally, I would like to thank the rest of my family for their concern and for all the good moments

we have shared.

All the words would not be enough to express my gratitude and happiness for sharing my life

with these people.

i

Resumo

Convencionalmente, o processo de merging de ficheiros de código é realizado de forma não

estruturada, utilizando algoritmos genéricos de merge baseados em linhas (e.g., diff3) que des-

conhecem a sintaxe e a semântica da linguagem de programação em que o código está escrito,

resultando em vários conflitos que poderiam ser evitados. As técnicas de merge estruturada e

semiestruturada reduzem o número de conflitos, pois têm em consideração a sintaxe da linguagem

de programação. No entanto, ainda há problemas a serem resolvidos em relação a falsos posi-

tivos (conflitos que poderiam ser evitados, e.g., em mudanças na assinatura de membros) e falsos

negativos (conflitos que não são detectados resultando em código não-compilável).

Esta dissertação apresenta uma técnica de merge que combina estratégias semiestrutu-

radas e baseadas em transformações. Desenvolvemos o Jaid, um protótipo de ferramenta de

merge para Java, com base no pressuposto de que os elementos estruturais do código evoluem

com UUIDs ”anexados” (identidade). Embora isto tenha inconvenientes e possa exigir editores

de código dedicados para uma boa usabilidade, tem a vantagem de permitir que os processos

de merge detectem com precisão a renomeação, a deslocação e a referência de elementos do

código. O Jaid tem em conta aspectos sintácticos e semânticos para fazer merge baseado em

transformações, tendo como principal diferença, em relação a abordagens anteriores, basear-se

na identidade para localizar e referenciar elementos do código. Realizámos uma experiência com

100 cenários de merge de três projectos open-source para testar a técnica e avaliar a sua via-

bilidade na prática.

Palavras-chave: Software merging, Sistemas de controlo de versões, Transformações, Confli-

tos, Identidade

iii

Abstract

Conventionally, merging code files is performed in an unstructured manner, using generic line-

based merging algorithms (e.g., diff3) that are unaware of the syntax and semantics of the pro-

gramming language in which the merged code is written, resulting in several conflicts that could be

avoided. Structured and semistructured merging techniques take into consideration the program-

ming language syntax and are capable of merging processes that lead to fewer conflicts. However,

there are still issues to be solved regarding false positives (conflicts that could be avoided, e.g.,

member signature changes) and false negatives (conflicts that go undetected resulting in non-

compilable code).

This dissertation presents amerging technique that combines semistructured and transformation-

based strategies, where conflict detection is aware of syntactic and semantic aspects of the pro-

gramming language. We developed Jaid, a prototype merging tool for Java based on the assump-

tion that code structural elements evolve with “attached” UUIDs (identity). While this has drawbacks

and may require dedicated code editors for good usability, it has the advantage of allowing merging

processes to detect with precision renaming, moving, and referencing of code elements, and in

turn, avoid both false positives and false negatives. Jaid takes into account syntactic and semantic

aspects to apply a merge process based on transformations, having the key difference from pre-

vious approaches of relying on identity to locate and reference code elements. We performed an

experiment with 100 merge scenarios from three open-source projects to test the technique and

assess its feasibility in practice.

Keywords: Software merging, Version Control Systems, Transformations, Conflicts, Identity

v

Contents

Acknowledgements i

Resumo iii

Abstract v

List of Figures ix

List of Tables xi

Chapter 1. Introduction 1

1.1. Context 1

1.2. Goals 3

1.3. Methodology and results 3

1.4. Organization of the document 5

Chapter 2. Related Work 7

2.1. Unstructured merging 7

2.2. Structured merging 8

2.3. Semistructured merging 9

2.4. Model differencing 9

2.5. Operation-based merging 10

2.6. Motivating Example 11

Chapter 3. Approach 15

3.1. Representing member identity 15

3.2. Transformations 16

3.3. Merging Process 17

3.3.1. Extracting transformations 17

3.3.2. Shared transformations 21

vii

3.3.3. Conflict detection 22

3.3.4. Applying transformations 23

3.3.5. Translation of identifiers by reference 25

3.4. Implementation 28

3.4.1. Abstract Syntax Trees for Java 29

3.4.2. Parsing and indexing 30

3.4.3. Local move transformations 30

3.5. Discussion 32

Chapter 4. Experiment 35

4.1. Collecting merge scenarios 35

4.2. Results 36

4.2.1. False negatives 37

4.2.2. False positives 37

4.2.3. Execution Time 38

4.2.4. Threats to validity 39

4.3. Discussion 39

Chapter 5. Conclusions 45

5.1. Drawbacks 45

5.2. Benefits 47

5.3. Future Work 47

References 49

viii

List of Figures

1 Three-way merge in Git-flow processes. left (L) and right (R) versions with a base ancestor

(B) originate a merged version (M). 1

2 Transformation ordering in operation-based merge. 12

3 Illustrative three-way merge scenario involving a single class. 13

4 Merge results with industry and state-of-the-art approaches. 14

5 Java source code with member identity encoded as UUIDs in comments. 16

6 Merge process overview. 18

7 Three-way merge scenario. 27

8 Translating identifiers by reference in body modify transformations. 27

9 Translate identifiers by reference. 33

10 The step-by-step algorithm for extracting local move transformations for a given scenario. 34

11 Merge times in relation to the total number of references. 42

12 Different levels of conflict granularity per merging tools. 43

ix

List of Tables

1 Examples of transformations and their parameters. 17

2 Transformation pairs with potential conflicts on file transformations. 23

3 Transformation pairs with potential conflicts on method transformations. 24

4 Transformation pairs with potential conflicts on field transformations. 24

5 Summary of results for all merge scenarios. 36

6 Summary of the number of merge scenarios per project that failed to build successfully due

to missing Java coverage. 37

7 Summary of results for all merge scenarios. (*) Refers to any transformation that involves

a modification to the child elements of the removed one. 38

xi

CHAPTER 1

Introduction

1.1. Context

A version control system (VCS) allows teams to manage and parallelize tasks in order to deliver a

software artifact as quickly as possible. Part of their functionality is the ability to merge branches

with other branches. A three-way merge is based on three different versions of a software artifact

(see Figure 1). Throughout this dissertation, we refer to those as left, right, and base. Both left and

right have the base as their nearest common ancestor. When left and right are merged, we obtain

a new version that combines their changes.

B

L

R Mmain

branch

Figure 1. Three-way merge in Git-flow processes. left (L) and right (R) ver-
sions with a base ancestor (B) originate a merged version (M).

Branches may be merged based on different algorithms, which may produce different results.

If one or more developers change the same piece of code and the merging algorithm cannot au-

tomatically merge both changes into a new version, a merge conflict arises. Manual intervention

is required to resolve the conflict to successfully merge the two branches. However, resolving a

conflict typically requires developer communication and a true understanding of the related code,

making it a time-consuming task during the development cycle, delaying it, and reducing team

productivity [1].

Most VCSs have built-in merge tools that are based on algorithms that compute the differences

through a line-based comparison [2]. In other words, the unit of comparison between files is a line,

and the merging process is purely textual. This happens because the representation of files as

plain text is the most generic way of representing files in many programming languages. This

merge strategy is referred to in the literature as unstructured merging.

1

Despite the genericity offered by unstructured merging, this strategy has obvious limitations,

since it ignores the syntax and semantics of each programming language. Depending on the merge

strategy, some conflicts may be detected where there is, in fact, no conflict — these are false

positive cases. Taking into account the drawbacks of unstructured merging, new studies have

been performed to develop merge tools capable of taking the structure or grammar of the code

into account [3, 4, 5, 6]. In this case, this merge strategy, because it takes into consideration

the structure of the software artifact, is referred to as structured. Structured conflict resolution

strategies also resolve conflicts where the syntax of the source code would be broken after merging.

Despite previous approaches being capable of reducing conflicts, there is room for improve-

ment with respect to false negatives and false positives. One of the main challenges relates to

matching source code elements of different branches, given that textual programming languages

have no stable identifiers [7]. The difficulty resides in the fact that source code elements do not

have what will henceforth be called identity, and hence, a form of realizing origin tracking [8]

is necessary. During compilation, references to code members are essentially resolved by name,

which is simply a value that is looked up in a symbol table. If an element is renamed (i.e., type,

field, method), all the existing dependent calls become invalid. Issues pertaining to renaming in

three-merging are particularly sensitive to this problem, because a branch may evolve to add new

references to a member that has been renamed in parallel by the other branch [9].

Both text-based and structured merging processes rely on matching the elements of the source

code from different versions to discover which parts are similar and unmodified, and which new

parts need to be considered during the merge process. The pieces of code that are considered the

same by merge tools, and are therefore common to both revisions, are assumed to be unaltered

from one version to the other. In contrast, any element of the source code that does not match

another element is considered a new contribution, whether it is an addition or deletion, and must

be checked for conflicts. Furthermore, it is also common to match elements that are not the same,

but similar, to see if there have been small modifications to that particular element that are worth

considering during the merge.

The multiple matching algorithms have their proper set of “rules” that are used to determine

whether or not the similar elements actually refer to the same item. As a result, the matching

algorithms adopted define the identity of code elements, which, when matched with the elements

in other derived revisions, certifies that a particular element refers to the same element in an older

revision, even though they are subtly distinct. The text-based approaches consider the equality of

2

two lines to determine what is or is not changed, while structured approaches match source code

elements based on their position in the whole structure, their relationships to other elements, and

their own properties, typically their name. Matching is therefore an imprecise process, which in

most cases, leads to different sets of matched elements depending on the algorithm used, and is

also an error-prone process, due to the many concurrent changes to the same element in different

revisions and the difficulty of perfectly matching them between derived revisions and their ancestor

[10]. Thus, there is a need for an approach that is both unambiguous and objective in order to

improve the matching process and, consequently, the merging process.

1.2. Goals

The main goal of this dissertation is to investigate if the automatic conflict resolution can be im-

proved by using a more accurate merge process that relies on a form of representing the identity

of the elements of the source code. In other words, to investigate whether the proposed technique

reduces false positive and false negative conflicts, to obtain merged code that requires fewer man-

ual corrections and also verify if the execution time of the merge process is reasonable and realistic

according to the current software development practices. Furthermore, we aim to investigate if the

proposed approach is able to maintain the advantages not only of the other available merge tools

used by version control systems, which are mainly unstructured techniques, but also of those pre-

sented in related work (Chapter 2), which introduced the concept of structured and semistructured

merging techniques. This dissertation addresses the following research questions:

RQ1. How to implement language-specific merge processes with accurate fine-grained detection

of conflicts?

RQ2. What are the advantages and disadvantages of the process to be investigated in RQ1

compared to text-based (unstructured) merging processes and to state-of-the-art (semi)

structured merging processes?

1.3. Methodology and results

The content of this dissertation is based on the following paper [11]:

Code Merging using Transformations and Member Identity

André R. Teles, André L. Santos

Onward! SPLASH’23, October 25–27, 2023, Cascais, Portugal

3

When compared to the paper, the dissertation describes more details regarding related work

and prototype implementation, and the evaluation includes an additional project with merge sce-

narios.

This dissertation presents an approach that combines aspects of previous research on semistruc-

tured [6] and operation-based merging [12]. We perform version differencing and union using mod-

els [13] of the code artifacts (Abstract Syntax Trees) in a language-specific manner, where code

members are assumed to be augmented with a form of representing their identity. This charac-

teristic requires encoding ids in source code files, and hence, it implies a slightly different form of

maintaining source code, but nevertheless, still compatible with current practices. In particular, this

dissertation proposes to represent the identity of referenceable elements in the code by “attaching”

comments that hold universally unique identifiers (UUID) to their headings. This brings advantages

that are inherent to software development using projectional editors [14], where code artifacts are

stored in tool-specific formats that embody those identifiers (e.g., JetBrains MPS
1
), while not need-

ing to adopt such tools.

We developed Jaid
2
, a merge tool for Java that extracts transformations from two branches

given a base version, and further analyzes them to check for conflicts, taking into account semantic

aspects of the language to avoid both false positives and false negatives. Namely, we enable

broken identifier references (due to renames) to be fixed when applying a three-way merge, and

hence, avoid this type of false negative. Merging processes usingmodels, as in projectional editors,

are capable of addressing this issue, whereas previous (semi)structured merging techniques are

not [15, 16].

We performed an early experiment with Jaid involving 100 merge scenarios extracted from

three open-source projects. An analysis of false negatives on merges without conflicts revealed

that 83% could successfully build, while the remaining cases did not build due to the lack of Jaid’s

Java coverage on some constructs. On the other hand, we found no false positives when analyzing

merge scenarios where conflicts were found. The execution times are on the order of a few seconds

for the entire project merges. Although these are clearly slower than previous tools [15, 16], we

argue that the capability of avoiding false positives and false negatives, which otherwise would be

fixed by hand, is likely to compensate for the performance trade-off.

1https://www.jetbrains.com/mps/
2Publicly available at https://github.com/adrts-iscte/Jaid

4

1.4. Organization of the document

In this dissertation, we first present related work in Chapter 2 ending with Section 2.6, which mo-

tivates the need for more precise merging processes in light of the state-of-the-art merge tools.

Chapter 3 describes the proposed merging process and Section 3.4 discusses details regarding

the implementation of Jaid. Chapter 4 presents a first evaluation of our merging approach in real

scenarios extracted from Github projects. Both Chapter 3 and Chapter 4 end with a section to dis-

cuss the contribution in terms of the related research question. Chapter 5 presents our conclusions

and discusses the trade-offs of our approach.

5

CHAPTER 2

Related Work

The evolution of software development practices, in particular the parallelization of tasks, has cre-

ated a demand for more accurate merging tools, while automatically resolving as many conflicts

as possible and requiring less manual effort to merge all contributions into one solution, simply be-

cause of the need to increase productivity between development teams [17]. However, it is utopian

to think that all merge conflicts can be resolved automatically. In such cases, manual intervention

is required, or a set of conflict resolution policies must be defined to decide which revision to select

and which to ignore [18]. All of these techniques have their pros and cons, so the question is: what

is the merging technique that will guarantee better quality for less effort and time? [19].

2.1. Unstructured merging

Unstructured merging is a purely textual merging technique [20]. Line-based algorithms are the

most common strategy for this type of merging [21, 2], meaning that these tools compare the files

on a line-by-line basis and detect conflicts based on chunks, the lines that are different between

versions.

Most of the available unstructured merge tools are based on the definition of the diff3 algorithm

[2]. Examples of unstructured merge tools are the Concurrent Version System (CVS) [22] and the

rcsmerge tool in the Revision Control System (RCS) [23]. The genericity offered by tools based on

this technique, since all software artifacts can be represented as plain text or in binary files, and

the small computational times required are the major advantages, are most likely the reason why

it is still the state of the practice. On the other hand, conflict detection is limited, mainly due to the

granularity of line-based merging, as the algorithms do not distinguish between minor differences

and major differences within the same line between different revisions, as both lines are considered

different, even though one letter or the whole line has changed. Unstructured merging is not only

imprecise, as it does not take into consideration the grammar of the programming language, which

sometimes results in unexpected conflicts (false positives), but also untrustworthy because it does

not report situations that are in fact conflictual (false negatives) [15].

7

2.2. Structured merging

Taking into account the drawbacks of unstructured merging, new merge tools have been proposed

that take into account the syntax and structure of the programming language of the source code

[3, 4, 5], with the aim of finding fewer unreal conflicts (false positives) and recognising more conflicts

that are not detected by existing merge tools (false negatives), thus improving the accuracy of

merging processes.

Structured merge tools, because they take the grammar of the source code into consideration,

are more precise [6] because they detect conflicts that are related to syntax errors, the so-called

syntax conflicts, and ignore conflicts detected by unstructured merge tools that make no difference

to the overall structure of the source code. On the other hand, since the merge tools require knowl-

edge of the particular programming language, the genericity advantage over text-basedmerge tools

is lost. Also, as noted by Apel et al. [6], even after auto-tuning an implemented structured merge

tool, JDime, both syntactic merge techniques with and without auto-tuning have significantly lower

performance than unstructured merge tools.

Structured merge tools are classified according to the data structure used to parse the source

code: those that use trees and those that use graphs as data structures.

OperV [24] and JDime [6] are examples of tree-based merging techniques. In addition, Asenov

et al. [25] proposed a novel approach to versioning trees that provides more accurate diffs through

a novel algorithm for a three-way merging of trees based on tree differencing algorithms such as

GumTree [26] or ChangeDistiller [27] and node IDs, which are stored in a custom storage format.

These approaches compute differences and detect renames based on the relative position of nodes

within trees. As long as the nodes remain in the same position and with the same parent, they are

correctly matched. Therefore, their process of extracting differences between versions is an ap-

proximation, whereas in our case, assuming that UUIDs are correctly preserved, thematch between

two members with the same UUID is always exact. In 2021, Castanho [28] proposed UNSETTLE,

which also uses GumTree [26] as an AST matcher between different versions of a software artifact.

This tool computes the changes between versions in a merge process and uses this information

to automatically generate tests that are responsible for checking for semantic conflicts in the code

that results from merging versions.

Mens [29] suggested graph rewriting as a way of representing software evolution. Pan et al.

[30] proposed a program slice encoding algorithm based on the program dependence graph defined

by Horwitz in [31], which computes textual and behavioral change information of functions.

8

2.3. Semistructured merging

Semistructured merge tools, as the name suggests, are not fully structured, but are a combination

of unstructured and structured techniques. Semistructured merge tools use tree-based representa-

tions of the source code and differencing andmatching algorithms to compute the similarity between

trees and the differences between them.

FSTMerge [32] and JDime [6] are examples of semistructured merging tools. Both use a tree-

based representation up to the method level and their full-text bodies in the leaves. Thus, structured

merging techniques are used on the tree nodes up to the method level, and unstructured merging

techniques are used in the method bodies. FSTMerge’s approach differs from ours in the way

it does tree differencing, which is done by superimposing trees, and in the way it handles body

differencing.

Large-scale experiments have demonstrated that semistructured merge significantly reduces

conflicts when compared to unstructured merge, with a performance that is not prohibitively slow

[15, 16]. The FSTMerge approach was improved in jFSTMerge [15], reducing false positives and

false negatives. IntelliMerge [16] has further improved precision with a graph-based approach

to match code elements of branches to be merged and detect refactoring operations, while also

improving merge execution time. IntelliMerge’s approach differs from ours not only in being graph-

based, but also in that it relies on matching vertices for graph differencing and uses the GumTree

algorithm for body differencing. Note that none of these approaches has an infallible differencing

step, as explained above in Section 2.2, nor they are operation-based. A key difference of our

approach is that it puts more emphasis on language-specific constructs, allowing a more precise

conflict detection.

In 2020, a research was conducted that compared structured merging with semistructured

merging. The results of this research [33] show that there is no significant difference between

using structured or semistructured merging, but there are situations where structured merging is

better and others where semistructured merging is better.

2.4. Model differencing

Our approach is performing model differencing [13] when extracting the transformations. Previ-

ous approaches and tools have addressed this problem using methods to differentiate models that

conform to a given metamodel. DSMDiff [34] describes differencing algorithms for metamodels of

the Generic Modeling Environment (GME [35]). The Eclipse Modeling Framework (EMF [36]), an

9

implementation of the Meta-Object Facility OMG’s standard [37], embodies a metamodeling lan-

guage (Ecore) that can be used to model arbitrary domains, including the structure of a program

in a given programming language. In this context, the EMF Compare project
3
provides facilities

to compare models that conform to an Ecore metamodel. MPS also offers differencing capabili-

ties for models described in the tool-specific meta-language. Despite the several existing methods

for generic model differencing, in our approach, we opted to work with Java-specific models (Java-

Parser’s AST) in order to perform fine-grained conflict detection (see Section 3.3.3). We could have

modeled Java code, for instance, using EMF, and in turn benefit from its model comparison facili-

ties. However, that would imply redoing much of what is already well-implemented in JavaParser,

most notably, the model definition, the parsing of Java code to obtain model instances, the API to

manipulate those, and the resolution facilities for types and references that are specific to Java.

2.5. Operation-based merging

Change-based merging tools [21] capture changes as they occur. Since the changes are captured,

there is no need for the differencing process, which consists of computing the differences between

two versions of the same software artifact. Operation-based merging [12] is a variant of change-

based merging because it represents the changes as operations (or transformations) that, when

applied to a particular state of the software artifact, become its subsequent state. Some advan-

tages and problems of operation-based merging are discussed in [12], as well as the proposal and

implementation of algorithms capable of segregating the conflicting transformations into sets.

Operation-based approaches are very useful for implementing an undo/redo mechanism, as

is done in GINA [38]. In addition, many matrices of operations have been developed to find inter-

ferences between software evolution operations [39], with the aim of knowing the problems that

may arise when both pairs of transformations are applied. In 2010, a study [40] was carried out on

conflict detection strategies and the definition of conflict severity levels on operations. OperV [24]

also uses an operation-based approach, where changes to the system are represented by editing

transformations on the tree used to store the structural information of the project. In 2022, Ellis et

al. proposed RefMerge [41], an operation-based refactoring-aware merging tool.

As pointed out by Lippe et al. [12], one of the limitations of operation-based merging is that

the order in which certain operations are applied affects the result, since two different orders can

produce two different outputs. Figure 2 illustrates this issue with the scenario of Figure 7. Note

that a Rename Callable transformation, renames not only the callable in question, but also all of its

3https://projects.eclipse.org/projects/modeling.emfcompare

10

calls and a Change Callable’s Body transformation, when applied, replaces the entire old body of

the callable with the new extracted body. In the presented scenario in Figure 2, applying Change

Callable’s Body first and Rename Callable later results in the desirable merge solution, whereas

the reverse order results in a compile error because the identifiers of both calls of methodTo-

BeRenamed have not been renamed to methodRenamed and methodToBeRenamed is

no longer defined.

2.6. Motivating Example

This section presents an example to motivate our approach in contrast to industrial practice and

state-of-the-art approaches. Figure 3 presents a three-merge scenario involving a single class

Point, where a base version (b) has evolved to a left (a) and right version (c) which will be merged.

The left changes consist of adding themodifier final to both fields in order to have immutable objects,

adding a constructor, renaming the getter methods to adhere to the usual convention, and adding

a method to check if the point is the origin. The right changes consist of adding the modifier private

to both fields and adding the same method to check if the point is the origin (using the method

identifiers of the base version).

Merging the left and right versions into a valid new version of the class is possible, as the set

of changes are not incompatible. Figure 3 (d) presents the ideal merge result, where both field

modifications are integrated, method renames are performed, and references to it are updated

accordingly. However, automated methods are not yet able to obtain such a merge. The goal of

our approach is to have a merge process that is capable of outputting such a result.

We ran the merge process using the three versions of the class presented in Figure 3 (a,b,c)

with git-merge
4
, a widely-used industrial form of merging, jFSTMerge [15]

5
, IntelliMerge [16]

6
, which

are state-of-the-art approaches to this problem, and MPS, an industrial language workbench pro-

viding projectional editing. We used the standard git-merge tool that ships with Git and the latest

releases available from the research project repositories.

The results are presented in Figure 4. The git-merge result has a conflict due to the unaware-

ness of structure in line-based merging (false positive) and also detects a conflict in the isOrigin

method (false positive), since the two versions (left and right) clash in the same text region. The

4https://git-scm.com/docs/git-merge
5https://github.com/guilhermejccavalcanti/jFSTMerge
6https://github.com/Symbolk/IntelliMerge

11

merge results of jFSTMerge and IntelliMerge originate a conflict in the fields, given that these ap-

proaches do not address semantic-aware combinations of modifiers. This conflict is more fine-

grained than the one of git-merge, but nevertheless, it could be avoided. Their results also suffer

Figure 2. Transformation ordering in operation-based merge.

12

class Point {
final int x;
final int y;

Point(int x, int y){
this.x = x;
this.y = y;

}

int getX () {
return x;

}

int getY () {
return x;

}

boolean isOrigin (){
return getX ()==0

&& getY ()==0;
}

}

(a) Left branch
version.

class Point {
int x;
int y;

int x() {
return x;

}

int y() {
return y;

}
}

(b) Base
version.

class Point {
private int x;
private int y;

int x() {
return x;

}

int y() {
return y;

}

boolean isOrigin (){
return x() == 0

&& y() == 0;
}

}

(c) Right branch
version.

class Point {
private final int x;
private final int y;

Point(int x, int y){
this.x = x;
this.y = y;

}

int getX () {
return x;

}

int getY () {
return x;

}

boolean isOrigin (){
return getX ()==0

&& getY ()==0;
}

}

(d) Ideal merged
version.

Figure 3. Illustrative three-way merge scenario involving a single class.

from the same problem in the isOrigin method, but in a different way. Although jFSTMerge’s merge

result shows more structure awareness compared to git-merge’s result by marking the conflict only

in the body of the isOrigin method, both approaches present a non-existent conflict (false positive).

On the other hand, IntelliMerge does not raise the conflict but outputs a non-compilable result

(false negative) since the method references have not been renamed according to the methods. A

large-scale study has revealed that many build conflicts are due to missing declarations removed

or renamed by one version but referenced by another [9].

Finally, we tested the merging scenario in MPS, which carries out the merge using the model

representation of the code (in Figure 4 we depict the conflict using the typical source code marks).

Despite its structural nature, a conflict is detected between the two versions (left and right) of the

isOrigin method (false positive). Even though they are semantically equivalent, MPS, due to the

apparent lack of semantic awareness, did not recognize that they could be merged into a single

method, in particular, because the id of both isOrigin methods is different, as they were created in

different revisions and are not derived from a common one (base). As another case, not illustrated

13

in the scenario, if one branch would add the final modifier and another branch the static modifier,

we would face a false positive, because they both belong to the same modifiers container (given

the way the Java language was modeled in MPS). However, it is worth noting that MPS can resolve

broken references due to renames (as in the given scenario).

class Point {
«««< LEFT

final int x;

final int y;

Point(int x,int y){

this.x = x;

this.y = y;

=======
private int x;

private int y;

»»»> RIGHT

int getX() {
return x;

}

int getY() {
return x;

}

boolean isOrigin(){
return getX()==0

&& getY()==0;
}
«««< LEFT

}
=======

boolean isOrigin(){

return x()==0

&& y()==0;

}

}
»»»> RIGHT

(a) Git-merge (diff3).

class Point {
«««< LEFT

final int x;
=======

private int x;

»»»> RIGHT

«««< LEFT
final int y;

=======
private int y;

»»»> RIGHT

Point(int x,int y){
this.x = x;
this.y = y;

}

int getX() {
return x;

}

int getY() {
return x;

}

boolean isOrigin(){
«««< LEFT

return getX()==0

&& getY()==0;

=======

return x()==0

&& y()==0;

»»»> RIGHT
}

}

(b) jFSTMerge.

class Point {
«««< LEFT

final int x;
=======

private int x;

»»»> RIGHT

«««< LEFT
final int y;

=======
private int y;

»»»> RIGHT

Point(int x,int y){
this.x = x;
this.y = y;

}

int getX() {
return x;

}

int getY() {
return x;

}

boolean isOrigin(){
return x ()==0

&& y ()==0;

}
}

(c) IntelliMerge.

class Point {
private final int x;
private final int y;

Point(int x,int y){
this.x = x;
this.y = y;

}

int getX() {
return x;

}

int getY() {
return x;

}

«««< LEFT

boolean isOrigin(){

return getX()==0

&& getY()==0;

}
=======

boolean isOrigin(){

return x()==0

&& y()==0;

}
»»»> RIGHT

}

(d) JetBrains MPS.

Figure 4. Merge results with industry and state-of-the-art approaches.

14

CHAPTER 3

Approach

3.1. Representing member identity

This dissertation proposes to use UUIDs as a form of providing identity to source code elements,

a technique that is widely used, for instance in the XMI standard (XML Metadata Interchange [42])

to encode references between elements. A UUID is a 36-character alphanumeric string that is

assumed to be unique due to a large number of different combinations of hexadecimal digits. The

probability of having two identical UUIDs is so remote that it can be neglected.

UUIDs are attached to structural elements of the code that can be referenced from statements

and expressions. Hence, these elements can be classes, interfaces, methods, constructors, or

fields. Such an identity has to be encoded as part of the source code files so that it is persisted on

a VCS. In order to have a source code format that includes UUIDs and is still valid source code in

the host language, we opt for storing the UUIDs as source code comments.

Figure 5 illustrates a Java class with UUID comments attached. Notice that every structural

element has a comment holding a UUID. The highlighted code would be an addition created locally

that is not yet stored in the VCS.An obvious downside of having UUIDs in the code is the extraneous

noise they introduce, as well as their fragility, as the identity can be broken accidentally (deletes,

copy-paste, etc). Addressing these usability issues requires a slightly specialized code editing

environment, which we discuss later in Chapter 5.

If two elements from two different branches have the same UUID in their comments, they are

considered to be the same, even if one or all of their properties have changed. By storing these

identifiers in the comments throughout the development cycle of a software artifact, the identity

of each element is maintained over time. Since new additions to the source code have no UUID

associated, their identity is non-existent. When a branch adds new elements to the source, these

are preprocessed to inject UUIDs automatically when committing to a branch. When the local

changes of a branch become available in the remote repository, updates will have access to the

newly added elements with their identity attached. In this way, all structural elements stored in the

VCS have an identity attached, which will be available to newly created branches.

15

//03 ece596 -e4dd -11ed -b5ea -0242 ac120002
class Point {

// 51447490 -5 ae5 -468c-adb0 -27 ec4a39bff2
private final int x;

// f9b7a663 -bd12 -4ce5 -a52e - db6e8b0ad3e0
private final int y;

// b94372dd -d103 -4e07 -997f- cfd93408ca9e
Point(int x, int y) {

this.x = x;
this.y = y;

}

//7a67ca25 -8b0c -4bd6 -97b1 -141 d56988c2d
int getX () {

return x;
}

int getY() {
return y;

}
}

Figure 5. Java source code with member identity encoded as UUIDs in
comments.

3.2. Transformations

The fundamental part of an operation-based approach are operations [12], also called transfor-

mations. Any atomic operation which can be applied to a single structural element of the source

code can be represented as a transformation. Any property of a structural element that is likely to

be modified can produce a transformation, such as changing the body of a method, renaming a

class, changing the modifiers of an element, and so forth.

We consider that a transformation is a unit of modification that a version (branch) has per-

formed over a base version. A branch transformation fits into one out of four broad types: addi-

tion, removal,modification, ormove. We also considered modifications to the documentation

of classes as transformations of their own. We represent each transformation as a command

(Command pattern [43]) that can be applied to the model of the base version (AST). Hence, each

transformation object holds all the necessary information to carry out the modifications. Our current

16

implementation comprises 35 transformation types. Table 1 presents examples of transformations

and their parameters.

Table 1. Examples of transformations and their parameters.

Transformation Parameters

adding a field UUID of the owner class; field type; field name; field modifiers; [initializer expression]

removing a method UUID of the method

modify method signature UUID of the method; method identifier; list of parameters

moving a static method UUID of the method; UUID of the destination type

modifying Javadoc UUID of the member; documentation content

3.3. Merging Process

In a three-way merge scenario, the process of extracting transformations is performed between

the versions of each branch and their common ancestor (base version). Figure 6 presents an

overview of our merge process, with the assumption that structural elements of source code have

an attached identity (as explained in Section 3.1). Merge is performed using the whole source

code of the project versions in the three-way merge (left, base, right). Each version is parsed into

abstract syntax trees (AST), and element identifiers are indexed by UUID in order to allow efficient

resolution (Section 3.4.2). The AST pairs (left, base) and (right, base) are analyzed to extract a set

of transformations at the level of granularity of the indexed elements. For example, an addition of

a method, or renaming of a class (Section 3.3.1). In the following stage, conflicting transformations

between the two sets and the shared set are detected (Section 3.3.3). These have to be resolved

with human intervention, whereas non-conflicting transformations are suitable to be applied directly

in the merged version of the project (Section 3.3.4).

Algorithm 1 describes the overall merge process. For each branch, we determine a set of

transformations (left and right). The shared transformations, that is, those that are equivalent in

both branches (same type and same parameters), are factored out into a separate set. Using the

three sets of transformations we compute the set of conflicts. The decomposition of the process is

further detailed in the next sections.

3.3.1. Extracting transformations

Algorithm 2 describes the process of extracting transformations from the set of files of a version

(branch) when compared to a base version. The first step is to understand which files are not

in both versions and generate their respective insertion/removal transformations. The match is

17

accomplished by comparing the identities of the files, whose UUIDs are stored in the first line of

each file.

The next step consists of finding the pairs of corresponding files between the two versions and

checking their differences (Algorithm 3). For each language-specific structure from which transfor-

mations may be extracted (assumed to be identified by UUIDs), a handler must be implemented

to check for possible changes in the properties of that structure. Each supported modification will

AST-LeftAST-Left
AST-Left

Left

Base

Right

Trans. Left

Trans. Left

Trans. Left

Trans. Right

Trans. Right

conflicts

Merge

Trans. Resolved

AST-Right
AST-Left

AST-Base

Figure 6. Merge process overview.

Algorithm 1 Procedure tomerge two versions (left and right), considering a base version. Merg-
ing is performed if there are no conflicts, otherwise a non-empty set of conflicts is returned. The
parameter conflictTypes is a set of conflict detectors for transformation pairs.

procedure MergeVersions(conflictTypes, baseF iles, leftF iles, rightF iles)
left←VersionTransformations(baseF iles, leftF iles)
right←VersionTransformations(baseF iles, rightF iles)
shared← {(a, b) ∈ (left× right) : a = b}
left← left− shared
right← right− shared
conflicts←ComputeConflicts(conflictTypes, left, right, shared)
if conflicts = ∅ then

ApplyTransformations(baseF iles, left, right, shared)
end if

return conflicts
end procedure

18

Algorithm 2 Function to obtain the set of transformations of a version (branch) in relation to a
base version.
function VersionTransformations(baseF iles, versionFiles)

transformations← ∅
for all f ∈ (versionFiles− baseF iles) do

transformations← transformations ∪ {AddFile(f)}
end for

for all f ∈ (baseF iles− versionFiles) do
transformations← transformations ∪ {RemoveF ile(f)}

end for

for all (a, b) ∈ {(a, b) ∈ (baseF iles× versionFiles) : a.uuid = b.uuid} do
AddNodeTransformations(transformations, a, b)

end for

AddMoveTransformations(transformations)
return transformations

end function

result in a transformation, whose type is specific to the kind of modification (e.g., Rename Class,

Change Method’s Body). Similar to the detection of file insertions and removals, the extraction of

additions and removals of children is based on the following idea: if in the branch version and not in

the base, it is considered an addition of a node; if in the base and not in the branch, it is considered

a removal of a node.

When member bodies are altered we handle this as a coarse-grained modification transforma-

tion involving all its statements. However, we perform a special comparison strategy that instead

of verifying the equality of AST nodes with element references by value (token in the source), com-

pares those using the identity of the referenced element. The name present in a reference is ignored

and what is used for comparison is the UUID of the element to which they refer. This comparison

strategy implies that if one performs a rename refactor, for instance on a method, all the member

bodies that include dependent expressions will be considered unchanged. In fact, only a symbol

has changed, and we represent and further apply this sort of change as a cohesive transformation

unit, instead of a scattered set of modifications that include all the bodies holding dependent ex-

pressions. This allows us to consider that in the scenario of Figure 3 both versions of the isOrigin

method are equivalent.

The final step in extracting the transformations is to check for any move transformations

between files (Algorithm 4). Since all the addition and removal transformations of all the files in

both versions have been extracted, if there is one file with an addition and another with a removal

transformation where both refer to the same UUID, we consider that the involved element has

19

been moved between files. The same strategy is used to check if static methods, fields, or enum

constants have been moved between types. After isolating all the insertion and removal trans-

formations, the addition-removal pairs that refer to the same UUID will result in adding a move

transformation to the set of transformations, while the original addition and removal transforma-

tions are removed. The last step is to extract the transformations between the two versions (base

Algorithm3Procedures to collect transformations performedonanASTNode, abbreviatedwith
respect to node types. The parameters b (base node) and v (version node) are assumed to have
the same type.

procedure AddNodeTransformations(transformations, b, v)
if typeOf(b) = File then

AddMemberTransformations(transformations, b, v)
else if typeOf(b) = Class then

if b.name 6= v.name then
transformations← transformations ∪ {RenameClass(b.uuid, v.name)}

else if b.modifiers 6= v.modifiers then
transformations← transformations ∪ {ChangeModifiers(b.uuid, v.modifiers)}

end if

...
AddMemberTransformations(transformations, b, v)

else if typeOf(b) = Method then
if b.name 6= v.name then

transformations← transformations ∪ {RenameMethod(b.uuid, v.name)}
else if b.body 6= v.body then

transformations← transformations ∪ {ChangeBody(b.uuid, v.body)}
end if

...
end if

...
end procedure

procedure AddMemberTransformations(transformations, b, v)
baseChildren← b.childNodes
versionChildren← v.childNodes
for all n ∈ (versionChildren− baseChildren) do

transformations← transformations ∪ {AddNode(n)}
end for

for all n ∈ (baseChildren− versionChildren) do
transformations← transformations ∪ {RemoveNode(n)}

end for

for all (a, b) ∈ {(a, b) ∈ (baseChildren× versionChildren) : a.uuid = b.uuid} do
AddNodeTransformations(transformations, a, b)

end for

AddLocalMoveTransformations(transformations, baseChildren, versionChildren)
end procedure

20

Algorithm4 Procedure to addmove transformations by convertingmatching addition-removal
pairs.

procedure AddMoveTransformations(transformations)
additions← {t ∈ transformations : typeOf(t) = AddNode}
removals← {t ∈ transformations : typeOf(t) = RemoveNode}
for all (a, r) ∈ {(a, r) ∈ (additions× removals) : a.uuid = r.uuid ∧ a.node.isStatic} do

transformations← transformations ∪ {MoveNode(a, r)}
transformations← transformations− {a, r}
AddNodeTransformations(transformations, r.node, a.node)

end for

end procedure

and branch) of the moved node, since these two versions have not been compared before due to

the moved node having different parents when it is removed from one member and inserted into

another.

3.3.2. Shared transformations

When two transformations in the two versions (left and right) are the same, we refer to them as

a single shared transformation. In some cases, redundancy is not a problem, but nevertheless

pointless, such as renaming the same method twice with the same new name. However, there

are some situations where applying these two transformations could cause the merge process to

malfunction. If we consider a pair of transformations involving the addition of the same structural

element, this situation is particularly problematic, because after inserting the element once, the

second transformation will insert it again, causing an identifier conflict. For this reason, all redundant

transformations are factored at this phase, so that only one of them is applied.

Consider two new classes X and Y, added in the left and right branches, respectively. These

modifications to the base version would generate two Add Class transformations. Both X and Y are

exactly the same, except for their UUIDs and their child nodes (fields, methods, etc.), which, by

being committed in two different versions (left and right), have been injected with different UUIDs

and thus different identities. Since both are equivalent, and the comparison of transformations

ignores the UUIDs of the nodes to prevent the cases of new node insertions in the project, both

transformations are redundant and passible to be included in the shared set. Although they are

equivalent, we cannot simply apply one and ignore the other because their identities are different.

This is particularly important because with different changes between the left and right versions,

new references can be added that refer to their constructs. Suppose only the transformation that

inserts class X is applied, and the other one about Y is ignored (as they are redundant), and a new

21

reference to Y is added in the right branch. When translating the identifier of the reference (see

Section 3.3.5), since the reference was added in the right branch, it will refer to the UUID of class Y.

However, in the merged version, only the UUID of X exists, since its Add Class transformation was

the only one applied. To prevent these cases, an intermediate step is performed to homogenize

the identity of all members of two redundant transformations, the main one and all its child nodes.

In this intermediate step, all UUIDs of Y and its children are replaced by those of X in case the

transformation of class X is applied. Otherwise, all UUIDs of X and its children are replaced by

those of Y if the transformation of class Y is applied.

3.3.3. Conflict detection

Once the two sets of transformations and the shared set have been obtained, the next phase is

to find pairs of conflicting transformations. Our notion of conflict is slightly different than what is

generally considered in code merging. We identify a conflict when two transformations cannot both

be performed without leading to a syntactic or semantic error in the source code. For example,

when two renames of the same class use different values. In these sorts of cases, it is not possible

to have an automated process that decides which of the two transformations to select for merging.

Hence, our aim is that a conflict is a situation that necessarily needs human intervention in order to

be resolved. We aim at a merge process that is as deterministic as possible, while not performing

merges that will require post-merge manual fixes.

To achieve this kind of conflict reporting, we defined a set of conflict types that defines which

pairs of transformation types may lead to a conflict. Tables 2–4 present a non-exhaustive summary

of potentially conflictual transformation types. If there is no conflict type between two transformation

types, there is no situation where the application of both transformations could cause a conflict. A

conflict type is an object that has information about:

• the two types of transformations that lead to a conflict;

• a method to check if it applies to two unordered transformations;

• a message generator to explain the cause of the conflict.

For example, for a field Add-Rename transformation pair, a conflict type shall be declared with

types Add and Rename, along with a handler that evaluates whether the new field name and the

new rename value are the same. If they are different, there is no conflict, otherwise, a conflict is

found. A conflict is formed by the two conflicting transformations, as well as a message justifying

why they are incompatible. Our conflicts are accompanied by a human-readable explanation and

22

precise references to the involved code elements. As an example conflict message, “two renames

of the same method: a (left) and b (right)”.

Algorithm 5 describes the process of finding conflicting pairs of transformations. Each pair of

the Cartesian product of the two sets of transformations and the shared set is checked for a possible

conflict, which when positive, is added to the set of conflicts. A pair of transformations is straightly

rejected as a possible conflict if their types are not identified as conflictual (Tables 2–4).

Regarding modifiers, we follow a semantic-aware strategy to verify conflicts. First, for each

set of modifiers of an element, two subsets are created: the access modifiers (public, private,

protected) and the remaining modifiers (final, static, etc.). There are two reasons why two lists

of modifiers may conflict. One is when the two subsets of access modifiers combined have more

than one element. For example, consider that one subset has a public modifier and another has

a private modifier. If we sum both subsets, we will get a new one with two elements (public and

private), so the situation is considered conflicting. If the two subsets have the same modifier,

since sets do not allow duplicates, only one will be stored in the resulting set of the sum of them

and both modifiers’ lists are not conflicting. The other reason is if at least one of the subsets of non-

accessible modifiers has an abstract modifier and the other has one of the remaining modifiers

that can be used (static, final). In other words, if there is an abstract modifier, there can be no

other non-access modifier. If neither of these two reasons is true, then the two lists of modifiers are

not conflicting and can be merged automatically. This process is able to solve the false positive

problem illustrated in Figure 4.

Table 2. Transformation pairs with potential conflicts on file transforma-
tions.

Type Package Imports Add Remove Rename Modifiers Implements Extends Move

Move • • • •
Extends • •

Implements • •
Modifiers • •
Rename • • •
Remove

Add •
Imports •
Package •

3.3.4. Applying transformations

If there are no conflicting transformations, all the transformations of the three sets (left, right and

shared) can be safely merged into a copy of the base version in order to obtain a newly merged

23

Table 3. Transformation pairs with potential conflicts onmethod transfor-
mations.

Method Add Remove Signature Body Modifiers Return Type Move

Add • • •
Remove • • • • •

Signature • •
Body •

Modifiers •
ReturnType •

Move •

Table 4. Transformation pairs with potential conflicts on field transforma-
tions.

Field Add Remove Rename Type Modifiers Initializer Move

Move • • • •
Initializer • • •
Modifiers • •

Type • •
Rename • • •
Remove

Add •

Algorithm 5 Function to compute the conflicts with the transformations of two versions (left
and right), taking into account their shared transformations. The parameter conflictTypes is a
set of conflict detectors for transformation pairs.

function ComputeConflicts(conflictTypes, left, right, shared)
conflicts← ∅
transformationPairs← (left× right) ∪ (left× shared) ∪ (right× shared)
for all (a, b) ∈ transformationPairs do

for all c ∈ conflictTypes do
if c.isApplicable(a, b) ∧ c.existsConflict(a, b) then

conflicts← conflicts ∪ {Conflict(c, a, b)}
end if

end for

end for

return conflicts

end function

version. In the presence of conflicts, This dissertation suggests that developers should opt for not

performing the merge, but rather go through the conflicts given by our process and fix the issues

in one or both branches until no conflicts are obtained (hence, the description of Algorithm 1).

24

Algorithm 6 describes the process of applying transformations. The order in which the trans-

formations are applied is important, based on the state of the version when they were all extracted

(see Section 3.4.3). Note that an inter-type move transformation, e.g. an element moved from one

file to another, can be decomposed into two transformations: the removal transformation of the

element from the origin node and the insertion transformation of that element into the destination

node. After all local move transformations have been applied, the insertion transformations can be

applied properly. The order in which the transformations from the final list of transformations are

applied is as follows:

(1) Apply all file additions;

(2) Filter out all inter-types move transformations and apply only their corresponding removal

transformation;

(3) Apply all other removal transformations (which remove files, methods, fields, etc);

(4) Apply all local move transformations in the order defined when they were all extracted;

(5) Filter all inter-type move transformations and apply only their insertion transformations;

(6) Apply all other insertion transformations (which add methods, fields, etc);

(7) Apply all other transformations in any order.

Note that each time a new file or node is inserted, its references are indexed (see Section 3.4.2)

in order that all other transformations are applied correctly. When the process of applying all these

transformations to the common ancestor is complete, a merged version is created with the contri-

butions from the two branches.

3.3.5. Translation of identifiers by reference

Most transformations are straightforward to apply, with the exception of transformations that may

introduce new references, which are handled with a non-trivial mechanism that makes the merging

process more robust. If a member is referenced in new code (e.g., a method call) and that element

is renamed in the other branch, the code will have missing references when merged (e.g., the false

negative described in Figure 4). We address this problem so that those “outdated” references are

translated into the correct ones.

Figure 7 shows a three-way merge scenario to illustrate this case in which two branches are

derived from a base branch: the left branch, in which the method namedmethodToBeRenamed

is renamed tomethodRenamed along with all its calls, resulting in a Change of Signature trans-

formation; and the right branch, in which a new method call tomethodToBeRenamed is added

25

to the method named methodBodyChanged, resulting in a Change of Body transformation.

Notice that the latter call is made using the method name that is going to be renamed by the left

branch. The two transformations are not considered to form a conflict, but the order in which they

are applied produces different outputs. Figure 2 illustrates that if we perform right followed by left,

we reach the desired output. However, the opposite ordering will lead to broken references in the

body ofmethodBodyChanged.

The statements of a method body hold identifiers that refer to other elements (types, methods,

fields). In our approach, we maintain an identity for all the referenceable elements through the

UUIDs. Instead of simply copying the new method body into the merged version when applying

Algorithm 6 Procedure to apply merge transformations.

procedure ApplyTransformations(baseF iles, left, right, shared)
transformations← left ∪ right ∪ shared
mergedF iles← baseF iles
for all t ∈ {t ∈ transformations : typeOf(t) = AddFile} do

t.apply(mergedF iles)
end for

globalMoves← {t ∈ transformations : typeOf(t) = MoveNode}
for all gm ∈ globalMoves do

gm.removeTransformation.apply(mergedF iles)
end for

for all t ∈ {t ∈ transformations : typeOf(t) = RemoveNode ∨RemoveF ile} do
t.apply(mergedF iles)

end for

for all lm ∈ {t ∈ transformations : typeOf(t) = LocalMoveNode} do
lm.apply(mergedF iles)

end for

for all gm ∈ globalMoves do
gm.additionTransformation.apply(mergedF iles)

end for

for all t ∈ {t ∈ transformations : typeOf(t) = AddNode} do
t.apply(mergedF iles)

end for

for all t ∈ {t ∈ transformations : typeOf(t) 6= AddFile ∨ RemoveNode ∨ RemoveF ile ∨
MoveNode ∨ LocalMoveNode ∨AddNode} do

t.apply(mergedF iles)
end for

write(mergedF iles)
end procedure

26

the transformation, we translate all the contained identifier references to match those of the cur-

rent version rather than those of the version where changes were introduced. We illustrate this

mechanism in Figure 8.

Figure 7. Three-way merge scenario.

//e5370249-9cfc-464a-b21d-6b77a44727ca
void renamedMethod() {…}

//ac325425-c541-4a99-b80c-e3378d66e612
void methodBodyChanged() {
 <e5370249...>();
}

//e5370249-9cfc-464a-b21d-6b77a44727ca
void renamedMethod() {…}

//ac325425-c541-4a99-b80c-e3378d66e612
void methodBodyChanged() {
 renamedMethod();
}

//e5370249-9cfc-464a-b21d-6b77a44727ca
void methodToBeRenamed() {…}

//ac325425-c541-4a99-b80c-e3378d66e612
void methodBodyChanged() {
 methodToBeRenamed();
} copy by

reference
translate
reference

Figure 8. Translating identifiers by reference in body modify transforma-
tions.

27

The order in which transformations are applied is a limitation of operation-based merging as

showed in Figure 2. Figure 9 shows how the proposed approach overcomes this limitation of

operation-based merging, allowing the transformations to be applied in any order and the output

to be always correct. The transformations are able to be applied regardless of order, due to the

translation of identifiers by reference step should always be applied after transformations that may

introduce new references to an element. Examples of these transformations include inserting new

elements such as callables or fields, changing the parameters of a callable that may introduce a

parameter of class type, or making a single change to the body of a callable, as shown in the

scenario. Along the left path, where the first transformation to be applied is the Rename Callable,

the method calledmethodToBeRenamed and its call are both renamed. Then, by applying the

Change Callable’s Body transformation, the entire body of the methodmethodBodyChanged is

replaced with the body of the method with the corresponding UUID in the branch shown in Figure

7. This modification introduces two broken references to the method methodToBeRenamed,

since it has been renamed and its signature no longer matches its calls. These references are fixed

by obtaining the UUID of the element they were referencing in the branch and copying its current

identifier into the merged version. For this reason, our approach requires an unambiguous way

of assigning identity to elements in order for the translation of identifiers by reference step to work

properly, and for the entire merge process to be error-free. On the right path, as illustrated in Figure

2, the order in which the transformations are applied does not create any inconsistency, however the

translation of identifiers step is always performed after a Change Callable’s Body transformation,

even though nothing has changed in the final merged version.

3.4. Implementation

As a proof of concept of the proposed approach, we developed Jaid, a merging tool for Java

projects. The extraction of transformations and the set of conflict types are language-dependent.

We currently do not support the whole Java syntax, as our implementation efforts have focused on

the essential constructs to be able to have a working proof of concept. For instance, annotations,

lambdas, and generic types are constructs that are not currently supported, despite that we do not

foresee that they present any particular implementation challenge. Jaid is developed in Kotlin and

it currently has about 6K lines of code.

28

3.4.1. Abstract Syntax Trees for Java

Abstract syntax trees are data structures commonly used in compilers to represent the structure

of the program. It is called a syntax tree because the underlying data structure is a tree of the

syntactic structure of the source code. It is also called abstract because not all the syntactic details

shown in the textual representation of the source code are transferred to the tree, only the context-

sensitive details. For example, parentheses and semicolons are both implicit in ASTs. Considering

an AST-to-Code process of Java, all statements should end in a semicolon, even though they are

not shown in the parsed AST, as well as the parentheses of an if-condition.

A critical library that was fundamental for developing Jaid was JavaParser
7
, an open-source

parser for the Java programming language that also provides tools for analyzing, transforming, and

generating new code, through AST manipulations. JavaParser is a widely used library that has

even been used in other studies (e.g., [16]). Overall, JavaParser is the backbone of most Jaid

processes, as it loads the code structure into memory and these parsed nodes are the units that

crosscut the entire merging process.

JavaParser handles code comments so that they are nodes in the AST. Comments that imme-

diately precede type and member declarations are represented as child nodes of those. We use

JavaParser to deal with all operations related to UUIDs in member comments, as their represen-

tation in the AST facilitates the process of matching members to their comments. The process of

appending a UUID to a member’s comment depends on the type of comment associated with a

member. If the member does not have a comment, a new line comment (//...) is appended with a

newly generated UUID. If the member already has a line comment, the comment is converted to a

block comment (/*...*/), which stores the previous content of the line comment as well as the UUID.

In case of a block comment or a Javadoc comment, the new UUID is appended in a new line at the

end of its content.

Jaid also uses JavaParser for extracting transformations. When comparing nodes to under-

stand whether they have changed, the built-in AST node comparison is extended so that identifiers,

present in method bodies or field initializers, are compared by reference.

Finally, JavaParser’s node properties are accessed in the handlers of conflict detection (Sec-

tion 3.3.3), and transformations are applied through AST manipulations to obtain the final merged

version (Sections 3.3.4 and 3.3.5).

7https://javaparser.org

29

3.4.2. Parsing and indexing

After the projects have been parsed, all elements that have UUIDs are indexed by mapping a

UUID to its corresponding element. The indexed elements are files, types (classes, interfaces,

and enums), constructors, enum constants, methods, and fields. Indexing members allows for

more efficient searches and comparisons of elements of the same type. There is also an index

that maps a method to all its calls, an index of field and enum constant references, and another

with all the usages for classes, interfaces, and enums. These indexes are particularly important

during the merge process phase when transformations need to be applied to a particular element,

and it is necessary to know which calls and expressions refer to that element in order to apply

the transformation. More concretely, a renaming of an element relies on this mechanism in order

to reach all the references to that particular element. There are also the reverse indexes of those

mentioned above, where each reference is mapped to the element to which it refers. These indexes

are used when translating identifiers by reference.

This stage is the most costly of the process (see Chapter 4), because, as opposed to other

merging techniques (e.g., [15, 16]), we load and index the entire version of the project. This cost

comes with the advantage of allowing us to perform renaming transformations across the project,

as well as moving elements. Such transformations will reduce the number of false negatives related

to missing references (as in the example of Figure 4).

3.4.3. Local move transformations

In Jaid, a local move transformation is a type of transformation that is responsible for repositioning

an element within its parent. Types, methods, constructors, fields, and enum constants are all the

elements that can be moved in Jaid.

A local move transformation stores information about:

(1) The UUID of the element to be moved;

(2) The index of the parent member list to which the element will be repositioned;

(3) The ordinal index of the order in which a particular transformation is applied within the

same parent, as explained below;

Figure 10 presents the application of the step-by-step algorithm implemented in Jaid to extract local

move transformations for a given scenario.TheAlgorithm 7 describes the process of extracting local

move transformations based on two lists of child nodes in different versions (base and version).

30

Algorithm 7 Procedure to obtain all local move transformations between two child lists (base
and version).

procedure AddLocalMoveTransformations(transformations, baseChildren, versionChildren)
commonBase← baseChildren− (baseChildren− versionChildren)
commonV ersion← versionChildren− (versionChildren− baseChildren)
if commonBase 6= commonV ersion then

mapBasePositions←AssociateBaseToVersionIndexes(commonBase, commonV ersion)
lisOfIndexes←LongestIncreasingSubsequence(mapBasePositions.values())
mapIndexToBaseElements← listOfIndexes.map(ind→ commonBase[ind])
i← commonBase.size()
orderIndex← 0
while i 6= 0 do

i← i− 1
elem← commonV ersion[i]
if elem 6∈ mapIndexToBaseElements then

transformations← transformations ∪ {LocalMove(elem.uuid, i, orderIndex)}
orderIndex← orderIndex+ 1

end if

end while

end if

end procedure

function AssociateBaseToVersionIndexes(commonBase, commonV ersion)
mapBasePositions← ∅
for all baseMember ∈ commonBase do

commonV ersionIndex← commonV ersion.indexOf(baseMember)
mapBasePositions← mapBasePositions ∪ (baseMember : commonV ersionIndex)

end for

return mapBasePositions
end function

The extraction of local move transformations is checked on an element with children (Algorithm

3) to extract the minimum number of atomic child local moves. In Jaid, this is achieved by obtaining

the Longest Increasing Subsequence algorithm to the two lists of child nodes for comparison,

base and branch. Note that applying the LIS algorithm requires two lists with the same elements,

which may not always be true between the two lists of child nodes. To achieve this, the lists to

check for local moves are the lists of child nodes without the children to be removed and the chil-

dren to be inserted, in other words, with only those members with UUIDs that are common to both

lists. For this reason, at the time the local move transformations are applied, all the removal trans-

formations must already be applied, and the insertion transformations must be applied after the

local move transformations are applied, as mentioned in Section 3.3.4, so that all applications of

transformations result in a reliable merge.

31

3.5. Discussion

There is a trade-off between prototyping a tool that is language-independent in contrast to a language-

specific one. A merge tool that can be generalized to any programming language clearly cannot

accommodate all the syntactic and semantic nuances of each language, and thus cannot detect

all the conflicts of the language’s code in detail, nor can it prevent new false negative conflicts

from occurring. On the other hand, the development of a language-specific merge tool, if imple-

mented meticulously with attention to detail, can detect almost any conflict because it knows the

grammar and semantic aspects of the language in question. In this sense, we opted to develop

a merge tool with an emphasis on detailed conflict detection, and set aside the goal of generaliz-

able, language-independent implementation, since the main goal is to improve the accuracy of the

merging process, with special attention to reducing the number of false positives and negatives.

Next, we had to figure out how best to represent the source code in a well-structured way, and in

particular, the code changes, whose representation must have a certain level of detail that would fa-

cilitate the conflict detection phase. Therefore, we found that an operation-based merge approach

was a suitable option, since representing changes to software artifacts through transformations is

a deterministic way to control the evolution of software constructs on a state-wise basis. The other

benefit of using transformations to express software modifications is that, by being handled using a

well-defined format, their information about a change to a software construct can be easily retrieved

and easily compared to facilitate the conflict detection phase.

We aimed at improving the accuracy of merging processes by reducing the number of false

negatives and positives while correctly finding the true negatives and positives. Even though a

lot of research has been done on different merging techniques, as discussed in Chapter 2, there

are some shortcomings related to identifying which source code elements match between different

versions of the same software artifact. For this purpose, an innovative way of assigning identity to

elements was considered and resulted in augmenting the comments of the elements with UUIDs,

which are assumed to be correctly maintained throughout the evolution of the software artifact.

Recalling the first research question (RQ1):

• How to implement language-specific merge processes with accurate fine-grained detection

of conflicts?

The development of Jaid reflected the idea of implementing a language-specific merging tool with

fine-grained conflict detection using transformations, and also taking advantage of member identity

to make it more precise.

32

Figure 9. Translate identifiers by reference.

33

D A B E F C

E G A B C D

Base

Branch

Considering these two lists of child nodes:

Step 1: Extract all the elements that are not common between the two lists

D A B E F C

E G A B C D

Base

Branch

Step 2: Associate each Base member with its index in the list of Branch
members

E A B C DBranch

0 1 2 3 4

D EA B CBase

Step 3: Compute the Longest Increasing Subsequence using the list of
indexes from the previous step

4 1 2 30

4 1 2 30

Longest Increasing Subsequence

1 2 3

Step 4: Get the list of elements that are part of the Longest Increasing
Subsequence

D EA B CBase

4 1 2 30

CA BLIS Elements

E A B C DBranch

0 1 2 3 4

Step 5: Iterate the list of Branch members from the end to the beginning:

5.1: D is not part of the list of LIS elements, so a Local Move
transformation is added:

- Element: D
- Location Index: 4 (Its index in the list of Branch members)
- Order Index: 0 (Since it is the first extracted transformation)

5.2: Since A, B, C are all part of the list of LIS elements, no action is
taken

E A B C DBranch

0 1 2 3 4

E A B C DBranch

0 1 2 3 4

5.3: E is not part of the list of LIS elements, so a Local Move
transformation is added:
- Element: E
- Location Index: 0 (Its index in the list of Branch members)
- Order Index: 1 (Since it is the second extracted transformation)

Figure 10. The step-by-step algorithm for extracting local move transfor-
mations for a given scenario.

34

CHAPTER 4

Experiment

To evaluate the feasibility of our approach in practice we carried out an experiment involving code

from open-source code repositories. However, to our knowledge, there are no real merge scenarios

with UUIDs attached available, nor any other form of identity on its elements. Therefore, we decided

to alter existing merge scenarios by injecting UUID comments, and hence, obtain scenarios where

we could test our merge process. We achieved this by using tree-matching tools to pair elements

from different versions and further attach the same UUID to both elements.

In answer to RQ2, we examine some metrics, such as false negatives and positives, of the

results obtained to investigate whether or not the proposed approach actually reduces integration

effort without negatively impacting the correctness of the merge process, resulting in increased

productivity and quality.

4.1. Collecting merge scenarios

We extracted three sets of real merge scenarios from the supplementary material of the paper by

Cavalcanti et al. [15]. A shortcoming of the provided merge scenarios was the fact that only the

files that were textually modified were available in the material. Our approach requires not only the

changed files but also the unchanged files to resolve the references. Thus, we obtained the commit

ids that were also available in the authors’ package in order to fetch the complete merge scenarios

from the projects’ Git repositories. We selected three out of the four projects available in the small

sample contained in the package, Bukkit
8
, jsoup

9
and clojure

10
.

Once all the versions containing the whole project code had been fetched from Git, the next

phase was to set up these projects by artificially “fabricating” the identity of their elements, as if it

would have been maintained over time using our approach. The first step was to create a set of

3-tuples, each holding one file for each version (base, left, right), where all three files are the same

8https://github.com/Bukkit/Bukkit/
9https://github.com/jhy/jsoup
10https://github.com/clojure/clojure

35

file in three different versions. This correspondence is provided by the path within the project. If a

file has been removed from one version to another, the file tuple represents the missing file as null.

Having obtained the set of file tuples, the next step was to find all the elements that are mapped

between the base/left and base/right pairs of files from a single file tuple. This is done using a tree

matcher, already used in other studies [16, 20] as a tool to calculate differences in ASTs, but in our

case to give identity to their elements. We used GumTree [26] for this purpose, one of the state-

of-the-art tools, with a tree generator based on JavaParser’s ASTs. In the case of elements that

have no other matching elements, they have a random UUID attached, which reflects on a removal

if the element is from the base branch, or an insertion if the element is from a version branch (left

or right).

After finding all the mappings resulting from the GumTree tool, correspondence was made

between a GumTree node and a JavaParser node based on their positions in the source, and a

UUID comment was injected into these elements. After setting up all the versions, an experiment

was carried out involving a total of 100 merge scenarios, 19 from Bukkit, 44 from jsoup and 37 from

clojure.

4.2. Results

Jaid was used to detect conflicts and to check for potential false positives and false negatives. To

achieve the objective a manual analysis was performed. The merge scenarios were divided into

two groups: the group of merge scenarios without conflicts and the group with conflicts. Table

5 presents the results per project of the number of merge scenarios and how many of them are

conflict-free or not. Note that some merge scenarios were excluded because at least two of their

transformation sets (left or right or shared set) are empty due to changes over members not being

covered by Jaid (see Section 3.4).

Table 5. Summary of results for all merge scenarios.

Scenarios Excluded Conflict-free With Conflicts

Bukkit 19 0 (0%) 13 (68%) 6 (32%)

jsoup 44 6 (14%) 30 (68%) 8 (18%)

clojure 37 4 (11%) 29 (78%) 4 (11%)

Total 100 10 (10%) 72 (72%) 18 (18%)

36

4.2.1. False negatives

The main purpose of analyzing the group without conflicts was to find potential false negatives.

After finding that there were no conflicts, both branches were merged into the base and the output

of each file was written to a separate path. After copying the merge output files into a folder with a

pre-configured project according to the project (Bukkit, jsoup or clojure) of the merge scenario, we

investigated if these files would build successfully, and if not, what was the reason.

We found 12 (17%) scenarios in which errors were not caused by shortcomings in the proposed

approach or a malfunction in its subsequent implementation in Jaid, but instead were all related to

Java’s missing coverage of Jaid, and therefore no false negatives were found. The most frequent

case (7 out of 12 scenarios) were methods defined inside class bodies of enum constants that were

changed in the branches, as well as their calls. As these methods are also called by other methods

covered by Jaid, the bodies were changed, but the references were broken, not least because the

methods not covered by Jaid did not even have a UUID attached. The remaining five scenarios

failed to build successfully due to the absence of transformations regarding converting a class to an

interface, exception classes changes in the throws keyword used along with the method signature,

and the lack of coverage of information related to static blocks and annotation declarations. The

remaining 60 (83%) merge scenarios were built successfully.

Table 6 presents the number of merge scenarios per project that failed to build successfully due

to missing Java coverage. Note that Table 6 gives a total of 13 reasons for 12 merge scenarios, as

one of the merge scenarios of jsoup was not successfully built because of the lack of Java coverage

of two different structural elements: static block and class body of enum constant.

Table 6. Summary of the number of merge scenarios per project that
failed to build successfully due to missing Java coverage.

Missing Coverage Bukkit jsoup clojure

Transform Class in Interface 1 0 0

Method throws exception 1 0 0

Class Bodies of Enum Constants 0 7 0

Static Block 0 1 1

Annotation Declaration 0 0 2

4.2.2. False positives

The main goal of the conflict group analysis was to find potential false positives. After finding

the versions with conflicting transformations, a manual evaluation was performed to understand

37

the type of conflicts and the transformations that caused them, in order to investigate whether

the generated conflicts were in fact real conflicts or not (false positives). A total of 51 conflicts

were found, but only 8 different types of conflict, a small fragment of the conflictual pairs. Table

7 presents the types of conflict found. All of these conflicts were correctly detected since they all

actually reference two conflicting transformations. Therefore, no false positives were found.

Table 7. Summary of results for allmerge scenarios. (*) Refers to any trans-
formation that involves a modification to the child elements of the re-
moved one.

Conflicts Conflict type Explanation

1 SetJavadoc–SetJavadoc Both Javadoc changes are different.

6 Imports–Imports The same file’s imports are being changed to two different import lists.

17 RemoveFile–* The removed file has changes in it.

5 Body–Body Both body changes are different.

13 RemoveCallable–* The removed callable has changes in it.

1 AddCallable–Signature The new added callable has the same signature as the changed one.

1 AddCallable–AddCallable The two newly added callables are different, but have the same signature.

7 RemoveField–Body The new body has references to the removed field.

4.2.3. Execution Time

We also evaluated the performance of the Jaid merge processes with the objective of finding out if

the process would require long execution times that would make the approach inviable. The merge

executions were performed on a laptop with Intel Core i7, 14 cores @ 3 GHz, and 16 GB RAM on

Windows 10 (64-bit).

We calculated the execution times of the entire merge process, as well as the parsing/index-

ing and applying transformations phases separately. Based on the average of the measured times,

parsing/indexing is themost time-consuming task of the entiremerging process, consuming approx-

imately 50%, 70% and 65% of the time for Bukkit, jsoup and clojure, respectively. The remaining

time is consumed by extracting transformations (45% for Bukkit, 28% for jsoup and 32% for clojure),

detecting conflicts, and applying transformations phases.

Our implementation, being a prototype, has many points where it can be optimized. Besides,

the whole merging process is done sequentially, while parsing and especially indexing could take

advantage of parallelization, since the tasks of resolving references and extracting transformations

between different structural elements are all independent. The overall execution times of the merg-

ing process took on average 2.9, 13.7 and 54.7 seconds for Bukkit, jsoup, and clojure projects,

38

respectively, which we consider acceptable execution times to make the proposed approach a vi-

able option in practice. The total number of references of the three versions (base, left and right) of

a merge scenario were on average 4854, 36474 and 78621 for Bukkit, jsoup, and clojure projects,

respectively.

Additionally, since the parsing/indexing phase is the most time-consuming task of the whole

process, we explored whether the total number of references to resolve of a version (base + left +

right) and the execution time of the whole process are directionally proportional to each other. We

computed the Pearson correlation between these two variables and obtained the following results:

0.96 for Bukkit, 0.26 for jsoup and 0.97 for clojure. Figure 11 presents the relationship between

the total number of references and the merge process execution time for each project, where it is

visible that both Bukkit and clojure project results reflect a linear regression, whereas jsoup does

not.

4.2.4. Threats to validity

The fact of running an experiment with only two projects, even though 100 scenarios were eval-

uated, not only is a relatively small sample of the Java projects, but also the diversity of merge

scenarios is questionable, since all merge scenarios of the same project may share a similar de-

velopment style. Therefore, the sets of transformations extracted from versions of those projects

are not diversified. Running experiments with more projects and diversified scenarios is necessary

to support our claimed benefits.

The lack of Java’s coverage does not allow us to confidently claim that there is no Java grammar

element that, if covered, would not cause some sort of malfunction in the overall merge process.

Also, checking for conflicts between only two transformations may not be sufficient to detect some

more advanced and complex conflicts, since a conflict may not exist between two transformations,

but with the addition of a third one, a conflict may arise.

4.3. Discussion

The answer to the second research question (RQ2):

• What are the advantages and disadvantages of the process to be investigated in RQ1

compared to text-based (unstructured) merging processes and to state-of-the-art (semi)

structured merging processes?

is based on the results obtained from the experiment, with emphasis on the manually obtained

false negatives and positives metrics, along with the total execution time of the merge process.

39

Note that some structural elements are not covered by Jaid, so the entire code of a version of a

merge scenario may not be evaluated because the missing covered elements are ignored. In some

merge scenarios, the results of the experiment may be biased because the majority of changed

and conflicting elements may not be covered software constructs, such as class bodies of enum

constants or static blocks. With exception to these cases, where build issues were detected due

to missing coverage of Java, not a single false negative was found regarding elements covered

by Jaid, in other words, not a single compilation error was introduced by applying all the extracted

transformations, which allows us to state with confidence that if the application process of each

different type of transformation is implemented correctly, it will never output a non-compilable merge

result.

Moreover, all conflicts found are in fact between two conflicting transformations and require

human intervention in order to resolve them, since Jaid’s conflict detection phase is implemented on

the basis of conflicting pairs that cannot be resolved automatically (recall Section 3.3.3). Since no

false positives were found, these results demonstrate that the idea behind developing a database of

handlers for potential conflicting pairs, along with the proposed way of giving unambiguous identity

to the source code elements, is a modularized, scalable, and precise way of conflict detection.

On the other hand, the overall execution time is slower when compared to the VCS practices

or other state-of-the-art tools. The duration of the merge process increases as the number of

references to be resolved in a merge scenario increases. However, the time a developer would

take to manually identify the conflict and further resolve would likely take longer when compared to

using a tool that clearly presents conflicts with a message and specifies which are the conflicting

elements of the code.

Our false negative and positive conflict results were not compared with the state-of-the-art

semistructured merge tools jFSTMerge [15] or IntelliMerge [16], because tree/graph-based match-

ing is the way these merge tools provide identity, which is similar to our fabricated merge scenarios.

Preserving the identity of structural source code elements throughout the development cycle is a

property that is fundamental and cannot be simulated, since providing it manually or using some

matching tools or algorithms creates imprecisions in the matching phase of elements between

merge scenario versions. For this reason, we consider the lack of real merge scenarios with mem-

ber identity a plausible justification for not comparing Jaid with the other state-of-the-art merge

tools.

40

Another aspect that compromises the comparison between ours and other merge tools is the

granularity of the conflicts. By granularity, we understand the level of detail a single conflict can

encompass. Figure 12 shows that the same merge scenario produces three different outputs and

three different numbers of conflicts when merged with three different merge tools. jFSTMerge’s

output considers the entire method block as conflicting, while IntelliMerge, by finding a common

brace between the two methods, makes a distinction between the modifier/return type and the

body, producing two different conflicts. In our approach, since a transformation is generated for

each element composing a method declaration that is changed, transformations are generated for

the changes in the modifiers, return type and body, for each branch (left and right). Since the

changes between the two branches cannot all be combined, there is a conflict between each pair

of transformations, resulting in three conflicts.

However, it is not clear that our approach will always have more conflicts. Other approaches

use a finer granularity when searching for differences within bodies, based on a per-statement

comparison, whereas in our approach, we handle the body as a whole block of statements, as

explained in Section 3.3.1.

41

Total Number of References (left + base + right)

W
ho

le
 P

ro
ce

ss
 E

xe
cu

tio
n

Ti
m

e
(m

s)

0

5000

10000

15000

2500 5000 7500 10000 12500 15000

Bukkit

Total Number of References (left + base + right)

W
ho

le
 P

ro
ce

ss
 E

xe
cu

tio
n

Ti
m

e
(m

s)

0

5000

10000

15000

20000

25000

32000 34000 36000 38000

jsoup

Total Number of References (left + base + right)

W
ho

le
 P

ro
ce

ss
 E

xe
cu

tio
n

Ti
m

e
(m

s)

0

25000

50000

75000

100000

125000

70000 80000 90000 100000 110000

clojure

Figure 11. Merge times in relation to the total number of references.

42

Figure 12. Different levels of conflict granularity per merging tools.

43

CHAPTER 5

Conclusions

Over the years, one of the major challenges in software merging has been the inability to correctly

match the samemembers between versions. Thus, members with fully defined identities are a form

of avoiding ambiguous and possibly inaccurate matches that indirectly affect the merge result.

To answer the first research question, the implementation of Jaid using the proposed approach

proved to have the potential to be a state-of-the-art merge tool, although it only supports Java and

would require a long effort to extend to other languages. Despite the constraint of maintaining

UUIDs as code comments, a slight deviation from standard practice, our approach is still largely

compatible with software development practices. Despite that code editing environments would

have to be lightly adapted, we could benefit from some advantages of projectional editors but remain

close to regular development settings. The execution of the experiment validated the realization of

the approach and provided some evidence that it is feasible in practice.

Regarding the second research question, we have shown how more cases of false negatives

and false positives can be successfully addressed, most notably, with respect to changes involving

renamings. On the other hand, the results showed that the overall merge execution time is signifi-

cantly slower compared to other merge tools, as it scales with the growing number of source code

references, which can be a problem in larger projects.

By providing a more controlled evolution of software artifacts through the sequential application

of transformations that should not introduce syntactic errors if implemented correctly, false negative

conflicts related to semantic compilation errors can be reduced. Also, more precise merge commits

can be achieved by reducing false positive conflicts, with a detailed and exhaustive knowledge base

about the programming languages’ syntax incompatibilities.

5.1. Drawbacks

The proposed approach, being language-specific, requires a different implementation for each pro-

gramming language, despite the overall process being similar. As with testing toolkits, profilers,

linters, etc, we argue that language-specific merging tools could pay off, given that they would

45

provide significant improvements in conflict detection and in the overall usability of the merging

process.

Another disadvantage of our approach is to require compilable code without broken references.

If some references tomembers cannot be resolved, this implies that Jaid has incomplete information

for the transformations, and consequently, that may affect their application and accurate conflict

detection. Nevertheless, it is not common practice to commit project versions with compilation

errors, and hence, we consider that this is not a severe limitation.

Another aspect that could compromise the approach is if UUID comments are accidentally

broken by using operations such as delete or cut-and-paste, which would lead to dangling or in-

complete UUID comments. This situation could be particularly common for members with only the

UUID in a single line comment, which, by being hidden, could move the entire member declaration

elsewhere, leaving the comment behind. In the case of members with block or Javadoc comments,

we believe this would be less likely to occur, as the selection of the entire member declaration would

start from the beginning of the comment until the end of the member declaration.

Having UUIDs in the member comments is harmless and negligible with respect to the storage

and machine-processing of source code. However, from a developer’s perspective, it is obvious

that the UUIDs embody additional visual clutter that may hinder the usability of the code editor

(recall Figure 5). These extraneous elements add no value to usual development settings, so

we speculate that it may simply annoy most developers. Therefore, we believe that applying our

approach in practice would be smoother if code editors are slightly adapted. One solution to the

clutter problem could be based on a well-known feature of modern popular IDEs (e.g., Eclipse,

IntelliJ, VS Code) — collapsing of lines of code. A simple plugin for those IDEs would hide UUID

lines, and the appearance of the code editor would not differ much from the conventional one.

Another option would be to use a projectional editor that handles UUID comments in a spe-

cialized way. Projectional editors are closely related to the notion of structured editors, an old idea

that never gained wide popularity but still with active research (e.g., [44, 45, 46, 47]). As opposed

to conventional code editors, projectional editors typically use a different representation for storage

(i.e. file content) and editing, implying that what is visible in the editor is not necessarily a direct

representation of the file content (e.g., Domain Workbench [14], MPS
11
). We aim at a similar out-

come, but we do it in a non-disruptive way by not requiring a different storage format for source

files. In this way, UUID comments would be completely hidden from the editor, as they would not be

11https://www.jetbrains.com/mps/

46

even part of the projection. Furthermore, when types and members are created, UUIDs comments

could be injected directly by the editor, as opposed to having that performed at the commit phase

(as discussed in Section 3.1).

5.2. Benefits

The downside of having a language-specific approach also has its advantages, given that such a

specificity allows more precise conflict detection due to distinct features of programming languages.

Consider the following examples: Java and C++ support method overloading whereas Javascript

and Python do not; the modifiers and their valid combinations are different among languages, as

well as namespace schemes. Having generic transformations that work well for numerous, diverse

languages, would be a very complex endeavor.

The experiment conducted suggests that, with an exhaustive list of transformations and a com-

plete library of conflict types, this approach, assuming the UUIDs are preserved properly, could

evolve towards nearly eliminating false positives and false negatives, resulting in an accuratemerge

(or no merge, if there are conflicts). By accurate merge, we do not mean a fully automated merge,

but rather an error-free merge that correctly detects all existing conflicts, along with the insertion

of all features introduced by the branch, and the display of all conflicts that could not be resolved

automatically, since there will always be conflicts that require human intervention.

Finally, a pragmatic advantage of our approach is its compatibility with existing toolchains. It

allows one to obtain the benefits of projectional editing (having UUIDs) in code merging without

using a projectional editor (as discussed in Chapter 1).

5.3. Future Work

In future work, we plan to improve the coverage of Java’s constructs in Jaid, and run a large-

scale experiment to evaluate the approach with more depth. Up to this point, we were focused on

achieving a proof of concept, and no efforts have been made regarding optimization — we believe

there is room for improvement here, too.

Additionally, we envision a user-friendly GUI facility, which we did not implement so far, where

one could select among alternative transformations to solve at least a part of the conflicts. For ex-

ample, when facing a clashing rename conflict, one would decide which one to use without having

to edit the code. In turn, the chosen transformation would become conflict-free, whereas the dis-

carded one would be removed from its set. We are confident that some decisions could be made by

47

means of light interaction with tool assistance, but others certainly would require manual interven-

tion. Our merge process, by working with typed transformations and conflict objects formed using

those, may facilitate having a good conflict resolution usability, because the modifications involved

are categorized and well-defined.

It would also be interesting to explore the same approach in a graph-based implementation to

study the influence of identity on semantic conflict detection, since graph-based tools are by their

nature better suited to represent the behavioral concepts of software artifacts than tree-based ones.

48

References

[1] C. Brindescu, I. Ahmed, C. Jensen, and A. Sarma, “An empirical investigation into merge conflicts and

their effect on software quality,” Empirical Softw. Engg., vol. 25, no. 1, pp. 562–590, jan 2020. [Online].

Available: https://doi.org/10.1007/s10664-019-09735-4

[2] J. W. Hunt and M. D. Mcilroy, “An algorithm for differential file comparison,” Computer Science, 1975.

[Online]. Available: http://www.cs.dartmouth.edu/%7Edoug/diff.pdf

[3] J. Buffenbarger, “Syntactic software merging,” in Software Configuration Management, J. Estublier,

Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 153–172.

[4] B. Westfechtel, “Structure-oriented merging of revisions of software documents,” in Proceedings

of the 3rd International Workshop on Software Configuration Management, ser. SCM ’91.

New York, NY, USA: Association for Computing Machinery, 1991, pp. 68–79. [Online]. Available:

https://doi.org/10.1145/111062.111071

[5] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Jdiff: A differencing technique and tool for

object-oriented programs,” Automated Software Eng., vol. 14, no. 1, pp. 3–36, mar 2007. [Online].

Available: https://doi.org/10.1007/s10515-006-0002-0

[6] S. Apel, O. Leßenich, and C. Lengauer, “Structured merge with auto-tuning: balancing precision and

performance,” in 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering, 2012, pp. 120–129.

[7] R. van Rozen and T. van der Storm, “Origin tracking + text differencing = textual model differencing,”

in Theory and Practice of Model Transformations, D. Kolovos and M. Wimmer, Eds. Cham: Springer

International Publishing, 2015, pp. 18–33.

[8] A. van Deursen, P. Klint, and F. Tip, “Origin tracking,” J. Symb. Comput., vol. 15, no. 5–6, pp. 523–545,

may 1993. [Online]. Available: https://doi.org/10.1016/S0747-7171(06)80004-0

[9] L. Silva, P. Borba, and A. Pires, “Build conflicts in the wild,” Journal of Software-Evolution and Process,

p. (also appeared in ICSME’2022 Journal First track), 2022.

[10] O. Leßenich, S. Apel, C. Kästner, G. Seibt, and J. Siegmund, “Renaming and shifted code in structured

merging: Looking ahead for precision and performance,” in Proceedings of the 32nd IEEE/ACM Inter-

national Conference on Automated Software Engineering, ser. ASE ’17. IEEE Press, 2017, p. 543553.

[11] A. R. Teles and A. L. Santos, “Code merging using transformations and member identity,” in

ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on

Programming and Software (Onward! 23) - October 25 - 27, 2023, 2023. [Online]. Available:

https://doi.org/10.1145/3622758.3622891

49

https://doi.org/10.1007/s10664-019-09735-4
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf
https://doi.org/10.1145/111062.111071
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1145/3622758.3622891

[12] E. Lippe and N. van Oosterom, “Operation-based merging,” SIGSOFT Softw. Eng. Notes, vol. 17, no. 5,

pp. 78–87, nov 1992. [Online]. Available: https://doi.org/10.1145/142882.143753

[13] M. Alanen and I. Porres, “Difference and union of models,” in «UML» 2003 - The Unified

Modeling Language, Modeling Languages and Applications, 6th International Conference, San

Francisco, CA, USA, October 20-24, 2003, Proceedings, ser. Lecture Notes in Computer Science,

P. Stevens, J. Whittle, and G. Booch, Eds., vol. 2863. Springer, 2003, pp. 2–17. [Online]. Available:

https://doi.org/10.1007/978-3-540-45221-8_2

[14] C. Simonyi, M. Christerson, and S. Clifford, “Intentional software,” SIGPLAN Not., vol. 41, no. 10, pp.

451–464, oct 2006. [Online]. Available: https://doi.org/10.1145/1167515.1167511

[15] G. Cavalcanti, P. Borba, and P. Accioly, “Evaluating and improving semistructured merge,” Proc. ACM

Program. Lang., vol. 1, no. OOPSLA, oct 2017. [Online]. Available: https://doi.org/10.1145/3133883

[16] B. Shen, W. Zhang, H. Zhao, G. Liang, Z. Jin, and Q. Wang, “Intellimerge: A refactoring-aware software

merging technique,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, oct 2019. [Online]. Available:

https://doi.org/10.1145/3360596

[17] N. A. A. Khleel andK.Nehéz, “Mergingproblems inmodern version control systems,”Multidiszciplináris

tudományok, vol. 10, no. 3, p. 365376, 2020. [Online]. Available: http://dx.doi.org/10.35925/j.multi.2020.3.

44

[18] W. K. Edwards, “Flexible conflict detection and management in collaborative applications,” in

Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, ser.

UIST ’97. New York, NY, USA: Association for ComputingMachinery, 1997, p. 139148. [Online]. Available:

https://doi.org/10.1145/263407.263533

[19] G. Cavalcanti, “What merge tool should i use?” in Proceedings Companion of the 2017 ACM SIGPLAN

International Conference on Systems, Programming, Languages, and Applications: Software for

Humanity, ser. SPLASH Companion 2017. New York, NY, USA: Association for Computing Machinery,

2017, pp. 19–20. [Online]. Available: https://doi.org/10.1145/3135932.3135943

[20] C. Brindescu, “How do developers resolve merge conflicts? an investigation into the processes, tools,

and improvements,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposiumon the Foundations of Software Engineering, ser. ESEC/FSE

2018. New York, NY, USA: Association for Computing Machinery, 2018, pp. 952–955. [Online]. Available:

https://doi.org/10.1145/3236024.3275430

[21] T. Mens, “A state-of-the-art survey on software merging,” IEEE Transactions on Software Engineering,

vol. 28, no. 5, pp. 449–462, 2002.

[22] B. Berliner, “Cvs ii: Parallelizing software development,” in Proc. The Advanced Computing Systems

Professional and Technical Association (USENIX) Conf., 1990, pp. 22–26.

[23] W. F. Tichy, “Rcs — a system for version control,” Software: Practice and Experience, vol. 15, no. 7, pp.

637–654, 1985. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380150703

50

https://doi.org/10.1145/142882.143753
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3360596
http://dx.doi.org/10.35925/j.multi.2020.3.44
http://dx.doi.org/10.35925/j.multi.2020.3.44
https://doi.org/10.1145/263407.263533
https://doi.org/10.1145/3135932.3135943
https://doi.org/10.1145/3236024.3275430
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.4380150703

[24] T. T. Nguyen, H. A. Nguyen, N. H. Pham, and T. N. Nguyen, “Operation-based, fine-grained version con-

trol model for tree-based representation,” in Fundamental Approaches to Software Engineering, D. S.

Rosenblum and G. Taentzer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 74–90.

[25] D. Asenov, B. Guenat, P. Müller, and M. Otth, “Precise version control of trees with line-based version

control systems,” in Fundamental Approaches to Software Engineering, M. Huisman and J. Rubin,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 152–169.

[26] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus, “Fine-grained and accurate source

code differencing,” in Proceedings of the 29th ACM/IEEE International Conference on Automated

Software Engineering, ser. ASE ’14. New York, NY, USA: Association for Computing Machinery, 2014,

pp. 313–324. [Online]. Available: https://doi.org/10.1145/2642937.2642982

[27] B. Fluri, M. Wursch, M. PInzger, and H. Gall, “Change distilling:tree differencing for fine-grained source

code change extraction,” IEEE Transactions on Software Engineering, vol. 33, no. 11, pp. 725–743, 2007.

[28] N. Castanho, “Semantic conflicts in version control systems,” Lisbon, Portugal, 2021, available at http:

//hdl.handle.net/10451/50658.

[29] T. Mens, “Conditional graph rewriting as a domain-independent formalism for software evolution,” in

Proceedings of the InternationalWorkshop on Applications of Graph Transformations with Industrial

Relevance, ser. AGTIVE ’99. Berlin, Heidelberg: Springer-Verlag, 1999, p. 127143.

[30] K. Pan, E. J. Whitehead, and G. Ge, “Textual and behavioral views of function changes,” in Proceedings

of the 3rd International Workshop on Traceability in Emerging Forms of Software Engineering, ser.

TEFSE ’05. New York, NY, USA: Association for Computing Machinery, 2005, p. 813. [Online]. Available:

https://doi.org/10.1145/1107656.1107659

[31] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using dependence graphs,” SIGPLAN Not.,

vol. 23, no. 7, p. 3546, jun 1988. [Online]. Available: https://doi.org/10.1145/960116.53994

[32] S. Apel, J. Liebig, B. Brandl, C. Lengauer, and C. Kästner, “Semistructured merge: Rethinking

merge in revision control systems,” in Proceedings of the 19th ACM SIGSOFT Symposium and

the 13th European Conference on Foundations of Software Engineering, ser. ESEC/FSE ’11.

New York, NY, USA: Association for Computing Machinery, 2011, pp. 190–200. [Online]. Available:

https://doi.org/10.1145/2025113.2025141

[33] G. Cavalcanti, P. Borba, G. Seibt, and S. Apel, “The impact of structure on software merging:

Semistructured versus structured merge,” in Proceedings of the 34th IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE ’19. IEEE Press, 2020, pp. 1002–1013.

[Online]. Available: https://doi.org/10.1109/ASE.2019.00097

[34] Y. Lin, J. Gray, and F. Jouault, “Dsmdiff: a differentiation tool for domain-specific models,”

European Journal of Information Systems, vol. 16, no. 4, pp. 349–361, 2007. [Online]. Available:

https://doi.org/10.1057/palgrave.ejis.3000685

[35] A. Lédeczi, A. Bakay, M. Maróti, P. Völgyesi, G. Nordstrom, J. Sprinkle, and G. Karsai, “Composing

domain-specific design environments,” Computer, vol. 34, no. 11, pp. 44–51, nov 2001.

51

https://doi.org/10.1145/2642937.2642982
http://hdl.handle.net/10451/50658
http://hdl.handle.net/10451/50658
https://doi.org/10.1145/1107656.1107659
https://doi.org/10.1145/960116.53994
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1109/ASE.2019.00097
https://doi.org/10.1057/palgrave.ejis.3000685

[36] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Modeling Framework, 2nd ed.

Boston, MA: Addison-Wesley, 2009.

[37] OMG, OMG Meta Object Facility (MOF) Core Specification, Version 2.4.1, Object Management Group

Publication, Rev. 2.4.1, Jun. 2013. [Online]. Available: http://www.omg.org/spec/MOF/2.4.1

[38] T. Berlage and A. Genau, “A framework for shared applications with a replicated architecture,” in

Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology, ser.

UIST ’93. New York, NY, USA: Association for Computing Machinery, 1993, pp. 249–257. [Online].

Available: https://doi.org/10.1145/168642.168668

[39] M. S. Feather, “Detecting interference when merging specification evolutions,” in Proceedings

of the 5th International Workshop on Software Specification and Design, ser. IWSSD ’89.

New York, NY, USA: Association for Computing Machinery, 1989, pp. 169–176. [Online]. Available:

https://doi.org/10.1145/75199.75226

[40] M. Koegel, M. Herrmannsdoerfer, O. von Wesendonk, and J. Helming, “Operation-based conflict

detection,” in Proceedings of the 1st International Workshop on Model Comparison in Practice, ser.

IWMCP ’10. New York, NY, USA: Association for Computing Machinery, 2010, pp. 21–30. [Online].

Available: https://doi.org/10.1145/1826147.1826154

[41] M. Ellis, S. Nadi, and D. Dig, “Operation-based refactoring-aware merging: An empirical evaluation,”

IEEE Trans. Softw. Eng., vol. 49, no. 4, p. 26982721, dec 2022. [Online]. Available: https://doi.org/10.1109/

TSE.2022.3228851

[42] OMG XML Metadata Interchange (XMI) Specification Version 1.1, Object Management Group, Fram-

ingham, Massachusetts, October 1999.

[43] E. Gamma, R.Helm, R. Johnson, and J. Vlissides,Designpatterns: elements of reusable object-oriented

software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[44] D. B. Garlan and P. L. Miller, “Gnome: An introductory programming environment based on

a family of structure editors,” in Proceedings of the First ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development Environments, ser. SDE 1. New

York, NY, USA: Association for Computing Machinery, 1984, pp. 65–72. [Online]. Available: https:

//doi.org/10.1145/800020.808250

[45] A. J. Ko and B. A. Myers, “Barista: An implementation framework for enabling new tools, interaction

techniques and views in code editors,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, ser. CHI ’06. New York, NY, USA: Association for Computing Machinery, 2006,

pp. 387–396. [Online]. Available: https://doi.org/10.1145/1124772.1124831

[46] A. L. Santos, “Javardise: A structured code editor for programming pedagogy in java,” in Companion

Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming,

ser. Programming ’20. New York, NY, USA: Association for Computing Machinery, 2020, pp. 120–125.

[Online]. Available: https://doi.org/10.1145/3397537.3397561

[47] T. Beckmann, P. Rein, S. Ramson, J. Bergsiek, and R. Hirschfeld, “Structured editing for all: Deriving

usable structured editors from grammars,” in Proceedings of the 2023 CHI Conference on Human

52

http://www.omg.org/spec/MOF/2.4.1
https://doi.org/10.1145/168642.168668
https://doi.org/10.1145/75199.75226
https://doi.org/10.1145/1826147.1826154
https://doi.org/10.1109/TSE.2022.3228851
https://doi.org/10.1109/TSE.2022.3228851
https://doi.org/10.1145/800020.808250
https://doi.org/10.1145/800020.808250
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1145/3397537.3397561

Factors in Computing Systems, ser. CHI ’23. New York, NY, USA: Association for Computing

Machinery, 2023. [Online]. Available: https://doi.org/10.1145/3544548.3580785

53

https://doi.org/10.1145/3544548.3580785

	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Context
	1.2. Goals
	1.3. Methodology and results
	1.4. Organization of the document

	Chapter 2. Related Work
	2.1. Unstructured merging
	2.2. Structured merging
	2.3. Semistructured merging
	2.4. Model differencing
	2.5. Operation-based merging
	2.6. Motivating Example

	Chapter 3. Approach
	3.1. Representing member identity
	3.2. Transformations
	3.3. Merging Process
	3.3.1. Extracting transformations
	3.3.2. Shared transformations
	3.3.3. Conflict detection
	3.3.4. Applying transformations
	3.3.5. Translation of identifiers by reference

	3.4. Implementation
	3.4.1. Abstract Syntax Trees for Java
	3.4.2. Parsing and indexing
	3.4.3. Local move transformations

	3.5. Discussion

	Chapter 4. Experiment
	4.1. Collecting merge scenarios
	4.2. Results
	4.2.1. False negatives
	4.2.2. False positives
	4.2.3. Execution Time
	4.2.4. Threats to validity

	4.3. Discussion

	Chapter 5. Conclusions
	5.1. Drawbacks
	5.2. Benefits
	5.3. Future Work

	References

