
Code Merging using Transformations
and Member Identity

André R. Teles
adrts@iscte-iul.pt

Instituto Universitário de Lisboa (ISCTE-IUL)
Portugal

André L. Santos
andre.santos@iscte-iul.pt

Instituto Universitário de Lisboa (ISCTE-IUL), ISTAR-IUL
Portugal

Abstract

Conventionally, merging code �les is performed using generic
line-based merging algorithms (e.g., di�3) that are unaware
of the syntax and semantics of the programming language,
outputting con�icts that could be avoided. Structured and
semistructured merging techniques are capable of reduc-
ing con�icts, but they still su�er from false positives (con-
�icts that could be avoided) and false negatives (con�icts
that go undetected). We propose a merging technique that
combines semistructured and transformation-based strate-
gies, where con�ict detection is aware of semantic aspects
of the programming language. We extract transformations
of two branches and apply a merging process that analyzes
incompatible transformations, avoiding false positives and
false negatives that occur in existing approaches. We de-
veloped Jaid, a prototype merging tool for Java based on
the assumption that structural code elements evolve with at-
tached UUIDs (representing identity). We performed an early
experiment with 63 merge scenarios from two open-source
projects to test the technique and assess its feasibility.

CCS Concepts: • Software and its engineering→ Soft-

ware con�guration management and version control

systems.

Keywords: softwaremerging, version control systems, trans-
formations, con�icts, identity

ACM Reference Format:

André R. Teles and André L. Santos. 2023. Code Merging using
Transformations and Member Identity. In Proceedings of the 2023

ACMSIGPLAN International Symposium onNew Ideas, New Paradigms,

and Re�ections on Programming and Software (Onward! ’23), October

25–27, 2023, Cascais, Portugal. ACM, New York, NY, USA, 18 pages.
h�ps://doi.org/10.1145/3622758.3622891

Onward! ’23, October 25–27, 2023, Cascais, Portugal

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0388-1/23/10.
h�ps://doi.org/10.1145/3622758.3622891

B

L

R Mmain

branch

Figure 1. Three-way merge in Git-�ow processes. left (L)
and right (R) versions with a base ancestor (B) originate a
merged version (M).

1 Introduction

A version control system (VCS) allows teams to manage and
parallelize tasks in order to deliver a software artifact as
quickly as possible. Part of their functionality is the ability
to merge branches with other branches. A three-way merge
is based on three di�erent versions of a software artifact (see
Figure 1). Throughout this paper, we refer to those as left,
right, and base. Both left and right have the base as their
nearest common ancestor. When left and right are merged,
we obtain a new version that combines their changes.

Branches may be merged based on di�erent algorithms,
which may produce di�erent results. If one or more develop-
ers change the same piece of code and the merging algorithm
cannot automatically merge both changes into a new version,
a merge con�ict arises. Manual intervention is required to
resolve the con�ict to successfully merge the two branches.
However, resolving a con�ict typically requires developer
communication and a true understanding of the related code,
making it a time-consuming task during the development
cycle, delaying it, and reducing team productivity [9].
Most VCSs have built-in merge tools that are based on

algorithms that compute the di�erences through a line-based
comparison [16]. In other words, the unit of comparison
between �les is a line, and the merging process is purely
textual. This happens because the representation of �les
as plain text is the most generic way of representing �les
in many programming languages. This merge strategy is
referred to in the literature as unstructured merging.
Despite the genericity o�ered by unstructured merging,

this strategy has obvious limitations, since it ignores the
syntax and semantics of each programming language. De-
pending on the merge strategy, some con�icts may occur
where there is, in fact, no con�ict — these are false positive
cases. Taking into account the drawbacks of unstructured
merging, new merge tools have been proposed that take into

This work is licensed under a Creative Commons Attribution-

NoDerivatives 4.0 International License.

71

https://creativecommons.org/licenses/by-nd/4.0/
https://orcid.org/0009-0008-4677-282X
https://orcid.org/0000-0002-8247-7413
https://doi.org/10.1145/3622758.3622891
https://doi.org/10.1145/3622758.3622891

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

account the syntax and structure of the programming lan-
guage of the source code [2, 4, 10, 11, 26, 33]. These aim at
improving the accuracy of merging processes, by obtaining
fewer non-existent con�icts (false positives) and recognizing
more con�icts that are not detected and cause compilation
errors (false negatives).
Despite previous approaches being capable of reducing

con�icts, there is room for improvement with respect to false
negatives and false positives. One of the main challenges re-
lates to matching source code elements of di�erent branches,
given that textual programming languages have no stable
identi�ers [32]. The di�culty resides in the fact that source
code elements have no identity, and hence, a form of real-
izing origin tracking [31] is necessary. During compilation,
references to code members are essentially resolved by name,
which is simply a value that is looked up in a symbol table.
If an element is renamed (i.e., type, �eld, method), all the
existing dependent calls become invalid. Issues pertaining to
renaming in three-merging are particularly sensitive to this
problem, because a branch may evolve to add new references
to a member that has been renamed in parallel by the other
branch [27].
In this paper, we propose an approach that combines

aspects of previous research on semi-structured [2] and
operation-based merging [20]. We perform version di�erenc-
ing and union using models [1] of the code artifacts (Abstract
Syntax Trees) in a language-speci�c manner, where code
members are assumed to be augmented with a form of repre-
senting their identity. This characteristic requires encoding
ids in source code �les, and hence, it implies a slightly di�er-
ent form of maintaining source code, but nevertheless, still
compatible with current practices. In particular, we propose
to represent the identity of referenceable elements in the
code by “attaching” comments that hold universally unique
identi�ers (UUID) to their headings. This brings advantages
that are inherent to software development using projectional
editors [28], where code artifacts are stored in tool-speci�c
formats that embody those identi�ers (e.g., JetBrains MPS1),
while not needing to adopt such tools.

We developed Jaid, a merge tool for Java that extracts
transformations from two branches given a base version,
and further analyzes them to check for con�icts, taking into
account semantic aspects of the language to avoid both false
positives and false negatives. Namely, we enable broken iden-
ti�er references (due to renames) to be �xed when applying a
three-way merge, and hence, avoid this type of false negative.
Merging processes using models, as in projectional editors,
are capable of addressing this issue, whereas previous struc-
tured merging techniques are not [11, 26].

We performed an early experiment with Jaid involving 63
merge scenarios extracted from two open-source projects.

1https://www.jetbrains.com/mps/

An analysis of false negatives on merges without con�icts re-
vealed that 79% could successfully build, while the remaining
cases did not build due to the lack of Jaid’s Java coverage on
some constructs. On the other hand, we found no false posi-
tives when analyzing merge scenarios where con�icts were
found. The execution times are the order of a few seconds
for the whole project merges. Although these are clearly
slower than previous tools [11, 26], we argue that the capa-
bility of avoiding false positives and false negatives, which
otherwise would be �xed by hand, is likely to compensate
for the performance trade-o�.

In this paper, we �rst motivate the need for more precise
merging processes in Section 2 in light of the state-of-the-
art merge tools. Section 3 describes the proposed merging
process. Section 4 discusses details regarding the implemen-
tation of Jaid. Section 5 presents a �rst evaluation of our
merging approach in real scenarios extracted from Github
projects, and Section 6 discusses the tradeo�s of our ap-
proach and threats to validity. Section 7 presents related
work, and Section 8 presents our conclusions.

2 Motivating Example

This section presents an example to motivate our approach
in contrast to industrial practice and state-of-the-art ap-
proaches. Figure 2 presents a three-merge scenario involving
a single class Point, where a base version (b) has evolved to
a left (a) and right version (c) which will be merged. The left
changes consist of adding the modi�er final to both �elds
in order to have immutable objects, adding a constructor,
renaming the getter methods to adhere to the usual conven-
tion, and adding a method to check if the point is the origin.
The right changes consist of adding the modi�er private
to both �elds and adding the same method to check if the
point is the origin (using the method identi�ers of the base
version).

Merging the left and right versions into a valid new ver-
sion of the class is possible, as the set of changes are not
incompatible. Figure 2 (d) presents the ideal merge result,
where both �eld modi�cations are integrated, method re-
names are performed, and references to it are updated ac-
cordingly. However, automated methods are not yet able to
obtain such a merge. The goal of our approach is to have a
merge process that is capable of outputting such a result.
We ran the merge process using the three versions of

the class presented in Figure 2 (a,b,c) with git-merge2, a
widely-used industrial form of merging, jFSTMerge [11]3,
IntelliMerge [26]4, which are state-of-the-art approaches to
this problem, and MPS, an industrial language workbench

2https://git-scm.com/docs/git-merge
3https://github.com/guilhermejccavalcanti/jFSTMerge
4https://github.com/Symbolk/IntelliMerge

72

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

class Point {

final int x;

final int y;

Point(int x, int y) {

this.x = x;

this.y = y;

}

int getX() {

return x;

}

int getY() {

return x;

}

boolean isOrigin () {

return getX() == 0

&& getY() == 0;

}

}

(a) Left branch version.

class Point {

int x;

int y;

int x() {

return x;

}

int y() {

return y;

}

}

(b) Base version.

class Point {

private int x;

private int y;

int x() {

return x;

}

int y() {

return y;

}

boolean isOrigin () {

return x() == 0

&& y() == 0;

}

}

(c) Right branch version.

class Point {

private final int x;

private final int y;

Point(int x, int y) {

this.x = x;

this.y = y;

}

int getX() {

return x;

}

int getY() {

return x;

}

boolean isOrigin () {

return getX() == 0

&& getY() == 0;

}

}

(d) Ideal merged version.

Figure 2. Illustrative three-way merge scenario involving a single class.

class Point {

<<<<<<< LEFT

final int x;

final int y;

Point(int x,int y){

this.x = x;

this.y = y;

=======

private int x;

private int y;

>>>>>>> RIGHT

int getX() {

return x;

}

int getY() {

return x;

}

boolean isOrigin (){

return getX ()==0

&& getY ()==0;

}

<<<<<<< LEFT

}

=======

boolean isOrigin(){

return x()==0

&& y()==0;

}

}

>>>>>>> RIGHT

(a) Git-merge (di�3).

class Point {

<<<<<<< LEFT

final int x;

=======

private int x;

>>>>>>> RIGHT

<<<<<<< LEFT

final int y;

=======

private int y;

>>>>>>> RIGHT

Point(int x,int y){

this.x = x;

this.y = y;

}

int getX() {

return x;

}

int getY() {

return x;

}

boolean isOrigin (){

<<<<<<< LEFT

return getX()==0

&& getY()==0;

=======

return x()==0

&& y()==0;

>>>>>>> RIGHT

}

}

(b) jFSTMerge.

class Point {

<<<<<<< LEFT

final int x;

=======

private int x;

>>>>>>> RIGHT

<<<<<<< LEFT

final int y;

=======

private int y;

>>>>>>> RIGHT

Point(int x,int y){

this.x = x;

this.y = y;

}

int getX() {

return x;

}

int getY() {

return x;

}

boolean isOrigin (){

return x ()==0

&& y ()==0;

}

}

(c) IntelliMerge.

class Point {

private final int x;

private final int y;

Point(int x,int y){

this.x = x;

this.y = y;

}

int getX() {

return x;

}

int getY() {

return x;

}

<<<<<<< LEFT

boolean isOrigin(){

return getX()==0

&& getY()==0;

}

=======

boolean isOrigin(){

return x()==0

&& y()==0;

}

>>>>>>> RIGHT

}

(d) JetBrains MPS.

Figure 3. Merge results with industry and state-of-the-art approaches.

73

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

providing projectional editing. We used the standard git-
merge tool that ships with Git and the latest releases available
from the research project repositories.

The results are presented in Figure 3. The git-merge result
has a con�ict due to the unawareness of structure in line-
basedmerging (false positive) and also detects a con�ict in the
isOrigin method (false positive), since the two versions (left
and right) clash in the same text region. The merge results
of jFSTMerge and IntelliMerge originate a con�ict in the
�elds, given that these approaches do not address semantic-
aware combinations of modi�ers. This con�ict is more �ne-
grained than the one of git-merge, but nevertheless, it could
be avoided. Their results also su�er from the same problem
in the isOrigin method, but in a di�erent way. Although
jFSTMerge’s merge result shows more structure awareness
compared to git-merge’s result by marking the con�ict only
in the body of the isOrigin method, both approaches present
a non-existent con�ict (false positive). On the other hand,
IntelliMerge does not raise the con�ict but outputs a non-
compilable result (false negative) since the method references
have not been renamed according to the methods. A large-
scale study has revealed that many build con�icts are due
to missing declarations removed or renamed by one version
but referenced by another [27].
Finally, we tested the merging scenario in MPS, which

carries out the merge using the model representation of the
code (in Figure 3 we depict the con�ict using the typical
source code marks). Despite its structural nature, a con�ict
is detected between the two versions (left and right) of the
isOriginmethod (false positive). Even though they are seman-
tically equivalent, MPS, due to the apparent lack of semantic
awareness, did not recognize that they could be merged
into a single method, in particular, because the id of both
isOrigin methods is di�erent, as they were created in dif-
ferent revisions and are not derived from a common one
(base). As another case, not illustrated in the scenario, if one
branch would add the final modi�er and another branch
the static modi�er, we would face a false positive, because
they both belong to the same modi�ers container (given the
way the Java language was modeled in MPS). However, it is
worth noting that MPS can resolve broken references due to
renames (as in the given scenario).

3 Approach

3.1 Representing Member Identity

We propose to use UUIDs as a form of providing identity to
source code elements, a technique that is widely used, for
instance in the XMI standard (XML Metadata Interchange
[23]) to encode references between elements. A UUID is
a 36-character alphanumeric string that is assumed to be
unique due to a large number of di�erent combinations of
hexadecimal digits. The probability of having two identical
UUIDs is so remote that it can be neglected.

//03ece596 -e4dd -11ed -b5ea -0242 ac120002

class Point {

//51447490 -5ae5 -468c-adb0 -27 ec4a39bff2

private final int x;

//f9b7a663 -bd12 -4ce5 -a52e -db6e8b0ad3e0

private final int y;

//b94372dd -d103 -4e07 -997f-cfd93408ca9e

Point(int x, int y) {

this.x = x;

this.y = y;

}

//7a67ca25 -8b0c -4bd6 -97b1 -141 d56988c2d

int getX() {

return x;

}

int getY() {

return y;

}

}

Figure 4. Java source code with member identity encoded
as UUIDs in comments.

UUIDs are attached to structural elements of the code that
can be referenced from statements and expressions. Hence,
these elements can be classes, interfaces, methods, construc-
tors, or �elds. Such an identity has to be encoded as part of
the source code �les so that it is persisted on a VCS. In order
to have a source code format that includes UUIDs and is still
valid source code in the host language, we opt for storing
the UUIDs as source code comments.
Figure 4 illustrates a Java class with UUID comments at-

tached. Notice that every structural element has a comment
holding a UUID. The highlighted code would be an addition
created locally that is not yet stored in the VCS. An obvious
downside of having UUIDs in the code is the extraneous
noise they introduce, as well as their fragility, as the identity
can be broken accidentally (deletes, copy-paste, etc). Address-
ing these usability issues requires a slightly specialized code
editing environment, which we discuss later in Section 6.
If two elements from two di�erent branches have the

same UUID in their comments, they are considered to be
the same, even if one or all of their properties have changed.
By storing these identi�ers in the comments throughout
the development cycle of a software artifact, the identity of
each element is maintained over time. Since new additions
to the source code have no UUID associated, their identity
is non-existent. When a branch adds new elements to the
source, these are preprocessed to inject UUIDs automatically
when committing to a branch. When the local changes of a
branch become available in the remote repository, updates
will have access to the newly added elements with their
identity attached. In this way, all structural elements stored

74

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

Table 1. Examples of transformations and their parameters.

Transformation Parameters

adding a �eld UUID of the owner class; �eld type; �eld name; �eld modi�ers; [initializer expression]
removing a method UUID of the method
modify method signature UUID of the method; method identi�er; list of parameters
moving a static method UUID of the method; UUID of the destination type
modifying Javadoc UUID of the member; documentation content

AST-LeftAST-Left
AST-Left

Left

Base

Right

Trans. Left

Trans. Left

Trans. Left

Trans. Right

Trans. Right

conflicts

Merge

Trans. Resolved

AST-Right
AST-Left

AST-Base

Figure 5.Merge process overview.

in the VCS have an identity attached, which will be available
to newly created branches.

3.2 Transformations

The fundamental part of an operation-based approach are
operations [20], also called transformations. Any atomic op-
eration which can be applied to a single structural element of
the source code can be represented as a transformation. Any
property of a structural element that is likely to be modi�ed
can produce a transformation, such as changing the body
of a method, renaming a class, changing the modi�ers of an
element, and so forth.

We consider that a transformation is a unit of modi�cation
that a version (branch) has performed over a base version. A
branch transformation �ts into one out of four broad types:
addition, removal, modi�cation, or move. We also considered
modi�cations to the documentation of classes as transforma-
tions of their own. We represent each transformation as a
command (Command pattern [14]) that can be applied to the
model of the base version (AST). Hence, each transforma-
tion object holds all the necessary information to carry out
the modi�cations. Our current implementation comprises
35 transformation types. Table 1 presents examples of trans-
formations and their parameters.

3.3 Merging Process

In a three-way merge scenario, the process of extracting
transformations is performed between the versions of each
branch and their common ancestor (base version). Figure
5 presents an overview of our merge process, with the as-
sumption that structural elements of source code have an
attached identity (as explained in Section 3.1). Merge is per-
formed using the whole source code of the project versions
in the three-way merge (left, base, right). Each version is
parsed into abstract syntax trees (AST), and element iden-
ti�ers are indexed by UUID in order to allow e�cient res-
olution (Section 4.2). The AST pairs (left, base) and (right,
base) are analyzed to extract a set of transformations at the
level of granularity of the indexed elements. For example, an
addition of a method, or renaming of a class (Section 3.3.1).
In the following stage, con�icting transformations between
the two sets and the shared set are detected (Section 3.3.2).
These have to be resolved with human intervention, whereas
non-con�icting transformations are suitable to be applied
directly in the merged version of the project (Section 3.3.3).

Algorithm 1 describes the overall merge process. For each
branch, we determine a set of transformations (left and right).
The shared transformations, that is, those that are equivalent
in both branches (same type and same parameters), are fac-
tored out into a separate set. Using the three sets of transfor-
mations we compute the set of con�icts. The decomposition
of the process is further detailed in the next sections.
When two transformations in the two versions are the

same, we refer to them as a single shared transformation. In
some cases, redundancy is not a problem, but nevertheless
pointless, such as renaming the same method twice with the
same new name. However, there are some situations where
applying these two transformations could cause the merge
process to malfunction. If we consider a pair of transforma-
tions involving the addition of the same structural element,
this situation is particularly problematic, because after in-
serting the element once, the second transformation will
insert it again, causing an identi�er con�ict. For this reason,
all redundant transformations are factored at this phase, so
that only one of them is applied.

3.3.1 ExtractingTransformations. Algorithm 2 describes
the process of extracting transformations from the set of �les
of a version (branch) when compared to a base version. The

75

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

Algorithm 1 Procedure to merge two versions (left and right), considering a base version. Merging is performed if there are
no con�icts, otherwise a non-empty set of con�icts is returned. The parameter conf lictTypes is a set of con�ict detectors for
transformation pairs.

procedureMergeVersions(conf lictTypes , baseFiles , le f tFiles , riдhtFiles)
le f t ←VersionTransformations(baseFiles , le f tFiles)
riдht ←VersionTransformations(baseFiles , riдhtFiles)
shared ← {(a,b) ∈ (le f t × riдht) : a = b}

le f t ← le f t − shared

riдht ← riдht − shared

conf licts ←ComputeConflicts(conf lictTypes , le f t , riдht , shared)
if conf licts = ∅ then

ApplyTransformations(baseFiles , le f t , riдht , shared)
end if

return conf licts

end procedure

Algorithm 2 Function to obtain the set of transformations of a version (branch) in relation to a base version.

function VersionTransformations(baseFiles , versionFiles)
trans f ormations ← ∅

for all f ∈ (versionFiles − baseFiles) do

trans f ormations ← trans f ormations ∪ {AddFile(f)}

end for

for all f ∈ (baseFiles −versionFiles) do

trans f ormations ← trans f ormations ∪ {RemoveFile(f)}

end for

for all (a,b) ∈ {(a,b) ∈ (baseFiles ×versionFiles) : a.uuid = b .uuid} do

AddNodeTransformations(trans f ormations , a, b)
end for

AddMoveTransformations(trans f ormations)
return trans f ormations

end function

�rst step is to understand which �les are not in both versions
and generate their respective insertion/removal transforma-
tions. The match is accomplished by comparing the identities
of the �les, whose UUIDs are stored in the �rst line of each
�le.

The next step consists of �nding the pairs of correspond-
ing �les between the two versions and checking their dif-
ferences (Algorithm 3). For each language-speci�c structure
from which transformations may be extracted (assumed to
be identi�ed by UUIDs), a handler must be implemented to
check for possible changes in the properties of that structure.
Each supported modi�cation will result in a transformation,
whose type is speci�c to the kind of modi�cation (e.g., Re-
nameClass, ChangeBody). Similar to the detection of �le
insertions and removals, the extraction of additions and re-
movals of children is based on the following idea: if in the
branch version and not in the base, it is considered an ad-
dition of a node; if in the base and not in the branch, it is
considered a removal of a node.

When member bodies are altered we handle this as a
coarse-grained modi�cation transformation involving all its
statements. However, we perform a special comparison strat-
egy that instead of verifying the equality of AST nodes with
element references by value (token in the source), compares
those using the identity of the referenced element. The name
present in a reference is ignored and what is used for com-
parison is the UUID of the element to which they refer. This
comparison strategy implies that if one performs a rename
refactor, for instance on a method, all the member bodies that
include dependent expressions will be considered unchanged.
In fact, only a symbol has changed, and we represent and fur-
ther apply this sort of change as a cohesive transformation
unit, instead of a scattered set of modi�cations that include
all the bodies holding dependent expressions. This allows us
to consider that in the scenario of Figure 2 both versions of
the isOrigin method are equivalent.

The �nal step in extracting the transformations is to check
for any move transformations between �les (Algorithm 4).
Since all the addition and removal transformations of all the

76

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

Algorithm 3 Procedures to collect transformations performed on an AST Node, abbreviated with respect to node types. The
parameters b (base node) and v (version node) are assumed to have the same type.

procedure AddNodeTransformations(trans f ormations , b, v)
if typeO f (b) = File then

AddMemberTransformations(trans f ormations , b, v)
else if typeO f (b) = Class then

if b .name , v .name then

trans f ormations ← trans f ormations ∪ {RenameClass(b .uuid,v .name)}

else if b .modi f iers , v .modi f iers then

trans f ormations ← trans f ormations ∪ {ChanдeModi f iers(b .uuid,v .modi f iers)}

end if

...

AddMemberTransformations(trans f ormations , b, v)
else if typeO f (b) = Method then

if b .name , v .name then

trans f ormations ← trans f ormations ∪ {RenameMethod(b .uuid,v .name)}

else if b .body , v .body then

trans f ormations ← trans f ormations ∪ {ChanдeBody(b .uuid,v .body)}

end if

...

end if

...

end procedure

procedure AddMemberTransformations(trans f ormations , b, v)
baseChildren ← b .childNodes

versionChildren ← v .childNodes

for all n ∈ (versionChildren − baseChildren) do

trans f ormations ← trans f ormations ∪ {AddNode(n)}

end for

for all n ∈ (baseChildren −versionChildren) do

trans f ormations ← trans f ormations ∪ {RemoveNode(n)}

end for

for all (a,b) ∈ {(a,b) ∈ (baseChildren ×versionChildren) : a.uuid = b .uuid} do

AddNodeTransformations(trans f ormations , a, b)
end for

end procedure

Algorithm 4 Procedure to add move transformations by converting matching addition-removal pairs.

procedure AddMoveTransformations(trans f ormations)
additions ← {t ∈ trans f ormations : typeO f (t) = AddNode}

removals ← {t ∈ trans f ormations : typeO f (t) = RemoveNode}

for all (a, r) ∈ {(a, r) ∈ (additions × removals) : a.uuid = r .uuid ∧ a.node .isStatic} do

trans f ormations ← trans f ormations ∪ {MoveNode(a, r)}

trans f ormations ← trans f ormations − {a, r }

AddNodeTransformations(trans f ormations , r .node , a.node)
end for

end procedure

�les in both versions have been extracted, if there is one �le
with an addition and another with a removal transformation
where both refer to the same UUID, we consider that the

involved element has been moved between �les. The same
strategy is used to check if static methods, �elds, or enum
constants have been moved between types. After isolating

77

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

all the insertion and removal transformations, the addition-
removal pairs that refer to the same UUID will result in
adding a move transformation to the set of transformations,
while the original addition and removal transformations are
removed. The last step is to extract the transformations be-
tween the two versions (base and branch) of the moved node,
since these two versions have not been compared before
due to the moved node having di�erent parents when it is
removed from one member and inserted into another.

3.3.2 Con�ict Detection. Once the two sets of transfor-
mations and the shared set have been obtained, the next
phase is to �nd pairs of con�icting transformations. Our
notion of con�ict is slightly di�erent than what is generally
considered in code merging. We identify a con�ict when two
transformations cannot both be performed without leading
to a syntactic or semantic error in the source code. For ex-
ample, when two renames of the same class use di�erent
values. In these sorts of cases, it is not possible to have an
automated process that decides which of the two transforma-
tions to select for merging. Hence, our aim is that a con�ict
is a situation that necessarily needs human intervention in
order to be resolved. We aim at a merge process that is as
deterministic as possible, while not performing merges that
will require post-merge manual �xes.

To achieve this kind of con�ict reporting, we de�ned a set
of con�ict types that de�nes which pairs of transformation
types may lead to a con�ict. Appendix A contains tables de-
scribing a non-exhaustive summary of potentially con�ictual
transformation types. If there is no con�ict type between
two transformation types, there is no situation where the
application of both transformations could cause a con�ict. A
con�ict type is an object that has information about:

• the two types of transformations that lead to a con�ict;
• a method to check if it applies to two unordered trans-
formations;
• a message generator to explain the con�ict cause.

For example, for a �eld Add-Rename transformation pair,
a con�ict type shall be declared with types Add and Rename,
along with a handler that evaluates whether the new �eld
name and the new rename value are the same. If they are
di�erent, there is no con�ict, otherwise, a con�ict is found. A
con�ict is formed by the two con�icting transformations, as
well as a message justifying why they are incompatible. Our
con�icts are accompanied by a human-readable explanation
and precise references to the involved code elements. As an
example con�ict message, “two renames of the same method:
a (left) and b (right)”.
Algorithm 5 describes the process of �nding con�icting

pairs of transformations. Each pair of the Cartesian prod-
uct of the two sets of transformations and the shared set
is checked for a possible con�ict, which when positive, is
added to the set of con�icts. A pair of transformations is

straightly rejected as a possible con�ict if their types are not
identi�ed as con�ictual (see Appendix A).

Regarding modi�ers, we follow a semantic-aware strategy
to verify con�icts. First, for each set of modi�ers of an ele-
ment, two subsets are created: the access modi�ers (public,
private, protected) and the remaining modi�ers (final,
static, etc.). There are two reasons why two lists of mod-
i�ers may con�ict. One is when the two subsets of access
modi�ers combined have more than one element. For ex-
ample, consider that one subset has a public modi�er and
another has a private modi�er. If we sum both subsets, we
will get a new one with two elements (public and private),
so the situation is considered con�icting. If the two subsets
have the same modi�er, since sets do not allow duplicates,
only one will be stored in the resulting set of the sum of
them and both modi�ers’ lists are not con�icting. The other
reason is if at least one of the subsets of non-accessible mod-
i�ers has an abstract modi�er and the other has one of the
remaining modi�ers that can be used (static, final). In
other words, if there is an abstract modi�er, there can be
no other non-access modi�er. If neither of these two reasons
is true, then the two lists of modi�ers are not con�icting and
can be merged automatically. This process is able to solve
the false positive problem illustrated in Figure 3.

3.3.3 Applying Transformations. If there are no con-
�icting transformations, all the transformations of the three
sets (left, right and shared) can safely be merged into a copy
of the base version in order to obtain a newly merged ver-
sion. In the presence of con�icts, we propose that develop-
ers should opt for not performing the merge, but rather go
through the con�icts given by our process and �x the is-
sues in one or both branches until no con�icts are obtained
(hence, the description of Algorithm 1).

Algorithm 6 describes the process of applying transforma-
tions. The order in which the transformations are applied
is important, based on the state of the version when they
were all extracted. When local move transformations are
extracted, the removed and inserted members are ignored,
and then the index to which the element should be moved is
calculated based on a list of members without the removed
and newly inserted members. For this reason, to correctly
apply a local move transformation, we must �rst remove all
the members that should be removed, so that the member list
is equal to the member list when the local move transforma-
tion was extracted (without the removed and newly inserted
members). Note that an inter-type move transformation, e.g.
an element moved from one �le to another, can be decom-
posed into two transformations: the removal transformation
of the element from the origin node and the insertion trans-
formation of that element into the destination node. After all
local move transformations have been applied, the insertion
transformations can be applied properly. The order in which

78

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

Algorithm 5 Function to compute the con�icts with the transformations of two versions (left and right), taking into account
their shared transformations. The parameter conf lictTypes is a set of con�ict detectors for transformation pairs.

function ComputeConflicts(conf lictTypes , le f t , riдht , shared)
conf licts ← ∅

trans f ormationPairs ← (le f t × riдht) ∪ (le f t × shared) ∪ (riдht × shared)

for all (a,b) ∈ trans f ormationPairs do

for all c ∈ conf lictTypes do

if c .isApplicable(a,b) ∧ c .existsConf lict(a,b) then

conf licts ← conf licts ∪ {Conf lict(c,a,b)}

end if

end for

end for

return con�icts
end function

Algorithm 6 Procedure to apply merge transformations.

procedure ApplyTransformations(baseFiles , le f t , riдht , shared)
trans f ormations ← le f t ∪ riдht ∪ shared

merдedFiles ← baseFiles

for all t ∈ {t ∈ trans f ormations : typeO f (t) = AddFile} do

t .apply(merдedFiles)

end for

дlobalMoves ← {t ∈ trans f ormations : typeO f (t) = MoveNode}

for all дm ∈ дlobalMoves do

дm.removeTrans f ormation.apply(merдedFiles)

end for

for all t ∈ {t ∈ trans f ormations : typeO f (t) = RemoveNode ∨ RemoveFile} do

t .apply(merдedFiles)

end for

for all lm ∈ {t ∈ trans f ormations : typeO f (t) = LocalMoveNode} do

lm.apply(merдedFiles)

end for

for all дm ∈ дlobalMoves do

дm.additionTrans f ormation.apply(merдedFiles)

end for

for all t ∈ {t ∈ trans f ormations : typeO f (t) = AddNode} do

t .apply(merдedFiles)

end for

for all t ∈ {t ∈ trans f ormations : typeO f (t) , AddFile∨RemoveNode∨RemoveFile∨MoveNode∨LocalMoveNode∨

AddNode} do

t .apply(merдedFiles)

end for

write(merдedFiles)

end procedure

the transformations from the �nal list of transformations are
applied is as follows:

1. Apply all �le additions;
2. Filter out all inter-types move transformations and ap-

ply only their corresponding removal transformation;
3. Apply all other removal transformations (which re-

move �les, methods, �elds, etc);

4. Apply all local move transformations in the order de-
�ned when they were all extracted;

5. Filter all inter-type move transformations and apply
only their insertion transformations;

6. Apply all other insertion transformations (which add
methods, �elds, etc);

7. Apply all other transformations in any order.

79

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

Note that each time a new �le or node is inserted, its
references are indexed (see Section 4.2) in order that all other
transformations are applied correctly. When the process of
applying all these transformations to the common ancestor is
complete, a merged version is created with the contributions
from the two branches.

3.3.4 Translation of Identi�ers by Reference. Most of
the transformations are straightforward to apply, with the
exception of method body modi�cations are handled with a
non-trivial mechanism that makes the merging process more
robust. If a member is referenced in new code (e.g., a method
call) and that element is renamed in the other branch, the
code will have missing references when merged (e.g., the
false negative described in Figure 3). We address this problem
so that those “outdated” references are translated into the
correct ones.
Figure 6 shows a three-way merge scenario to illustrate

this case in which two branches are derived from a base
branch: the left branch, in which the method named method-

ToBeRenamed is renamed to methodRenamed along with all
its calls, resulting in a Signature transformation; and the
right branch, in which a new method call to methodToBeRe-

named is added to the method named methodBodyChanged,
resulting in a Body modify transformation. Notice that the
latter call is made using the method name that is going to be
renamed by the left branch. The two transformations are not
considered to form a con�ict, but the order in which they are
applied produces di�erent outputs. Appendix B illustrates
that performing right followed by left leads to the desired
output, whereas the opposite ordering will lead to broken
references in the body of methodBodyChanged.
The statements of a method body hold identi�ers that

refer to other elements (types, methods, �elds). In our ap-
proach, we maintain an identity for all the referenceable
elements through the UUIDs. Instead of simply copying the
new method body into the merged version when applying
the transformation, we translate all the contained identi�er
references to match those of the current version rather than
those of the version where changes were introduced. We
illustrate this mechanism in Figure 7.

As discussed ahead in Section 7, the order in which trans-
formations are applied is a limitation of operation-based
merging. Appendix C illustrates how applying our merging
process involving the two transformations of Figure 6 with
di�erent ordering leads to the same result.

4 Implementation

As a proof of concept of the proposed approach, we devel-
oped Jaid, a merging tool for Java projects. The extraction
of transformations and the set of con�ict types are language-
dependent. We currently do not support the whole Java syn-
tax, as our implementation e�orts have focused on the essen-
tial constructs to be able to have a working proof of concept.

Figure 6. Three-way merge scenario.

For instance, annotations, lambdas, and generic types are
constructs that are not currently supported, despite that we
do not foresee that they present any particular implementa-
tion challenge. Jaid is developed in Kotlin and it currently
has about 6K lines of code.

4.1 Abstract Syntax Trees for Java

A critical library that was fundamental for developing Jaid
was JavaParser5, an open-source parser for the Java pro-
gramming language that also provides tools for analyzing,
transforming, and generating new code, through AST ma-
nipulations. JavaParser is a widely used library that has even
been used in other studies (e.g., [26]). Overall, JavaParser
is the backbone of most Jaid processes, as it loads the code
structure into memory and these parsed nodes are the units
that crosscut the entire merging process.

JavaParser handles code comments so that they are nodes
in the AST. Comments that immediately precede type and
member declarations are represented as child nodes of those.
We use JavaParser to deal with all operations related to
UUIDs in member comments, as their representation in the
AST facilitates the process of matching members to their
comments. The process of appending a UUID to a member’s
comment depends on the type of comment associated with a
member. If the member does not have a comment, a new line
comment (//...) is appended with a newly generated UUID.
If the member already has a line comment, the comment is
converted to a block comment (/*...*/), which stores the
previous content of the line comment as well as the UUID.

5https://javaparser.org

80

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

//e5370249-9cfc-464a-b21d-6b77a44727ca

void renamedMethod() {…}

//ac325425-c541-4a99-b80c-e3378d66e612

void methodBodyChanged() {

 <e5370249...>();

}

//e5370249-9cfc-464a-b21d-6b77a44727ca

void renamedMethod() {…}

//ac325425-c541-4a99-b80c-e3378d66e612

void methodBodyChanged() {

 renamedMethod();

}

//e5370249-9cfc-464a-b21d-6b77a44727ca

void methodToBeRenamed() {…}

//ac325425-c541-4a99-b80c-e3378d66e612

void methodBodyChanged() {

 methodToBeRenamed();

} copy by

reference

translate

reference

Figure 7. Translating identi�ers by reference in body modify transformations.

In case of a block comment or a Javadoc comment, the new
UUID is appended in a new line at the end of its content.
Jaid also uses JavaParser for extracting transformations.

When comparing nodes to understand whether they have
changed, the built-in AST node comparison is extended so
that identi�ers, present in method bodies or �eld initializers,
are compared by reference.
Finally, JavaParser’s node properties are accessed in the

handlers of con�ict detection (Section 3.3.2), and transfor-
mations are applied through AST manipulations to obtain
the �nal merged version (Sections 3.3.3 and 3.3.4).

4.2 Parsing and Indexing

After the projects have been parsed, all elements that have
UUIDs are indexed by mapping a UUID to its correspond-
ing element. The indexed elements are �les, types (classes,
interfaces, and enums), constructors, enum constants, meth-
ods, and �elds. Indexing members allows for more e�cient
searches and comparisons of elements of the same type.
There is also an index that maps a method to all its calls,
an index of �eld and enum constant references, and another
with all the usages for classes, interfaces, and enums. These
indexes are particularly important during the merge pro-
cess phase when transformations need to be applied to a
particular element, and it is necessary to know which calls
and expressions refer to that element in order to apply the
transformation. More concretely, a renaming of an element
relies on this mechanism in order to reach all the references
to that particular element. There are also the reverse indexes
of those mentioned above, where each reference is mapped
to the element to which it refers. These indexes are used
when translating identi�ers by reference.

This stage is the most costly of the process (see Section
5), because, as opposed to other merging techniques (e.g.,
[11, 26]), we load and index the entire version of the project.
This cost comes with the advantage of allowing us to per-
form renaming transformations across the project, as well
as moving elements. Such transformations will reduce the
number of false negatives related to missing references (as
in the example of Figure 3).

5 Experiment

To evaluate the feasibility of our approach in practice we
carried out an experiment involving code from open-source

code repositories. However, to our knowledge, there are no
real merge scenarios with UUIDs attached available, nor
any other form of identity on its elements. Therefore, we
decided to alter existing merge scenarios by injecting UUID
comments, and hence, obtain scenarios where we could test
our merge process. We achieved this by using tree-matching
tools to pair elements from di�erent versions and further
attach the same UUID to both elements.

5.1 Collecting Merge Scenarios

We extracted two sets of real merge scenarios from the sup-
plementary material of the paper by Cavalcanti et al. [11]. A
shortcoming of the provided merge scenarios was the fact
that only the �les that were textually modi�ed were available
in the material. Our approach requires not only the changed
�les but also the unchanged �les to resolve the references.
Thus, we obtained the commit ids that were also available in
the authors’ package in order to fetch the complete versions
from the projects’ Git repositories. We selected two out of
the four projects available in the small sample contained in
the package, Bukkit6 and jsoup7.
Once all the versions containing the whole project code

had been fetched from Git, the next phase was to set up
these projects by arti�cially “fabricating” the identity of their
elements, as if it would have beenmaintained over time using
our approach. The �rst step was to create a set of 3-tuples,
each holding one �le for each version (base, left, right), where
all three �les are the same �le in three di�erent versions. This
correspondence is provided by the path within the project.
If a �le has been removed from one version to another, the
�le tuple represents the missing �le as null.

Having obtained the set of �le tuples, the next step was to
�nd all the elements that are mapped between the base/left
and base/right pairs of �les from a single �le tuple. This
is done using a tree matcher, already used in other studies
[8, 26] as a tool to calculate di�erences in ASTs, but in our
case to give identity to their elements. We used GumTree
[12] for this purpose, one of the state-of-the-art tools, with
a tree generator based on JavaParser’s ASTs.

After �nding all the mappings resulting from the GumTree
tool, correspondence was made between a GumTree node

6https://github.com/Bukkit/Bukkit/
7https://github.com/jhy/jsoup

81

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

and a JavaParser node based on their positions in the source,
and a UUID comment was injected into these elements. After
setting up all the versions, an experiment was carried out
involving a total of 63 merge scenarios, 19 from Bukkit and
44 from jsoup.

5.2 Results

Jaid was used to detect con�icts and to check for potential
false positives and false negatives. To achieve the objective a
manual analysis was performed. The merge scenarios were
divided into two groups: the group of merge scenarios with-
out con�icts and the group with con�icts. Table 2 presents
the results per project of the number of merge scenarios and
how many of them are con�ict-free or not. Note that some
merge scenarios were excluded because at least one of their
transformation sets (left or right) is empty due to changes
over members not being covered by Jaid (see section 4).

5.2.1 FalseNegatives. Themain purpose of analyzing the
group without con�icts was to �nd potential false negatives.
After �nding that there were no con�icts, both branches
were merged into the base and the output of each �le was
written to a separate path. After copying the merge output
�les into a folder with a pre-con�gured project according
to the version’s project (Bukkit or jsoup), we investigated if
these �les would build successfully, and if not, what was the
reason.

We found 9 (21%) scenarios in which errors were related to
missing Java’s coverage of Jaid. The most frequent case (7 out
of 9 scenarios) were methods de�ned inside class bodies of
enum constants that were changed in the branches, as well as
their calls. As these methods are also called by other methods
covered by Jaid, the bodies were changed, but the references
were broken, not least because the methods not covered by
Jaid did not even have a UUID attached. The remaining two
scenarios failed to build successfully due to the absence of
transformations regarding converting a class to an interface
and exception classes changes in the throws keyword used
along with the method signature. The remaining 34 (79%)
merge scenarios were built successfully.

5.2.2 False Positives. The main goal of the con�ict group
analysis was to �nd potential false positives. After �nding
the versions with con�icting transformations, a manual eval-
uation was performed to understand the type of con�icts and
the transformations that caused them, in order to investigate
whether the generated con�icts were in fact real con�icts
or not (false positives). A total of 40 con�icts were found,
but only 6 di�erent types of con�ict, a small fragment of
the con�ictual pairs. Table 3 presents the types of con�ict
found. All of these con�icts were correctly detected since
they all actually reference two con�icting transformations.
Therefore, no false positives were found.

5.2.3 ExecutionTime. Wealso evaluated the performance
of the Jaid merge processes with the objective of �nding out
if the process would require long execution times that would
make the approach inviable. The merge executions were per-
formed on a laptop with Intel Core i7, 14 cores @ 3 GHz, and
16 GB RAM on Windows 10 (64-bit).

We calculated the execution times of the entire merge pro-
cess, as well as the parsing/indexing and applying transfor-
mations phases separately. Based on the average of the mea-
sured times, parsing/indexing is the most time-consuming
task of the entire merging process, consuming approximately
50% and 70% of the time for Bukkit and jsoup, respectively.
The remaining time is consumed in extracting transforma-
tions (45% for Bukkit and 28% for jsoup), detecting con�icts,
and applying transformations phases.

Our implementation, being a prototype, has many points
where it can be optimized. Besides, the whole merging pro-
cess is done sequentially, while parsing and especially in-
dexing could take advantage of parallelization. The overall
execution times of the merging process took on average 2.9
and 13.7 seconds for Bukkit and jsoup projects, respectively,
which we consider acceptable execution times to make the
proposed approach a viable option in practice.

Additionally, since the parsing/indexing phase is the most
time-consuming task of the whole process, we explored
whether the number of lines of code and the execution time
of the whole process is directionally proportional to each
other. Figure 8 presents the relationship between lines of
code and the merge process execution time for each version,
and the results seem to point to a linear relationship.

6 Discussion

6.1 Drawbacks

The proposed approach, being language-speci�c, requires a
di�erent implementation for each programming language,
despite the overall process being similar. As with testing
toolkits, pro�lers, linters, etc, we argue that language-speci�c
merging tools could pay o�, given that they would provide
signi�cant improvements in con�ict detection and in the
overall usability of the merging process.
Another disadvantage of our approach is to require com-

pilable code without broken references. If some references
to members cannot be resolved, this implies that Jaid has
incomplete information for the transformations, and con-
sequently, that may a�ect their application and accurate
con�ict detection. Nevertheless, it is not common practice to
commit project versions with compilation errors, and hence,
we consider that this is not a severe limitation.

Another aspect that could compromise the approach is if
UUID comments are accidentally broken by using operations
such as delete or cut-and-paste, which would lead to dan-
gling or incomplete UUID comments. This situation could be
particularly common for members with only the UUID in a

82

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

Table 2. Summary of results for all merge scenarios.

Scenarios Excluded Con�ict-free With Con�icts

Bukkit 19 0 (0%) 13 (68%) 6 (32%)
jsoup 44 6 (14%) 30 (68%) 8 (18%)
Total 63 6 (10%) 43 (68%) 14 (22%)

Table 3. Summary of results for all merge scenarios. (*) Refers to any transformation that involves a modi�cation to the child
elements of the removed one.

Con�icts Con�ict type Explanation

1 SetJavadoc–SetJavadoc Both Javadoc changes are di�erent.
6 Imports–Imports The same �le’s imports are being changed to two di�erent import lists.
17 RemoveFile–* The removed �le has changes in it.
5 Body–Body Both body changes are di�erent.
10 RemoveCallable–* The removed callable has changes in it.
1 AddCallable–Signature The new added callable has the same signature as the changed one.

Number of Lines of Code (Project version)

W
ho

le
 P

ro
ce

ss
 E

xe
cu

tio
n

Ti
m

e
(m

s)

0

5000

10000

15000

10000 20000 30000 40000 50000 60000 70000

Bukkit

Number of Lines of Code (project version)

W
ho

le
 P

ro
ce

ss
 E

xe
cu

tio
n

Ti
m

e
(m

s)

0

5000

10000

15000

20000

25000

57500 60000 62500 65000 67500 70000

jsoup

Figure 8. Merge times in relation to project size.

single line comment, which, by being hidden, could move the
entire member declaration elsewhere, leaving the comment
behind. In the case of members with block or Javadoc com-
ments, we believe this would be less likely to occur, as the
selection of the entire member declaration would start from
the beginning of the comment until the end of the member
declaration.

Having UUIDs in the member comments is harmless and
negligiblewith respect to the storage andmachine-processing
of source code. However, from a developer’s perspective, it
is obvious that the UUIDs embody additional visual clutter
that may hinder the usability of the code editor (recall Figure
4). These extraneous elements add no value to usual devel-
opment settings, so we speculate that it may simply annoy
most developers. Therefore, we believe that applying our
approach in practice would be smoother if code editors are
slightly adapted. One solution to the clutter problem could
be based on a well-known feature of modern popular IDEs
(e.g., Eclipse, IntelliJ, VS Code) — collapsing of lines of code.
A simple plugin for those IDEs would hide UUID lines, and
the appearance of the code editor would not di�er much
from the conventional one.
Another option would be to use a projectional editor that

handles UUID comments in a specialized way. Projectional
editors are closely related to the notion of structured editors,
an old idea that never gainedwide popularity but still with ac-
tive research (e.g., [6, 15, 17, 25]). As opposed to conventional
code editors, projectional editors typically use a di�erent
representation for storage (i.e. �le content) and editing, im-
plying that what is visible in the editor is not necessarily a
direct representation of the �le content (e.g., Domain Work-
bench [28], MPS). We aim at a similar outcome, but we do it
in a non-disruptive way by not requiring a di�erent storage
format for source �les. In this way, UUID comments would
be completely hidden from the editor, as they would not be
even part of the projection. Furthermore, when types and
members are created, UUIDs comments could be injected
directly by the editor, as opposed to having that performed
at the commit phase (as discussed in Section 3.1).

83

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

6.2 Bene�ts

The downside of having a language-speci�c approach also
has its advantages, given that such a speci�city allows more
precise con�ict detection due to distinct features of program-
ming languages. Consider the following examples: Java and
C++ support method overloading whereas Javascript and
Python do not; themodi�ers and their valid combinations are
di�erent among languages, as well as namespace schemes.
Having generic transformations that work well for numer-
ous, diverse languages, would be a very complex endeavor.

The experiment conducted suggests that, with an exhaus-
tive list of transformations and a complete library of con�ict
types, this approach, assuming the UUIDs are preserved
properly, could evolve towards nearly eliminating false posi-
tives and false negatives, resulting in an accurate merge (or
no merge, if there are con�icts). By accurate merge, we do
not mean a fully automated merge, but rather an error-free
merge that correctly detects all existing con�icts, along with
the insertion of all features introduced by the branch, and
the display of all con�icts that could not be resolved auto-
matically, since there will always be con�icts that require
human intervention.

We envision a user-friendly GUI facility, which we did not
implement so far, where one could select among alternative
transformations to solve at least a part of the con�icts. For
example, when facing a clashing rename con�ict, one would
decide which one to use without having to edit the code. In
turn, the chosen transformation would become con�ict-free,
whereas the discarded one would be removed from its set. We
are con�dent that some decisions could be made by means
of light interaction with tool assistance, but others certainly
would require manual intervention. Our merge process, by
working with typed transformations and con�ict objects
formed using those, may facilitate having a good con�ict
resolution usability, because the modi�cations involved are
categorized and well-de�ned.

Finally, a pragmatic advantage of our approach is its com-
patibility with existing toolchains. It allows one to obtain
the bene�ts of projectional editing (having UUIDs) in code
merging without using a projectional editor (as discussed in
Section 1).

6.3 Threats to Validity

The fact of running an experiment with only two projects,
even though 63 scenarios were evaluated, not only is a rela-
tively small sample of the Java projects, but also the diversity
of merge scenarios is questionable, since all merge scenar-
ios of the same project may share a similar development
style. Therefore, the sets of transformations extracted from
versions of those projects are not diversi�ed. Running ex-
periments with more projects and diversi�ed scenarios is
necessary to support our claimed bene�ts.

The lack of Java’s coverage does not allow us to con�-
dently claim that there is no Java grammar element that, if
covered, would not cause some sort of malfunction in the
overall merge process. Also, checking for con�icts between
only two transformations may not be su�cient to detect
some more advanced and complex con�icts, since a con�ict
may not exist between two transformations, but with the
addition of a third one, a con�ict may arise.

7 Related Work

7.1 Unstructured Merging

Unstructured merging is a purely textual merging technique
[8]. Line-based algorithms are the most common strategy
for this type of merging [16, 21], meaning that these tools
compare the �les on a line-by-line basis and detect con�icts
based on chunks, the lines that are di�erent between ver-
sions. Most of the available unstructured merge tools are
based on the de�nition of the di�3 algorithm [16]. Examples
of unstructured merge tools are the Concurrent Version Sys-
tem (CVS) [7] and the rcsmerge tool in the Revision Control
System (RCS) [30]. The genericity o�ered by tools based on
this technique, since all software artifacts can be represented
as plain text or in binary �les, and the small computational
times required are the major advantages, are most likely the
reason why it is still the state of the practice. Unstructured
merging is not only imprecise, as it does not take into consid-
eration the grammar of the programming language, which
sometimes results in unexpected con�icts (false positives),
but also untrustworthy because it does not report situations
that are in fact con�ictual (false negatives) [11].

7.2 Structured Merging

Structuredmerge tools, because they take the grammar of the
source code into consideration, are more precise [2] because
they detect con�icts that are related to syntax errors, the
so-called syntax con�icts, and ignore con�icts detected by
unstructured merge tools that make no di�erence to the over-
all structure of the source code. On the other hand, since the
merge tools require knowledge of the particular program-
ming language, the genericity advantage over text-based
merge tools is lost. Also, as noted by Apel et al. [2], even
after auto-tuning an implemented structured merge tool,
JDime, both syntactic merge techniques with and without
auto-tuning have signi�cantly lower performance than un-
structured merge tools. OperV [22] and JDime [2] are exam-
ples of tree-based merging techniques. In addition, Asenov
et al. [5] proposed a novel approach to versioning trees that
provides more accurate di�s through a novel algorithm for
a three-way merging of trees based on tree di�erencing al-
gorithms such as GumTree [12] or ChangeDistiller [13] and
node IDs, which are stored in a custom storage format. These
approaches compute di�erences and detect renames based
on the relative position of nodes within trees. As long as

84

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

the nodes remain in the same position and with the same
parent, they are correctly matched. Therefore, their process
of extracting di�erences between versions is an approxima-
tion, whereas in our case, assuming that UUIDs are correctly
preserved, the match between two members with the same
UUID is always exact.

7.3 Semi-Structured Merging

Semi-structured merge tools, as the name suggests, are not
fully structured, but are a combination of unstructured and
structured techniques. Semi-structured merge tools use tree-
based representations of the source code and di�erencing and
matching algorithms to compute the similarity between trees
and the di�erences between them. FSTMerge [3] and JDime
[2] are examples of semi-structured merging tools. Both
use a tree-based representation up to the method level and
their full-text bodies in the leaves. Thus, structured merging
techniques are used on the tree nodes up to the method level,
and unstructured merging techniques are used in the method
bodies. FSTMerge’s approach di�ers from ours in the way
it does tree di�erencing, which is done by superimposing
trees, and in the way it handles body di�erencing.

Large-scale experiments have demonstrated that semistruc-
tured merge signi�cantly reduces con�icts when compared
to unstructuredmerge, with a performance that is not prohib-
itively slow [11, 26]. The FSTMerge approach was improved
in jFSTMerge [11], reducing false positives and false nega-
tives. IntelliMerge [26] has further improved precision with
a graph-based approach to match code elements of branches
to be merged and detect refactoring operations, while also
improving merge execution time. IntelliMerge’s approach
di�ers from ours not only in being graph-based, but also in
that it relies on matching vertices for graph di�erencing and
uses the GumTree algorithm for body di�erencing. Note that
none of these approaches has an infallible di�erencing step,
as explained above in Section 7.2, nor they are operation-
based. A key di�erence of our approach is that it puts more
emphasis on language-speci�c constructs, allowing a more
precise con�ict detection.

7.4 Model Di�erencing

Our approach is performing model di�erencing [1] when ex-
tracting the transformations. Previous approaches and tools
have addressed this problem using methods to di�erenti-
ate models that conform to a given metamodel. DSMDi�
[19] describes di�erencing algorithms for metamodels of
the Generic Modeling Environment (GME [18]). The Eclipse
Modeling Framework (EMF [29]), an implementation of the
Meta-Object Facility OMG’s standard [24], embodies a meta-
modeling language (Ecore) that can be used to model ar-
bitrary domains, including the structure of a program in
a given programming language. In this context, the EMF

Compare project8 provides facilities to compare models that
conform to an Ecore metamodel. MPS also o�ers di�erencing
capabilities for models described in the tool-speci�c meta-
language. Despite the several existing methods for generic
model di�erencing, in our approach, we opted for work-
ing with Java-speci�c models (JavaParser’s AST) in other
to perform �ne-grained con�ict detection (recall Section
3.3.2). We could have modeled Java code, for instance, using
EMF, and in turn bene�t from its model comparison facil-
ities. However, that would imply redoing much of what is
already well-implemented in JavaParser, most notably, the
model de�nition, the parsing of Java code to obtain model
instances, the API to manipulate those, and the resolution
facilities for types and references that are speci�c to Java.

7.5 Operation-Based Merging

Change-based merging tools [21] capture changes as they
occur. Since the changes are captured, there is no need for
the di�erencing process, which consists of computing the dif-
ferences between two versions of the same software artifact.
Operation-based merging [20] is a variant of change-based
merging because it represents the changes as operations
(or transformations) that, when applied to a particular state
of the software artifact, become its subsequent state. Some
advantages and problems of operation-based merging are
discussed in [20], as well as the proposal and implementation
of algorithms capable of segregating the con�icting transfor-
mations into sets. OperV [22] also uses an operation-based
approach, where changes to the system are represented by
editing transformations on the tree used to store the struc-
tural information of the project.

As pointed out by [20], one of the limitations of operation-
based merging is that the order in which certain operations
are applied a�ects the result, since two di�erent orders can
produce two di�erent outputs. Appendix B illustrates this
issue with the scenario of Figure 6.

8 Conclusions

Over the years, one of the major challenges in software merg-
ing has been the inability to correctly match the same mem-
bers between versions. Thus, members with fully de�ned
identities are a form of avoiding ambiguous and possibly
inaccurate matches that indirectly a�ect the merge result.
By providing a more controlled evolution of software arti-
facts through the sequential application of transformations
that should not introduce syntactic errors if implemented
correctly, false negative con�icts related to semantic com-
pilation errors can be reduced. Also, more precise merge
commits can be achieved by reducing false positive con�icts,
with a detailed and exhaustive knowledge base about the
programming languages’ syntax incompatibilities. Our con-
tribution was a �rst step towards this goal.

8https://projects.eclipse.org/projects/modeling.emfcompare

85

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

We have shown how more cases of false negatives and
false positives can be successfully addressed, most notably,
with respect to changes involving renamings. The experi-
ment results provided some evidence that the approach is
feasible in practice. Despite the constraint of maintaining
UUIDs as code comments, a slight deviation from standard
practice, our approach is still largely compatible with soft-
ware development practices. Despite that code editing envi-
ronments would have to be lightly adapted, we could bene�t
from some advantages of projectional editors but remain
close to regular development settings.

In future work, we plan to improve the coverage of Java’s
constructs in Jaid, and run a large-scale experiment to eval-
uate the approach with more depth. Up to this point, we
were focused on achieving a proof of concept, and no e�orts
have been made regarding optimization — we believe there
is room for improvement here, too. As discussed in Section
6.2, a GUI tool to select among alternative transformations
would also be a useful addition to our work.

Acknowledgments

We would like to thank the anonymous reviewers for their
valuable feedback on earlier versions of this paper. This
work was partially supported by Fundação para a Ciência e
a Tecnologia, I.P. (FCT) [ISTAR Projects: UIDB/04466/2020
and UIDP/04466/2020].

A Con�ict Type Pairs

Type

P
a
ck

a
g
e

Im
p
o
rt
s

A
d
d

R
e
m
o
v
e

R
e
n
a
m
e

M
o
d
i�
e
rs

Im
p
le
m
e
n
ts

E
x
te
n
d
s

M
o
v
e

Move • • • •

Extends • •

Implements • •

Modi�ers • •

Rename • • •

Remove

Add •

Imports •

Package •

Method

A
d
d

R
e
m
o
v
e

S
ig
n
a
tu
re

B
o
d
y

M
o
d
i�
e
rs

R
e
tu
rn

T
y
p
e

M
o
v
e

Add • • •

Remove • • • • •

Signature • •

Body •

Modi�ers •

ReturnType •

Move •

Field

A
d
d

R
e
m
o
v
e

R
e
n
a
m
e

T
y
p
e

M
o
d
i�
e
rs

In
it
ia
li
ze
r

M
o
v
e

Move • • • •

Initializer • • •

Modi�ers • •

Type • •

Rename • • •

Remove

Add •

B Transformation Ordering in
Operation-Based Merge

86

Code Merging using Transformations and Member Identity Onward! ’23, October 25–27, 2023, Cascais, Portugal

C Translate Identi�ers by Reference

References
[1] Marcus Alanen and Ivan Porres. 2003. Di�erence and Union of Mod-

els. In «UML» 2003 - The Uni�ed Modeling Language, Modeling Lan-

guages and Applications, 6th International Conference, San Francisco,

CA, USA, October 20-24, 2003, Proceedings (Lecture Notes in Computer

Science, Vol. 2863), Perdita Stevens, JonWhittle, and Grady Booch (Eds.).
Springer, 2–17. h�ps://doi.org/10.1007/978-3-540-45221-8_2

[2] Sven Apel, Olaf Leßenich, and Christian Lengauer. 2012. Structured
merge with auto-tuning: balancing precision and performance. In
2012 Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering. 120–129. h�ps://doi.org/10.1145/

2351676.2351694

[3] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and
Christian Kästner. 2011. Semistructured Merge: Rethinking Merge
in Revision Control Systems. In Proceedings of the 19th ACM SIG-

SOFT Symposium and the 13th European Conference on Foundations

of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11). Associa-
tion for Computing Machinery, New York, NY, USA, 190–200. h�ps:

//doi.org/10.1145/2025113.2025141

[4] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold.
2007. JDi�: A Di�erencing Technique and Tool for Object-Oriented
Programs. Automated Software Eng. 14, 1 (mar 2007), 3–36. h�ps:

//doi.org/10.1007/s10515-006-0002-0

[5] Dimitar Asenov, Balz Guenat, Peter Müller, and Martin Otth. 2017.
Precise Version Control of Trees with Line-Based Version Control
Systems. In Fundamental Approaches to Software Engineering, Marieke
Huisman and Julia Rubin (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 152–169.

[6] Tom Beckmann, Patrick Rein, Stefan Ramson, Joana Bergsiek, and
Robert Hirschfeld. 2023. Structured Editing for All: Deriving Usable
Structured Editors from Grammars. In Proceedings of the 2023 CHI Con-

ference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 595, 16 pages. h�ps://doi.org/10.1145/3544548.3580785

[7] Brian Berliner. 1990. CVS II: Parallelizing Software Development.
In Proc. The Advanced Computing Systems Professional and Technical

Association (USENIX) Conf. 22–26.
[8] Caius Brindescu. 2018. How Do Developers Resolve Merge Con�icts?

An Investigation into the Processes, Tools, and Improvements. In Pro-

ceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). As-
sociation for Computing Machinery, New York, NY, USA, 952–955.
h�ps://doi.org/10.1145/3236024.3275430

[9] Caius Brindescu, Iftekhar Ahmed, Carlos Jensen, and Anita Sarma.
2020. An Empirical Investigation into Merge Con�icts and Their E�ect
on Software Quality. Empirical Softw. Engg. 25, 1 (jan 2020), 562–590.
h�ps://doi.org/10.1007/s10664-019-09735-4

[10] Jim Bu�enbarger. 1995. Syntactic softwaremerging. In Software Con�g-
uration Management, Jacky Estublier (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 153–172.

[11] Guilherme Cavalcanti, Paulo Borba, and Paola Accioly. 2017. Evaluat-
ing and Improving Semistructured Merge. Proc. ACM Program. Lang.

1, OOPSLA, Article 59 (oct 2017), 27 pages. h�ps://doi.org/10.1145/

3133883

[12] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. 2014. Fine-Grained and Accurate Source
Code Di�erencing. In Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering (Vasteras, Sweden)
(ASE ’14). Association for Computing Machinery, New York, NY, USA,
313–324. h�ps://doi.org/10.1145/2642937.2642982

[13] Beat Fluri, Michael Wursch, Martin PInzger, and Harald Gall. 2007.
Change Distilling:Tree Di�erencing for Fine-Grained Source Code
Change Extraction. IEEE Transactions on Software Engineering 33, 11
(2007), 725–743. h�ps://doi.org/10.1109/TSE.2007.70731

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995.
Design patterns: elements of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc.

[15] David B. Garlan and Philip L. Miller. 1984. GNOME: An Introductory
Programming Environment Based on a Family of Structure Editors. In
Proceedings of the First ACM SIGSOFT/SIGPLAN Software Engineering

Symposium on Practical Software Development Environments (SDE 1).
Association for Computing Machinery, New York, NY, USA, 65–72.
h�ps://doi.org/10.1145/800020.808250

87

https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2351676.2351694
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1145/2025113.2025141
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1007/s10515-006-0002-0
https://doi.org/10.1145/3544548.3580785
https://doi.org/10.1145/3236024.3275430
https://doi.org/10.1007/s10664-019-09735-4
https://doi.org/10.1145/3133883
https://doi.org/10.1145/3133883
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1109/TSE.2007.70731
https://doi.org/10.1145/800020.808250

Onward! ’23, October 25–27, 2023, Cascais, Portugal André R. Teles and André L. Santos

[16] J. W. Hunt and M. D. Mcilroy. 1975. An algorithm for di�erential �le
comparison. Computer Science (1975). h�p://www.cs.dartmouth.edu/

%7Edoug/di�.pdf

[17] Amy J. Ko and Brad A. Myers. 2006. Barista: An Implementation
Framework for Enabling New Tools, Interaction Techniques and Views
in Code Editors. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (Montréal, Québec, Canada) (CHI ’06).
Association for Computing Machinery, New York, NY, USA, 387–396.
h�ps://doi.org/10.1145/1124772.1124831

[18] Ákos Lédeczi, Árpád Bakay, Miklós Maróti, Péter Völgyesi, Greg Nord-
strom, Jonathan Sprinkle, and Gábor Karsai. 2001. Composing Domain-
Speci�c Design Environments. Computer 34, 11 (nov 2001), 44–51.

[19] Yuehua Lin, Je� Gray, and Frédéric Jouault. 2007. DSMDi�: a di�erenti-
ation tool for domain-speci�c models. European Journal of Information

Systems 16, 4 (2007), 349–361. h�ps://doi.org/10.1057/palgrave.ejis.

3000685

[20] Ernst Lippe and Norbert van Oosterom. 1992. Operation-Based Merg-
ing. SIGSOFT Softw. Eng. Notes 17, 5 (nov 1992), 78–87. h�ps:

//doi.org/10.1145/142882.143753

[21] T. Mens. 2002. A state-of-the-art survey on software merging. IEEE
Transactions on Software Engineering 28, 5 (2002), 449–462. h�ps:

//doi.org/10.1109/TSE.2002.1000449

[22] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, and Tien N.
Nguyen. 2010. Operation-Based, Fine-Grained Version Control Model
for Tree-Based Representation. In Fundamental Approaches to Software

Engineering, David S. Rosenblum andGabriele Taentzer (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 74–90.

[23] Object Management Group 1999. OMG XML Metadata Interchange

(XMI) Speci�cation Version 1.1. Object Management Group, Framing-
ham, Massachusetts.

[24] OMG. 2013. OMG Meta Object Facility (MOF) Core Speci�cation,
Version 2.4.1. h�p://www.omg.org/spec/MOF/2.4.1

[25] André L. Santos. 2020. Javardise: A Structured Code Editor for Pro-
gramming Pedagogy in Java. In Companion Proceedings of the 4th

International Conference on Art, Science, and Engineering of Program-

ming (Porto, Portugal) (Programming ’20). Association for Computing
Machinery, New York, NY, USA, 120–125. h�ps://doi.org/10.1145/

3397537.3397561

[26] Bo Shen, Wei Zhang, Haiyan Zhao, Guangtai Liang, Zhi Jin, and Qianx-
iangWang. 2019. IntelliMerge: A Refactoring-Aware SoftwareMerging
Technique. Proc. ACM Program. Lang. 3, OOPSLA, Article 170 (oct
2019), 28 pages. h�ps://doi.org/10.1145/3360596

[27] Léuson Silva, Paulo Borba, and Arthur Pires. 2022. Build con�icts
in the wild. Journal of Software-Evolution and Process (2022), (also
appeared in ICSME’2022 Journal First track).

[28] Charles Simonyi, Magnus Christerson, and Shane Cli�ord. 2006. In-
tentional Software. SIGPLAN Not. 41, 10 (oct 2006), 451–464. h�ps:

//doi.org/10.1145/1167515.1167511

[29] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
2009. EMF: Eclipse Modeling Framework (2 ed.). Addison-Wesley,
Boston, MA.

[30] Walter F. Tichy. 1985. Rcs — a system for ver-
sion control. Software: Practice and Experience 15, 7
(1985), 637–654. h�ps://doi.org/10.1002/spe.4380150703

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380150703
[31] A. van Deursen, P. Klint, and F. Tip. 1993. Origin Tracking. J. Symb.

Comput. 15, 5–6 (may 1993), 523–545. h�ps://doi.org/10.1016/S0747-

7171(06)80004-0

[32] Riemer van Rozen and Tijs van der Storm. 2015. Origin Tracking + Text
Di�erencing = Textual Model Di�erencing. In Theory and Practice of

Model Transformations, Dimitris Kolovos and Manuel Wimmer (Eds.).
Springer International Publishing, Cham, 18–33.

[33] Bernhard Westfechtel. 1991. Structure-Oriented Merging of Revisions
of Software Documents. In Proceedings of the 3rd International Work-

shop on Software Con�guration Management (Trondheim, Norway)
(SCM ’91). Association for Computing Machinery, New York, NY, USA,
68–79. h�ps://doi.org/10.1145/111062.111071

Received 2023-04-28; accepted 2023-08-11

88

http://www.cs.dartmouth.edu/%7Edoug/diff.pdf
http://www.cs.dartmouth.edu/%7Edoug/diff.pdf
https://doi.org/10.1145/1124772.1124831
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1145/142882.143753
https://doi.org/10.1145/142882.143753
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1109/TSE.2002.1000449
http://www.omg.org/spec/MOF/2.4.1
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3397537.3397561
https://doi.org/10.1145/3360596
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1145/1167515.1167511
https://doi.org/10.1002/spe.4380150703
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.4380150703
https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1016/S0747-7171(06)80004-0
https://doi.org/10.1145/111062.111071

	Abstract
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Representing Member Identity
	3.2 Transformations
	3.3 Merging Process

	4 Implementation
	4.1 Abstract Syntax Trees for Java
	4.2 Parsing and Indexing

	5 Experiment
	5.1 Collecting Merge Scenarios
	5.2 Results

	6 Discussion
	6.1 Drawbacks
	6.2 Benefits
	6.3 Threats to Validity

	7 Related Work
	7.1 Unstructured Merging
	7.2 Structured Merging
	7.3 Semi-Structured Merging
	7.4 Model Differencing
	7.5 Operation-Based Merging

	8 Conclusions
	Acknowledgments
	A Conflict Type Pairs
	B Transformation Ordering in Operation-Based Merge
	C Translate Identifiers by Reference
	References

