
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-08-01

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Yamagiwa, S., Sousa, L. & Brandão, T. (2007). Meta-pipeline: A new execution mechanism for
distributed pipeline processing. In Kranzlmüller, D., Schreiner, W., and Volkert, J. (Ed.), 6th
International Symposium on Parallel and Distributed Computing (ISPDC'07). Hagenburg, Austria :
IEEE.

 
Further information on publisher's website:
10.1109/ISPDC.2007.36

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Yamagiwa, S., Sousa, L. & Brandão, T.
(2007). Meta-pipeline: A new execution mechanism for distributed pipeline processing. In
Kranzlmüller, D., Schreiner, W., and Volkert, J. (Ed.), 6th International Symposium on Parallel and
Distributed Computing (ISPDC'07). Hagenburg, Austria : IEEE., which has been published in final
form at https://dx.doi.org/10.1109/ISPDC.2007.36. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ISPDC.2007.36


Meta-Pipeline: A New Execution Mechanism for Distributed Pipeline Processing

Shinichi Yamagiwa
INESC-ID/IST

Rua Alves Redol, 9,
1000-029 Lisboa Portugal

yama@inesc-id.pt

Leonel Sousa
INESC-ID/IST

Rua Alves Redol, 9,
1000-029 Lisboa Portugal

las@inesc-id.pt

Tomás Brandão
IT-Lisbon/ISCTE

Av. Rovisco Pais, 1,
1049-001 Lisboa, Portugal

tomas.brandao@lx.it.pt

Abstract

The Caravela platform has been proposed by the authors
of this paper to perform distributed stream-based comput-
ing on general purpose computation. This platform uses a
secured execution unit called flow-model that prevents re-
mote users to touch local information in a computer. The
flow-model is assigned to local or remote processing units
that execute its program. This paper is focused on a new
execution mechanism that defines a pipeline composed by
flow-models, called meta-pipeline, and is designed as a
set of additional functions of the Caravela platform. The
pipeline is executed automatically by the meta-pipeline run-
time environment. This paper describes the execution mech-
anism and also presents an application example.

1 Introduction

Distributed computing environment, where computers,
clusters and supercomputers are connected via the Inter-
net for anonymous usage of resources, has spread over the
world [13]. The environment for such a huge computing
resource is called GRID environment. The GRID environ-
ment is accessed via a wide area network by users’ comput-
ers located anywhere in the world. Although the accessibil-
ity and the huge horsepower are attractive, the environment
needs to support distribution of the tasks by the different
computers and privacy for the users and safety for the con-
tributors to the computing resources. For instance, an appli-
cation on GRID environment might touch a computing re-
source illegally, and it also might make the resource down,
or it might steal private information stored in the resource,
if the environment has security holes.

To support stream-based computing on the recent com-
puters and simultaneously avoid the security matters in
GRID environment, the Caravela platform has been pro-
posed [2][14]. The Caravela platform defines flow-model
as depicted in Fig. 1, which is implemented through a data

structure that holds I/O data streams, constant parameters
and a program. The program in a flow-model generates out-
put data streams by processing every unit of the input data
streams. Since the flow-model is defined as a data struc-
ture, the application can fetch it from any of the remote
machines and may reproduce its execution also in any ma-
chine. Therefore, the flow-model can be assigned into any
processing resource that fits into the stream-based execution
style. Due to this characteristic, the Caravela platform pre-
pares servers located in any processing unit to execute flow-
models. Because a program in a flow-model is not able to
touch any resource except its I/O data streams, the security
matters in the GRID environment referred above are solved.

The Caravela platform accepts an application that
concurrently executes multiple flow-models in different
servers. However, after remote execution of a program in
a flow-model, the current execution mechanism returns the
output data stream(s) to the application. The flow-model’s
I/O streams can not be connected to each other, which
causes large communication overhead between the applica-
tion and the servers. Therefore, with an higher level execu-
tion model that can represent larger calculations by connect-
ing the I/O data streams of multiple flow-models, it can co-
operate to solve a given application. By creating a process-
ing pipeline to connect flow-model’s I/O streams, the output
data streams can be directly propagated from one server to
the other, and thus the application can be autonomously ex-
ecuted in distributed computing resources.

This paper is focused on an execution mechanism called
meta-pipeline. It defines the pipeline-model that is im-
plemented with flow-models whose I/O data streams are
directly interconnected. This paper also describes details
of the execution mechanism for implementing a pipeline-
model in the Caravela platform by using multiple dis-
tributed processing units. For evaluating the proposed meta-
pipeline mechanism implemented in the Caravela platform
this paper also shows a realistic application example.

The paper is organized as follows. The next section
shows the background of this research and presents the Car-



avela platform. Section 3 describes the design of the meta-
pipeline mechanism and section 4 illustrates its implemen-
tation. Section 5 discusses an application using the meta-
pipeline mechanism. Finally, conclusions are drawn in Sec-
tion 6.

2 Background
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There exist two types of implementations for the GRID
platform: message passing based and agent-based. Cur-
rently, the most popular example of the former one is the
Globus [7]. The applications working on Globus use well
known MPI-based message passing to communicate among
distributed processes. An example of the latter one is
Condor-G [6], whose agents go around the GRID environ-
ment assigning tasks to the computing resources.

Tasks will be assigned anonymously to remote resources
by using the platforms above. This anonymous use of the re-
sources forces the programmers or the contributors to think
about security matters on the platform. The security is-
sues can be categorized as: 1) data security in the network,
2) program or data security on remote resources and 3) re-
source security during task execution. The first problem can
be solved by encryption, and the second one can be solved
by administrating the resource by creating a dedicated ac-
count for the users and the processes. The third problem
exists because the application may illegally access private
devices on remote resources, or may monopolize the use
of memory or CPU resources. Although Java RMI mech-
anism [9] and GRMS [8] have been proposed to solve this
problem, it is impossible for the resource manager to pro-
vide a completely secured environment. Java allows to cre-
ate a security hole by JNI [11] and the GRMS needs to be
configured without security holes in the software installed
in the remote resource. Therefore, this problem must be ad-
dressed using a new mechanism for executing a program in
a remote resource.

��� ���
��� ��������� ����

Graphical visualization techniques using Graphics Pro-
cessing Units (GPUs) connected to personal computers
have drastically advanced in the last decade. For in-
stance, the floating point computation performance of
nVIDIA’s Geforce7 achieves about 300GFLOPS, compar-
ing to 8GFLOPS of Intel Core2Duo processors. This is a
remarkable performance for applications that demand huge
computation power.

High performance computing researchers are also fo-
cused on GPU’s performance, and investigating the possi-
bility of using it as an alternative to the Central Processing
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Figure 1. Structure of the flow-model.

Unit (CPU). For example, the GPGPU (General-Purpose
computation on GPU) approach achieves high level perfor-
mance [12]. Using PCs with high performance GPUs, a
cluster-based approach has been reported [5]. Moreover,
compiler-oriented support for GPU resource has also been
proposed [1].

Let us consider the processing steps on a GPU to cre-
ate a graphical image in a frame buffer, which can be dis-
played in a screen. First, the graphics designer prepares a
set of normalized object vertices on a referential axis. The
vertices are sent to a vertex processor which is responsible
for coordinate transforms (e.g. rotation, translation). In the
next step, the rasterizer interpolates the coordinates and de-
fines the planes. Finally, the pixel processor receives these
planes and creates pixel color data for the frame buffer, cal-
culating composed RGB colors from textures. Because the
recent GPUs are programmable, the pixel color generation
is adoptable to any target graphics effects. The program ex-
ecuted on the pixel processor is called shader program.

This paper is focused not only on the performance of
GPU, but also on the program and execution styles of GPUs.
In GPGPU algorithms are adopted to shader programs and
textures act as input data and the pixel color data corre-
sponds to the output results. The pixel processor does not
touch any resources except I/O data buffers and the pro-
cessor input data is formatted as a data stream. Then it
processes each data unit (pixel color data) and outputs data
stream(s). This means the shader on the GPU operates in a
closed environment. Moreover, standard programming lan-
guages such as the DirectX assembly language, the High
Level Shader Language (HLSL) [4] and the OpenGL Shad-
ing Language (GLSL) [10] are available to describe shader
programs. Thus, the shader can run on any GPU in any
computer.

According to the discussion above, it can be concluded
that the security issue about the resource touching on
the GRID computing can also be solved by the proposed
stream-based execution mechanism.
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To implement stream-based processing on GPUs and to
solve the security problems in GRID environment, we have
developed a stream-based computing platform named Car-
avela [2][14].

2.3.1 Stream-based computing using the flow-model

An execution unit of Caravela platform is defined as a flow-
model unit. As shown in Fig. 1, the flow-model is composed
by input/output data streams, constant input parameters and
a program that processes the input data streams to gener-
ate output data streams. An application program in Car-
avela is executed as a stream-based computation, such as
one in a dataflow processor. However, the input data stream
in a flow-model can be randomly accessed because the in-
put data streams are in memory buffers where the program
reads. On the other hand, the output data streams must be
the sequential streams of data units. Thus, the execution
of the program embedded in the flow-model is not able to
touch other resources except the I/O data streams.

The flow-model data structure can be packed to an Ex-
tensible Markup Language (XML) file. The XML file con-
tains properties of a flow-model, namely the number of I/O
data streams and a program. The XML-based flow-model
has an advantage for a distributed environment because all
the methods to execute a task are encapsulated into a data
structure. Therefore, the flow-model can be managed as a
task object distributed anywhere, and can be fetched by the
Caravela runtime environment.

2.3.2 Caravela runtime environment

The execution of a flow-model requires a managing sys-
tem, which assigns and loads a flow-model program into
a processing unit, allocates the memory buffers for the in-
put/output data streams, copies the input data streams to the
allocated buffers and triggers to start the program. More-
over, after the program execution, the runtime may need to
read back the data from the output stream buffers in order
to pass it to the next flow-model or to store it. The first im-
plementation of the Caravela platform applies GPUs as the
processing units.

The Caravela runtime environment defines local and re-
mote execution functions for flow-model. To support the re-
mote execution of a flow-model, the Caravela runtime needs
a function to serve requests that are sent to flow-models lo-
cated in other remote resources. The servers are categorized
into worker and broker servers. The worker server acts as
a processing resource that assigns a flow-model to its local
processing unit, namely GPU(s). If an execution request
of a flow-model from a client does not include the flow-
model’s content, but a URL to the flow-model, the server

Table 1. Basic functions of Caravela library
CARAVELA CreateMachine(...)

creates a machine structure
CARAVELA QueryShader(...)

queries a shader on a machine
CARAVELA CreateFlowModelFromFile(...)

creates a flow-model structure from XML file
CARAVELA GetInputData(...)

gets a buffer of an input data stream
CARAVELA GetOutputData(...)

gets a buffer of an output data stream
CARAVELA MapFlowModelIntoShader(...)

maps a flowmodel to a shader
CARAVELA FireFlowModel:

executes a flowmodel mapped to a shader

will fetch the flow-model from the corresponding address.
On the other hand, the broker server acts as a router to reach
the worker servers. A worker server sends a request to reg-
ister its route to one of the broker servers whenever worker
server is activated. The broker server can have a parent bro-
ker server that accepts to register the route to this child bro-
ker. This mechanism creates a tree shaped worker network
with the broker servers in the trunks of the tree. We call this
tree-based virtual network the Caravela network.

The SOA protocol is used for implementing message
passing among the application, the worker and the broker
servers. When it is a client, it invokes a function of the Web-
Services’ function on the server side and fetches the result
of the requests.

2.3.3 Caravela library

The Caravela platform is mainly composed by a library that
adopts the following definitions for the processing units:
Machine is the host machine of a video adapter, Adapter
is a video adapter that includes a single or multiple GPUs,
and finally Shader is a GPU. The application needs to map
a flow-model into a shader, which, in turn, executes the
mapped flow-model. Table 1 shows the basic Caravela func-
tions for flow-model execution. Using those functions, the
programmer implements target applications in the frame-
work of flow-models, and the application just has to map the
flow-model(s) into the shader(s). For remote execution of a
flow-model, the REMOTE MACHINE keyword is passed to
the CARAVELA CreateMachine function. In this case,
the shader(s) returned by CARAVELA QueryShader
function belong(s) to the worker server(s).

Thus, using the flow-model framework, the Caravela
platform has implemented a secure and high performance
stream-based computing environment, applying GPUs as



the processing units. However, the application must man-
age flow-model execution and data forwarding between the
flow-models. Even if flow-models for a target algorithm
can be executed in a pipeline manner, a large communica-
tion overhead is imposed to feedback the reply to the ap-
plication. This paper is focused on an extension of the ex-
ecution mechanism to a pipelined processing mechanism,
directly connecting flow-models assigned to multiple dis-
tributed processing units in the Caravela network.

3 Design of meta-pipeline

The mechanism that executes multiple flow-models
whose I/O data streams are connected in the Caravela plat-
form is called meta-pipeline. The meta-pipeline applies an
execution model, named pipeline-model, as the execution
unit in the system. Let us begin by explaining the meta-
pipelining mechanism from the definition of the pipeline-
model.

��� ������ 
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As depicted in Fig. 2, flow-models whose I/O data
streams are connected can create a pipeline-model. A
pipeline-model may have its own I/O ports, which can be
seen as its own I/O data streams. Input data streams (1) in
Fig. 2 are called ENTRANCE ports and output data streams
(2) in Fig. 2 are called EXIT ports. Because the pipeline-
model is defined to compute programs, it must fulfill the
following conditions: 1) one or more EXIT ports must ex-
ist; 2) one or more flow-models are included; and 3) all the
flow-models are connected by at least one I/O data stream.
The first condition means that at least an output data stream
is provided as the result of the pipeline-model, because oth-
erwise the algorithm would be useless. The second and third
conditions mean that a pipeline-model that includes two or
more independent processing pipelines is invalid because
multiple independent processing pipelines can be separated
into different pipeline-models. Note that assumptions about
the number of input ports are omitted from the above con-
ditions. This is because the pipeline-model can have a self-
generated feedback input stream data that results from the
output data stream. This organization can be created for al-
gorithms that generate special data streams, for example the
recursive sequence of numbers like Fibonacci numbers.

When all input data streams of a flow-model included
in a pipeline-model are ready, the flow-model can be exe-
cuted. After checking this condition for each flow-model,
the execution mechanism continues to invoke a pipeline-
model. For example, in the pipeline model depicted in
Fig. 2(a), data for the ENTRANCE ports (1) are prepared.
Then, ’flowmodel0’ is executed and generates the output
data stream needed to ’flowmodel1’. At this time, the input

flowmodel0

flowmodel1 flowmodel2

flowmodel2 flowmodel4

(a) without recursive connection

flowmodel0

flowmodel1 flowmodel2

(b) with recursive connection

(1)

(2)

(3)

IT=3
IT=3

IT=3 IT=3

Figure 2. Examples of pipeline-model

data stream of ’flowmodel1’ can be prepared. This execu-
tion style will be repeated in the subsequent flow-models,
and thus flow-model execution will be pipelined. In the ex-
ample of Fig. 2(b), at the beginning of the execution the
input data streams of ’flowmodel0’ never become all ready
unless the data stream of the feedback connection is initial-
ized. This way causes a deadlock of the pipeline-model’s
execution (i.e. stalls). Therefore, this kind of input data
stream, called INITONCE port, is a special port that must
be initialized before pipeline execution starts.

For increase flexibility, we also defines a limit number
of iterations without initializations of input data for INI-
TONCE port. For example, if the input data stream (3)
is defined as an INITONCE port and the iteration limit is
three, as illustrated in Fig. 2(b), the port must be initial-
ized every three times the output data is generated by the
’flowmodel2’. In addition to the INITONCE ports, itera-
tion limits are applied to ENTRANCE and EXIT ports. In
the case of ENTRANCE port, an iteration limit restricts
input data initialization. To say in the other words, the
ENTRANCE port is initialized every ”number of iteration
limit” executions. On the other hand, EXIT port with it-
eration limit generates output data every ”number of iter-
ation limit”. Moreover, we call INTERMEDIATE port to
the I/O streams which are in any one of the categories re-
ferred above. The concept of iteration limit is also applied
to the INTERMEDIATE ports. For instance, illustrated in
Fig. 2(b), when the iteration limit (in the figure, shown as
IT) is set, the output data from ’flowmodel0’ is generated
every three executions and the input/output data of ’flow-
model2’ are initialized/generated every three iterations of
’flowmodel2’. A merit of the iteration limit is to define an
execution set. In this example, ’flowmodel2’ can be iter-
ated without initializing the input data stream and without
generating the output data stream. This allows the remote
processing unit assigned to a flow-model not to send/receive
data at every execution. Thus, redundant data communica-
tion among processing units is avoided.

In summary, flow-model execution in a pipeline-model
is repeated while its flow-model’s ENTRANCE port(s) or
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Figure 3. Execution model in pipeline-model

INITONCE port(s) are initialized correctly. Moreover, the
executions of flow-models can be parallelized on indepen-
dent processing units, and the iterated processing being op-
timized through the iteration limits. Thus, the pipeline-
model will behave in a distributed environment as a suitable
autonomous stream-based computing unit.
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The meta-pipeline mechanism needs a runtime support
for executing a pipeline-model on processing units. By
checking if all input data streams of flow-model are ready,
the runtime provides the maximum number of processing
units to execute the flow-models. Although a connection
between flow-models’ input and output data streams can
be prepared as a shared buffer that receives the output data
stream and allows it to be used as the next input data stream,
the execution of flow-models according to the pipeline-
model becomes sequential. A flow-model which is going to
be executed can not output its data to the buffer if the buffer
is occupied by data for the subsequent flow-model. To avoid
this serialization, we define an execution model as depicted
in Fig. 3. Each flow-model has buffers corresponding to its
input and output data streams (Fig. 3(a)(b)). When the in-
put data streams are initialized and ’flowmodel0’ is invoked,
its output data streams are stored to the output buffer once
(Fig. 3(b)). When the subsequent flow-model’s input buffer
becomes empty, content of the output buffer will be moved
to the input buffer (Fig. 3(c)). This mechanism avoids se-
rial execution, in this case between ’flowmodel0’ and ’flow-
model1’ in Fig. 3, by using independent buffers for input
and output data streams.

Each group of a flow-model with input/output data
stream(s) and its buffers, such as depicted in Fig. 3(d) can
be invoked as a single flow-model execution using the Car-
avela library shown in Table 1. Therefore, mapped to any
processing unit in the Caravela platform, this group is able
to be invoked independently.

When an output buffer and an input buffer are connected
between flow-models and those buffer sizes are different,

the data will be copied using the smaller buffer size. For
example, when the buffer size of Fig. 3(c) is smaller than the
one of Fig. 3(b), the data in Fig. 3(b) is resized to Fig. 3(c)
and is copied to the destination. Therefore, even if different
sized buffers are connected in a pipeline-model, the I/O data
will be smoothly propagated.
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An application interface for the meta-pipeline is pre-
pared as additional functions of Caravela library. To invoke
a pipeline-model, application follows the eight steps pre-
sented below;
(1) Looking for processing units: this step uses the con-
ventional Caravela functions shown in Table 1 and acquires
processing units; the processing units can be located locally
or remotely.
(2) Creating flow-models: this step is also available
through the functions associated to the conventional Car-
avela platform; flow-models that are used in a pipeline-
model are reproduced from local or remote flow-model
XML files in this step.
(3) Creating a pipeline-model data structure: a pipeline-
model is created as a data structure in the Caravela system;
in this step, application creates the data structure.
(4) Registering flow-models and processing units to
pipeline-model: this step registers into the pipeline-model
data structure the flow-models produced in the 2nd step and
the processing units queried by the 1st step; a pair flow-
model/processing unit is named stage of the pipeline; appli-
cation needs to create all the stages in a pipeline-model in
this step.
(5) Creating connections among flow-models: this step
defines connections among I/O data streams of flow-models
registered to the different stages of pipeline-model; to ful-
fill the conditions to be a valid pipeline-model, application
must connect appropriate I/O data streams of flow-models.
(6) Defining INITONCE ports and iteration limits: re-
garding to the connections defined in the previous step,
if a connection creates a loop, it must be marked as an
INITONCE port at the corresponding input data stream of
the flow-model; iteration limits associated to ports in the
pipeline-model must be also specified in this step.
(7) Implementing pipeline-model: this step checks if the
pipeline-model satisfies the conditions and if the pipeline-
model is available to be executed; if so, all the process-
ing units registered to the pipeline-model are reserved.
If the resources are located in remote machines, connec-
tions to communicate data among stages are established;
moreover, the flow-models associated to the processing
units are sent to them; thereafter, each flow-model be-
comes ready to be executed waiting for input data via INI-
TONCE/ENTRANCE ports.



(8) Invoking pipeline-model: the invocation of the
pipeline-model is automatically made by sending input data
to its ENTRANCE/INITONCE ports; this operation must
be performed on the application side; when input data are
provided at the first stage of a pipeline-model it is executed
and provides output data to the next stage; this execution
mechanism is propagated until EXIT ports appear in a stage;
the application needs to keep sending input data as long as
ENTRANCE/INITONCE ports are waiting for input data;
stages are executed while data is received and when data
reaches the EXIT ports it must be received by application;
due to the pipeline execution mechanism, while the output
data is not completely received by the application the stages
associated with the EXIT ports will stall; therefore, as soon
as the output data is ready at the EXIT ports, it must be
received by the application.

Following the steps above, the application sets up a
pipeline-model and distributes flow-models registered to
the pipeline-model by remote resources. Moreover, the
pipeline-model is implicitly executed by the meta-pipeline’s
runtime, as the application provides input data to the EN-
TRANCE/INITONCE ports. Thus, pipeline-model pro-
grammers do not need to explicitly schedule flow-model ex-
ecution in the application program.

4 Implementation of meta-pipeline
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The meta-pipeline is implemented as a set of C-based
functions. The required functions not included in the meta-
pipeline are provided in the conventional function set. For
example, machine creation and shader acquisition are per-
formed by the conventional functions as listed in Table 1.

After application acquires shaders, a set of meta-pipeline
functions is used. First, CARAVELA CreatePipeline
function is called to create a data structure for the pipeline-
model. At the next step, CARAVELA AddShaderToPi-
peline function adds a shader acquired by CARAVELA -
QueryShader through the conventional Caravela library
to the pipeline-model data structure. Associating the
shader to the pipeline-model, a flow-model created by the
CARAVELA CreateFlowModelFromFile is added by
the CARAVELA AttachFlowmodelToShader func-
tion. Here, a pair of a shader and a flow-model has been reg-
istered in the pipeline-model. Thus, stages in the pipeline-
model have been defined.

To define connections among stages, CARAVELA Con-
nectIO function is used. Its arguments are a flow-model
registered in a pipeline-model and input/output data
streams’ indices for the flow-model. After the defini-
tion of connection is successful, the I/O data streams
are marked as INTERMEDIATE ports. If needed,

// Preparing input data
Input_data = ... ;
While(1){

// Sending input data to pipeline-model.
if(CARAVELA_SendInputDataToPipeline(

pipelinemodel, // a pipeline-model
port, // an ENTRANCE port to be initialized.
input_data,
number_of_data) == CARAVELA_SUCCESS){

// Preparing the next input data
Input_data = ... ;

}
// Getting output data from pipeline -model.
if(CARAVELA_ReceiveOutputDataFromPipeline(

pipelinemodel, // a pipeline-model
port, // an EXIT port to be initialized.
&flowmodel, // a flow-model of the port (output from function )
&index, // an index of output stream of flow -model 

   (output from function )
&output_data, // (output from function )
&number_of_data // (output from function )
) == CARAVELA_SUCCESS){

// Processing output data
}

}

Figure 4. Code for pipeline-model execution

CARAVELA SpecifyInitOncePort is called after m-
aking a connection, to specify that an INTERME-
DIATE port is an INITONCE port. Regarding to
the iteration limit, as mentioned in the previous
section, after creating connections among stages,
CARAVELA SpecifyEntrancePort, CARAVELA S-
pecifyExitPort and CARAVELA SpecifyInter-
mediateInput/Output functions can be called when
an application needs to specify iteration limits at some
ports. The setup of the pipeline-model was finished, and
the application starts to implement the pipeline-model.

The function CARAVELA ImplementPipelineMo-
del implements the pipeline-model itself. It assigns flow-
model/shader pairs (i.e. stages) to machines equipped with
shaders. This function returns arrays of ENTRANCE and
EXIT ports. This function does not execute any stages in
the pipeline-model. Those executions are performed by
CARAVELA SendInputDataToPipeline, that sends
input data to ENTRANCE ports, and CARAVELA Recei-
veOutputDataFromPipeline function that receives
output data from the EXIT ports. These functions have in-
ternally a routine for executing the stages. If condition for
executing a stage is satisfied, the routine executes the stages
one after another. This execution mechanism is categorized
in two ways: local execution and remote execution. The de-
tailed implementation of this mechanism is described in the
next section.

 �� $%������ 	������	

Because execution of a pipeline-model is fired by input
data in ENTRANCE ports, input data must be provided
to the ports repeatedly after the ports has consumed the
data. Moreover, results generated from EXIT ports must be
read by application side to avoid stalls. Therefore, coding



style of pipeline-model execution becomes the one shown
in Fig. 4, which creates an iteration that tries to input new
data to ENTRANCE ports and to get new results from EXIT
ports.

For executing stages in local shaders, CARAVELA Sen-
dInputDataToPipeline and CARAVELA Receiv-
eOutputDataFromPipeline functions have the
chances to execute stages by utilizing the repeated execu-
tions shown in Fig. 4. In our implementation, a routine
that finds stages with all the input data streams available
is called by these functions. Thus, these functions execute
available stages while any ENTRANCE port is not empty
and any EXIT port can output data.

In our implementation, for executing stages on remote
shaders, CARAVELA ImplementPipelineModel fun-
ction distributes flow-models associated to stages in a
pipeline-model to worker servers. Worker servers prepare
its shader resources for receiving flow-models and wait for
data to the respective ENTRANCE ports. When the worker
servers receive input data for flow-models and execute it,
they forward the output data to the other worker servers that
have the subsequent flow-models in the pipeline-model. Ex-
ecution of flow-model in a worker server is fired by input
data. Therefore, application does not need directly to acti-
vate each flow-model distributed in remote shaders.

As mentioned above, the meta-pipeline mechanism al-
lows applications to define stages, which are implicitly ex-
ecuted in local or in remote machines.

5 Application example

To evaluate the meta-pipeline mechanism, this section
discusses a simple but realistic application example. Here,
let us apply the mechanism to compute a 2D discrete
wavelet transform.
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Discrete Wavelet Transform (DWT) [3] is attracted as
a powerful tool for image processing applications, such as
compression used in JPEG2000 standard, denoising, edge
detection and feature extraction. The DWT decomposes an
input signal ���� into two sub-band coefficient sets: a set of
low frequency coefficients ���� and a set of high frequency
ones ����. After using linear low-pass and high-pass filters
to the input signal ����, a decimation process is pipelined.
Representing a �-th low-pass filter coefficient by ���� and a
high-pass filter one by ����, the �-th DWT coefficient in the
corresponding sub-band is computed by:
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HH1LH1
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(b) input image(a) 2D-DWT sub-bands (c) Output of 2D-DWT

Figure 5. 2D-DWT example with 2 decompo-
sition levels

where� is the number of filter taps. Here, the decimation is
already performed by the equations above, thus the number
of coefficients per sub-band becomes half the number of
samples of the input signal.

Due to the separable property of DWT, two dimensional
DWT (2D-DWT) can be performed by sequentially apply-
ing the equations above through the horizontal and vertical
image directions. It generates 4 sub-bands (i.e. ��, ��,
�� and �� as shown in Fig. 5(a)). Each sub-band cor-
responds to a possible combination of direction (horizon-
tal/vertical) and filter response (low/high-pass). To generate
four new sub-bands, the same calculation is applied to the
previous�� sub-band. This recursive calculation is iterated
until the given number of decomposition levels is achieved
(typically 3 to 5 levels). Fig. 5(c) shows a result of 2D-DWT
with 2 decomposition levels calculated from the input im-
age in Fig. 5(b).
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As mentioned above, the recursive nature of 	 -level
DWT decomposition suggests a pipeline-model organiza-
tion where each pipeline stage corresponds to one decom-
position level. Each stage in this pipeline can be a single
kernel program that generates the ��� sub-band to be used
in the next stage:
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and also the remaining sub-bands (���, ��� and ���),
using the correspondent filter combinations. Therefore, a
flow-model with an input stream and two output streams
is applied to each stage in the pipeline: one of the output
streams corresponds to ��� and the remaining sub-bands
form the other.

The program included in the flow-model is shown in
Fig. 6(a). The program is written in GLSL. It receives an
input data stream that includes the previous �� sub-band
and generates two output data streams.



uniform sampler2D CaravelaTex0;
uniform sampler2D CaravelaTex1;
// Daubechies-4 low-pass filter coefficients
uniform vec4 const0;
// Daubechies-4 high-pass filter coefficients
uniform vec4 const1;

void main() 
{
float delta = 1/NUMDATA;
vec4 tmp, tmp0, tmp1, result;
vec2 coord = gl_TexCoord[0].xy;
vec2 caux;
int i;
coord += coord;
caux = coord;
// horizontal direction
for (i=0; i<4; i++, coord.y += delta){

tmp.x = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.y = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.z = texture2D(CaravelaTex0, coord).x;
coord.x += delta;
tmp.w = texture2D(CaravelaTex0, coord).x;
tmp0[i] += dot(tmp, const0);
tmp1[i] += dot(tmp, const1);
coord.x = caux.x;

}
// vertical direction
result.x = dot(tmp0, const0);
result.y = dot(tmp0, const1);
result.z = dot(tmp1, const0);
result.w = dot(tmp1, const1);
// LL sub-band stream
gl_FragData[0] = result;
// LH, HL and HH sub-bands stream
gl_FragData[1] = result;

}

(b) pipeline -model for DWT

(a) kernel program of flow -model

Level 1 Flowmodel

...

HL1, LH1, HH1

LL1

LLN-1

S = LL0

Level 2 Flowmodel

LL2

Level N Flowmodel

HL2, LH2, HH2

LLN, HLN, LHN, HHN

Figure 6. Flow-model and pipeline-model of
2D-DWT

Using this flow-model, the pipeline-model illustrated in
Fig. 6(b) can be defined. Each stage in the pipeline-model
consists of the flow-model in Fig. 6(a). As the number
of level increases, the input and output data stream sizes
become 1/4 of the previous level’s. In the flow-model of
level1, the input data stream becomes an ENTRANCE port
of each pipeline-model. One of the output data streams of
the flow-model is connected to the next stage (i.e. INTER-
MEDIATE port). The other one generates the sub-bands at
the corresponding decomposition level, which is marked as
EXIT port.

The pipeline-model is created by the meta-pipeline func-
tions defined in section 4. After implementing the pipeline-
model and by providing the image data to the ENTRANCE
port, the Caravela runtime executes each stage when the in-
put data becomes available. If it is performed in a local
shader, each stage is assigned to the shader, and is replaced
to the other stage automatically. When it is executed on
remote worker servers, each flow-model is assigned to the
worker, and waits for the input data that is propagated from
the previous flow-model.

6 Conclusions

This paper is focused on a pipeline execution mecha-
nism implemented by a set of flow-models in the Caravela
platform, called meta-pipeline. Additional functions are de-

fined in the Caravela library to support the pipeline process-
ing. As shown in the application example section, pipeline-
model can be transparently defined, and the execution is
automatically controlled at runtime. In addition, the flow-
model is a secured execution unit in a remote worker server.
Therefore, we can conclude that the meta-pipeline mecha-
nism can be proposed as a new processing style for stream-
based computation on a distributed environment.
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