
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-09-04

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Moura, J. (2023). Scalable and reliable orchestration for balancing the workload among SDN
controllers. In Anwar, S., Ullah, A., Rocha, Á., and Sousa, M. J. (Ed.), Proceedings of International
Conference on Information Technology and Applications ICITA 2022. Lecture Notes in Networks and
Systems. (pp. 469-480). Lisboa: Springer.

 
Further information on publisher's website:
10.1007/978-981-19-9331-2_40

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Moura, J. (2023). Scalable and reliable
orchestration for balancing the workload among SDN controllers. In Anwar, S., Ullah, A., Rocha, Á.,
and Sousa, M. J. (Ed.), Proceedings of International Conference on Information Technology and
Applications ICITA 2022. Lecture Notes in Networks and Systems. (pp. 469-480). Lisboa: Springer.,
which has been published in final form at https://dx.doi.org/10.1007/978-981-19-9331-2_40. This
article may be used for non-commercial purposes in accordance with the Publisher's Terms and
Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-981-19-9331-2_40


Scalable and Reliable Orchestration for Balancing the 

Workload Among SDN Controllers 

José Moura1 

1 Instituto de Telecomunicações (IT), Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, 

Portugal 
jose.moura@iscte-iul.pt 

Abstract. There is a high demand for Software Defined Networking (SDN) so-

lutions to control emerging networking scenarios. Due to the centralized design 

of SDN, a single SDN controller could have its performance severely degraded 

due to workload congestion or even it become out of service after being menaced 

by failures or cyber-attacks. To enhance the robustness and scalability of the con-

trol system level, it is fundamental the deployment of multiple redundant con-

trollers, which need to be correctly orchestrated for ensuring these controllers 

efficiently control the data plane. This work designs, deploys, and evaluates a 

new East/Westbound distributed light protocol, which supports the leaderless or-

chestration among controllers. This protocol is based on group communication 

over UDP. The evaluation results shows the merits of the proposed orchestration 

design on the system scalability, workload balancing and failure robustness. 
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1 Introduction 

Emerging networking scenarios require for novel and agile solutions to control the 

available resources of the networked systems. SDN-based solutions are very appealing 

to be used for controlling the network infrastructures used in upcoming use cases. There 

is also a well-defined standard on the Southbound API of SDN, i.e. OpenFlow protocol. 

Nevertheless, further investigation is needed towards a light, scalable, and efficient 

East/Westbound protocol for supporting the orchestration among a group of SDN con-

trollers, which share among them the redundant control (Ahmad & Mir, 2020) (Hoang 

et al., 2022). Aligned with this, the current work proposes a new multicast East/West-

bound protocol that dynamically orchestrates any number of SDN controllers in a com-

plete distributed way, and without a top-level centralized orchestrator as suggested in 

(Moura & Hutchison, 2022). Avoiding this top-level orchestrator, the system enhances 

its scalability and robustness against respectively high control workloads and any even-

tual failure at the single orchestrator. Using the novel solution, when a controller fails, 

the still available controllers apprehend that event and correctly orchestrate among 

them the network devices previously under the control of the failed controller. The pa-

per structure is as follows. After the introduction, Section 2 analyses related work, 



highlighting the novel aspects of the current publication. Section 3 discusses the design 

of the proposed orchestration solution and the associated protocol. Its deployment is 

debated in Section 4, and Section 5 evaluates the proposed system. Section 6 discusses 

the main evaluation results. Finally, Section 7 concludes the paper with some future 

research directions. 

2 Related Work 

This section analyzes some related work, for highlighting the novel aspects of the cur-

rent investigation. The work in (Ahmad & Mir, 2020) (Hu et al., 2018) analyzed several 

controller architectures considering several performance parameters: scalability, con-

sistency, reliability, load balancing and security. The current work endorses all the pre-

vious parameters, except the security one. 

The authors of (Oktian et al., 2017) state that typical services provided by East/West-

bound API are the controllers’ coordination towards a control leader election, the dis-

tribution of network information and mitigation of controller failovers. The current pro-

posal for an East/Westbound protocol can be classified as a leaderless solution. It uses 

multicast communication for distributing the ID of each controller among the others, 

announcing the availability of the former controller for the remaining controllers. In 

this way, each controller can create the same ordered list of IDs. The order in that list 

of each controller can be eventually used once again by each controller orchestration 

function for autonomously deciding which switches will be under its control. After a 

controller failure, the network devices previously under the control of that failed con-

troller are distributed again and without collisions among the available controllers.  

(Hoang et al., 2022) propose a new East/West interface for sharing network state 

between heterogeneous SDN domains. The current work investigates the control of a 

single SDN domain by a set of redundant and homogeneous controllers. 

(Lyu et al., 2018) developed an analytic study that stochastically optimizes at differ-

ent time scales the on-demand activation of controllers, the adaptive association of con-

trollers and switches, and the real-time processing and dispatching of flow requests. In 

the current deployed proposal the previous aspects are covered, except the online con-

troller activation following the system load dynamics, which is let for future work. 

3 Design 

This section presents the diverse parts of our distributed solution to support the flexible 

and dynamic workload leaderless orchestration among any number of SDN controllers. 

The sub-section 3.1 discusses the orchestration protocol, and the sub-section 3.2 dis-

cusses some interesting controller orchestration functions. 



3.1 Orchestration Protocol 

The current sub-section presents the communication group protocol used to enable the 

automatic discovery of all the active controllers by each individual controller. Then, 

each controller can use a local orchestration function to select which switch or Packet 

In message that controller can exclusively control. The orchestration functions will be 

debated in the next sub-section. Figure 1 visualizes the communication protocol, as an 

example, among three controllers, but this protocol supports any number of controllers. 

Each controller has two light processes responsible for the transmission and reception 

of the orchestration East/Westbound protocol messages. The first light process of a 

controller sends an orchestration message to a multicast group announcing its own id, 

which was randomly generated at its startup. The second light process of the same con-

troller only receives messages from that group. Each time the receiving thread of a 

controller receives an orchestration message, the controller verifies if the id of the an-

nounced controller is already known. When the received id is not known, then the re-

ceiving thread updates a list of discovered ids. As shown in Figure 1, this protocol re-

quires a minimum number of multicast messages equal to the number of active control-

lers to enable the full awareness in each controller about all the other controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed Orchestration Protocol 

3.2 Controller Orchestration Function 

After the receiving thread of a specific controller has collected the ids of all the active 

controllers, this thread stores the collected ids in a list, which is shared with the main 

process of the controller. Then, the controller processes this list of ids obtaining the 

total number of active controllers (i.e. the list length) and the individual order of the 

current controller in that list. These two parameters are fundamental to the evaluation 

of the controller orchestration function visualized in Expression 1, where dpid is the 

unique datapath id associated to each switch. 



 

dpid mod(num_server) == order (1) 

When the equality in (1) becomes True, this occurs exclusively at a single controller 

among any set of controllers. Therefore, there is always a unique controller to decide 

how the message within the Packet-In received from switch dpid should be analyzed 

and processed. In this way, there is a distributed decision or consensus mechanism 

among the controllers. This solution offers the significant advantage of avoiding the 

exchange of OpenFlow or other extra synchronization messages among controllers to 

reach the final decision in which controller should perform the control decision.  

The previous orchestration function in use cases where there are distinct amounts of 

data flows traversing the forwarding switches could not be totally fair in terms of bal-

ancing the load among the controllers. To mitigate this problem, it is now discussed an 

alternative function, which could be fairer than the previous discussed function. This 

alternative orchestration function for each controller could decide if it processes or not 

any received Packet-In message is summarized in (2). The subtle difference in relation 

to (1) is the replace of dpid by packet_in_counter, which is the aggregated value of all 

received Packet-In messages by each controller. Assuming every switch is simultane-

ously connected via OpenFlow with every available controller, all the controllers share 

the same trend on the packet_in_counter parameter. The decision algorithm in (2) ena-

bles a fairer control load distribution among the diverse controllers, but it has a potential 

drawback. It can increase the number of times each switch must change from controller. 

Each time a new controller assumes the control of a switch, the controller must delete 

the old rules and install new ones on that switch. All this OpenFlow traffic increases 

the overload on the control channel. Alternatively, using the first function, in (1), each 

switch is always controlled by the same controller during all the time. In this way, the 

channel control will not become so congested as in the case of function (2). There is 

here clearly a tradeoff between the orchestration fairness and control channel overload.  

 

packet_in_counter mod(num_server) == order (2) 

4 Deployment 

The current Section details in the next sub-sections the deployment of the orchestration 

protocol and controller orchestration function, which were presented in Section 3. 

4.1 Orchestration Protocol 

As already explained in sub-section 3.1, each controller has two threads responsible 

for managing the orchestration protocol. As shown in Algorithm 1, inside the construc-

tor of the controller code, these two threads are started in steps 7 and 9. The thread t1 

is responsible for the periodic transmission of orchestration messages, announcing the 

controller id, which is randomly generated in step 4. The second thread, t2, is respon-

sible for listening the multicast orchestration messages sent by other controllers. The 



steps 19-23 are where the thread t1 tries every 2 s to send a multicast message announc-

ing its ID. Then, each controller has a listening thread (t2), steps 26-41, which receives 

all the multicast messages sent by the other controllers. It also decides, at a convenient 

time, when the list of IDs needs to be updated and announced to the local controller. 

The controller every second invokes the function in steps 46-48 to get a fresh version 

of the list containing the IDs of all active controllers. When a controller sees a list with 

only its own ID, it concludes that is alone and changes its role from EQUAL to 

MASTER. Otherwise, the controller using a local coordination function (see Algorithm 

2 below) can select the network devices or data plane messages, which can be exclu-

sively controlled by that controller.   
 Algorithm 1: Each controller initially starts two threads which manage the multicast commu-

nication with remaining controllers. 

1: from transmitter_multicast import Controller_Multicast 

2: import threading 

3: def __init__(self, *args, **kwargs): 
4:     self.cont_id = str(random.randint(0, 1000)) 

5:     self.tx_mult = Controller_Multicast(self.cont_id) 

6:     self.t2 = threading.Thread(target=self.tx_mult.receive, args=(self.tx_mult.get_id(),)) 
7:     self.t2.start() 

8:     self.t1 = threading.Thread(target=self.tx_mult.send, args=(self.tx_mult.get_id(),)) 

9:     self.t1.start() 
10: end function 

11: Class Controller_Multicast(object): 

12:     def __init__(self, id): 

13:         self.MY_ID = id 

14:         self.list_ids = [] 

15:     end function 

16:     def send(self, id): 

17:         multicast_addr = '224.0.0.1' 

18:         port = 3000 
19:         while True do 

20:              sock.sendto(json.dumps([id]).encode('utf-8'), (multicast_addr, port)) 

21:              time.sleep(2) 
22:          end while 

23:      end function 

24:     def receive(self, id): 
25:          while True do 

26:              cnt = cnt + 1 

27:              data, address = sock1.recvfrom(256) 
28:              l_rx = json.loads(data.decode('utf-8')) 

29:              for i in range(len(l_rx)) do 

30:                   if l_rx[i] not in l_tmp: 

31:                       l_tmp.append(l_rx[i]) 

32:                  end if 

33:             end for 

34:             if cnt > (len(l_tmp) + 2) 

35:                  l = l_tmp 

36:                  l_tmp = [id] 
37:                  cnt = 0 

38:             end if 

39:             l.sort(reverse=False) 
40:             self.list_ids = l 

41:         end while 

42:     end function 

43:     def get_id(self): 

44:         return self.MY_ID 



45:     end function 

46:     def get_list_ids(self): 
47:         return self.list_ids 

48:     end function 

4.2 Controller Orchestration Function 

Algorithm 2 shows the network function running in each controller, which enables 

a distributed coordination among all the SDN controllers operating in the role EQUAL. 

This algorithm avoids potential conflicts among the controllers (steps 5-6). Diverse or-

chestration functions were discussed in sub-section 3.2. 

 Algorithm 2: The controller assumes the role EQUAL avoiding conflicts with other controllers 

1: for each Packet-In Event with pkt do 

2:     datapath = Event.msg.datapath 
3:     dpid = datapath.id 

4:     if self.mode == 'EQUAL': 

5:         if not (dpid % int(self.num_serv) == int(self.order)): 
6:             return 

7:         else: 

8:             Analyses, processes and controls the current message 
9:         end if 

10:     end if 

11: end for 

5 Experimental Results 

This section presents the results of all the experiments conducted in this study. The 

results are offered based on three sets of experiences, which are listed in Table 1, and 

using the experimental setup visualized in Figure 2 and further detailed in Table 2. The 

system under evaluation is formed by m redundant controllers, n switches, n hosts and 

2n-1 data plane links. The data plane was emulated by Mininet. For all the tests of the 

current paper, ten controllers, ten switches and nineteen data plane links were used. The 

controller logic, using the Ryu Library, including the auxiliary class which deploys the 

behavior of the orchestration communication threads, was implemented in Python3. 

The next sub-sections discuss the diverse obtained results. 

 

 

Table 1. Evaluation tests and their main goals  

Subsection Main aspect(s) under analysis 

5.1 It verifies the correct behavior of the new proposed protocol to orchestrate any number of 
controllers in a completely distributed way 

5.2 It compares two possible controller orchestration functions for the distributed orchestration 

design; it also analyzes their impact on the system performance and the fairness in how each 
function balances the control workload among available redundant controllers   

5.3 It compares two distinct designs (centralized vs. distributed) for the orchestration part of the 

system; It can help to reach some conclusions in terms of how each solution enables both 

system scalability and system resiliency 



 

Figure 2. The SDN-based system under evaluation. 

 

Table 2. Hardware and software tools used during the evaluation tests  

ASUS Intel® Core™ i7-3517U CPU @ 

1.90GHz 2.40GHz, 12 GB RAM, Win-

dows10 Education x64 

- 

VirtualBox Ubuntu 22.04 https://www.virtualbox.org/; https://releases.ubuntu.com/22.04/ 

Ryu SDN Controller (v4.34) https://ryu-sdn.org/ 

OpenvSwitch (v2.16.90, DB Schema 

8.3.0) 

https://www.openvswitch.org/ 

Python 3.9.12 https://www.python.org/downloads/release/python-3912/ 

Mininet (v2.3.0) https://github.com/mininet/mininet 

Wireshark (v3.4.9) https://www.wireshark.org/ 

5.1 Functional Test of the Orchestration Protocol 

This functional test was made using the experimental setup presented in the beginning 

of the current Section. The goal of this initial test was to verify if the orchestration 

protocol messages were periodically sent from the same controller, announcing its ID 

to the other controllers. Figure 3.a) visualizes some samples of the time interval be-

tween two consecutive transmissions from the same transmission thread. The time in-

terval is roughly around 2 s. In addition, it was measured the multicast transmission 

delay between each multicast transmission thread and each receiver. The obtained sam-

ples are visualized in Figure 3.b). Except some sporadic peak delays within the range 

of [15,85]ms, the most significant amount of delay samples are below 10ms. In this 

way, the orchestration protocol was successfully verified. 



  
a) Multicast Periodic Transmission b) Multicast Transmission Delay 

Figure 3. Diverse Characteristics of the Multicast Orchestration Protocol 

5.2 Functional Test Comparing Two Alternative Orchestration Functions 

In this experiment, the two alternative orchestration functions discussed in sub-section 

3.2 were compared, using the same network traffic load, in terms of the total number 

of Packet In (PI) messages and the processed PI messages by each controller of the ten 

controllers under this test. The orchestration protocol among controllers was always the 

one multicast-based discussed in sub-sections 3.1 and 4.1. The obtained results are sum-

marized in Table 3. Analyzing and comparing the results relative to the two orchestra-

tion functions, the first conclusion is that the ID orchestration function when compared 

with the PI orchestration one reduces significantly (from 306 to 198) the total number 

of PI messages during the test. Nevertheless, the former function has a lower Jain Fair-

ness Index, i.e. 0.929, against the impressive 0.999 of the latter function. In this way, 

by running the current test, the tradeoff discussed in sub-section 3.2, when the two or-

chestration functions were initially analyzed, it was experimentally confirmed. 

 

Table 3. Considering the two orchestration functions under comparison, PI total and 

processed messages are listed for each controller 

  

PI Orchestration Function 

(Jain Fairnes Index=0.999) 

ID Orchestration Function 

(Jain Fairnes Index=0.929) 

Controller PI_Total PI_Processed ID_Total ID_Processed 

1 
306 31 198 15 

2 
306 30 198 21 

3 
306 31 198 27 

4 
306 31 198 23 

5 
306 30 198 25 

6 
306 31 198 19 

7 
306 30 198 17 

8 
306 31 198 11 

9 
306 31 198 13 

10 
306 30 198 27 



5.3 Functional Test Comparing Centralized vs. Distributed Orchestration 

After the fairest orchestration function among controllers was found (i.e. PI, sub-sec-

tion 5.1), this function was applied to two distinct orchestration designs. The two de-

signs under comparison are the distributed orchestration design that was discussed in 

sub-sections 3.1 and 4.1, and the centralized orchestration design investigated in 

(Moura & Hutchison, 2022). The comparison results are visualized in Figure 4. Ana-

lyzing these results, the distributed design based on multicast communication among 

the controllers has a lower load rate (1.6Kb/s) than the centralized design based on TCP 

communication (18Kb/s). Consequently, the distributed design is more scalable than 

the centralized one. In addition, the distributed design does not have the issue of the 

single point of failure that could easily occur in the centralized design. 

 

Figure 4. Centralized vs. Distributed Orchestration Design (vertical axis in logarith-

mic scale) 

6 Discussion 

This section debates the main conclusions and lessons learned during the current inves-

tigation work. From the obtained results, it was initially demonstrated that it is possible 

the usage of a multicast communication protocol to coordinate a set of redundant con-

trollers for balancing in a correct way the control workload among them. This proposed 

distributed design for the system orchestration part clearly offers system operational 

advantages in comparison with an existing centralized alternative of the literature 

(Moura & Hutchison, 2022). The advantages provided by the new proposed leaderless 

orchestration design are high system salability (e.g. for both number of controllers and 

number of controlled network devices) and increasing robustness against system 

threats, such as faults or cyber-attacks. The higher scalability of the distributed design 

in relation to the centralized option is visible from Figure 4, with a significant reduction 

(from 18Kb/s to 1.6Kb/s) on the system overload  induced by controllers’ orchestration. 



The current paper has also compared two possible controller orchestration functions 

for the distributed orchestration design. Both orchestration functions have been studied 

in terms of their impact on the system performance and the fairness in how each func-

tion balances the control workload among the available redundant controllers. Each 

function has a strong and a weak performance aspect, which are reversed, considering 

the other alternative function under study. As an example, if the owner of a network 

infrastructure is concerned with the amount of system resources used by the extra con-

trol / orchestration messages, trying to diminish the system energy consumption, our 

work indicates that the more suitable orchestration function is the one which associates 

to each switch a dedicated controller, considering the unique datapath id of that switch. 

In the case of a controller failure, the network devices previously under the control 

of that failed controller are distributed again and without any collision among the still 

available controllers. The system could require some seconds (i.e. around 3 or 4s) to 

reach a coherent state among all the controllers, but after that instant, the system oper-

ates without any issue.  

7 Conclusion 

In this study, it is proposed a new East/Westbound leaderless protocol among the con-

trollers to coordinate among them the control workload of a common network infra-

structure being redundantly controlled by those controllers. As shown in the result sec-

tion, this proposal is viable, scalable, and it offers increasing resilience against system 

threats due to the distributed characteristic of that proposal. For future work, the on-

demand (de)activation of controllers will be investigated (Lyu et al., 2018). 
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