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Resumo

O Economic Capital (EC) pode ser definido como capital em risco resultante de atividades

de investimento e é medido pela métrica de risco mais geralmente utilizada: Value-at-Risk

(VaR). Para um certo valor máximo pré-definido para o EC, é relativamente a este valor

que estratégias de gestão de risco podem ser formuladas. Este estudo estima e gere o VaR

de uma carteira composta por ações e obrigações dos mercados Americanos e Europeus

de modo a que este não ultrapasse o máximo pré-definido. Dado a variedade de modelos

VaR dispońıveis, para concluir qual o modelo que oferece as estimativas VaR mais precisas

para a carteira utilizada, são considerados 16 modelos diferentes e a sua performance é

analisada através de backtest. Usando o modelo que demonstrou melhor desempenho, o

VaR da carteira é medido diariamente e gerido através de uma estratégia de cobertura

aplicada à exposição em ações pelo peŕıodo de um ano. A métrica de desempenho Return

on Risk-Adjusted Capital (RORAC) é utilizada para analisar o resultado da estratégia

de cobertura implementada. Os resultados mostram que a estratégia de cobertura teve

sucesso em limitar o valor máximo do VaR e em prevenir perdas maiores.

Palavras Chave: Economic Capital, Value-at-Risk, Backtest, Cobertura, Return on

Risk-Adjusted Capital

Classificação JEL: C10, G32
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Abstract

The Economic Capital (EC) can be defined as the the capital at risk that derives from in-

vestment activities and it is measured by the industry standard risk measurement metric:

Value-at-Risk (VaR). Given a pre-defined maximum value for the EC, it is around this

target that risk management decisions can be formulated. This work measures and man-

ages the VaR of a portfolio comprised of equities and bonds from the U.S. and European

markets such that it does not surpass the pre-defined target. Given the variety of VaR

models available, to conclude on which model provides the most accurate measurements

for the portfolio in this work, 16 different models are computed and their performance is

assessed through a backtest. Using the best performing model, the VaR of the portfolio

is measured daily and managed through an equity exposure hedging strategy for a period

of one year. To assess the results of the strategy, the Return on Risk-Adjusted Capital

(RORAC) performance metric is used. Results show that the equity exposure hedging

strategy was successful in limiting the maximum VaR and in safeguarding against further

losses.

Keywords: Economic Capital, Value-at-Risk, Backtest, Hedging, Return on Risk-Adjusted

Capital

JEL Classification: C10, G32
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CHAPTER 1

INTRODUCTION

For financial institutions, managing risk is not only of interest for shareholders, but also

a legal obligation. Given the systemic impact financial institutions have in the financial

system and economy, through the introduction of the Basel Accords in the late-1980s

and subsequent extensions (Shakdwipee and Mehta, 2017), financial regulators sought to

strengthen minimum capital requirements with appropriate risk monitoring and reporting

regulations to protect financial stability.

While there are several sources of risk, this work deals with market risk, which can

be seen as the uncertainty regarding the future value of financial assets that derives from

market price movements. But before risk can be managed, it must be measured. The

Value-at-Risk (VaR) is the industry standard market risk measurement metric, and as

a statistical measure, it can be defined as the maximum expected loss we are confident

will not be exceeded for a given significance level and over a given future time horizon

(Alexander, 2009). In terms of financial institutions and the management of their internal

financial activities, the Economic Capital (EC) refers to the capital at risk that derives

from their investment activities and it is measured by the VaR. Therefore, numerically,

the EC is equal to the VaR (Jorion, 2007), and given a pre-defined maximum value for

the EC, it is around this benchmark that risk management strategies can be formulated.

This work aims to measure and manage the VaR of a portfolio composed of equities

and bonds from the U.S. and European markets during the time period of one year from

30 September 2021 to 30 September 2022 such that it does not surpass the pre-defined

maximum value for the EC. As the end goal, we analyze the return achieved for the year

versus the return that would have been achieved if we did not manage the VaR.

As we first need to measure the VaR, the question of which model should be chosen

for this task arises. Following efforts from financial institutions and regulators, the need

for a standard metric for market risk measurement was first met in the mid-1990s, where

the RiskMetrics VaR model was developed by J.P. Morgan and Reuters (1996). Although

the pioneer, the answer may not lie here, and therefore we explore four classes of VaR

models in this work: RiskMetrics (RM), Skewed Generalized Student-t (SGSt), Historical

and Quantile Regression (QR) and in total 16 different models are computed. Through

a Backtest, using historical data, we compute historical VaR estimates for each model

using the portfolio composition at 30 September 2021. Time wise, the series of historical

VaR estimates for the Backtest spans over 6 years from 1 October 2015 to 30 September

2021 and we assess each model’s performance through the Unconditional Coverage (UC)
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test (Kupiec, 1995) and the Berkowitz, Christoffersen and Pelletier test (Berkowitz et al.,

2011).

Using the best performing model and for one year, the VaR of the portfolio is measured

and managed daily through an equity exposure hedging strategy. Based on historical

ranges, we define the daily EC to a maximum of e1.5 million, which corresponds to close

to 1.6% of the portfolio value at 30 September 2021. Having set this target, the daily

VaR estimate must not exceed this value and we explore how limiting the VaR by using

the defined equity exposure hedging strategy impacts the one year return of the portfolio.

For comparison purposes, we define the portfolio with the strategy implemented as the

Hedged portfolio and the same portfolio but without the strategy implemented as the

Unhedged portfolio.

Results show that the strategy was successful in limiting the VaR to a maximum of

e1.5 million throughout the year, whereas if it was not managed, this threshold would

have been surpassed during a significant portion of the year starting from February 2022

and reaching a maximum of e2.3 million in May 2022. When comparing the returns

achieved for the Hedged and Unhedged portfolios, using the RORAC performance metric,

we conclude that while the return for the year was negative in both scenarios, the Hedged

portfolio achieved a less negative return while incurring less risk. This means that during

the year under analysis, limiting the VaR of the portfolio safeguarded against further

losses.

This work is organized as follows: Chapter 2 covers the relevant literature; Chapter

3 presents the data, time frame and portfolio details; Chapter 4 lays the roadmap ahead

and dives into the applied methodology; Chapter 5 reveals the results of the Backtest and

model selection; Chapter 6 dives into the equity exposure hedging strategy and its impact

on portfolio returns; Chapter 7 summarises the results of this work.
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CHAPTER 2

LITERATURE REVIEW

History shows that distress in financial institutions can have severe negative impacts on

not only financial markets but also on the real economy (Hoggarth et al. (2002) and

Dell’Ariccia et al. (2008)), with the great financial crisis of 2008 as a famous example

(Baur, 2012). Considering many of these institutions are private, the idea of regulation

in order to protect financial stability inevitably arises (Dow, 1996). Through the intro-

duction of the Basel Accords in 1988 and subsequent extensions (Shakdwipee and Mehta,

2017), financial regulators sought to strengthen minimum capital requirements through

risk monitoring and reporting regulations.

While risk can be generally categorized into market, credit and operational (Allen

et al., 2004), this work deals with market risk. It can be seen as a measurement of the

uncertainty regarding the future value of financial assets that derives from market price

movements (Alexander, 2009). But before risk can be managed, it must be measured.

Even though it has its limitations (Krause, 2003), the VaR is the industry standard market

risk measurement metric, and as a statistical measure, it can be defined as the maximum

expected loss we are confident will not be exceeded for a given confidence level and over

a given future time horizon (Alexander, 2009).

From a regulatory standpoint, the minimum capital requirements are defined as reg-

ulatory risk capital (Alexander, 2009) and are calculated based on methods proposed by

regulators (Bank for International Settlements, 2023). However, as long as regulatory

risk capital requirements are met following the Basel Accords, from an internal manage-

ment standpoint financial institutions are free to allocate capital to whichever activities

they see fit, and in whichever quantities they see fit (Alexander, 2009). For a financial

institution, the EC can be defined as the capital at risk that derives from its investment

activities (Porteous and Tapadar, 2005) and they will distribute parts of the EC of the

whole firm through its various specific activities using a top-down approach. To main-

tain financial stability at the firm level, the capital at risk resulting from those specific

activities must not surpass the EC limit allocated to them. As the EC is measured by

the VaR, numerically the EC is equal to the VaR (Jorion, 2007) and given a pre-defined

maximum value for the EC, it is around this benchmark that risk management strategies

can be formulated.

The need for a standard metric for market risk measurement arose during the mid-

1990s following an effort from both financial regulators and international banks where the

RiskMetrics (RM) VaR model was developed by J.P. Morgan and Reuters (1996). With

the adoption of the VaR as the official measure of market risk in the Basel II Accords

3



and subsequent iterations, the introduction of RiskMetrics was the pivotal step in the

adoption of economic capital-based metrics for measuring minimum capital requirements

(Allen et al., 2004).

The RM VaR model falls into the parametric category of models. It can also be referred

to as Parametric Normal VaR as it assumes that returns follow a normal distribution over

time (J.P. Morgan and Reuters, 1996). This assumption goes against the empirical data on

financial returns that generally show both negative skewness and excess kurtosis as shown

by Fama (1965) and Peiro (1994) which are characteristics of a non-normal distribution.

This detail becomes relevant because when picturing a return distribution, extreme losses

are present in the left tail of the distribution, and the lower the significance level chosen

for the VaR, the deeper we look into the tail. It follows that if the normal distribution

does not reflect the real distribution of returns, the RM VaR estimate may not accurately

capture the risk incurred, potentially making the RM model unfitting. When estimating

the VaR at the 5% significance level, or equivalently, at the 95% confidence level, we

are 95% confident that the future loss will not exceed the VaR, and considering this

configuration is widely adopted for the RM model, in search for potential flaws in the

model Pafka and Kondor (2001) investigate how it performs for significance levels lower

than 5%. With this in mind, using 4 years of data from the 30 stocks composing the

Dow Jones Industrial Average index, the authors compute the RM VaR for both the 5%

and 1% significance levels. Results show that for lower significance levels such as 1%,

where we look deeper into the left tail than for the 5% significance level, the impact of the

non-normality of returns becomes evident, which increases the possibility that the VaR

will be more underestimated the higher the confidence level chosen.

A promising candidate to tackle the non-normality of returns and RM model short-

comings is the Skewed Generalized Student-t (SGSt) distribution (Theodossiou, 1998).

Built upon the classical Student-t introduced by McDonald and Newey (1988), it allows

for flexibility in the shape of the tails and central region. The SGSt VaR also assumes

a parametric distribution for the returns but tries to fit the shape of the distribution to

the empirical returns, which then allows to account for the fat tails often observed in

financial returns distributions. Lin and Shen (2006) study the SGSt VaR when compared

to the RM VaR using daily data for the S&P500, NASDAQ, DAX and FTSE100 indices

with a sample size of 3 years. As expected for equity returns, the normality assumption

was strongly rejected for all indices using the Jarque-Bera test. The authors proceed to

estimate the VaR for all indices for signifiance levels ranging from 55% to 0.1%. Results

show that the for the 55% significance level the RM model produces satisfactory results,

however, for lower levels the performance starts to deteriorate. This does not happen to

the SGSt VaR, as its performance remains robust as we decrease the significance level.

The authors conclude that the SGSt VaR is capable of producing more accurate VaR

estimates for lower significance levels and is therefore a promising alternative in the realm

of the parametric VaR models.
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Instead of imposing a structure to the returns through a parametric approach as it

is done in the RM and SGSt models, a much simpler approach is available: use the em-

pirical distribution of the returns. This allows for the empirical skewness and kurtosis

of the returns distribution to be accurately captured and is the essence of the Historical

Simulation VaR, or simply Historical VaR. However, its flexibility does not come without

drawbacks. As it fully relies on the empirical sample of past returns, the choice of sample

size is a subjective but critical component to the Historical VaR. As explored by Pritsker

(2006), a larger sample size widens the diversity of outcomes but, at the same time, as

we increase the sample size, the less we reflect the current market volatility conditions.

To tackle this issue, a series of papers by Barone-Adesi et al. (1998) and Boudoukh et al.

(1998) propose a refinement to the classic methodology by attributing more weight to

recent observations, thus moving from a sample where all observations have the same

relevance to a sample where recent observations are more meaningful than distant past

ones. Hull and White (1998) propose another refinement in which a volatility adjustment

methodology is applied where past returns are adjusted such that their magnitude reflects

current market volatility levels. In other words, the magnitude of a past return during

different market volatility conditions is adjusted in order to reflect current market volatil-

ity conditions. Using approximately 9 years of daily data from 12 different exchange rates

and 5 different stock indices, Hull and White (1998) compare their methodology with the

standard Historical VaR with no adjustment to the weight of the observations and with

the Boudoukh et al. (1998) weight adjustment methodology. As expected, when compar-

ing to the standard historical VaR, the volatility adjustment methodology produced more

satisfactory results, and when comparing with the Boudoukh et al. (1998) methodology,

Hull and White’s proposed volatility adjustment produces better results especially for the

1% significance level.

Still in the non-parametric world, as the VaR can be defined as a conditional quantile

(Xiao et al., 2015), quantile regressions as introducted by Koenker and Bassett Jr (1978)

come as an additional alternative to estimating the VaR. The Quantile Regression (QR)

VaR methodology shares similarities with the Historical VaR as it relies on the empirical

returns instead of assuming the returns follow a certain parametric distribution. Addition-

ally, one of its biggest advantages is the flexibility it brings for the choice of explanatory

variables. Steen et al. (2015) evaluate the performance of the RM and Historical VaR

models versus the QR VaR using close to 20 years of daily data for future contracts of 19

different commodities. The finding of the authors corroborate the findings of other studies

for the performance of the RM model: it is capable of producing satisfactory results for

the 5% significance level, and in this case does it for most commodities but as expected,

when the 1% significance level is applied, the performance is no longer as satisfactory.

The Historical VaR performed better than RM overall but was still outclassed by the QR

VaR for all significance levels. Even though the estimates of the QR VaR are dependent

on how the model is configured (i.e. on the explanatory variables chosen, and these are
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subjective), it has the ability to produce more robust results than RM and equivalent

or better results than the Historical VaR. For commodities specifically, it is a promising

model.

However, each portfolio is a case on its own and it is likely that the same VaR model for

two different portfolios will produce drastically different results, as explored by Alexander

(2009). This invokes the need for model performance testing methodologies to assess

which model is the best fit for our specific portfolio. To do this, a Backtest procedure

is commonly adopted to assess model performance where statistical tests are performed

using a historical sample of portfolio returns and a historical sample of corresponding

VaR estimates. The choice of which statistical tests to use in the Backtest is up to the

user, and despite the considerable literature regarding the possible alternatives (Zhang

and Nadarajah, 2018), there is no standard set in stone. A common Backtest performance

metric is the number of exceedances which can be defined as an event where the actual

loss was greater than the VaR estimate. For this work we adopt the classical UC test

(Kupiec, 1995) which, for the period and model under analysis, assesses the number of

exceedances. To complement the UC test, we additionally adopt the BCP test (Berkowitz

et al., 2011) which, for the occasions where we observe exceedances, checks whether there

is autocorrelation between them. In other words, it checks whether the exceedances are

independent from each other or occur in clusters and checking for clusters is important

as it reveals the model’s capacity to adapt to rapidly changing market conditions.

When measuring the VaR, for the cases where it surpasses its pre-defined maximum

value, risk management decisions are warranted. As a consequence of adjusting the port-

folio exposures through risk management strategies to meet the EC quotas, it comes that

the risk profile of the adjusted portfolio differs from the risk profile the portfolio would

have had without these adjustments. As Longley-Cook (1998) points, a monetary gain

when there is substantial risk is not worth as much as the same monetary gain when there

is lower risk. Using the concepts we explored so far, a return achieved with a substantial

VaR, and therefore EC, is not as valuable as the same return achieved with a lower VaR,

and therefore lower EC. Considering this, the need for a risk-adjusted performance metric

arises. The RORAC (Matten, 1996) comes as a solution to our problem as it gives the

ratio between returns and the corresponding risk incurred to achieve them. Formally, it is

a ratio that relates a non-adjusted return to a risk-adjusted capital base (Matten, 1996).

Using the concepts we explored so far it gives the ratio of the returns achieved to the EC

(VaR) and it allows for a fair comparison between returns of portfolios with different risk

profiles.
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CHAPTER 3

DATA AND PORTFOLIO COMPOSITION

The portfolio studied in this work is composed of part equities and part bonds. The

various positions in these two asset classes are from the United States (U.S.) and European

markets and going forward, we define the Euro (EUR) as our local currency and the U.S.

Dollar (USD) as the foreign currency.

The equity portion of the portfolio is composed by twenty-two positions in stocks, long

and short, from both the U.S. and European markets. Daily adjusted closing prices in

local currency for each stock as well as for the USD/EUR exchange rate were downloaded

from YahooFinance (https://finance.yahoo.com).

The fixed income portion consists of five fixed coupon government bonds maturing at

different dates, with different coupon payments and coupon payment dates. These bonds

were issued in two different markets: U.S. and Germany. The characteristics of each bond

were obtained from Bloomberg and daily interest rate data was sourced from the Federal

Reserve Economic Data website for the USD (https://www.federalreserve.gov/dat

adownload/Choose.aspx?rel=H15) and from the European Central Bank website for

the EUR (https://sdw.ecb.europa.eu/browseSelection.do?node=9689726). Time

wise, we work with daily data for a period of twelve years from 30 September 2010 to 30

September 2022.

Tables 1 and 2 below present the components and details of the portfolio studied in

this work.
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Asset
Ticker/ Original No. Shares/

Price
Value Allocation

ISIN Currency Face Value (EUR) (%)

Apple Inc. AAPL USD 16 083 140.71 1 950 593 2.02
AMD, Inc. AMD USD 19 299 102.90 1 711 724 1.78

Amazon.com, Inc. AMZN USD 11 696 164.25 1 655 941 1.72

Caterpillar Inc. CAT USD 12 866 187.78 2 082 450 2.16
Disney DIS USD 14 621 169.17 2 131 904 2.21

JPMorgan & Co. JPM USD 11 258 159.14 1 544 261 1.60

Coca-Cola KO USD 48 248 50.93 2 117 977 2.20
Merck, Inc. MRK USD 29 241 72.56 1 828 935 1.90

Tesla, Inc. TSLA USD 10 234 258.49 2 280 299 2.37

Visa Inc. V USD 10 965 221.18 2 090 529 2.17
Walmart Inc. WMT USD 17 545 137.19 2 074 633 2.15

adidas AG ADS.DE EUR 7 711 266.83 2 057 581 2.13
Allianz SE ALV.DE EUR 11 016 184.99 2 037 808 2.11

BASF SE BAS.DE EUR 28 642 61.41 1 758 841 1.82

Bayer BAYN.DE EUR 44 064 45.51 2 005 371 2.08
Deutsche Bank DBK.DE EUR 198 288 10.81 2 142 586 2.22

Deutsche Post DPW.DE EUR 39 658 52.03 2 063 224 2.14

Deutsche Telekom DTE.DE EUR 88 128 16.76 1 477 212 1.53
EDP, S.A. EDP.LS EUR 440 640 4.35 1 917 244 1.99

Siemens SIE.DE EUR 15 422 138.00 2 128 234 2.21

Sonae, SGPS, S.A. SON.LS EUR 2 203 200 0.86 1 902 305 1.97
Volkswagen AG VOW3.DE EUR (13 219) 183.64 -2 427 617 -2.52

Total Equity – – 38 532 035 39.97

US Treasury 2027 US912810PS15 USD 11 377 740 107.54% 12 236 051 12.69

US Treasury 2028 US912810PV44 USD 10 343 400 103.85% 10 741 736 11.14

German Bund 2028 DE0001135069 EUR 9 000 000 107.43% 9 668 697 10.03
German Bund 2027 DE0001102424 EUR 12 000 000 105.87% 12 704 899 13.18

German Bund 2025 DE0001102374 EUR 12 000 000 104.36% 12 522 719 12.99

Total Bonds – – 57 874 102 60.03

Total Portfolio – – 96 406 137 100.00

Table 1. Portfolio composition at 30 September 2021. This table showcases
the assets that comprise the portfolio used in this work as well as the amount invested
in each one converted from USD to EUR where appropriate. The exchange rate as
at 30 September 2021 is 0.8640. Figures may not sum to total due to rounding.

Bonds ISIN Maturity
Original Coupon Coupon Face Value Fair Value
Currency per Year (%) (EUR) (EUR)

US Treasury 2027 US912810PS15 15/01/2027 USD 2 2.375 11 377 740 12 236 051

US Treasury 2028 US912810PV44 15/01/2028 USD 2 1.750 10 343 400 10 741 736
German Bund 2028 DE0001135069 01/04/2028 EUR 1 0.650 9 000 000 9 668 697

German Bund 2027 DE0001102424 15/08/2027 EUR 1 0.500 12 000 000 12 704 899

German Bund 2025 DE0001102374 15/05/2025 EUR 1 0.500 12 000 000 12 522 719

Table 2. Bond Characteristics. The Fair Value of the bond is the sum of the PV
of all its future cash flows discounted to 30 September 2021 and converted to EUR
where appropriate. The exchange rate as at 30 September 2021 is 0.8640. We obtain
the future cash flows by Equations 2 and 3 and calculate their PV by Equation 4.
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CHAPTER 4

METHODOLOGY

The goal of this work is to measure and manage the VaR of a portfolio over a one year

period going forward from today such that it does not surpass the pre-defined Economic

Capital. We take today as 30 September 2021.

Since there are various VaR models to choose from, as well as many possible variants

of the same model, a crucial question arises: which model should we adopt for the one

year period going forward considering the particularities of the portfolio as of today? The

correct model cannot be determined with certainty without testing different possibilities

and assessing their accuracy. This assessment is called Backtesting, and it is this process

that will give us the answer to the question posed above.

Using historical data and today’s portfolio composition, for each VaR model under

analysis, we will compute a historical series of daily VaR estimates as if the portfolio we

have today existed in the past and its VaR was estimated in real time. Time wise, the

series spans over 6 years from 1 October 2015 to 30 September 2021. We will explore

four different classes of models: RiskMetrics, SGSt VaR, Historical VaR and QR VaR

and within these four, we also explore different variations of each one so that we have a

wide range of candidates to analyze and choose from. In the Backtest, through specific

statistical tests, we analyze the performance of each model and conclude if the model is

a correct fit for our portfolio going forward or not.

Although different from each other, all four classes of models share one crucial input

for their computation: the portfolio volatility. This chapter goes through the methodology

and steps required to calculate portfolio returns, model portfolio volatility and compute

each VaR model. In Chapter 5 we cover the Backtest and the statistical tests to assess

model performance, as well as their results, and choose the model we will apply for the

one year period going forward in the VaR Management portion of this work presented in

Chapter 6.
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4.1. Risk Factor Exposure Mapping

We refer to the sources of risk as risk factors, which can be seen as the variables directly

influencing the value of the assets that compose the portfolio. As such, the first step is

to identify these variables and quantify the exposure to each of them through risk factor

mapping, where we map each portfolio position to an equivalent exposure in terms of risk

to the corresponding risk factor. The risk factors each position is mapped into depends

on the type of asset and for different assets, different risk factors are needed. It follows

that to estimate the VaR in EUR, which is our local currency, all exposures have to be

quantified in EUR. To achieve this, we convert each exposure mapped from foreign to

local currency using the appropriate exchange rate on the date of the Backtest, which in

our case is 30 September 2021.

In the subsections below we explore the exposure mapping methodology for each asset

class present in our portfolio. Table 3 at the end of this section presents the exposures to

each risk factor that result from the risk factor exposure mapping.

4.1.1. Equity

The value of an investment in a stock depends on the number of shares and the market

price of the respective stock. Therefore, the risk factor for each stock in our portfolio is

the respective change in its market price.

Regarding the risk factor mapping, the exposure to the change in price of each stock

consists in the amount of capital invested in it, and for each stock, we obtain the amount

of capital invested by multiplying the number of shares by the respective market price:

Sit = Nit × Pit × FXt, (1)

where FXt is the exchange rate at 30 September 2021 used to convert the exposure from

foreign to local currency.

4.1.2. Bonds

A bond is a financial instrument that consists of a stream of cash flows. Its fair value

derives from its future cash flows discounted to present time, and so the main risk factor

for its value is the interest rate used to discount the future cash flows. If the interest rate

increases (decreases) the bond value decreases (increases). As interest rates are not static

and may vary along changes in market conditions, it then becomes imperative from a risk

measurement and management standpoint to quantify the sensitivity of bond positions

to changes in interest rates.
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For a fixed coupon bond, its collection of future cash flows consists in the coupon

payments throughout the life of the bond plus the final payback payment. The coupon

paid is given by:

Coupon = N × cn
n
, (2)

where N is the monetary amount invested in the bond (also referred to as face value), cn

is the annual coupon rate (annual interest paid by the bond each year until the maturity

date) and n is the coupon frequency (the number of times per year the coupon payments

are made).

The final payback payment that occurs at the maturity of the bond includes the

redemption of the face value and is given by:

Cm = N ×
(
1 +

cn
n

)
(3)

Let CT denote a future cash flow, T the time in years from now until the date of the

cash flow (also referred to as maturity) and rT the continuously compounding interest

rate for the time period from now until T . It follows that the present value (PV ) of cash

flow CT is:

PVCT ,rT = CT × e−rT×T (4)

The present value of a basis point (PV 01) measures the PV sensitivity of a given

cash flow to a one basis point decrease in the interest rate rT . It is approximated by a

first-order Taylor expansion as:

PV 01CT ,rT ≈
∂PVCT,rT

∂ rT
× (−0.01%)

= T × PVCT ,rT × 0.01%

(5)

where T is the maturity of the cash flow.

It follows that the first-order approximation to the change in the PV of a cash flow,

which is its P&L, can be written as a function of the PV 01 as:

∆PVCT ,rT = −PV 01CT
× ∆rT

0.01%
, (6)

where ∆rT
0.01%

is the absolute change in interest rate converted to basis points.

Given the above, for cash flow CT , its P&L depends on the sensitivity of the cash flow

to a one basis point increase in the interest rate (−PV 01CT
) and on the actual change in

interest rate that occurred (∆rT ). If the change in interest rate is positive (negative) the

11



P&L is negative (positive). In the case of a bond with n cash flows, its P&L is the sum

of the n P&Ls given by applying Equation 6 to each cash flow.

However, a bond with n cash flows will have n different interest rates as risk factors

(one for each cash flow maturity), and in a portfolio with a large number of bonds, the

problem eventually becomes intractable. Another hurdle arises arises when a future cash

flow occurs at a date for which there is no data available for the corresponding interest rate

rT , and without an appropriate interest rate, the cash flow cannot be correctly discounted

to present time to then compute its PV 01.

To tackle these hurdles, and as Alexander (2008) suggests, we adopt a vertices mapping

approach where we map cash flows with non-standard maturity to a set of standard

maturity interest rates for which data is available. In the cash flow mapping process, a

vertex is a standard maturity to which there is available interest rate data. The mapping

approach we adopt going forward is the PV+PV01 invariant mapping, which consists in

preserving the PV and PV 01 of the original cash flow of non-standard maturity.

Let PVCT
denote the PV of the original cash flow with maturity T , and T1 and T2

the standard maturity vertices directly below and above T , respectively, to which there

is available interest rate data. Let xT1 and xT2 denote the proportions of PVCT
mapped

into vertex T1 and T2, respectively. We preserve the PV of the original cash flow through

the following condition:

xT1︸︷︷︸
PV mapped to vertex T1

+ xT2︸︷︷︸
PV mapped to vertex T2

= PVCT︸ ︷︷ ︸
PV original cash flow

(7)

For the PV 01 invariant mapping, the sum of the PV 01 of the mapped cash flows

equals the PV 01 of the original cash flow. This ensures that the sum of the P&L of the

two mapped cash flows matches the P&L of the original cash flow following a parallel

shift of one basis point in the interest rate curve1. We preserve the PV 01 of the original

cash flow through the following condition:

T1xT1 + T2xT2 = TPVCT
(8)

Finally, we simultaneously preserve the PV and PV 01 by joining Equations 7 and 8. We

obtain the values for xT1 and xT2 that satisfy both conditions simultaneously as:

xT1 =
T2 − T

T2 − T1

× PVCT
(9)

and

xT2 =

(
1− T2 − T

T2 − T1

)
× PVCT

(10)

1When the interest rate curve shifts by one basis point it means all spot rates shift by 0.01%.
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We repeat the PV+PV01 process for every cash flow and for every bond in our port-

folio, and in terms of exposure, each mapped standard maturity cash flow is subject to

changes in its respective standard maturity interest rate, which is given by its PV 01.

Recalling Equation 6, in terms of risk factor mapping, each standard maturity interest

rate (vertex) is a risk factor and the exposure to each each risk factor is the sum of all

PV 01 mapped to that maturity multiplied by −1. Finally, for bonds from the U.S.

market, since their cash flows are denominated in USD, we convert the −PV 01 exposures

to EUR using the exchange rate at 30 September 2021.

4.1.3. Currency

Since our local currency is the EUR and the portfolio in analysis has positions in assets

from foreign markets, these positions are not only exposed to the risk factors of the

respective asset, but also to the exchange rate from foreign to local currency. In our case,

assets in USD are also exposed to the USD/EUR exchange rate. In terms of mapping,

the exposure to the USD/EUR risk factor is the total amount of capital invested in assets

denominated in USD, for both equity and bonds, converted to EUR. We once again do

this conversion using the exchange rate at 30 September 2021.

13



4.1.4. Portfolio Exposures

Table 3 below presents the risk factors and their corresponding mapped exposure at 30

September 2021. For Equity, we obtain the exposures shown in the table below through

the methodology described in subsection 1.1 of this chapter. For Bonds, the risk factors

are the standard maturity interest rates2 and the exposure to each standard maturity

interest rate is the sum of all −PV 01 mapped to that maturity. We obtain the −PV 01

by the methodology described in subsection 1.2. For Currency, we obtain the exposure

to the USDEUR exchange rate by the methodology described in subsection 1.3.

Equity Bonds Currency

Risk Exposure Risk Exposure Risk Exposure

Factor (EUR) Factor (EUR) Factor (EUR)

AAPL 1 950 593 USD3M -4.70 USDEUR 44 447 033

AMD 1 711 724 USD6M -6.58
AMZN 1 655 941 USD1Y -33.78

CAT 2 082 450 USD2Y -89.69

DIS 2 131 904 USD3Y -198.86
JPM 1 544 261 USD5Y -6 660.54

KO 2 117 977 USD7Y -5 521.62

MRK 1 828 935 USD10Y –
TSLA 2 280 299 EUR3M –

V 2 090 529 EUR6M -5.93

WMT 2 074 633 EUR1Y -12.05
ADS.DE 2 057 581 EUR2Y -36.21

ALV.DE 2 037 808 EUR3Y -2 611.19

BAS.DE 1 758 841 EUR5Y -6 667.93
BAYN.DE 2 005 371 EUR7Y -8 705.40

DBK.DE 2 142 586 EUR10Y –
DPW.DE 2 063 224

DTE.DE 1 477 212

EDP.LS 1 917 244
SIE.DE 2 128 234

SON.LS 1 902 305

VOW3.DE -2 427 617

Table 3. Risk factor exposures map in EUR at 30 September 2021. These
exposures are used to calculate historical portfolio returns through Equation 14 for
the Backtest.

2Each standard maturity interest rate is labeled as a composite of ”Currency” + ”Maturity”. For example,
the 3-year USD interest rate is labeled as USD3Y.
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4.2. Returns

For the stocks in our portfolio, and keeping the capital invested (MStock) constant, the

P&L is given by the change in market price of its risk factor, which is the stock price, as:

P&LStockt = MStock ×
(

Pt

Pt−1

− 1

)
(11)

For an investment in a bond, each cash flow is exposed to a different interest rate and

therefore changes in that respective interest rate. For the bonds in our portfolio, keeping

the capital invested and −PV 01s constant, using Equation 6 the total P&L corresponds

to the sum of the P&Ls of all mapped cash flows as:

P&LBondst =
n∑

i=1

−PV 01Ti
× ∆rTi

0.01%
(12)

An investment in an asset denominated in foreign currency generates exposure to not

only the risk factor of that specific asset directly but also to the exchange rate between

foreign and local currency indirectly. In other words, by investing in stocks and bonds

denominated in foreign currency we are generating an exposure to the exchange rate

between foreign and local currency equivalent to the amount invested (MCurrency). As

the risk factor is the exchange rate between foreign and local currency (FX), the P&L

deriving from the exposure to foreign currency is given by:

P&LCurrencyt = MCurrency ×
(

FXt

FXt−1

− 1

)
(13)

With a series of daily stock prices, spot interest rates and currency exchange rates,

using the equations above and the mapped exposures to each risk factor at 30 September

2021 presented in Table 3, we compute the historical time series of daily P&Ls for the

portfolio composition at 30 September 2021 in vector form as:

P&LPortfoliot =



MStocki
...

−PV 01Ti

...

MCurrency



T

×



(
Pit

Pit−1
− 1

)
...

∆rTi
0.01%
...(

FXt

FXt−1
− 1

)


, (14)

where the first vector transposed remains constant and corresponds to the exposures to

each risk factor and the second vector corresponds to the change in the respective risk

factor.
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We transform the portfolio P&L into a percentage return as:

Rt(%) =
P&LPortfoliot

Portfolio V alue
, (15)

where the denominator is the portfolio value at 30 September 2021 (see Table 1).

4.3. Volatility

We recall the beginning of this chapter where we touch on the two crucial components

needed in order to successfully complete the Backtest process: portfolio returns to use in

the back tests and portfolio volatility modeling in order to be able to compute the VaR

models we sought to test. In section 1 of this chapter we dived into how to identify the

appropriate risk factors for each asset class and how to quantify our portfolio’s sensitivity

to them. Having done this, using the portfolio exposures we mapped for the portfolio

composition on 30 September 2021 (see Table 3) and keeping them constant, we simulated

historical returns using Equations 14 and 15. We are then left with a series of historical

returns for our current portfolio composition.

The next step that unables us to compute the VaR models we mentioned previously

is volatility modelling. Volatility of returns, σ, corresponds to the standard deviation of

the returns, and the simplest way of computing it is by selecting a historical sample of

past returns and calculating its standard deviation. However, with this methodology we

are implying that every observation in the sample has the same weight, regardless of how

recent or not the observation is. This method may be unfitting as σ is equally influenced

by observations that are far into the past, and with minimal relation to the present, as it

is by recent observations.

Since VaR is a forward-looking measure, the distant past may not be of relevance,

and so the Exponential Weighted Moving Average (EWMA) volatility model aims to

tackle this issue. The model attributes higher weights to most recent observations, hence

reflecting current market conditions. The constant responsible for this weight attribution

is λ and while it can vary between 0 and 1, the lower the λ, the more weighted is attributed

to recent observations. While the choice of λ is subjective, following the findings in the

RiskMetrics technical document produced by J.P. Morgan and Reuters (1996), a λ of 0.94

proved to be the best general fit when dealing with daily returns and so we will adopt

this value going forward.

From the historical daily returns, we estimate the EWMA variance recursively as:

σ̂2
t = (1− λ)r2t−1 + λσ̂2

t−1, (16)

where σ̂2
t is the variance estimated for day t on day t− 1, rt−1 is the return observed on

day t− 1 and λ ∈ (0, 1) is the smoothing factor.
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4.4. Value-at-Risk Models

The VaR can be defined as the maximum expected loss over a future time horizon h and

for a given significance level of α. Going forward we adopt a significance level of α = 1%,

or equivalently, a confidence level of (1− α) and a future time horizon of 1 day (h = 1).

This means that with while holding the current portfolio, we are 99% confident that over

the next day the observed loss will not exceed the VaR estimate.

Formally, the h-day 100α% VaR (V aRh,α) is minus the α-quantile of the h-day return

distribution. As Alexander (2009) points out, for any 0 < α < 1, the α-quantile of the

h-day distribution of a continuous random variable X is a real number xα such that:

P (X < xα) = α (17)

If the distribution function of X is known, then the α-quantile (xα) for any given value

of α is given by:

xα = F−1(α), (18)

where F−1 is the inverse cumulative distribution function of X.

The α-quantile value obtained (xα) translates into the maximum loss we expect to be

exceeded with α probability. As we refer to the VaR as a loss, its value comes represented

in absolute terms:

V aRh,α = −F−1(α) = −xα (19)

Figure 1 below illustrates the VaR estimate for a given return distribution.

Figure 1. VaR illustration. The curve represents the h-day return distribution.
The coloured area under the curve represents the α cumulative probability.

In the following subsections we dive into the methodology necessary to compute the four

classes of VaR models mentioned in the first page of this chapter.
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4.4.1. RiskMetrics VaR

Let X denote a continuous random variable which represents portfolio returns. The core

characteristic of the RiskMetrics VaR model is that it assumes returns follow a normal

distribution, that is, Xh = N ∼ (µh, σh), where µh and σh are the estimated mean and

standard deviation, respectively.

We recall Equation 19 and, considering we are dealing with a normal distribution, it

follows that:

V aRh,α = −Φ−1(α)× σh − µh, (20)

where Φ−1(α) denotes the α-quantile of the standard normal distribution.

With regards to µh, Alexander (2009) suggests using µh = 0 for small time horizons,

and since this work deals with daily data and therefore daily VaR estimates (h = 1), this

then becomes a reasonable assumption. From here, we simplify the equation above and

compute the h-day 100α% RiskMetrics VaR as:

V aRh,α = −Φ−1(α)× σh, (21)

where σh is estimated using the EWMA volatility model through Equation 16.

4.4.2. Skewed Generalized Student-t (SGSt) VaR

As mentioned in Chapter 2, the distribution of financial asset returns often departs from

the normal distribution by exhibiting fatter tails. Because of this, the normal distribution

can underestimate the probability of large negative returns. It then follows that, by

assuming a normal distribution, there is a high possibility the VaR will be underestimated

for low significance levels (e.g. 1%).
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Figure 2 below illustrates the normal distribution VaR underestimation problem de-

scribed above.

Figure 2. Normal VaR underestimation. We observe that for higher confidence
levels such as 99% (which means a VaR significance level (α) of 1%), starting from
the left, the fat tailed distribution accumulates probability faster than the equivalent
normal. This means the 1% worst return is a worse return than the equivalent
normal, which translates into a higher VaR.

In its shape, the standardized SGSt distribution (Theodossiou, 1998) aims to capture

the deviations away from normality and its density function T0,1,λ,p,q depends on the λ, p

and q parameters: λ ∈ (−1, 1) determines the skewness (if λ = 0 the distribution is sym-

metric, if λ > 0 or λ < 0 the distribution is positively or negatively skewed, respectively),

p > 0 controls and shape of the central region of the distribution and q > 0 controls the

shape of the tail region of the distribution. To estimate these parameters, we use the

maximum likelihood method such that the estimated parameters make the SGSt distri-

bution resemble the real return distribution of our portfolio as much as possible. To make

the model reflective of current market conditions, we re-estimate the parameters every

trading month and compute four different SGSt VaR series where what differs between

each one is the size of the rolling sample of portfolio returns used for the parametrization:

the variants use 250, 500, 750 and 1000 daily observations.

Formally, we compute the h-day 100a% SGSt VaR as:

V aRh,α = −T−1
0,1,λ,p,q(α)× σh − µh, (22)

where T−1
0,1,λ,p,q(α) denotes the α-quantile of the standard SGSt distribution. Equivalently

to the RiskMetrics VaR described in the previous subsection, we adopt µh = 0 and

estimate σh by the EWMA volatility model and we simplifty the above equation to:

V aRh,α = −T−1
0,1,λ,p,q(α)× σh (23)
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4.4.3. Volatility-Adjusted Historical VaR

In the RM and SGSt VaR models explored thus far, we impose that the portfolio returns

follow a certain defined distribution, which can prove itself unrealistic or computationally

complex as in the case of the SGSt VaR. Moving away from the parametric world, the

Historical VaR brings a simpler approach to the table: use the empirical distribution of

returns directly and rely on the α-quantile of this distribution to estimate the VaR.

We estimate the Historical VaR through the following steps: choose the sample size

n, compute h-day past empirical returns by keeping the current portfolio exposure to the

risk factors constant for the sample period (this way we simulate the returns the current

portfolio would have had in past empirical market conditions), sort the returns from worst

to best, start accumulating probability from the worst return upwards (each observation

has a probability of 1
n
) and finally, the VaR is given by minus the return with α cumulative

probability.

As mentioned in Chapter 2, the choice of sample size is crucial as a larger sample size

widens the diversity of returns but, at the same time, as we increase the sample size the

less we reflect the current market conditions. This is the main problem with the simple

Historical VaR as each observation has the same weight, therefore the current volatility

of returns has the same impact as the volatility of the oldest returns in the sample. The

volatility-adjusted Historical VaR proposed by Hull and White (1998) aims to solve this

shortcoming by, while still giving the same weight to every observation, adjusting the

volatility of the entire series of returns. This way, the entire sample reflects the current

market conditions. To do this, we first obtain a series of volatility estimates (σ̂t) and then

adjust the series of returns as:

r̂t =
rt
σ̂t

σ̂T , (24)

where r̂t is the adjusted return, T is the VaR measurement date and t < T . We define

this model as the T volatility-adjusted Historical VaR.

However, as we estimate volatility (σ̂t) through the EWMA model, and recalling Equa-

tion 16, as rt becomes known we can estimate the volatility for day t+1 (σ̂t+1). As such,

instead of using the volatility estimate for day t that was computed at the end of day

t − 1 (and therefore not using date t information), we can further develop the volatility

adjustment process by:

r̂t =
rt

σ̂t+1

σ̂T+1, (25)

and we define this model as the T + 1 volatility-adjusted Historical VaR.

Recalling the importance of sample size for the Historical VaR in particular, for both

the methods described in Equations 24 and 25, we compute four different VaR series,

where what differs between each one is the sample size of volatility-adjusted returns: the

variants use 250, 500, 750 and 1000 daily observations.

20



Formally, we compute the h-day 100α% volatility-adjusted Historical VaR as minus

the α-quantile of the sample of volatility-adjusted returns.

4.4.4. Quantile Regression VaR

Still in the non-parametric world, as the VaR is minus the α-quantile of a series of portfolio

returns, we can estimate the VaR through a quantile regression where the dependent

variable is the portfolio return and using some explanatory variables of our choosing.

Formally, the α-quantile (qα) regression VaR can be estimated as:

V aRα ≡ −qα,y = −(â+ b̂xi), (26)

where y represents the portfolio return and â and b̂ the estimated parameters of the α-

quantile regression of y onto x. It follows that the parameters of the α-quantile regression

of y onto x can be determined through a minimization problem (Koenker and Bassett Jr,

1978) as:

(â, b̂) = argmin
a,b

n∑
i=1

[yi − (a+ bxi)] (α− Iyi−(a+bxi)<0), (27)

where Iyi−(a+bxi)<0 is an indicator function of event:

Iyi−(a+bxi)<0 =

1, if yi − (a+ bxi) < 0

0, otherwise
(28)

The parameters are estimated using a sample size of 1000 daily observations and,

similarly to the SGSt VaR, they are re-estimated every trading month.

We compute a series of daily VaR estimations for three different QR VaR specifications,

and defining the dependent variable y as the portfolio return, the first specification is given

by:

yt = b× σt + εt, (29)

where the explanatory variable σt is the volatility estimate for day t computed using the

EWMA volatility model.

While also using σt as an explanatory variable, the second and third specifications use

an additional explanatory variable of σ5d,t and σ20d,t, respectively, which are the average

of the volatility of the last 5 and 20 trading days. The second specification is given by:

yt = b× σt + c× σ5d,t + εt, (30)
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and the third specification is given by:

yt = b× σt + c× σ20d,t + εt, (31)

Formally, we compute the h-day 100α% QR VaR as:

V aRα,t = −(b̂× xt + ĉ× zt), (32)

where xt and zt are the explanatory variables.

For ease of presentation going forward, we assign a number to each VaR model com-

puted. Table 4 below presents the number assigned to each model and its respective

description.

Model No. Description

1 RiskMetrics

2 SGSt, rolling sample of 250 obs.
3 SGSt, rolling sample of 500 obs.
4 SGSt, rolling sample of 750 obs.
5 SGSt, rolling sample of 1000 obs.

6 T volatility-adjusted Historical, rolling sample of 250 obs.
7 T volatility-adjusted Historical, rolling sample of 500 obs.
8 T volatility-adjusted Historical, rolling sample of 750 obs.
9 T volatility-adjusted Historical, rolling sample of 1000 obs.
10 T + 1 volatility-adjusted Historical, rolling sample of 250 obs.
11 T + 1 volatility-adjusted Historical, rolling sample of 500 obs.
12 T + 1 volatility-adjusted Historical, rolling sample of 750 obs.
13 T + 1 volatility-adjusted Historical, rolling sample of 1000 obs.

14
Quantile Regression with EWMA volatility as the explanatory variable,
rolling sample of 1000 obs.

15
Quantile Regression with EWMA volatility and 5-day rolling average of
EWMA volatility as the explanatory variables, rolling sample of 1000 obs.

16
Quantile Regression with EWMA volatility and 20-day rolling average of
EWMA volatility as the explanatory variables, rolling sample of 1000 obs.

Table 4. Model number and respective description. All models use the
EWMA volatility model with λ = 0.94 for their volatility estimates. Models 6 to 9
use the methodology given by Equation 24 and models 10 to 13 use the methodology
given by Equation 25. The rolling sample on the SGSt and Quantile Regression
models are the sample of returns used to estimate the model parameters.
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CHAPTER 5

BACKTEST AND MODEL SELECTION

Through Chapter 4 we dived into the methodology necessary to compute the four classes

of VaR models we want to test for our portfolio. Overall, we computed 16 different models

and for each one we computed a series of daily historical VaR estimates spanning over 6

years from 1 October 2015 to 30 September 2021 and we define this test period as the

global period. The next step is to assess the performance of each model and choose the

best one to apply to the one year period going forward.

The main performance metric is the number of exceedances, and as we are dealing

with daily data, we refer to an exceedance as an event where the actual return for the

day is worse than the VaR estimate for the same day. To evaluate these events we adopt

two inference tests: the UC (Kupiec, 1995) and BCP (Berkowitz et al., 2011), where the

first evaluates the number of exceedances and the second evaluates the autocorrelation

between exceedances.

Even though the two tests assess the performance of a model from different points of

view, our decision will be primarily supported by the results of the UC test, while the

BCP helps us differentiate between models that have similar UC test performance. This

is because even when a model has a low number of exceedances, if these are consecutive

or occur within few days of each other, the model can fail the BCP test (depending on

the lag of the test). On the other hand, if a model has a high number of exceedances, if

they are not consecutive or occur within few days of each other, the model can pass the

BCP test (depending on the lag of the test).

Timewise, we apply the UC and BCP tests to the global period as well as for each

year within this time interval when relevant. While it is useful to assess and compare the

performance of each model for specific time periods (for example, if we want to assess

how a model performs during certain market conditions or expect certain past market

conditions to repeat themselves in the near future), the decision will be mainly based on

the results for the global period as this offers more homogeneous results.

Sections 1 and 2 present the methodology for each test. Section 3 presents the results

of the Backtest and the selected model for the one year period going forward.
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5.1. Unconditional Coverage Test

For the UC test, a model is said to be well specified when the number of exceedances is

in-line with the significance level α of the VaR model (Alexander, 2009). Recalling the

definition of VaR as the worst loss we are 1− α confident will not be exceeded, it comes

that there is a α chance that the loss will in fact be worse than the VaR. For example, for

a sample of 1000 daily VaR estimates, if the VaR is estimated at the 99% confidence level

(and therefore the significance level α = 1%), we expect that the α worst observed loss

will be exceeded 1000×α = 10 times. This translates into 10 exceedances, or equivalently,

an exceedance rate of 1000
10

= 1% = α.

Formally, for a sample of n observations, for each observation we identifty an ex-

ceedance through an indicator function as:

Iα,t =

1, if rt < −V aR1,α,t

0, otherwise
, (33)

where rt is the return observed for day t and V aR1,α,t is the VaR estimated for day t. We

are left with a series of n observations where each observation is either 1 or 0, depending

on the indicator function above.

We test if the null hypothesis that the indicator function, which is assumed to follow

an i.i.d. Bernoulli process, has a probability equal to the significance level α of the VaR

model (Alexander, 2009). Formally, the null and alternative hypothesis for the UC test

are:

H0 : πobs = πexp ≡ α

H1 : πobs ̸= πexp,

where πobs and πexp are the observed and expected exceedance rates, respectively,

The test statistic is:

LRUC =

(
πexp

πobs

)n1
(
1− πexp

1− πobs

)n0

, (34)

where n1 and n0 = n − n1 are the number of exceedances and non-exceedances, respec-

tively.

The distribution of the test statistic under the null hypothesis (πobs = πexp) follows a

chi-squared distribution with one degree of freedom: −2 ln (LRUC) ∼ χ2
1.

Recalling the beginning of the section, we can deem the model well specified if the null

hypothesis described above is not rejected at the 95% confidence level. In other words, it

means that according to the test the exceedance rate is within the expected value of α.
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5.2. BCP Test

For the BCP test, a model is said to be well specified when the exceedances are indepen-

dent from each other (Berkowitz et al., 2011), which means we cannot predict when the

next exceedance will happen based on an exceedance that has already occured. In other

words, the autocorrelation in exceedances is 0 at all lags. For example, in the case where

we estimate the VaR daily, in a volatile week where an exceedance is observed, the next

trading days may also present exceedances whether these are consecutive or not, thus

presenting an exceedance clustering event, and therefore signaling that the model may

not be adapting fast enough to recent volatility increases. The BCP test aims to capture

these events.

Formally, the null and alternative hypothesis for the BCP test are:

H0 : ρ̂k = 0,∀k ∈ {1, . . . , K}

H1 : ∃k ∈ {1, . . . , K} s.t. ρ̂k ̸= 0,

where ρ̂k is the lag k autocorrelation of the series of n observations where each observation

is either 1 or 0, given by the indicator function described in Equation 33 and K is the

maximum autocorrelation lag considered in the test.

The test statistic is given by:

BCP (K) = n (n+ 2)
K∑
k=1

ρ̂2k
n− k

, (35)

where n is the sample size, or number of observations, of the test.

The distribution of the test statistic under the null hypothesis (ρ̂k = 0) follows a chi-

squared distribution with K degrees of freedom: BCP (K) ∼ χ2
K . We are free to choose

the lag K, but before we do that its important to be aware of the properties of a larger

or smaller K. A larger K offers insight into higher order autocorrelations, but because

the test statistic of the null hypothesis follows a chi-squared distribution with K degrees

of freedom, as we increase K we increase its critical value, which in turn makes the null

hypothesis harder to reject. On the other hand, if we choose a smaller K, we increase

the sensitivity of the test but at the same time we ignore the autocorrelations with lags

> K. Aware of these properties, we will compute the BCP test for K = 1 and go up to

K = 5, which means we will test for autocorrelation up to the 5th lag while still keeping

the sensitivity of the test at an acceptable level.
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5.3. Backtest Results and Model Selection

We recall the global period of 6 years from 1 October 2015 to 30 September 2021 for

which we computed daily VaR estimates for every model. Using the UC and BCP tests

presented earlier in this chapter, in this section we assess the performance of each model

for both the global period and annual sub-periods when relevant and conclude with the

choice of the best model for our current portfolio composition.

This global period totals n = 1566 observations, and given the VaR models computed

used a significance level of α = 1%, from a UC test point of view we expect a well specified

model to have close to 1566× 1% ≈ 16 exceedances.

Traditionally, we reject the null hypothesis when the p-value of the test statistic is

below 5%. As such, it follows that a model is accepted by the UC or BCP tests when

their null hypothesis is not rejected, that is, if the p-value is above 5%.

Table 5 below presents the number of exceedances, the exceedance rate and p-value

of the UC test for all models for the global period.

Model
Class

Model
No.

Global Period

No. of Exceedances Exc. Rate (%) p-value (%)

RM 1 32 2.04 0.03

SGSt

2 20 1.28 29.06
3 21 1.34 19.74
4 21 1.34 19.74
5 22 1.40 12.91

Hist

6 16 1.02 93.14
7 13 0.83 48.64
8 18 1.15 56.16
9 17 1.09 73.71
10 32 2.04 0.03
11 27 1.72 0.09
12 30 1.92 0.12
13 29 1.85 0.25

QR
14 20 1.28 29.06
15 21 1.34 19.74
16 21 1.34 19.74

Table 5. UC test results for the global period. The rows in bold denote the
models that pass the UC test. A model passes the UC test when its corresponding
p-value is above 5%. See Table 4 for the description of each model.

We observe from Table 5 that, not surprisingly, we clearly reject the RiskMetrics model

represented by model number 1. Its high number of exceedances points to its main flaw

of assuming a normal distribution for the returns, which is not the case for our portfolio

for the global period (see Appendix A) as its returns display negative skewness, meaning

the distribution is asymmetric to the left, as well as excess kurtosis (kurtosis > 3), which

translates into fatter distribution tails than the normal distribution.
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However, surprisingly, the UC test rejects all the T + 1 volatility-adjusted Historical

models represented by model numbers 10 to 13. Within the accepted, the T volatility-

adjusted Historical models represented by model numbers 6 to 9 clearly outperform the

other accepted models with a number of exceedances much closer to the expected (1566×
1% ≈ 16), and within these, the T volatility-adjusted Historical with a rolling sample

of 250 observations represented by model 6 comes as the winner for the UC test, closely

followed by the T volatility-adjusted Historical with a rolling sample of 1000 observations

represented by model 9. For the analysis going forward we exclude the models that were

rejected by the UC test in Table 5.

Table 6 below presents the p-values of the BCP test for the global period for the

models that passed the UC test. Appendix B.1 presents the BCP test results for the

global period and for all models.

Model
Class

Model
No.

p-value (%)

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

SGSt

2 60.81 76.86 0.00 0.00 0.00
3 59.01 74.79 0.00 0.00 0.00
4 59.01 74.79 0.00 0.00 0.00
5 57.22 72.67 0.00 0.00 0.00

Hist

6 68.24 84.57 19.39 29.94 40.95
7 74.00 89.57 5.17 9.72 15.84
8 64.49 80.85 0.10 0.23 0.49
9 66.36 82.74 25.40 37.19 48.64

QR
14 60.81 76.86 0.00 0.00 0.00
15 59.01 74.79 0.98 1.99 3.53
16 59.01 74.79 0.98 1.99 3.53

Table 6. BCP test results for the global period. The values in bold denote the
p-values higher than 5%. The model numbers in bold denote the models that pass
the BCP test for the five lags. A model passes the BCP test when its corresponding
p-value is above 5%. See Table 4 for the description of each model.

We observe from Table 6 that although all models pass the BCP tests for lags 1 and 2,

from lag 3 onward most models are clearly rejected. An encouraging result is that models

6 and 9, which for the UC test presented the best results, also present the best results for

the BCP test for all lags.

Through the results obtained by the UC and BCP tests in Tables 5 and 6, respectively,

we can confidently narrow our choice to models 6 and 9. To help us form a decision, a

deeper analysis that we can perform is to look into the annual sub-periods and assess the

performance of each one.
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Table 7 presents the exceedance rate (%) and p-value (%) of the UC test for models

6 and 9 for the annual sub-periods comprising the global period. Appendix B.2 presents

the UC test results for the annual sub-periods for all models.

Model
No.

2021-2020 2020-2019 2019-2018 2018-2017 2017-2016 2016-2015

Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value

6 0.77 69.23 1.91 18.91 1.15 81.27 0.77 69.67 0.77 69.67 0.76 68.79

9 0.77 69.23 1.91 18.91 1.15 81.27 0.77 69.67 0.77 69.67 1.15 81.76

Table 7. UC test results for the annual sub-periods. A model passes the UC
test when its corresponding p-value is higher than 5%.

We observe that both models behave well and very similarly, with the only difference

being for the sub-period of 2016-2015 where model 9 shows an exceedance rate slightly

higher than model 6 due to having one more exceedance, but still well within the accep-

tance range.

One last assessement we can make is to look into the annual sub-periods once again

but this time for the BCP test. Tables 8 and 9 below present the p-values of the BCP test

for the annual sub-periods and for all five lags tested for models 6 and 9, respectively.

Sub-periods
p-value (%)

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

2021-2020 89.98 88.42 99.72 99.95 99.99
2020-2019 75.05 91.27 0.75 1.70 3.31
2019-2018 84.96 96.45 99.07 99.74 99.93
2018-2017 89.96 98.41 99.72 99.95 99.99
2017-2016 89.96 98.41 99.72 99.95 99.99
2016-2015 90.00 98.42 99.72 99.95 99.99

Table 8. Model number 6 BCP test results for the annual sub-periods. A
model passes the BCP test for a certain lag when its corresponding p-value is above
5%.

Sub-periods
p-value (%)

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

2021-2020 89.98 98.42 99.72 99.95 99.99
2020-2019 75.05 90.33 2.59 5.24 9.14
2019-2018 84.96 96.45 99.07 99.74 99.93
2018-2017 89.96 98.41 99.72 99.95 99.99
2017-2016 89.96 98.41 99.72 99.95 99.99
2016-2015 84.99 98.46 99.08 99.75 99.93

Table 9. Model number 9 BCP test results for the annual sub-periods. A
model passes the BCP test for a certain lag when its corresponding p-value is higher
than 5%.
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We observe that both models perform very similarly for all sub-periods. Additionally,

both models drop the ball on lag 3 for the 2020-2019 sub-period, which is not surprising

given it was a year with unusually high levels of volatility.

Despite the analysis done, the choice between both models continues to not be obvious.

While model 6 presents a higher UC test p-value for the global period, this advantage

comes from the 2016-2015 sub-period, where it presented 1 fewer exceedance than model

9. This is not significant considering what we observed in Table 5 where models 6 and 9

presented exceedances of 16 and 17, respectively. Considering this, one can choose either

model, but we will opt for model 9, the T volatility-adjusted Historical VaR with a rolling

sample of 1000 observations, because it offers a wider range of potential scenarios due to

its higher sample size, and thus, not being limited to what happened only the last year

(which is the case when we use 250 observations).

Figure 3 below presents the daily VaR estimates for model 9 and the portfolio’s daily

P&L over the global period of the Backtest.

Figure 3. Historical VaR model number 9 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.

We observe that for the majority of the global period, the exceedances happened with

a considerable amount of days between them. However, during the year of 2020 there are

several exceedances occurring within a low number of days. We dive deeper with Table

10 below which presents the exceedance details for the global period for model 9.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.63 -0.63 -0.01 0.94
27/01/2021 -0.86 -0.99 -0.13 15.62
11/06/2020 -1.92 -1.99 -0.07 3.67
12/03/2020 -3.34 -4.06 -0.72 21.62
09/03/2020 -2.18 -3.50 -1.32 60.80
24/02/2020 -0.97 -1.65 -0.68 69.49
30/12/2019 -0.70 -0.78 -0.08 12.07
05/08/2019 -0.86 -0.97 -0.10 12.03
13/05/2019 -0.83 -0.90 -0.07 8.04
10/10/2018 -0.82 -1.08 -0.26 31.14
31/05/2018 -0.90 -1.06 -0.16 17.84
02/02/2018 -0.75 -1.21 -0.46 62.16
29/06/2017 -0.73 -0.85 -0.13 17.55
17/05/2017 -0.60 -1.15 -0.55 92.84
09/09/2016 -0.84 -0.95 -0.11 12.73
24/06/2016 -0.96 -1.69 -0.73 76.48
08/01/2016 -1.15 -1.16 -0.01 0.91

Average -0.33 30.35

Table 10. Model 9 global period exceedance details. The date of the ex-
ceedances and the days between them add additional detail to the BCP test results.

Its interesting to observe that in fact 3 days separate the exceedances that occured in

12/03/2020 and 09/03/2020, which was correctly captured by the BCP test and showcased

in its lower result for Lag 3 presented for the year of 2020 in Table 9.

Appendices B.3.1 to B.3.15 present this analysis for all models which sheds a light

on each model’s success or failure in passing the Backtest. Additionally, it sheds a light

on why some models passed the UC test but failed the BCP test at Lag 3 (for example

models 2 and 14.)
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CHAPTER 6

VALUE-AT-RISK MANAGEMENT

We recall the definition of EC as the capital at risk resulting from the portfolio’s

activity during a given time horizon and for a given significance level. This capital at risk

is measured by the VaR, which means that the EC and VaR are numerically equal. It

follows that if we define a target for the EC of our portfolio, it is around this target that

risk management strategies can be formulated.

Going forward we measure the VaR with model 9 chosen in Chapter 5, that is: T

volatility-adjusted Historical VaR with a rolling sample of 1000 observations. For this

model, we observed in Figure 3 from Chapter 5 that for the Backtest period the VaR

ranged mostly between e1 million and e2 million, with the exception being part of the

year of 2020 which went well beyond this interval. Additionally, the 30 September 2021

VaR estimate was close to e1 million, which translates into close to 1.0% of the portfolio

value. As such, for the one year going forward, we will aim to be within this historical

range and go further by setting the daily EC to a maximum of e1.5 million. This means

that the capital at risk resulting from holding our portfolio during the next day, which is

measured by the 1-day VaR, must be at most e1.5 million.

In order to comply with this target, the process we adopt is as follows: today, right

before market close, we estimate the VaR for tomorrow using today’s current portfolio

composition and, if the estimate is above e1.5 million, we implement a given strategy

into the portfolio composition such that the new VaR estimate with the new portfolio

composition does not exceed the defined limit of e1.5 million. Tomorrow, at the same

time, we repeat the process for the next day and we do this daily for the time period of

one year from 30 September 2021 to 30 September 2022.

However, the question of what strategy to implement inevitably arises. If the goal is

to reduce risk, we can either alter existing portfolio positions or hedge existing exposures

within our portfolio. We will opt for a hedging strategy to reduce risk and to achieve this

we first need to assess the contribution of each risk factor to the VaR of the portfolio so

that we can formulate a hedging strategy. This is achieved by performing a marginal VaR

decomposition through which we obtain the proportion of the portfolio’s VaR that can be

attributed to each risk factor. In other words, if the VaR is the whole cake, the marginal

decomposition gives us the slices that comprise the cake and their respective magnitude.

Section 1 presents the marginal VaR decomposition methodology and resulting strat-

egy. Section 2 presents the results of the strategy for the one year period.
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6.1. VaR Decomposition and Management Strategy

Let ∇ denote the gradient vector which lists the sensitivities of the portfolio’s VaR to

small changes in the exposure to each of the n risk factors away from the current values Θ.

Let S be the decomposition vector which lists the current exposures to each risk factor θi

according to the type of decomposition we aim to perform. We obtain the first sensitivity

entry for the gradient vector ∇ with the following process: fix a small number ε (e.g. e1),

perturb only the first risk factor exposure θ1 by ε as:

Θ1 =


θ1 + ε

θ2
...

θn

 , (36)

obtain the time series of returns for the perturbed portfolio Θ1, compute the VaR (V aRΘ1)

and the first sensitivity entry for the gradient vector ∇ is given by
V aRΘ1

−V aRΘ

ε
. We repeat

this process for each θi until we have the sensitivity of all n risk factors.

Finally, we obtain the marginal VaR as:

MarginalV aR = ST∇ (37)

The decomposition performed is up to the user and in our case we will first decompose

the VaR estimate by asset class and for the first day it surpasses e1.5 million: 17 February

2022. This allows us to assess how much each asset class contributes to the VaR of the

portfolio. Table 11 below presents the marginal VaR decomposition by asset class.

Description
Asset Class

Total
Equity FX Bonds

VaR (%) 1.69 0.01 -0.10 1.60
VaR (EUR) 1 656 676 13 848 -101 579 1 568 946
VaR Breakdown (%) 105.59 0.88 -6.47 100.00

Table 11. VaR decomposition by asset class. This table showcases how much
each asset class is contributing to the VaR estimate for 17 February 2022.

We observe that the equity exposure contributes to a higher VaR, the foreign currency

exchange rate exposure contributes slightly to a higher VaR and the bonds exposure

contribute to a lower VaR. Given this, we dive deeper and for equity and bonds we

decompose their risk into assets from the U.S. and European markets, respectively.
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Table 12 below presents the VaR decomposition by asset class and market.

Description
Equity Bonds

Total
U.S. European FX U.S. European FX

VaR (%) 1.11 0.58 0.01 -0.03 -0.07 0.01 1.60
VaR (EUR) 1 086 850 569 826 7 068 -29 907 -71 672 6 779 1 568 946
VaR Breakdown (%) 69.27 36.32 0.45 -1.91 -4.57 0.43 100.00

Table 12. VaR decomposition by asset class and market. This showcases
how much stocks and bonds from the U.S. and European markets contribute to the
VaR estimate for 17 February 2022.

Given the above, a possible strategy to decrease the VaR is to hedge the equity expo-

sure for both U.S. and European stocks. We can achieve this by adding short positions

in broad stock indices such as the S&P500 and DAX for the U.S. and European stocks,

respectively, to our portfolio through exchange traded funds that are commonly available

nowadays. We will trade these exchange traded funds in the European market such that

we do not incur additional foreign currency exchange rate exposure and we will aim to

tackle both equity exposures simultaneously.

Whenever the VaR estimate for the next day is above e1.5 million, we take a short

position in each index and the size of each position is defined such that the two following

conditions are met: the VaR of the portfolio is at most e1.5 million and the ratio between

the marginal VaR for the U.S. and European equities is preserved. For example, looking

at Table 12 above we observe that the marginal VaR for the U.S. stocks is approximately

double the marginal VaR for the European stocks. As such, the short position we will

take in the S&P500 index will also be approximately double the short position we take

in the DAX index. We perform the VaR decomposition on the first day of each month

and set the ratio for the short positions described above depending on the results of the

decomposition.

The VaR is estimated daily and as such the short positions are also adjusted daily.

Whenever the short positions are not warranted, meaning the VaR is below e1.5 million

without them, the short positions are removed. We repeat this process daily until 30

September 2022.
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6.2. VaR Management Results

For comparison purposes, we define the portfolio with the hedging strategy imple-

mented as the Hedged portfolio and the same portfolio but without the hedging strategy

implemented as the Unhedged portfolio.

Figure 4 below presents the daily VaR estimates for both the Unhedged and Hedged

portfolios for the one year period.

Figure 4. Daily VaR estimates.

Figure 5 below presents the hedge position evolution through the one year period.

Figure 5. Daily short positions.

We observe from Figures 4 and 5 that whenever the VaR exceeds the target of e1.5

million, a short position in both S&P500 and DAX stock indices is implemented. Because

of this, the VaR of the Hedged portfolio is kept at a maximum of e1.5 million throughout

the year, whereas for the Unhedged portfolio the VaR goes well beyond this benchmark,

reaching a maximum of close to e2.3 million at the end of May 2022.
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Figure 6 below presents the daily P&L for both the Unhedged and Hedged portfolios

for the one year period. Figures 7 and 8 present the Unhedged and Hedged VaR (shown

as a loss) performance for the one year period.

Figure 6. Daily P&L.

Figure 7. Unhedged VaR performance for the one year period.

Figure 8. Hedged VaR performance for the one year period.
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We observe from Figure 6 how the Unhedged portfolio shows more volatile daily P&Ls

than the Hedged portfolio (see Appendix A for the Unhedged and Hedged returns descrip-

tive statistics). This is more evident for periods where the short position is larger, which

causes a wider discrepancy between the Unhedged and Hedged portfolios P&Ls. This is

especially noticeable in the May 2022 to June 2022 period and onwards.

Additionally, we observe from Figures 7 and 8 that the Unhedged VaR presented two

exceedances for the year, while the Hedged VaR presented one. This difference can be

attributed to the lower volatility of returns for the Hedged portfolio since if we look at the

day of the second exceedance, despite the VaR estimate for the Hedged portfolio being

smaller the loss did not surpass it. Nonetheless, the size of the exceedances in both cases

was still low.

Finally, Figure 9 below presents the daily cumulative P&L for both the Unhedged and

Hedged portfolios for the one year period.

Figure 9. Daily cumulative P&L.

We observe from Figure 9 that both portfolios returned a loss for the year. However,

the loss was smaller for the Hedged portfolio, which indicates that the strategy, while

decreasing the VaR of the portfolio, was successful in safeguarding against further losses.
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Table 13 below presents the returns for the year for both the Unhedged and Hedged

portfolios.

Metric
Portfolio

Unhedged Hedged

P&L (eM) -5.96 -4.36
Return (%) -6.15 -5.27

Table 13. One year portfolio returns.

We observe that the Hedged portfolio delivered a smaller loss for the year than the

Unhedged portfolio, which is what we observed from Figure 9 before. However, because

both portfolios have different risk profiles due to the strategy implemented, it may not

be fair to directly compare the returns without accounting for the risk profile of each

portfolio. This invokes a need for a risk-adjusted performance metric to level the playing

field.

The RORAC (Matten, 1996) relates the return observed with the risk incurred to

achieve it. We calculate the RORAC as:

RORAC =
P&L

EC
, (38)

where P&L is the P&L for the year and EC is the sum of the daily EC (measured by the

VaR) throughout the year.

Table 14 below presents the RORAC for the year for the Unhedged and Hedged

portfolios.

Metric
Portfolio

Unhedged Hedged

P&L (eM) -5.96 -4.36
EC (eM) 414.36 356.16
RORAC (%) -1.44 -1.23

Table 14. RORAC for the one year period.

From these results we conclude that the Hedged portfolio incurred losses of smaller

magnitude when compared to the Unhedged portfolio while lowering the risk incurred,

which for the given market conditions during the year, it is a satisfactory result.
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CHAPTER 7

CONCLUSION

The goal of this work was to measure and manage the VaR of our portfolio on a daily

basis during a one year period from 30 September 2021 to 30 September 2022 such that

it did not surpass a pre-defined maximum value.

The portfolio studied in this work was comprised of part equities and part bonds from

both the U.S. and European markets and before we could manage its VaR, we first had to

measure it. Given there are several classes of models to measure market risk, the question

of which one is the best fit for our specific portfolio composition arose. To answer this

question, we computed four classes of VaR models: RiskMetrics, SGSt, Historical and

QR. Within these four classes, we computed 16 different models in total such that we had

a wide range of candidates to analyze and choose from. The performance of each model

was analyzed through a Backtest comprised of the UC and BCP tests.

The Backtest analysis using the portfolio composition at 30 September 2021 presented

both expected and unexpected results. As expected, as the VaR was computed at the 1%

significance level, the RiskMetrics VaR which assumes returns follow a normal distribution

failed the Backtest convincingly, signaling that the returns of our portfolio do not follow

a normal distribution and as such the RiskMetrics model is unfit. Still in the parametric

category, the SGSt VaR model which aims to tackle the shortcomings of the RiskMetrics

model, while not failing the Backtest, did not impress. Outside of the parametric world,

the QR VaR passed the Backtest with results similar to the SGSt VaR. Finally, the

Historical VaR models with the T volatility adjustment methodology produced the best

results, and after a further analysis where the performance for individual annual sub-

periods was assessed, we chose the T volatility-adjusted Historical VaR with a rolling

sample of 1000 observations model as the best fit for our portfolio.

In order to manage the VaR, and based on historical ranges, the limit chosen was a

daily maximum of e1.5 million. Starting from 30 September 2021, and with the model

chosen previously, daily VaR estimates were computed and if the VaR estimate for the

next day surpassed the pre-defined maximum, a risk management strategy would have to

be implemented to decrease the VaR to the maximum value of e1.5 million.

The VaR first surpassed the maximum pre-defined threshold of e1.5 million on 17

February 2022 and in order to assess the sources of risk comprising this exceeding VaR

measurement, a VaR decomposition was performed and it revealed that the source of the

risk was in the U.S. and European equities. As such, in order to decrease the VaR to a

maximum of e1.5 million, an equity exposure hedging strategy was implemented which
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consisted in simultaneous short positions in the S&P500 and DAX stock market indices

according to the proportions revealed by the VaR decomposition. This methodology was

carried forward during the rest of the year where the positions were increased, decreased

or removed depending on the VaR estimates relative to the pre-defined maximum and

for comparison purposes, we defined the portfolio with the strategy implemented as the

Hedged portfolio and the same portfolio but without the strategy implemented as the

Unhedged portfolio.

Results showed that the hedging strategy managed to keep the VaR at a maximum of

e1.5 million throughout the year, whereas if it was not managed, this threshold would have

been surpassed during a significant portion of the year starting from February 2022 and

reaching a maximum of close to e2.3 million in May 2022. Finally, when comparing the

returns achieved for the Hedged and Unhedged portfolios, using the RORAC risk-adjusted

performance metric, we conclude that while the return for the year was negative for both

portfolios, the Hedged portfolio returned a less negative return while also incurring less

risk over the period, which means it safeguarded against further losses when compared to

the Unhedged portfolio.
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APPENDIX A

Portfolio Returns Descriptive Statistics

In the below table we present the portfolio returns descriptive statistics for the global

period and annual sub-periods of the Backtest as well as for the one year period from 2021

to 2022 presented in Chapter 6, this time for both the Unhedged and Hedged portfolios.

Time Period Mean Median Max Min StdDev Skew Kurt

Unhedged Portfolio
2022-2021

0.0226% 0.0092% 1.4322% -1.8442% 0.5704% -0.3694 3.3787

Hedged Portfolio
2022-2021

-0.0192% -0.0046% 1.4305% -1.6896% 0.5401% -0.3528 3.5529

2021-2020 0.0336% 0.0262% 1.4121% -1.2941% 0.3688% -0.0575 4.3071

2020-2019 0.0486% 0.0934% 3.1147% -4.2143% 0.7227% -1.2458 11.7363

2019-2018 0.0352% 0.0587% 1.1140% -1.1171% 0.3827% -0.3716 3.5665

2018-2017 0.0152% 0.0279% 0.8973% -1.2582% 0.3488% -0.3800 3.9311

2017-2016 0.0317% 0.0608% 0.8912% -1.1929% 0.3259% -0.2983 3.3985

2016-2015 0.0318% 0.0618% 1.6216% -1.7509% 0.4613% -0.1905 4.0102

Global Backtest
Period

0.0332% 0.0607% 3.1147% -4.2143% 0.4553% -0.9131 13.7758

Table 15. Portfolio returns descriptive statistics. The Global Backtest Period
ranges from 30 September 2021 to 1 October 2015.
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APPENDIX B

Backtest Model Performance Details

B.1. BCP test results for all models for the global period.

Model
Class

Model
No.

p-value (%)

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

RM 1 40.83 64.59 1.77 1.04 1.66

SGSt

2 60.81 76.86 0.00 0.00 0.00
3 59.01 74.79 0.00 0.00 0.00
4 59.01 74.79 0.00 0.00 0.00
5 57.22 72.67 0.00 0.00 0.01

Hist

6 68.24 84.57 19.39 29.94 40.95
7 74.00 89.57 5.17 9.72 15.84
8 64.49 80.85 0.10 0.23 0.49
9 66.36 82.74 25.40 37.19 48.64
10 40.83 50.44 1.41 2.87 4.26
11 48.68 61.63 0.11 0.22 0.41
12 43.88 62.93 0.70 1.40 2.27
13 45.45 61.46 0.40 0.80 1.36

QR
14 60.81 76.86 0.00 0.00 0.00
15 59.01 74.79 0.98 1.99 3.53
16 59.01 74.79 0.98 1.99 3.53

Table 16. BCP test results for all models for the global period. The Global
Period ranges from 30 September 2021 to 1 October 2015. A model passes the BCP
test for a certain lag when its corresponding p-value is above 5%.
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B.2. UC test results for all models and annual sub-periods.

Model
No.

2021-2020 2020-2019 2019-2018 2018-2017 2017-2016 2016-2015

Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value Exc. p-value

1 2.68 2.38 3.05 0.72 2.30 7.13 1.54 41.87 1.15 80.77 1.53 42.65
2 1.15 81.27 2.29 7.24 1.53 42.26 0.77 69.67 0.77 69.67 1.15 81.76

3 1.53 42.26 2.29 7.24 1.53 42.26 1.15 80.77 0.77 69.67 0.76 68.79

4 1.15 81.27 2.67 2.43 1.53 42.26 1.15 80.77 0.77 69.67 0.76 68.79
5 1.15 81.27 2.67 2.43 1.53 42.26 1.15 80.77 0.77 69.67 1.15 81.76

6 0.77 69.23 1.91 18.91 1.15 81.27 0.77 69.67 0.77 69.67 0.76 68.79

7 0.38 25.22 1.53 42.65 1.15 81.27 0.77 69.67 0.38 25.44 0.76 68.79
8 0.77 69.23 1.91 18.91 1.53 42.26 0.77 69.67 0.77 69.67 1.15 81.76

9 0.77 69.23 1.91 18.91 1.15 81.27 0.77 69.67 0.77 69.67 1.15 81.76
10 1.92 18.68 3.05 0.72 2.30 7.13 1.54 41.87 1.92 18.44 1.53 42.65

11 1.92 18.68 2.67 2.43 1.92 18.68 1.54 41.87 0.77 69.67 1.53 42.65

12 2.30 7.13 3.05 0.72 2.30 7.13 1.15 80.77 1.15 80.77 1.53 42.65
13 2.30 7.13 3.05 0.72 2.30 7.13 1.15 80.77 0.77 69.67 1.53 42.65

14 0.38 25.22 2.67 2.43 1.53 42.26 1.15 80.77 0.77 69.67 1.15 81.76

15 1.15 81.27 2.67 2.43 1.15 81.27 1.15 80.77 0.77 69.67 1.15 81.76
16 1.15 81.27 1.91 18.91 1.53 42.26 1.15 80.77 0.77 69.67 1.53 42.65

Table 17. UC test results for the annual sub-periods for all models. This
table presents the exceedance rate (%) and p-value (%) for all models and for the
annual sub-periods. A model passes the UC test when its corresponding p-value is
above 5%.
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B.3. VaR models global period performance and exceedance details.

In the below sections we present the global period performance and exceedance details

for all models not presented in the main body of this work. This provides further insight

on each model’s pass or failure in the Backtest as well as on the BCP and UC test results

presented in Appendices B.1 and B.2, respectively.
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B.3.1. RiskMetrics VaR global period performance and exceedance details.

Figure 10. RiskMetrics model number 1 global period performance. The
red dots represent the P&L of the days in which the VaR was exceeded. The blue
dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.64 -0.72 -0.08 13.00
20/09/2021 -0.48 -0.63 -0.15 31.22
19/07/2021 -0.60 -0.71 -0.10 17.20
25/02/2021 -0.82 -0.88 -0.06 7.87
29/01/2021 -0.85 -0.95 -0.10 11.62
27/01/2021 -0.65 -0.99 -0.34 52.52
28/10/2020 -0.96 -1.25 -0.29 29.96
11/06/2020 -1.42 -1.99 -0.57 39.95
12/03/2020 -2.51 -4.06 -1.55 61.81
09/03/2020 -1.73 -3.50 -1.78 102.79
27/02/2020 -1.25 -1.64 -0.39 30.93
24/02/2020 -0.76 -1.65 -0.89 117.45
30/12/2019 -0.55 -0.78 -0.23 40.93
02/12/2019 -0.50 -0.52 -0.02 3.61
02/10/2019 -0.69 -0.81 -0.12 17.28
05/08/2019 -0.77 -0.97 -0.20 25.46
13/05/2019 -0.65 -0.90 -0.26 39.62
07/05/2019 -0.58 -0.64 -0.06 10.07
28/01/2019 -0.89 -0.93 -0.04 4.90
10/10/2018 -0.68 -1.08 -0.39 57.37
05/10/2018 -0.57 -0.70 -0.13 22.12
31/05/2018 -0.82 -1.06 -0.24 29.18
22/03/2018 -0.84 -1.02 -0.18 21.41
08/02/2018 -0.97 -0.99 -0.02 2.57
02/02/2018 -0.70 -1.21 -0.51 73.34
29/06/2017 -0.66 -0.85 -0.19 28.69
17/05/2017 -0.53 -1.15 -0.62 118.57
06/03/2017 -0.70 -0.70 -0.01 0.92
09/09/2016 -0.70 -0.95 -0.25 35.23
24/06/2016 -0.77 -1.69 -0.92 120.48
08/01/2016 -1.03 -1.16 -0.13 12.42
03/12/2015 -1.04 -1.12 -0.08 7.48

Average -0.34 37.12

Number of Exceedances 32
Exceedance Rate (%) 2.04

Table 18. RiskMetrics VaR model number 1 global period exceedance
details. The date of the exceedances and the days between them shed a light on
the BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.2. SGSt VaR, rolling sample of 250 obs. global period performance and

exceedance details.

Figure 11. SGSt VaR model number 2 global period performance. The
red dots represent the P&L of the days in which the VaR was exceeded. The blue
dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.55 -0.63 -0.08 14.93
19/07/2021 -0.63 -0.71 -0.08 12.05
27/01/2021 -0.83 -0.99 -0.16 19.01
11/06/2020 -1.63 -1.99 -0.35 21.64
12/03/2020 -3.44 -4.06 -0.62 18.00
09/03/2020 -2.11 -3.50 -1.39 65.97
27/02/2020 -1.53 -1.64 -0.11 7.16
24/02/2020 -0.93 -1.65 -0.72 77.97
30/12/2019 -0.66 -0.78 -0.12 18.69
05/08/2019 -0.88 -0.97 -0.09 10.08
13/05/2019 -0.77 -0.90 -0.13 16.57
10/10/2018 -0.79 -1.08 -0.28 35.74
05/10/2018 -0.66 -0.70 -0.04 5.33
31/05/2018 -0.96 -1.06 -0.10 9.93
02/02/2018 -0.80 -1.21 -0.41 51.03
29/06/2017 -0.73 -0.85 -0.13 17.53
17/05/2017 -0.56 -1.15 -0.59 106.31
09/09/2016 -0.78 -0.95 -0.17 22.02
24/06/2016 -0.86 -1.69 -0.83 97.40
08/01/2016 -1.15 -1.16 -0.01 1.07

Average -0.32 31.42

Number of Exceedances 20
Exceedance Rate (%) 1.28

Table 19. SGSt VaR model number 2 global period exceedance details.
The date of the exceedances and the days between them shed a light on the BCP
and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.3. SGSt VaR, rolling sample of 500 obs. global period performance and

exceedance details.

Figure 12. SGSt VaR model number 3 global period performance. The
red dots represent the P&L of the days in which the VaR was exceeded. The blue
dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.72 -0.72 0.00 0.26
20/09/2021 -0.55 -0.63 -0.08 15.44
27/01/2021 -0.80 -0.99 -0.19 24.46
28/10/2020 -1.19 -1.25 -0.06 4.87
11/06/2020 -1.57 -1.99 -0.41 26.26
12/03/2020 -3.26 -4.06 -0.80 24.56
09/03/2020 -2.06 -3.50 -1.44 69.93
27/02/2020 -1.49 -1.64 -0.15 9.71
24/02/2020 -0.91 -1.65 -0.74 82.22
30/12/2019 -0.66 -0.78 -0.12 17.88
05/08/2019 -0.89 -0.97 -0.07 8.22
13/05/2019 -0.76 -0.90 -0.14 17.99
10/10/2018 -0.78 -1.08 -0.30 37.82
05/10/2018 -0.65 -0.70 -0.05 6.95
31/05/2018 -0.95 -1.06 -0.11 12.07
22/03/2018 -0.96 -1.02 -0.06 6.15
02/02/2018 -0.77 -1.21 -0.45 58.18
29/06/2017 -0.76 -0.85 -0.10 12.60
17/05/2017 -0.60 -1.15 -0.55 92.66
09/09/2016 -0.77 -0.95 -0.18 23.21
24/06/2016 -0.83 -1.69 -0.85 102.35

Average -0.33 31.13

Number of Exceedances 21
Exceedance Rate (%) 1.34

Table 20. SGSt VaR model number 3 global period exceedance details.
The date of the exceedances and the days between them shed a light on the BCP
and UC test results presented in Appendices B.1 and B.2, respectively.

53



B.3.4. SGSt VaR, rolling sample of 750 obs. global period performance and

exceedance details.

Figure 13. SGSt VaR model number 4 global period performance. The
red dots represent the P&L of the days in which the VaR was exceeded. The blue
dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.58 -0.63 -0.05 8.22
27/01/2021 -0.82 -0.99 -0.18 21.56
28/10/2020 -1.22 -1.25 -0.03 2.53
11/06/2020 -1.78 -1.99 -0.21 11.67
12/03/2020 -3.24 -4.06 -0.83 25.57
09/03/2020 -2.08 -3.50 -1.43 68.76
27/02/2020 -1.50 -1.64 -0.13 8.96
24/02/2020 -0.91 -1.65 -0.74 80.96
30/12/2019 -0.66 -0.78 -0.12 18.48
02/10/2019 -0.81 -0.81 0.00 0.21
05/08/2019 -0.89 -0.97 -0.08 8.58
13/05/2019 -0.76 -0.90 -0.15 19.25
10/10/2018 -0.79 -1.08 -0.29 36.34
05/10/2018 -0.66 -0.70 -0.04 5.80
31/05/2018 -0.96 -1.06 -0.10 10.38
22/03/2018 -0.98 -1.02 -0.04 3.91
02/02/2018 -0.80 -1.21 -0.41 50.89
29/06/2017 -0.74 -0.85 -0.11 14.74
17/05/2017 -0.59 -1.15 -0.56 96.40
09/09/2016 -0.80 -0.95 -0.15 18.52
24/06/2016 -0.87 -1.69 -0.82 94.59

Average -0.31 28.87

Number of Exceedances 21
Exceedance Rate (%) 1.34

Table 21. SGSt VaR model number 4 global period exceedance details.
The date of the exceedances and the days between them shed a light on the BCP
and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.5. SGSt VaR, rolling sample of 1000 obs. global period performance and

exceedance details.

Figure 14. SGSt VaR model number 5 global period performance. The
red dots represent the P&L of the days in which the VaR was exceeded. The blue
dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.59 -0.63 -0.04 6.84
27/01/2021 -0.82 -0.99 -0.17 21.32
28/10/2020 -1.21 -1.25 -0.04 3.03
11/06/2020 -1.77 -1.99 -0.22 12.41
12/03/2020 -3.11 -4.06 -0.95 30.52
09/03/2020 -2.03 -3.50 -1.48 72.76
27/02/2020 -1.47 -1.64 -0.17 11.54
24/02/2020 -0.89 -1.65 -0.76 85.25
30/12/2019 -0.64 -0.78 -0.14 21.54
02/10/2019 -0.80 -0.81 0.00 0.48
05/08/2019 -0.89 -0.97 -0.08 8.42
13/05/2019 -0.76 -0.90 -0.14 18.14
10/10/2018 -0.79 -1.08 -0.28 35.95
05/10/2018 -0.66 -0.70 -0.04 5.50
31/05/2018 -0.93 -1.06 -0.13 13.50
22/03/2018 -0.96 -1.02 -0.06 5.87
02/02/2018 -0.80 -1.21 -0.41 51.98
29/06/2017 -0.76 -0.85 -0.10 12.75
17/05/2017 -0.60 -1.15 -0.55 92.83
09/09/2016 -0.78 -0.95 -0.17 21.54
24/06/2016 -0.84 -1.69 -0.85 100.78
08/01/2016 -1.12 -1.16 -0.04 3.33

Average -0.31 28.92

Number of Exceedances 22
Exceedance Rate (%) 1.40

Table 22. SGSt VaR model number 5 global period exceedance details.
The date of the exceedances and the days between them shed a light on the BCP
and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.6. T volatility-adjusted Historical VaR, rolling sample of 250 obs. global

period performance and exceedance details.

Figure 15. Historical VaR model number 6 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.56 -0.63 -0.07 12.76
19/07/2021 -0.68 -0.71 -0.03 4.55
12/03/2020 -3.60 -4.06 -0.47 12.99
09/03/2020 -2.36 -3.50 -1.15 48.77
24/02/2020 -0.97 -1.65 -0.68 69.49
30/12/2019 -0.67 -0.78 -0.11 16.70
02/10/2019 -0.78 -0.81 -0.03 4.00
05/08/2019 -0.87 -0.97 -0.10 11.37
13/05/2019 -0.81 -0.90 -0.09 11.54
10/10/2018 -0.82 -1.08 -0.26 31.14
31/05/2018 -0.87 -1.06 -0.19 22.37
02/02/2018 -0.67 -1.21 -0.54 80.62
29/06/2017 -0.65 -0.85 -0.20 30.94
17/05/2017 -0.55 -1.15 -0.60 110.20
09/09/2016 -0.74 -0.95 -0.21 28.46
24/06/2016 -0.99 -1.69 -0.70 70.54

Average -0.34 35.40

Number of Exceedances 16
Exceedance Rate (%) 1.02

Table 23. Historical VaR model number 6 global period exceedance de-
tails. The date of the exceedances and the days between them shed a light on the
BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.7. T volatility-adjusted Historical VaR, rolling sample of 500 obs. global

period performance and exceedance details.

Figure 16. Historical VaR model number 7 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

27/01/2021 -0.92 -0.99 -0.07 8.16
12/03/2020 -3.56 -4.06 -0.50 14.05
09/03/2020 -2.21 -3.50 -1.30 58.65
24/02/2020 -0.97 -1.65 -0.68 69.49
30/12/2019 -0.72 -0.78 -0.07 9.08
05/08/2019 -0.87 -0.97 -0.10 11.37
13/05/2019 -0.81 -0.90 -0.09 11.54
10/10/2018 -0.82 -1.08 -0.26 31.14
31/05/2018 -0.87 -1.06 -0.19 22.37
02/02/2018 -0.67 -1.21 -0.54 80.62
17/05/2017 -0.68 -1.15 -0.47 68.26
09/09/2016 -0.77 -0.95 -0.18 22.82
24/06/2016 -0.99 -1.69 -0.70 70.54

Average -0.40 36.78

Number of Exceedances 13
Exceedance Rate (%) 0.83

Table 24. HistoricalVaR model number 7 global period exceedance de-
tails. The date of the exceedances and the days between them shed a light on the
BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.8. T volatility-adjusted Historical VaR, rolling sample of 750 obs. global

period performance and exceedance details.

Figure 17. Historical VaR model number 8 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.

Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.63 -0.63 -0.01 0.94
27/01/2021 -0.86 -0.99 -0.13 15.62
11/06/2020 -1.92 -1.99 -0.07 3.67
12/03/2020 -3.34 -4.06 -0.72 21.62
09/03/2020 -2.18 -3.50 -1.32 60.80
24/02/2020 -0.97 -1.65 -0.68 69.49
30/12/2019 -0.70 -0.78 -0.08 12.07
05/08/2019 -0.86 -0.97 -0.10 12.03
13/05/2019 -0.80 -0.90 -0.10 12.20
10/10/2018 -0.82 -1.08 -0.26 31.91
05/10/2018 -0.65 -0.70 -0.05 6.98
31/05/2018 -0.90 -1.06 -0.16 17.84
02/02/2018 -0.75 -1.21 -0.46 62.16
29/06/2017 -0.73 -0.85 -0.13 17.55
17/05/2017 -0.61 -1.15 -0.54 88.71
09/09/2016 -0.77 -0.95 -0.18 22.82
24/06/2016 -0.86 -1.69 -0.82 95.45
08/01/2016 -1.16 -1.16 0.00 0.35

Average -0.32 30.68

Number of Exceedances 18
Exceedance Rate (%) 1.15

Table 25. Historical VaR model number 8 global period exceedance de-
tails. The date of the exceedances and the days between them shed a light on the
BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.9. T + 1 volatility-adjusted Historical VaR, rolling sample of 250 obs.

global period performance and exceedance details.

Figure 18. Historical VaR model number 10 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.68 -0.72 -0.04 6.08
20/09/2021 -0.48 -0.63 -0.15 31.81
19/07/2021 -0.58 -0.71 -0.13 21.76
27/01/2021 -0.79 -0.99 -0.21 26.11
28/10/2020 -1.16 -1.25 -0.09 7.46
11/06/2020 -1.72 -1.99 -0.27 15.72
12/03/2020 -2.81 -4.06 -1.25 44.55
09/03/2020 -1.92 -3.50 -1.58 82.16
27/02/2020 -1.39 -1.64 -0.25 17.61
24/02/2020 -0.79 -1.65 -0.86 108.78
30/12/2019 -0.55 -0.78 -0.23 41.50
02/12/2019 -0.50 -0.52 -0.02 4.03
02/10/2019 -0.66 -0.81 -0.15 23.03
05/08/2019 -0.79 -0.97 -0.18 22.61
13/05/2019 -0.66 -0.90 -0.24 36.44
07/05/2019 -0.60 -0.64 -0.05 7.57
28/01/2019 -0.91 -0.93 -0.02 2.51
10/10/2018 -0.70 -1.08 -0.38 53.79
05/10/2018 -0.58 -0.70 -0.12 19.81
31/05/2018 -0.84 -1.06 -0.22 26.72
22/03/2018 -0.89 -1.02 -0.13 14.69
02/02/2018 -0.63 -1.21 -0.59 93.61
14/12/2017 -0.49 -0.53 -0.03 6.48
08/09/2017 -0.58 -0.61 -0.03 5.08
29/06/2017 -0.59 -0.85 -0.26 43.73
17/05/2017 -0.47 -1.15 -0.68 144.14
06/03/2017 -0.62 -0.70 -0.09 14.24
02/11/2016 -0.69 -0.71 -0.02 2.47
09/09/2016 -0.66 -0.95 -0.29 44.29
24/06/2016 -0.80 -1.69 -0.89 111.02
08/01/2016 -1.08 -1.16 -0.08 7.59
03/12/2015 -1.08 -1.12 -0.03 2.87

Average -0.30 34.07

Number of Exceedances 32
Exceedance Rate (%) 2.04

Table 26. Historical VaR model number 10 global period exceedance
details. The date of the exceedances and the days between them shed a light on
the BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.10. T + 1 volatility-adjusted Historical VaR, rolling sample of 500 obs.

global period performance and exceedance details.

Figure 19. Historical VaR model number 11 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.71 -0.72 -0.01 0.94
20/09/2021 -0.54 -0.63 -0.09 17.22
19/07/2021 -0.67 -0.71 -0.03 4.70
27/01/2021 -0.72 -0.99 -0.27 36.81
28/10/2020 -1.07 -1.25 -0.18 16.58
11/06/2020 -1.59 -1.99 -0.40 25.02
12/03/2020 -2.80 -4.06 -1.27 45.35
09/03/2020 -1.85 -3.50 -1.65 89.48
27/02/2020 -1.33 -1.64 -0.31 23.38
24/02/2020 -0.79 -1.65 -0.86 108.78
30/12/2019 -0.58 -0.78 -0.20 35.31
02/10/2019 -0.72 -0.81 -0.09 12.60
05/08/2019 -0.79 -0.97 -0.18 22.61
13/05/2019 -0.66 -0.90 -0.24 36.44
07/05/2019 -0.60 -0.64 -0.05 7.57
10/10/2018 -0.70 -1.08 -0.38 53.79
05/10/2018 -0.58 -0.70 -0.12 19.81
31/05/2018 -0.84 -1.06 -0.22 26.72
22/03/2018 -0.89 -1.02 -0.13 14.69
02/02/2018 -0.63 -1.21 -0.59 93.61
14/12/2017 -0.49 -0.53 -0.03 6.48
29/06/2017 -0.72 -0.85 -0.13 18.13
17/05/2017 -0.55 -1.15 -0.60 109.20
09/09/2016 -0.68 -0.95 -0.27 39.79
24/06/2016 -0.80 -1.69 -0.89 111.02
08/01/2016 -1.08 -1.16 -0.08 7.59
03/12/2015 -1.10 -1.12 -0.02 1.85

Average -0.34 36.05

Number of Exceedances 27
Exceedance Rate (%) 1.72

Table 27. Historical VaR model number 11 global period exceedance
details. The date of the exceedances and the days between them shed a light on
the BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.11. T + 1 volatility-adjusted Historical VaR, rolling sample of 750 obs.

global period performance and exceedance details.

Figure 20. Historical VaR model number 12 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.68 -0.72 -0.04 5.44
20/09/2021 -0.51 -0.63 -0.12 22.61
19/07/2021 -0.67 -0.71 -0.04 5.28
29/01/2021 -0.95 -0.95 0.00 0.26
27/01/2021 -0.70 -0.99 -0.30 42.51
28/10/2020 -1.07 -1.25 -0.18 16.74
11/06/2020 -1.52 -1.99 -0.47 30.77
12/03/2020 -2.69 -4.06 -1.38 51.20
09/03/2020 -1.83 -3.50 -1.67 91.10
27/02/2020 -1.32 -1.64 -0.31 23.68
24/02/2020 -0.79 -1.65 -0.86 108.78
30/12/2019 -0.57 -0.78 -0.21 37.72
02/12/2019 -0.51 -0.52 -0.01 1.25
02/10/2019 -0.70 -0.81 -0.10 14.61
05/08/2019 -0.79 -0.97 -0.18 23.08
13/05/2019 -0.66 -0.90 -0.24 36.97
07/05/2019 -0.60 -0.64 -0.05 7.57
28/01/2019 -0.91 -0.93 -0.02 2.51
10/10/2018 -0.70 -1.08 -0.38 54.39
05/10/2018 -0.55 -0.70 -0.14 26.24
31/05/2018 -0.86 -1.06 -0.20 23.63
22/03/2018 -0.88 -1.02 -0.14 16.20
02/02/2018 -0.68 -1.21 -0.54 79.18
29/06/2017 -0.64 -0.85 -0.21 33.02
17/05/2017 -0.51 -1.15 -0.64 125.94
06/03/2017 -0.67 -0.70 -0.03 4.33
09/09/2016 -0.68 -0.95 -0.27 39.79
24/06/2016 -0.73 -1.69 -0.96 131.39
08/01/2016 -1.06 -1.16 -0.10 9.24
03/12/2015 -1.07 -1.12 -0.05 4.45

Average -0.33 35.66

Number of Exceedances 30
Exceedance Rate (%) 1.92

Table 28. Historical VaR model number 12 global period exceedance
details. The date of the exceedances and the days between them shed a light on
the BCP and UC test results presented in Appendices B.1 and B.2, respectively.

65



B.3.12. T + 1 volatility-adjusted Historical VaR, rolling sample of 1000 obs.

global period performance and exceedance details.

Figure 21. Historical VaR model number 13 global period performance.
The red dots represent the P&L of the days in which the VaR was exceeded. The
blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

28/09/2021 -0.68 -0.72 -0.04 5.44
20/09/2021 -0.51 -0.63 -0.12 22.61
19/07/2021 -0.65 -0.71 -0.06 9.51
29/01/2021 -0.95 -0.95 0.00 0.26
27/01/2021 -0.70 -0.99 -0.30 42.51
28/10/2020 -1.03 -1.25 -0.22 21.44
11/06/2020 -1.52 -1.99 -0.47 30.77
12/03/2020 -2.69 -4.06 -1.38 51.20
09/03/2020 -1.83 -3.50 -1.67 91.10
27/02/2020 -1.32 -1.64 -0.31 23.68
24/02/2020 -0.79 -1.65 -0.86 108.78
30/12/2019 -0.57 -0.78 -0.21 37.72
02/12/2019 -0.51 -0.52 -0.01 1.25
02/10/2019 -0.70 -0.81 -0.10 14.61
05/08/2019 -0.79 -0.97 -0.18 23.08
13/05/2019 -0.67 -0.90 -0.23 33.63
07/05/2019 -0.61 -0.64 -0.03 5.35
28/01/2019 -0.93 -0.93 0.00 0.39
10/10/2018 -0.70 -1.08 -0.38 53.79
05/10/2018 -0.58 -0.70 -0.12 19.81
31/05/2018 -0.86 -1.06 -0.20 23.63
22/03/2018 -0.88 -1.02 -0.14 16.20
02/02/2018 -0.68 -1.21 -0.54 79.18
29/06/2017 -0.64 -0.85 -0.21 33.02
17/05/2017 -0.50 -1.15 -0.65 129.39
09/09/2016 -0.72 -0.95 -0.23 31.90
24/06/2016 -0.78 -1.69 -0.91 115.79
08/01/2016 -1.06 -1.16 -0.10 9.64
03/12/2015 -1.06 -1.12 -0.05 4.83

Average -0.33 35.88

Number of Exceedances 29
Exceedance Rate (%) 1.85

Table 29. Historical VaR model number 13 global period exceedance
details. The date of the exceedances and the days between them shed a light on
the BCP and UC test results presented in Appendices B.1 and B.2, respectively.
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B.3.13. Quantile Regression with EWMA volatility as the explanatory

variable, rolling sample of 1000 obs. global period performance and

exceedance details.

Figure 22. Quantile Regression VaR model number 14 global period
performance. The red dots represent the P&L of the days in which the VaR was
exceeded. The blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

27/01/2021 -0.91 -0.99 -0.08 9.24
11/06/2020 -1.86 -1.99 -0.13 6.89
12/03/2020 -3.29 -4.06 -0.78 23.59
09/03/2020 -2.10 -3.50 -1.41 67.02
27/02/2020 -1.52 -1.64 -0.12 7.84
24/02/2020 -0.92 -1.65 -0.73 79.10
30/12/2019 -0.65 -0.78 -0.13 20.17
02/10/2019 -0.77 -0.81 -0.03 4.32
05/08/2019 -0.85 -0.97 -0.12 13.98
13/05/2019 -0.79 -0.90 -0.11 14.33
10/10/2018 -0.77 -1.08 -0.31 39.99
05/10/2018 -0.64 -0.70 -0.06 8.64
31/05/2018 -0.92 -1.06 -0.14 14.91
22/03/2018 -0.92 -1.02 -0.10 10.37
02/02/2018 -0.77 -1.21 -0.44 57.57
29/06/2017 -0.73 -0.85 -0.12 16.98
17/05/2017 -0.57 -1.15 -0.58 103.36
09/09/2016 -0.79 -0.95 -0.16 20.30
24/06/2016 -0.86 -1.69 -0.83 96.13
08/01/2016 -1.14 -1.16 -0.02 2.19

Average -0.32 30.85

Number of Exceedances 20
Exceedance Rate (%) 1.28

Table 30. Quantile Regression VaR model number 14 global period ex-
ceedance details. The date of the exceedances and the days between them shed a
light on the BCP and UC test results presented in Appendices B.1 and B.2, respec-
tively.
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B.3.14. Quantile Regression with EWMA volatility and 5-day rolling average

of EWMA volatility as the explanatory variables, rolling sample of

1000 obs.

Figure 23. Quantile Regression VaR model number 15 global period
performance. The red dots represent the P&L of the days in which the VaR was
exceeded. The blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.58 -0.63 -0.05 9.26
27/01/2021 -0.77 -0.99 -0.22 29.19
28/10/2020 -1.21 -1.25 -0.04 3.13
11/06/2020 -1.37 -1.99 -0.61 44.61
12/03/2020 -3.63 -4.06 -0.43 11.83
09/03/2020 -2.12 -3.50 -1.38 64.90
24/02/2020 -0.91 -1.65 -0.74 80.98
30/12/2019 -0.52 -0.78 -0.26 49.95
02/12/2019 -0.50 -0.52 -0.02 4.30
02/10/2019 -0.69 -0.81 -0.12 17.91
13/05/2019 -0.71 -0.90 -0.20 27.65
10/10/2018 -0.84 -1.08 -0.24 28.56
05/10/2018 -0.60 -0.70 -0.10 16.68
31/05/2018 -0.99 -1.06 -0.07 6.58
22/03/2018 -0.88 -1.02 -0.14 16.08
02/02/2018 -0.78 -1.21 -0.44 56.17
29/06/2017 -0.76 -0.85 -0.10 12.64
17/05/2017 -0.54 -1.15 -0.61 114.23
09/09/2016 -0.80 -0.95 -0.15 18.58
24/06/2016 -0.76 -1.69 -0.92 121.17
03/12/2015 -1.08 -1.12 -0.03 2.97

Average -0.33 35.11

Number of Exceedances 21
Exceedance Rate (%) 1.34

Table 31. Quantile Regression VaR model number 15 global period ex-
ceedance details. The date of the exceedances and the days between them shed a
light on the BCP and UC test results presented in Appendices B.1 and B.2, respec-
tively.
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B.3.15. Quantile Regression with EWMA volatility and 20-day rolling

average of EWMA volatility as the explanatory variables, rolling

sample of 1000 obs.

Figure 24. Quantile Regression VaR model number 16 global period
performance. The red dots represent the P&L of the days in which the VaR was
exceeded. The blue dots represent the VaR estimate for the corresponding days.
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Date of
Exceedance

VaR
(eM)

P&L
(eM)

Size of Exceedance
(eM)

Size of Exceedance
(% of VaR)

20/09/2021 -0.53 -0.63 -0.10 19.32
27/01/2021 -0.78 -0.99 -0.21 26.86
28/10/2020 -1.17 -1.25 -0.08 6.58
11/06/2020 -1.16 -1.99 -0.83 71.00
12/03/2020 -1.66 -3.50 -1.84 110.56
09/03/2020 -1.20 -1.64 -0.43 36.07
24/02/2020 -0.87 -1.65 -0.78 90.27
30/12/2019 -0.62 -0.78 -0.16 25.47
02/12/2019 -0.82 -0.97 -0.15 18.01
02/10/2019 -0.86 -0.90 -0.04 4.24
13/05/2019 -0.85 -1.08 -0.23 26.81
10/10/2018 -0.64 -0.70 -0.06 9.47
05/10/2018 -0.97 -1.06 -0.09 9.10
31/05/2018 -0.94 -1.02 -0.08 8.46
22/03/2018 -0.83 -1.21 -0.38 45.32
02/02/2018 -0.76 -0.85 -0.10 12.79
29/06/2017 -0.56 -1.15 -0.59 105.05
17/05/2017 -0.78 -0.95 -0.17 22.43
09/09/2016 -0.85 -1.69 -0.84 98.52
24/06/2016 -1.14 -1.16 -0.02 1.93
03/12/2015 -1.10 -1.12 -0.02 1.60

Average -0.34 35.71

Number of Exceedances 21
Exceedance Rate (%) 1.34

Table 32. Quantile Regression VaR model number 16 global period ex-
ceedance details. The date of the exceedances and the days between them shed a
light on the BCP and UC test results presented in Appendices B.1 and B.2, respec-
tively.
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