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Abstract

Software testing is mostly performed in a black-box man-
ner, that is, without incorporating any knowledge of the
internal workings of programs into the tests. This practice
usually su�ces for enterprises and general practitioners,
where the focus lies on producing reliable results while most
algorithmic tasks are provided by third-party libraries. How-
ever, for computer science students and the like, it might
not be straightforward to discern the underlying causes of
an incorrect test result or to understand why certain algo-
rithmic goals are not met. We present Witter, a software
testing library that allows programming educators to de�ne
white-box tests for Java source code. Our tests analyze the
execution of a method against a reference solution, to verify
that the code not only produces correct results but is also in
accordance with a desired algorithm behavior.

CCS Concepts: • Social and professional topics → Com-

puting education; • Software and its engineering →

Software testing and debugging.
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1 Introduction

Software testing is an integral part of software development,
allowing for the assessment of whether or not a given ap-
plication veri�es the requirements or produces acceptable
results. By far, the most common method of performing
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software tests relies on black-box testing, where only the
outputs are considered in the assessment. Extensive work
has been conducted on black-box testing libraries and toolk-
its, of which the most widely known in the realm of Java is
the JUnit framework1. While such tests su�ce for validating
the overall functionality of an application, they do not pro-
vide any means to analyze or evaluate non-trivial aspects of
program execution, such as e�ciency, memory usage, or al-
gorithm behavior (that is, if an algorithm executes internally
as expected).
When learning a programming language, it is generally

regarded that students bene�t from informative and con-
structive feedback that allows them to explore their mistakes
and deepen their understanding [16]. Moreover, it is widely
agreed upon that several aspects need to be taken into consid-
eration when grading students’ programming assignments
[2], which most assessment systems do not support [14].
Since students respond more positively when they manage
to stay on track and autonomously arrive at the solution to
a problem [13], it is also imperative that the provided feed-
back o�ers su�cient guidance without compromising the
students’ feelings of autonomy.

While extensive research and development work has been
conducted on automated programming analysis and eval-
uation systems for educational environments, most of the
available tools are either based on black-box unit testing (e.g.
JUnit), static code analysis (e.g., Semmle2), or a combination
of both techniques (e.g., [17]), with approaches focusing on
the dynamic collection of white-box metrics relating to code
execution being markedly uncommon [14].

In this paper, we present Witter3, a novel software testing
library with educational purposes that provides an infrastruc-
ture for de�ning and running white-box tests, supporting
a subset of Java’s syntax. Tests are described by annotating
code solutions of exercises with simple directives that de�ne
what should be tested. Writing Witter tests does not require
any sort of program instrumentation skills, as the collection
in-depth metrics about the behavior of programs is expressed
with high-level directives. In addition to a pass/fail �ag, the
output of tests includes messages concerning mismatches
regarding what was expected to happen during execution.

1https://junit.org
2https://semmle.com/
3https://github.com/ambco-iscte/witter
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Our aims with the proposed library are twofold. On the
one hand, automated assessment systems can be enriched
with white-box tests, which will verify with more precision
if exercise goals are met. When such tests fail, users will be
provided with constructive formative feedback to improve
submissions. On the other hand, white-box tests could be
integrated into exercise development environments (in ad-
dition to the black-box tests). The test results and feedback
messages raise awareness of exercise goals that are not ful-
�lled, which otherwise could go unnoticed if the return val-
ues are correct. Both of these use cases could help students
on achieving autonomous learning paths toward the desired
practice goals.

2 Related Work

Being most widely-known software testing platform for Java,
JUnit o�ers extensive functionalitywhen it comes to unit test-
ing. While JUnit-based assessment tools can be augmented
with meta-programming functionalities to o�er more de-
tailed information on program behavior, such functionality is
not available out-of-the-box and requires specialized knowl-
edge to integrate third-party libraries and/or languages (e.g.,
AspectJ[12]4, Javassist [3]5, or ASM6).

FindBugs[9]7 is a static analysis tool for Java bytecode to
�nd software defects, such as null pointer accesses, based
on a catalog of bug patterns. In our approach, we are not
primarily focused on �nding defects, but instead on checking
if the desired algorithmic behavior is met.
Extensive reviews on automated assessment have been

conducted, and the general �ndings are that most systems
tend to focus on aspects other than dynamic white-box anal-
ysis [11, 14]. E�orts have been made to develop software
testing solutions that not only simplify the process on the
instructor’s side but collect more detailed metrics regarding
the evaluated code to allow the elaboration of more detailed
feedback. Most of these, however, introduce dependencies on
either static code analysis, instrumentation, or a combination
of both techniques [4, 11].
JavAssess [10], similarly to Witter, is a Java library used

to integrate deeper code analysis into existing automated
assessment tools. Their approach, however, combines tra-
ditional unit testing with code instrumentation and meta-
programming functionalities and does not o�er a way to dy-
namically collect white-box execution metrics. AutoGrader
[7] is a similar assessment library, leveraging on metapro-
gramming functionalities along with typical unit testing for
code assessment.

Pedal [6] is an infrastructure supporting Python for auto-
matic code evaluation and feedback generation that tackles

4www.eclipse.org/aspectj/
5www.javassist.org
6http://asm.objectweb.org/
7https://�ndbugs.sourceforge.net/

problems similar to those we address, namely the importance
of an in-depth analysis of student code for the generation
of detailed feedback. Their approach relies on static code
analysis along with traditional unit test execution. While
this approach allows for feedback much more detailed than
simple unit testing systems, it still disregards details of the
program’s execution.
Several intelligent tutoring systems (ITS), such as Java

Sensei [18], FIT [5], JITS [15], or J-LATTE [8], have been
proposed or developed for Java, supporting feedback gen-
eration systems whose goals align with those of our work.
Among other components, an ITS requires automated assess-
ment and feedback, a task that could be augmented with the
testing capabilities of Witter.

3 Witter library

Witter aims at providing testing support for well-de�ned in-
troductory programming exercises in Java, given as reference
solutions by programming instructors. These are annotated
using our test speci�cation language. In turn, students submit
solutions that are compared against the reference solutions
using runtime metrics.

One can de�ne the test cases for a given exercise by writ-
ing a reference solution in a Java method, annotated with a
header comment that de�nes the di�erent test inputs and
the metrics that should be measured during test execution.
The content of the comments has to obey Witter’s Test Spec-
i�cation Language (TSL), whose syntax is similar to Java’s
annotation syntax. The test speci�cation relying on purely
textual comments, as opposed to adopting regular annota-
tions, is intended to simplify the process by not requiring
external annotation types, while also giving more freedom
with respect to the type of content in the annotations.

Table 1 presents the set of metrics we currently support.
Note that outputs of functions are also measured, to allow
for regular black-box testing, while all the other items are
mostly useful for white-box testing. As Witter runs on an
execution environment that supports the dynamic collection
of the described metrics or their constituent parts, no static
analysis is needed for these measurements. The optional
parameter threshold that some annotations have is useful
to tolerate slight deviations from reference solution (most
often ±1). If not speci�ed, the threshold value is zero.
Figure 1a illustrates an example of specifying a Witter

test for a simple function that calculates the sum of an array
of integers. TSL’s annotation @Test annotation serves the
purpose of a black-box test case, containing the arguments
that should be passed when executing themethod for a single
test case. The arguments are enclosed in parentheses and
follow Java’s usual syntax. When comparing solutions, all
the de�ned runtime metrics will be checked independently
for each of these test cases.
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Table 1. Runtime metrics and corresponding test speci�cation annotations.

Metric Annotation Veri�cation

Return values @Test([...args]) Return value is equal to reference solution. Multi-
ple annotations can be used.

Side e�ects @CheckSideEffects Side e�ects on arguments (presence and absence)
are the same to those of the reference solution.

Loop iterations @CountLoopIterations([threshold]) Total number of loop iterations matches the one
of the reference solution.

Array allocations @CheckArrayAllocations The array allocations match those of the reference
solution (component types and lengths).

Array reads @CountArrayReads([threshold]) The number of array read accesses is the same as
in the reference solution.

Array writes @CountArrayWrites([threshold]) The number of array write accesses is the same as
in the reference solution.

Object allocations @CheckObjectAllocations The number of object allocations and their types
match those of the reference solution.

Recursive calls @CountRecursiveCalls([threshold]) The number of recursive calls matches the one of
the reference solution.

(a) Test speci�cation example.

/*

@Test({1, 2, 3, 4, 5})

@Test({2, 4, 6})

@CountLoopIterations

@CountArrayReads

@CheckSideEffects

*/

public static int sum(int[] a) { ... }

(b) Testing an arbitrary solution against a reference solution.

Test test = new Test("ReferenceSolution.java")

List <TestResult > results =

test.execute("Solution.java");

Figure 1. Witter API for test speci�cation and execution.

As Witter is designed for third-party integration, we pro-
vide a form of executing the tests programmatically (see
Figure 1b). Tests are executed providing an annotated refer-
ence solution as described in Figure 1a, and a solution that
one wishes to assess. The test results consist of a list of feed-
back items for each aspect de�ned in the test speci�cation,
holding the following information:

• a �ag indicating success or failure;
• which kind of metric has failed (recall Table 1);
• the location of code elements involved in the failed
tests (e.g., procedure, parameters, loop structures);

• a human-readable descriptive feedback message.

4 Examples

This section presents three examples of how Witter’s white-
box testing functionalities could be used to assess typical
introductory programming assignments. For each example,
we present a reference solution, a hypothetical solution to
test, and Witter’s test result output when doing a console-
based usage. Note that if using Witter programmatically, one
may inspect the feedback details in isolation and obtain more
information than what is presented here.

4.1 Factorial (recursive)

Consider the classical example of a recursive implementation
of the factorial function as an exercise (see Figure 2a). In this
case, the test speci�cation only has a single test case (@Test),
and we impose the restriction that the solution must be im-
plemented recursively @CountRecursiveCalls, tolerating
a deviation of one call.
We present a hypothetical incorrect solution (see Figure

2b), where not only was the algorithm implemented itera-
tively, but the iteration was de�ned to start at an incorrect
value, leading to an incorrect result.

In this example, we simultaneously demonstrate Witter’s
both black and white-box functionalities. Figure 2c presents
the test output, where one can see that both aspects of the
same test case fail. As in tools like JUnit, we present the
expected values and the ones that were found.

4.2 Binary search (iterative)

Consider an exercise for implementing a binary search over
an array of integers that returns the array index where the
number is stored, or -1 otherwise (see Figure 3a). The test
speci�cation de�nes two test cases, one positive and one
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(a) Reference solution with recursion.

/*

@Test (5)

@CountRecursiveCalls (1)

*/

static int factorial(int n) {

if (n == 0) return 1;

else return n * factorial(n - 1);

}

(b) Solution under testing (iterative, with a defect).

static int factorial(int n) {

int f = 1;

for (int i = 0; i <= n; i++)

f *= i; // i starts at 0, f always 0

return f;

}

(c) Witter test results (black-box and white-box fail).

[fail] factorial (5)

Expected result: 120

Found: 0

[fail] factorial (5)

Expected: 4 recursive calls (± 1)

Found: 0

Figure 2. Example: factorial testing using Witter.

negative. In contrast to the previous example, here we aim at
an iterative implementation, and hence, we check if the num-
ber of loop iterations matches (@CountLoopIterations).
We also check if the implementation has no side e�ects
(@CheckSideEffects).

We present a hypothetical incorrect solution (see Figure
3b), which despite producing the same result (black-box test),
is performing a linear search. Therefore, in this sort of situa-
tion, as the incorrectness is not as easily noticeable as when
a functional test fails, a student could easily proceed to the
next exercise given that the expected result matches.

Despite that the test results indicate that both cases have
the expected result (see Figure 3c), however, they both fail
with respect to the number of expected loop iterations.When
no side e�ects are expected, and the solution under testing
also has no side e�ects, Witter does not report a successful
test. A failing test would be given only in case of a mismatch.

4.3 Insertion sort (procedure)

Consider an exercise to implement insertion sort as a proce-
dure that modi�es an array of integers (see Figure 4a). Here
we want to check that the side e�ects (array becomes sorted)
match those of the reference solution (@CheckSideEffects).
As there are several sorting algorithms, in this case, we aim
at checking that the behavior of the solution under testing

(a) Reference solution using binary search.

/*

@Test({1, 2, 3, 4, 5, 6, 7}, 1)

@Test({1, 3, 7, 9, 11, 13, 17, 19}, 18)

@CountLoopIterations

@CheckSideEffects

*/

static int binarySearch(int[] a, int e) {

int l = 0;

int r = a.length - 1;

while (l <= r) {

int m = l + (r - l) / 2;

if (a[m] == e) return m;

if (a[m] < e) l = m + 1;

else r = m - 1;

}

return -1;

}

(b) Solution under testing (performing linear search).

static int binarySearch(int[] a, int e) {

for (int i = 0; i < a.length; i++)

if (a[i] == e) return i;

return -1;

}

(c) Witter test results (black-box pass, white-box fail).

[pass] search ([1, 2, 3, 4, 5, 6, 7], 1)

Expected result: 0

[fail] search ([1, 2, 3, 4, 5, 6, 7], 1)

Expected: 3 loop iterations (± 0)

Found: 1

[pass] search ([1, 3, 7, 9, 11, 13, 17, 19], 18)

Expected result: -1

[fail] search ([1, 3, 7, 9, 11, 13, 17, 19], 18)

Expected: 4 loop iterations (± 0)

Found: 8

Figure 3. Example: binary search testing using Witter.

actually performs insertion sorting.We achieve this by count-
ing the number of array accesses (@CountArrayReads and
@CountArrayWrites).

We present a hypothetical incorrect solution (see Figure
4b), which performs a correct sorting, but through selection
sorting. As with the previous example, here too, a student
providing such a working solution may miss the point of the
exercise if only black-box tests are performed.
The test output will indicate that the sorting result is

correct (expected side e�ects), but it will also report the
mismatches in both array reads and writes, an indication
that the intended algorithm implementation is not correct.
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(a) Reference solution performing insertion sort.

/*

@Test({5, 4, 3, 2, 1})

@CountArrayReads

@CountArrayWrites

@CheckSideEffects

*/

static void sort(int[] a) {

for (int i = 1; i < a.length; i++) {

for (int j = i; j > 0; j--) {

if (a[j] >= a[j - 1]) break;

int tmp = a[i];

a[i] = a[j];

a[j] = tmp;

}

}

}

(b) Solution under testing (performing selection sort).

static void sort(int[] a) {

for (int i = 0; i < a.length - 1; i++) {

int min = i;

for (int j = i + 1; j < a.length; j++)

if (a[j] < a[min]) min = j;

int tmp = a[i];

a[i] = a[min];

a[min] = tmp;

}

}

(c) Witter test results (black-box pass, white-box fail)

[pass] sort({5, 4, 3, 2, 1})

Expected side effects: {1, 2, 3, 4, 5}

[fail] sort({5, 4, 3, 2, 1})

Expected array reads: 40

Found: 28

[fail] sort({5, 4, 3, 2, 1})

Expected array writes: 20

Found: 8

Figure 4. Example: insertion sort testing with Witter.

5 Implementation

The core functionality of Witter relies on the Strudel library8,
which enables the execution of program models while per-
forming �ne-grained observation of execution events at the
statement level. Witter captures these events in order to syn-
thesize the relevant code metrics. Namely, it captures code
execution events for procedure invocations and termination,
loop iterations, object and array allocations, and array and
variable assignments.

8https://github.com/andre-santos-pt/strudel

Strudel provides a virtual machine capable of executing
models of programs, which in our case, are obtained by trans-
lation of Java code. We support a subset of Java’s syntax, to
the extent that we consider necessary in the context of intro-
ductory programming courses. Strudel itself executes code in
a sandboxed manner, constraining the available instructions
and safeguarding against scenarios such as in�nite loops or
out of memory errors. As such, the execution of Witter tests
does not require any particular concerns regarding security.

The TSL is implemented by a two-step parsing and transla-
tion process. A simple grammar was de�ned using ANTLR9

so that the annotations could be parsed and subsequently
translated to Witter’s own internal model for representing
test speci�cations. This process parses and translates each
annotation and their respective arguments, with the excep-
tion of the arguments of the @Test annotation, which are
temporarily stored as simple strings. These are parsed by
the JavaParser library10, and in turn, translated to Strudel’s
model for passing the arguments to the execution process.

6 Discussion

We envision two main use cases for Witter: a tool to enrich
the capabilities of automated assessment systems; and, as
courseware in introductory programming, integrated into a
development environment where students are provided with
more detailed, formative feedback to support the process of
solving exercises. While we have not yet been able to con-
duct tests with students to measure the e�ciency of such a
tool in an educational environment, so far, our work demon-
strates the practical feasibility of a foundational component
to materialize these ideas.
Currently, the code that Witter can evaluate is limited

to a subset of Java’s features, a restriction imposed by the
current implementation of Strudel. A large-scale study of
BlueJ’s Blackbox repository [1] of novice programmers’ code
revealed that the vast majority of users make use of a rela-
tively small subset of the Java language. This supports our
belief that introductory programming teaching only requires
an elementary set of constructs to express algorithms, de-
spite which programming language is being used. Therefore,
we argue that working with a language subset is not a sig-
ni�cant issue, as far as students are provided with adequate
compiler messages when their code uses elements that are
not supported.

Nonetheless, further work could be carried out to extend
Strudel, and in turn, broaden the scope of programs that
Witter can assess. Additionally, further work could be con-
ducted in implementing more observable code execution
events, enabling the computation of new metrics, such as the
number of expressions evaluated and array swaps, which are
relevant in contexts such as algorithmic complexity analysis.

9https://www.antlr.org/
10https://javaparser.org/
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Many typical introductory programming assignments re-
quire the implementation of object-oriented solutions such
as data structures. So far, Witter does not support object test-
ing functionalities for this sort of exercise, including tests
that require a sequence of several assertions over the same
object or interaction between di�erent objects. This is likely
to be the next increment to Witter we will focus on.
We believe that students should have some freedom in

adapting their implementations as long as they fall within
the scope of the intended solutions, as forcing all students to
conform to a speci�c, rigid solution contradicts the intent of
our work of promoting student autonomy (not constraining
it). We thus plan to implement a seamless way of specifying
multiple, alternative reference solutions, as opposed to the
testing process relying on a single reference solution.

Future work should be carried out to evaluate the impact
of using Witter in a classroom environment, both as course-
ware and through automated assessment systems. Driven by
usability shortcomings, we can further extend or re�ne cur-
rent features to better adapt to students’ learning patterns.
As a �rst step, we plan to conduct a controlled experiment
to investigate how well can students understand and make
use of Witter’s feedback.
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