ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2023-07-19

Deposited version:
Publisher Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Blankenburg, B., Botelho, L., Calhau, F, Ferndndez, A., Klusch, M. & Ossowski, S. (2008). Service
composition. In Michael Schumacher, Heikki Helin and Heiko Schuldt (Ed.), CASCOM: Intelligent
service coordination in the semantic web: Conference proceedings. (pp. 235-262). Zurich:
Birkhauser.

Further information on publisher's website:
10.1007/978-3-7643-8575-0_11

Publisher's copyright statement:

This is the peer reviewed version of the following article: Blankenburg, B., Botelho, L., Calhau, F,
Fernandez, A., Klusch, M. & Ossowski, S. (2008). Service composition. In Michael Schumacher, Heikki
Helin and Heiko Schuldt (Ed.), CASCOM: Intelligent service coordination in the semantic web:
Conference proceedings. (pp. 235-262). Zurich: Birkhduser., which has been published in final form
at https://dx.doi.org/10.1007/978-3-7643-8575-0_11. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/978-3-7643-8575-0_11

Chapter 11

Service Composition

Bastian Blankenburg, Luis Botelho, Fibio Calhau, Alberto Fernandez,
Matthias Klusch, Sascha Ossowski

11.1 Introduction

One of the striking advantages of Web Service technology is the fairly simple
aggregation of complex services out of a library of other composite or atomic
services. The same is expected to hold for the domain of Semantic Web Services
such as those specified in WSMO or OWL-S. The composition of complex services
at design time is a well-understood principle which is nowadays supported by
classical workflow and AI planing based composition tools (cf. Chapter 4).

In CASCOM, we developed two composition planners for OWL-S services,
OWLS-XPlan and MetaComp, together with an approach to heuristically pre-
filtering the set of all available services which are delivered by the SMA (cf. Chap-
ter 10) to significantly reduce the search space for both planners. Accordingly, the
CASCOM service composition planning agent, called SCPA, can be configured to
use one of the planners and either exploiting the pre-filtering module, or not.

This chapter is structured as follows. We briefly summarize the CASCOM
composition planner agent SCPA, followed by the detailed description of the pre-
filtering module, and both the OWLS-XPlan and MetaComp planning modules of
the SCPA.

11.2 CASCOM Service Composition Agent SCPA

In CASCOM, two different Service Composition Agents (SCPA) have been devel-
oped which differ in the planning engine used: one SCPA is based on XPlan [11]
while the other relies on SAPA [8]. In any case, the CASCOM SCPA takes a set of
OWL-S services, a description of the initial state and the goal state to be achieved
as input, and returns a plan that corresponds to a composite service that gets
invoked using the FIPA-Request interaction protocol.

240 Chapter 11. Service Composition

SCPA

feedbadk

Filcer

N services l

M services

M<=N
Initial
State

plan
OWLS-XPlan D

Goal I—’
State plan

Figure 11.1: OWLS-Xplan Service Composition Agent

The first type of SCPA, called OWLS-XPlan SCPA, relies on the service
composition planner OWLS-XPlan (cf. Section 11.4). Figure 11.1 shows its inter-
nal architecture, which also contains a pre-filter component which is detailed in
Section 11.3. The OWLS-XPlan SCPA may be configured to apply this prefiltering
component to the set of available OWL-S services returned by the SDA which,
according to the CASCOM architecture (cf. Chapter 7), is in charge of retrieving
services from accessible service directories. This reduction is expected to further
increase the efficiency of the overall planning process. The final service composi-
tion plan is generated by the OWLS-XPlan planner component from the given set
of services, the initial and goal state ontologies, and returned for execution and to
its internal prefiltering component for experience based learning.

The MetaComp SCPA (cf. Section 11.5) uses the SAPA planner instead of
the XPlan planner, and does not use the prefiltering component. In fact, Meta-
Comp asks the SDA itself for a reduced number of services so that fewer service
descriptions have to be conveyed between the two agents.

The availability of two different kinds of service composition agents in CAS-
COM provides potential clients with added flexibility to adapt composition plan-
ning to their individual needs. More concrete, the client agent can ask the context
acquisition and management system (cf. Chapter 13) for the following context
information regarding the two Service Composition Agents:

e Agents availability: if the agent is available (on-line) or not

11.3. Pre-Filtering for Service Composition 241

e Average waiting time per request
e Service waiting list: number of requests waiting for a service
e Average execution time

In addition, the client agent might have built its own model based on past
experiences or uses third party services (such as trust and reputation) for making
its decision on the selection of the composition planner agent.

11.3 Pre-Filtering for Service Composition

According to the CASCOM Architecture, the SCPA (Service Composition Plan-
ning Agent) is in charge of creating a composite service that includes several
pre-existing services. In order to be able to generate such a plan that matches the
original query, the SCPA needs a set of input services to set out from.

Ideally, the set of services taken into account by the SCPA to create a com-
posite plan should comprise all services registered in the directory. However, this
can be impracticable as the number of services increases, as it is expected to occur
in the open IP2P environments that CASCOM targets. To overcome that problem,
CASCOM suggests to reduce the set of input services that are passed on to the
SCPA’s composition planning component. For this purpose, filters that sort out
those services registered within the directories that are less relevant to the plan-
ning process are proposed. This activity is also called plan based service matching
of a respective service matchmaker that is cooperating with a service composition
planner like in CASCOM.

Pre-selecting the set of candidate services for composition planning is not an
easy task. Several ad-hoc heuristics can be thought of (e.g. services that share at
least one input or output with the query, etc). In this section a more informed
method for filtering services that make use of service class information is proposed.
First, a generic framework for service-class based filtering is described, and then
it is instantiated for different filters on the basis of (a) organizational information
obtained from the CASCOM role ontology and (b) the service category derived
from the directory structure.

11.3.1 Generic Pre-Filtering Framework

At a high level of abstraction, the service composition planning problem can be
conceived as follows: let P = {p1,pa, ..., pm } be the set of all possible plans (com-
posite services) for a given service request R, and D = {s1, S, ..., S} the set of
input services for the proper service composition planner (i.e. the directory avail-
able). The objective of a filter F' is to select a given number [of services from D,
such that the search space is reduced, but the best plan of P can still be found.
Put in another way: the larger the subset of plans P/ C P that the planner
can choose from, the higher the probability that the plan of maximum quality is

242 Chapter 11. Service Composition

Historical
#plan, B Update Information |———
Matrix (H)

Relevance
Matrix (v)

Calculate
Relevance
Matrix

R
= Filter Service
Method Relevance
{s1,s2...sn}

Relevant
services

Figure 11.2: Architecture of the filter component

among them. A good heuristic to this respect is based on plan dimension and on
the number of occurrences of services in plans: a service is supposed to be the
more important, the bigger the number of plans from P that it is necessary for,
and the shorter the plans from P that it is required for. This information can
be approximated by storing and processing the plans historically created. So, in
principle, matrices might store, for every possible query, the number of plans in
which each service appeared, classified by each plan dimension.

However, it soon becomes apparent that the number of services and possible
queries is too big to build up all matrices of the above type. Furthermore, the
continuous repetition of a very same service request R is rather unlikely. And,
even more important, this approach would not be appropriate when a new service
request (not planned before) is required (which, in fact, is quite usual). To over-
come this drawback, it is assumed the availability of service class information, so
as to cluster services based on certain properties. If the number of classes is not
too big, the aforementioned approach becomes feasible computationally.

Figure 11.2 depicts the structure of the CASCOM approach to service com-
position filtering. With each outcome of a service composition request, a Historical
Information Matrix H is updated. Setting out from this information, a Relevance
Matrix v is revised and refined. Based on this matrix, service relevance can be
determined in a straightforward manner. For each service composition request,
the filtering method is based on this estimated service relevance function.

11.3. Pre-Filtering for Service Composition 243

HT: Historical information about plans for service class R (Request)

Dimension | 1 2 3

of plans | O | 50 | 70
(o 0| 7 |24
Cy 0 | 10 | 55
Cs 0|30 21

Table 11.1: Example of class information about historical plans

Computing Pre-filter Information

The Historical Information Matriz (Table 11.1) for a service class r compiles
relevant characteristics of plans (composite services) that were created in the past
in response to requests for services belonging to that class. In particular, for each
plan dimension ¢ and service class s it stores the number of plans of length i that
made use of services of class r. Historical Information Matrices are updated as
newly generated plans come in. If the service request is a logical formulae (given
in disjunctive normal form), the contribution of the resulting plan is distributed
among the affected Historical Information Matrices.

As commented above, the aim of ranking services is to try and select a set of
services that cover the largest subset of the plan space, as an attempt to maximise
the chance of the best plan to be contained in it. Services that formed smaller
plans in the past are considered more relevant, since it is easier to cover small
plans that large ones, so with less services more plans can be covered.

The Relevance Matrix specifies the relevance of a service class s to be part of
a plan (composite service) that matches the query for a certain service class r. The
following function is used to aggregate the information about plans contained in
the Historical Information Matrizes (remember that all this information is about
a single request class r):

(NE
S

Il
_

Relevance(C, R) = & (11.1)

M3
ES

Y
Il
-

where d is the dimension of the plan, m is the dimension of the longest plan
stored, ng is the number of times that C' was part of a composite plan of dimension
d for the request R, and Ny is the total number of plans of dimension d for that
request. Note that each appearance of class C' in a plan contributes to the relevance
value, and that this contribution is the higher the smaller the plan dimension. c¢ is
a constant > 0 that allows adjusting the level of importance of plan dimensions.
A relevance value between 0 and 1 is obtained with this calculus for every given
service class C' with respect to the composition of a service of class R.

244 Chapter 11. Service Composition

The Relevance Matriz v(s,r) can be further refined in order to take tran-
sitivity into account. Consider the following situation: A plan that achieves C
is searched for, and that a potential solution is to compose the services C and
Cs (Cy @ C5 for short). However there is no service provider for Cs, but instead
C3 can be composed as Cy @ Cs & Cg, so the final plan is Cy & Cy & Cs & Cs.
Unfortunately, the value v(Cy4,C) is low and the service providing Cj is dis-
carded and not taken into account in the planning process, so the aforemen-
tioned plan cannot be found by the planner. Therefore, the relevance matrix is
refined by taking transitivity into account, e.g. through the following update:
v(Cy,C1) = v(Cy, C3) - v(C3,C4). The same holds for third-level dependencies
(e.g.: v(Cr,C1) = v(Cr,Cy) - v(Cy, C5) - v(C3,C4)). This example motivates the
definition of the v*(s,7) as a k step relevance matrix

’Ul(svr) = v(s,r)
vk (s,7) = Maz(vF~1(s,7), v (s, 51) - v*"1(s1,7), (11.2)
VP L(s, 89) - vF T (s9,7), s vE T (s, 5,) - 0P T (s, 7))

As shown in the equation, the product is used as combination function and
the maximum to aggregate the results. Note that the higher the value of k the
better the estimation of the relevance of service classes. The refinement of the
relevance matrix is repeated until it converges or until a timeout is received. The
elevated time complexity of O(n3) for each refinement step is attenuated by the
anytime properties of the approximation algorithm. Furthermore, recall that the
number of classes n is supposed to be fixed and not overly high. Finally, note that
several updates and refinements can be combined into a “batch” to be executed
altogether when the system’s workload is low.

There are several ways of obtaining the initial relevance matrix. If there
are historical records of plans they can be used to calculate the matrix. Also,
an a priori distribution can be assigned using expert (heuristic) knowledge. Still,
the simplest solution is to let the service composition planning component work
without filtering services until the number of plans generated is representative
enough to start computing and refining the matrixes.

Service Relevance Calculus

The first step to calculate the relevance of a service s for a request r is the mapping
of both to classes of services. Then, the relevance between the classes is calculated.
v(s,r) is used to represent the relevance of class s for the class r in the request,
and V' (S, R) as the relevance of service S for the service request R.
Considering that, in general, the service S belongs to several classes (s1,52,
.y Sn), if a request R only includes a class (r) in its description, then

V(S,R) = max(v(s1,7),v(82,7), ..e; V(Sp,T))

However, if the request specifies a logical expression containing several classes
of services (r1,72, ..., 7m), logical formulas are evaluated using the mazimum for

11.3. Pre-Filtering for Service Composition 245

disjunctions and the minimum for conjunctions; and inside the maximum is used to
aggregate the service classes specified by the provider. For example, if the request
R includes the formula 1 V (r2 A r3), and the service S belongs to the classes s;
and ss, the calculus is as follows:

V (S, R) = max[max(v(s1,71),v(s2,71)), min(max(v(s1,72),v(s2,72)),

max(v(s1,73),v(s2,73)))]

Types of Pre-filter Composition

When a service request is analysed by the pre-filter, the set of services are first
ranked by an estimation of the relevance of the service class for that request. Then,
only the services belonging to the best ranked classes are passed on to the planner.
In order to determine the concrete services that pass the filter three major options
are considered:

a) To establish a threshold and filter out those services whose classes have a degree
of relevance lower than that threshold.

b) To return the estimated k best services based on the relevance of their corre-
sponding classes. In this case the number of services that pass the filter is
pre-determined.

¢) To return a percentage of the original set of services (based on the relevance of
their corresponding classes). In this case the number of services considered
in the planning process depends on the directory size.

When designing the algorithms corresponding to these filters configurations,
an additional problem needs to be taken into account. Services with low (or even
zero) relevance values would never be considered for planning, so they could never
be part of a plan (composite service), remaining with low relevance forever. This
is obviously too restrictive, as our relevance values are only estimations based on
the information available at some point in time. To overcome this some services
are allowed to be fed into the planner even though they are not supposed to be
relevant enough according to the filter policy. Those additional services are chosen
randomly. This random option is combined with the three aforementioned filter
types to allow for an exploration of the service (class) space.

11.3.2 Instantiation of Pre-Filters

In the following we present two different approaches to apply the filtering frame-
work proposed in this section. For each approach the mapping of services to classes
is defined. Both methods are based on information available in the OWL-S service
descriptions used by CASCOM.

246 Chapter 11. Service Composition

Role-based Pre-filtering

In many service-oriented systems, agents are conceived as mere wrappers for Web
Services. However, agents are not only able to execute a service but may also
engage in different types of interaction related to that service, in the course of
which they play several roles. For example, in a medical emergency assistance
scenario, an agent providing a second opinion service should not only be able
to provide a diagnostic; it may also be required to explain it, give more details,
recommend a treatment, etc. Therefore, a service provider may need to engage
in several different interactions, and play a variety of different roles, during the
provision of a service.

Our role-based filtering method relies on taxonomies of roles and type of
interactions (see Figure 10.16 in Chapter 10) to determine service classes. The idea
is to relate roles searched in the query to roles played by agents in the composite
service, that is, which are the roles typically involved in a plan when a role r
is included in the query. For example, it is common that a medical assistance
service include travel arrangement, arrival notification, hospital log-in, medical
information exchange and second opinion interactions.

Following the CASCOM role-based service description approach (Section 10.7
in Chapter 10), each service provider advertises a set of possible roles from the role
ontology that it can play. Similarly, in service requests it is allowed to specify the
roles searched from the role ontology as a logical expression in disjunctive normal
form. By establishing a mapping from the elements of the role ontology to service
classes, the above filtering framework becomes applicable.

In the CASCOM role based modelling approach, the role taxonomy is sup-
posed to be static over significant amounts of time. Still, the ontology can be
extended to include new roles and types of interaction not considered before. In
that case, the relevance matrix is updated with new rows and columns for those
new roles. The relevance values for those new roles are unknown initially, but
this can be overcome by randomly including some services with low relevance
and, in general, by applying the bootstrapping techniques, both described in Sec-
tion 11.3.1.

Category-Based Pre-Filtering

Another pertinent strategy for service classification is based on the categories
(travel, medical) they belong to. Such categories are considered important infor-
mation in service descriptions (in fact, the OWL-S language includes a specific
field for this characteristic). There are several well known category taxonomies
(NAICS, UNSPSC,...). However, CASCOM does not choose one in particular,
keeping it open to the service describer.

In this filtering framework, each category is considered a class of service. Ser-
vice descriptions include a set of categories. In the case of a service advertisement,
this fits exactly our classes approach (set of classes). In the case of service requests,

11.4. Service Composition With OWLS-XPlan 247

the set of categories specified are interpreted as a logical formula by connecting
them with the operator or (V).

If the number of different classes (categories) is too big, the computational
complexity (regarding both space and time) can become rather high. In that case,
the granularity of the classes can be decreased by clustering several categories into
the same class based on inheritance relations in the taxonomy tree.

The two types of classification of services presented in this section can be
combined as follows:

Relevance(S, R) = a- Rel®B(S, R) + (1 — a) - Rel°B (S, R)with a € [0..1] (11.3)

where Rel®B(S,R) and Rel“B(S, R) are the relevance values obtained by
the role and category-based filtering approaches, respectively.

11.4 Service Composition With OWLS-XPlan

Though the composition of complex Web Services attracted much interest in differ-
ent fields related to service oriented computing, there are only a few implemented
composition planning tools publicly available for the semantic Web such as the
HTN composition planner SHOP2 for OWL-S services [15]. One problem with
HTN planners is that they require task specific decomposition rules and methods
developed at design time, hence are not guaranteed to solve arbitrary planning
problems. That, in particular, motivated the development of our hybrid composi-
tion planner OWLS-XPlan for OWL-S 1.1 services which always finds a solution if
it exists, though the corresponding planning problem remains to be NP-complete.
Like SHOP2, OWLS-XPlan does perform closed world planning prepared through
its integrated converter OWLS2PDDL (cf. Section 11.4.2).

While its original version enables static composition of OWL-S services in
static domains, an upgraded version OWLS-XPlan 2.0 (cf. Section 11.4.4) also
allows to compose OWL-S services in dynamic and stochastic environments in
which changes of the world state can non-deterministically (stochastic) occur dur-
ing (dynamic) planning. Such changes concern the availability of services; changes
of predicates, facts, objects of the plan base. In such environments XPlan 2.0
offers an event based dynamic sequential planning of composite services. It lis-
tens for events of state changes during its planning process with heuristic partial
re-planning of a new minimal and valid composition plan. This is in contrast to
non-classic reactive planning with interleaved service execution, and non-classic
off-line planning such as conformant, conditional, or contingency planning.

11.4.1 Architecture

The Semantic Web Service composition planner OWLS-XPlan consists of several
modules for pre-processing and planning (cf. Figure 11.3). It takes a set of available

248 Chapter 11. Service Composition

Goal (state),
OWL-S services,

Composite
OWL-S Service

OWL Ontologies PDDXML | Goal state _——
in PDDL 1.2
Problem | Name»_PBxml
description
\. [
ow.s2EeRl Pl ool
L e
Initial state Domain il

Minimal, valid,
executable

inPDDL 1.2

Hlomes_ Sameloen] Event driven heuristic

replanning

description

Figure 11.3: Architecture of OWLS-XPlan

OWL-S 1.1 services, related OWL ontologies, and a planning request (goal) as
input, and returns a planning sequence of relevant services that satisfies the goal.

For this purpose, it first converts the domain ontology and service descrip-
tions in OWL and OWL-S, respectively, to equivalent planning problem and do-
main descriptions in PDDL 2 (“Planning Domain Definition Language”) using
the integrated OWLS2PDDL converter (cf. Section 11.4.2). For reasons of conve-
nience, we developed a XML dialect of PDDL, called PDDXML, that simplifies
parsing, reading, and communicating PDDL descriptions using SOAP.

The planning domain description contains the definition of all types, predi-
cates and actions, whereas the problem description includes all objects (grounded
predicates, constants), the initial state, and the goal state. An operator of the
planning domain corresponds to a service profile in OWL-S since both operator
and profile describe patterns of how an action or service as an instance should look
like. A method is a special type of operator for fixed complex services that OWLS-
XPlan may use during its planning process. Both descriptions are then used by
the state based action planner XPlan to create a plan in PDDL that solves the
given problem in the actual domain.

Key to the translation from OWL-S to PDDXML is that any service in OWL-
S corresponds to an equally named action with the same set of input parameters,
logical preconditions, and effects. However, for classical (STRIPS like) action plan-
ning in AI, PDDL does not allow to describe concrete input or output values of
operators such as information on specific train connections returned by a service.
So we have to add special precondition and effect predicates to tell the planner
that it does in general know about the output values as an effect of executing the
respective action on the current world state, or the values of typed input variables
allowing to match value based restrictions in preconditions of possible successor
actions.

11.4. Service Composition With OWLS-XPlan 249

Its core Al planning module called XPlan is a heuristic hybrid FF planner
based on the FF planner developed by Hoffmann and Nebel [9] (cf. Section 11.4.3).
It combines guided local search with relaxed graph planning, and a simple form
of hierarchical task networks (HTN) to produce a plan sequence of actions that
solves a given problem. If equipped with methods, XPlan uses only those parts
of methods for decomposition that are required to reach the goal state with a
sequence of composed services. For stochastic domains in which the world state is
changing during planning, we developed an event driven heuristic planning module
XPlan 2.0 for dynamic composition of services (cf. Section 11.4.4).

11.4.2 Converter OWLS2PDDL

The purpose of the OWLS2PDDL converter is to tranlate a given OWL-DL expres-
sion in OWL-S 1.1 service descriptions and a given service composition problem
into an equivalent PDDL planning problem which can be understood by Al plan-
ners such as XPlan. More concrete, the structured functional service composition
problem (SWS,I,G) consists of two (user-provided) OWL-DL ontologies that
represent an intial (I) and a goal (G) world state, respectively, and a set SWS
of OWL-S services. In the following, we assume familiarity with OWL-DL and
OWL-S. The initial state I consists of the domain knowledge base K By (available
services, imported OWL ontologies T' with asserted instances), and the goal state
G represented by a goal service functionality S¢ (IOPE = input, output, precon-
dition, effect). The problem is to find a composition sequence P = S; o0 ... 0 S,
S; € SWS that satisfies G (P reaches G from I).

Overview

The converter OWLS2PDDL is mapping this service composition problem to a
classical action based Al planning problem in PDDL. PDDL is a modular language
that allows to control its expressiveness by specifying certain requirements. The
converter itself uses a XML dialect of PDDL 1.2, called PDDXML, with the ADL
and open-world requirements for both PDDL 1.2 [2], and the Action Description
Language (ADL) [13] and additional syntax for predicate cardinality restrictions
1. An action planning problem is defined as a triple (Init, Goal, Ops) consisting of

1. an initial state Init,
2. a goal state Goal,

3. and a set of Operators Ops, where each operator describes a possible action
in the considered domain. An operator is characterised by its parametrised
precondition and effect, such that

1The PDDXML grammar in compact RelaxNG (see [5]) can be
found at hitp://www. dfki.de/ "blankenb/owls2pddl/PDDXMLDomain.rnc and
hitp://www.dfki.de/ “blankenb/owls2pddl/PDDXMLProblem.rnc for domain and problem
instance definitions, respectively.

250 Chapter 11. Service Composition

(a) an action is applicable in a given world state if and only if its precon-
dition is fulfilled in that state.

(b) the effect describes how a state s is transformed to its successor state if
the action is applied to s.

PDDL aggregates Init and Goal states in a PDDL problem definition. Opera-
tors are contained in a PDDL domain definition. Init is a conjunction of predicates,
whereas Goal is a function-free first-order logical sentence. An action precondition
is, like the goal state, a function-free first-order logical sentence, whereas an effect
can only be a conjunction of predicates or negated predicates, a universal quanti-
fied effect, or a conditional effect; non-deterministic disjunctions are not allowed
in effect constraints (in contrast to ADL).

In summary, the OWLS2PDDL converter implements a function

(O x 0 x2%) — (D x P)

where O is the set of all OWL DL ontologies, S is the set of all OWL-S
1.1 services, D is the set of all PDDL domains and P is the set of all PDDL
problems. The main idea of the conversion is to map OWL-S services to planning
domain operators, and to produce the PDDL problem from given OWL “Initial
State” and “Goal State” ontologies. In particular, expressions in PDDL are then
interpreted with standard FOL semantics corresponding to those of the decidable
FOL subset OWL-DL. The interpretation of PDDL operators corresponds to that
of respective ADL (Action Description Language [13]) operators which can be
reduced to STRIPS operators (see [7]), which in turn are interpreted using Lifs-
chitz’ semantics (see [12]). In contrast to STRIPS, both PDDL and ADL assume
the open world, but only ADL allows both disjunctions and negated literals in
effect constraints (PDDL disallows disjunctive effects). The additional cardinality
restrictions are interpreted under the standard description logic (DL) semantics
for non-qualifying number restrictions (DL part “N”).

PDDL has close to SOIN expressivity with only subsumption, equivalence
and transivity of roles from OWL-DLs SHOIN expressivity missing. But these
missing features can be represented by fully expanding any role specification to
include also any parent and transitively holding roles. This is explained in Sub-
section 11.4.2. Thus, PDDL’s expressiveness is sufficient to equivalently represent
an OWL-S service composition problem.

The converter OWLS2PDDL generates the planning problem in PDDL for
the planner XPlan, and comes in two versions: OWLS2PDDL 1.0 (2.0) of OWLS-
XPlan (OWLS-XPlan 2.0) converts expressions of EXPTIME description logic
SI(D) (NEXPTIME description logic SHOIN(D), corresponding to OWL-DL) to
PDDL 1.2. However, there are a few obstacles to be discussed in the following
together with a simple example of a conversion.

11.4. Service Composition With OWLS-XPlan 251

Operators and Service Outputs

While an OWL-S service has inputs, outputs, preconditions and effects, a planning
domain operator only has the latter two. The OWL-S specification states that as
opposed to preconditions and effects, which refer to the world state, inputs and
outputs represent information that is made available for or produced by the service.
For an PDDL object, however, its existence cannot be bound to certain states (even
with the open-world requirement).

As a solution of this problem, we model the possible creation of information
by services with the help of a special agentHasKnowledgeAbout predicate. This
predicate is set

e in the PDDL initial state: for each object representing an individual of the
OWL initial state ontology;

e in the PDDL goal state: for each object representing an individual of the
OWL goal state ontology;

e in the effect definition of a PDDL operator: for each PDDL operator param-
eter representing an output parameter of the respective OWL-S service.

‘We require this predicate to hold for all PDDL operator parameters represent-
ing input parameters of OWL-S services. This ensures that an action is rendered
unapplicable in a state if the corresponding service’s required input information
is not available in that state.

Service Preconditions and Effects

OWL-S does not prescribe a specific language for defining preconditions and
effects of services. Instead, one can specify the language with the OWL-S 1.1
expressionLanguage property. We extended the to OWL-S 1.1 Expression and
Condition classes to allow for PDDXML preconditions and effects. The defi-
nition of these extended classes, PDDXML-Expression and PDDXML-Condition?.
Currently, the converter converts only such PDDXML expressions and conditions.

Restrictions of Initial State and Action Effect

In OWL-DL, the class description of an OWL individual in any given ontology
can be arbitrarily complex in the scope of OWL-DL. Since there is no notion of
“initial ontologies” in OWL, restrictions resembling those of PDDL can hardly
be imposed. Thus, expressions in the given OWL initial ontology which violate
these restrictions are ignored by the converter when generating the initial state
and action effects. We assume that individuals which are stated to be in a given
OWL class do indeed fulfill all necessary restrictions of that class.

2see http://www?2.dfki.de/ babla/owls2pddl/pddxml.owl

252 Chapter 11. Service Composition

Open vs. Closed World

Both OWL and PDDL make the open world assumption (OWA) calling for mono-
tonic reasoning. However, XPlan does perform closed world reasoning like many
action planners and service composition planners like SHOP2. Thus, the initial
state is implicitly “closed” when feeding the generated PDDL planning problem
description into XPlan3. It is not possible to include the latter (disjunctive) ex-
pression in a PDDL initial state or action effect, since disjunctions are not allowed
there. Thus, when interpreting the problem as being closed-world, the conversion
might not be complete.

Other Issues of Conversion

Other issues of converting OWL-DL to PDDL are as follows.

e The PDDL type system is not general enough to reflect the possibly complex
relationships of OWL classes. Thus, the explicitly specified classes of an OWL
individual are represented for the corresponding PDDXML object by unary
predicates of the classes’ names (this includes all superclasses).

e No language construct for enumerations: OWL classes which are defined via
oneOf are converted using a disjunction of special identity predicates. These
predicates are defined for every object in the initial state and for output
parameters.

e No domain axioms. OQur XML dialect of PDDL does not support domain
axioms (which XPlan also does not support). Thus, the conversion of an
OWL class definition has to be inserted at every place in the PDDXML
where an object or parameter which corresponds to an OWL individual or
OWL-S service parameter of that class occurs.

Conversion Rules

Figures 11.4 and 11.5 illustrate how OWL-S service descriptions, intial and goal
state ontologies are translated to PDDXML. Table 11.2 summarizes how each
SHOIN-expressivity OWL DL construct is converted to an equivalent PDDXML
condition. In this table, the leftmost column “DL Ex.” denotes the expressiveness
class, A denotes the domain, and X’ denotes the interpretation of X. Table 11.3
summarises the conversion of transitive properties and subsumption of properties.
Follwing these rules, an equivalent PDDL planning problem representation of the
service composition problem can be obtained, albeit with factorial runtime and
space requirements in the worst case. Please note that in the current version of the
converter implementation (OWLS2PDDL 2.0), the conversion of the description
of equivalent classes in the goal state, transitive properties and subsumption of
properties are not implemented yet; this is ongoing work.

3That is, anything which cannot be deduced (e.g. property predicate p) in the initial state is
assumed to be false (i.e. =p), as opposed to being unknown (i.e. p V —p).

11.4. Service Composition With OWLS-XPlan

253

DL OWL PDDXML
Ex. ‘ Syntax ‘ Semantics
A AT C AT Class Unary Predicate
T T = AT Thing PDDL type “object”
R RTC AT x AT Property Binary Predicate
Re Ry RT = (RNHT Trans. Property | Multiple Predicates,
effect
cnb cT'nD!? conjunctionOf <and/>
S cub cTuD? disjunctionOf <or/>
-C ANCT complementOf <not/>
3R.C {z[Fy.(z,y) € R someValuesFrom | <exists/>
and y € CT}
VR.C {z|Vy.(z,y) € R’ allValuesFrom <forall/>
implies y € C'}
H RCS R C ST subPropertyOf Multiple Predicates,
effect
T R~ {(z,y)|(y,z) € R™} | inverseOf Predicate
>nR.C | {z|#{y.(z,y) € RT | minCardinality <cardinality
N and y € CT} > n} min=>’..."/>
<nR.C | {z|#{y.(z,y) € R" | maxCardinality | <cardinality
and y € C'} < n} max="..."/>
{0} {0} = {o"} XML Type + Object
o RDF-value
3T {o} AC:{o} €T hasValue <exists/> + special
identity predicate

Table 11.2: Conversion and semantics of OWL DL class descriptions to PDDXML

conditions
] Context \ OWL \ PDDXML ‘
Initial state Transitive Property | For all predicates p(i, k), p(k, m)
P , © # k # m: predicate p(i,m)

p subPropertyOf p’

For all predicates p(, k): predi-
cate p'(i, k)

Actions’ effect

Transitive Property
D

<forall> 1¢,k,m <if> <and>

(i # k # m) p(i,k) p(k,m)

</and> p(i,m) </if> </forall>

p subPropertyOf p’

<forall> i, k <if> p(i, k) p'(i, k)
</if> </forall>

Table 11.3: Expansion of transitive and subsumed properties

254 Chapter 11. Service Composition

OWL-S 1.1 Service Description PDDL Operator
[haslnput OWL-S Parameter } Parameters
[hasOutput: OWL-S Parameter Precondition: Condition
\ - agentHasKnowledgeAhbout predicate
hasPrecondition: PDDXML Condition] e o

- inCondition: PDDXML Condition - agentHasKnowledgeAbout predicate
- hasEffect: PDDXML Expression ! - if Condition Expression

\ - additional conditions
hasResult: \1 Effect: Expression ‘

Figure 11.4: Conversion of OWL-S services to PDDXML actions

OWL . Initial State” Ontology PDDXML Initial State
Individual: Conjunction
- explicit dass membership statement § - agentHasKnowledgeAbout predicate
= - identity predicate
explicit super class statements k___ ty p

- Property - unary predicate (class URI)
- binary predicates (property URIs)

OWL ,,Goal State” Ontology PDDXML Goal State

Individual: Conjunc’i_lironK oo Bot b ad
- explicit dass membership statement = Afeatras oW igSLuol prediate
i p:{gperty i [T - unary predicate (class URI)

- equivalent class description ——'——-7‘I- - binary predicates (property URIs)
T - Condition

Figure 11.5: Conversion of OWL DL state ontologies to PDDXML states

Example of OWLS2PDDL Conversion

In the following, we provide a brief and simple example of conversion by OWLS2PDDL.
Suppose that the given service, initial and goal ontologies all import a common
ontology which includes some class definitions, and that there is just one service

to convert as shown in Figure 11.6. The converter generates the PDDXML ac-
tion shown in see Figure 11.7 for this service. The service has one input of type
Class_2, whose definition is shown in Figure 11.8.

First, the agentHasKnowledgeAbout predicate is required on the input. Sec-
ond, it must be ensured that only objects of the required type can be instantiated
with the action. The service input class is a defined class, i.e. any individual
which has a minimum cardinality of 2 on property objectProperty_1 is a mem-
ber of this class. Thus, the generated PDDXML condition contains a disjunction
that states that either the parameter must explicitly be stated to be of type
Class_2, or the cardinality restirction on the property must hold. Similarly, the
conversion of the output type is also included in the action’s precondition. The
agentHasKnowledgeAbout, on the other hand, is only set in the effect, reflecting

11.4. Service Composition With OWLS-XPlan 255

— <service:ServiceProfile rdfiID="ServiceProfile_1">
—<service:presentedBy>
— <service:Service rdf:ID="Service_1">
<service:presents rdf:resource="#ServiceProfile_1"/=
— <service:describedBy>
—<j.2:AtomicProcess rdf:ID="AtomicProcess_1">
<service:describes rdfiresource="#Service_1"/>
— <j.2:hasOutput>
— <j.2:0utput rdf:ID="0utput">
— <j.2:parameterType rdf:datatype="http:/jwww.w3.0org/200 LXMLSchema#anyURI">
http fwww.dfki.dej~blankenbjowls2pddxmlfmanual-example/manual-example .owl#Class_1
<fj.2:parameterType>
</j.2:Output>
<fj.2:hasOutput=
— <j.2:hasinput>
— <j.2:Input rdf:ID="Input">
— <j.2:parameterType rdf:datatype="http:/jwww.w3.0rg/200 LxXMLSchema#anylIRI"=
httpffwww.dfki.dej~blankenbjowls 2pddxmlfmanual-example/manual-example .owl#Class_2
<fj.2:parameterType>
</j.2:Input>
<fj.2:hasinput>
</j.2:AtomicProcess>
</service:describedBy>
</service:Service>
</service:presentedBy>
<Jservice:ServiceProfile>

Figure 11.6: OWL-S Example Service

the information gain that is achieved by the service execution. The resulting ini-
tial and goal states are rather simple. The initial state consists of the following
definition of Individual_1:

<Class_3 rdf:ID="Individual_1">
<j.0:objectProperty_1>
<Class_4 rdf:ID="Individual_2"/>
</j.0:objectProperty_1>
</Class_3>

The resulting PDDXML expression which is written into the PDDXML prob-
lem definition is shown in Figure 11.9. It includes the agentHasKnowledgeAbout
predicate, the explicit class membership statement, the identity predicate and
the binary predicate that represents OWL property objectProperty_1

11.4.3 Static Composition

As mentioned above, XPlan performs a static composition under closed world
assumption. In fact, the solution of XPlan to the problem of structured functional
service composition at hand corresponds to finding a sequence of services that
globally plug-in matches with the given goal service functionality (cf. Figure 11.10).

XPlan Solution of the Service Composition Problem

As mentioned in previous section, the functional service composition planning
problem can be mapped to a classical action planning problem by (a) identifying
the given services with actions and (b) describing the domain together with the
requested service in an initial, respectively, goal state ontology in the standard

256 Chapter 11. Service Composition

— <action name="httpffwww.cfkc .da/~hlankenbfowls2addsmlimaniial-2xamplefmanual exanple-sarica-1.cwl#Service_1'>
- <parameters>
<param type="object'>
rhtp:ffamw dikide~ blankenbjowlszpddanlfmznual-examplefr anual-examplz-service- Lonl#nput
</param>
— <param type="object">
hite:fwww dfki.de~ blankenbjowls2pddsmlimeznual-examplefrranual-example-service- Lowl#Outeut
</param>
<jparameters>
— =preconditions
—=and>
— <pred name='agentHasknosledgeaboLr">
— <param>
“hitp:/jwww.dfki.ce/~ blankenb/owls2pddxrrljimanual-examgle;manul-example-service-1.owl# nput
</param>
</pred>
—<or>
<pred name="ht:p /. dfki.de/ - Blankenb/owls2pddmi/manual-examp e/manua -examsle owl# Class_21>
— <param=
thtp:frwwen dfki.de~ blankenbjow szpddxmifmanual-exampleymanual-exsmple-service- Low #Input
</params>
</pred>
— <cardinality min="2">
— <pred name="http jfwww dfl d2/~ blankenb/cwls2addwm fmanual-2xample/manual-example owl#objectProperty_1"=
- <param>
Thilp e dikide/~ Llankenojowlszpcdamlfimanual-exaripleman aal-examole- service- Lowk# npul
</param>
<param>7incividLal</param>
</pred>
<jcardinality>
Y

Converted description of Input class

—=or>
— <pred name—ht:pww.dfki de/~ blanke nbjawls2pdd=rmifmanusl-examp efnanua -sxarmale owl#Class_1'=
— <param>
Thitp:fwwa.dfki.de/~ blankanbjow sZpddxmifmanual-example/manual-exzmple-service-1.ow #FOutpat
</param>
</pred>
<jor>
<jand>
<jprecondition>
|- <ellect>
—<and>
— <pred name="'agentHasknosledgeAboLt">
— <param>
“http:fivww.dfki.ce/~ blankenb/owlszpddxrrlimanual-examgle/manuzl-exarmple-service- 1owl#oLtput
</param=
=</pred=
<jand>
<jeffect=>
<faction>

Converted description of Output class

Figure 11.7: The generated PDDXML action

planning language PDDL. The solution of XPlan for this problem corresponds to a
plug-in match of the plan P considered as one composed service to the goal service
S with goal ontology G together with an IOPE (input, output, precondition,
effect) chaining of the sequecence of services within P (cf. Figure 11.10).

In addition, the executability of P on the grounding level of the recon-
verted actions to OWL-S services can be guaranteed by the interleaved checking
of whether the I/O parameter data types in XMLS of subsequent services of P
grounded in WSDL are compatible with each other which ensure the data flow
within the sequence of services to be executed after planning. The reconversion is
done by OWLS2PDDL 2.0 and the compatibility check is performed by the plan-
ner by means of its integrated OWLS-MXP component (partially reused from the
OWLS-MX matchmaker, cf. Chapter 10).

Graphbased FF Planning with XPlan

For each sub-goal g of the determined goal agenda, at each planning step i, XPlan
quickly builds a relaxed planning graph RPG(i) in a fast goal reachability test
heuristically ignoring negative effects of actions A, and the corresponding relaxed

11.4. Service Composition With OWLS-XPlan 257

— <owl:Class rdf:ID="Class_2">
— <owl:equivalentClass>
— <owl:Restriction>
<owl:minCardinality rdf: datatype="http jjwww.w3.0rg/200 1/XMLSchema#int"> 2< /owl:minCardinality>
— <owl:onProperty>
<owl:ObjectProperty rdf:ID="objectProperty_1"/>
</owl:onProperty>
<owl:valuesFrom rdf:resource="http:/www.w3.0rg/2002/07 fowl#Thing"/>
<Jowl:Restriction>
</owl:equivalentClass>
</owl:Class>

Figure 11.8: Common class definitions

plan RP(i) in a backward pass from g to S;. The relaxed plan contains all paths of
applicable actions that lead from g to S;, of which only those in its first action-layer
0 are called helpful.

In the following, XPlan focuses on the helpful actions of RP(7) only, hence
reduces the search space. Please note that the relaxed plan is not necessarily
correct due to ignorance of the Del-lists, i.e., negative effects of actions. In order
to decide which helpful action to select as the next action in a valid plan sequence,
XPlan applies each of them to S; and adds the previously ignored Del-list facts
yielding the complete state S;;, where j € {1, ..,1}, denotes the j-th helpful action
applied to state 5.

For each of these states the relaxed plan RPG(,j) is then built to heuris-
tically search for the relaxed plan RP(i,j) with heuristically minimal length
h(RP(i,7)). In this context, the “plan length” h(RP(i,7)) just denotes the sum
of all actions in all action-layers of the RP.

Finally, XPlan retains the action A;; with heuristically minimal goal distance,
and starts the next planning step 7 41 with S;;. If there are multiple RPs of equal
length, it repeats the same decision process starting at state S;; (like a breadth
first search restricted on helpful actions), and then S;o, ..., Sy until a minimum is
found.

Eventually, all created plans for sub-goals g of the goal agenda are respec-
tively concatenated which yields the final plan sequence P. The plan then gets
executed, and if it fails, XPlan allows re-planning from the most recent valid state
produced by action execution, to avoid a total re-planning, if possible.

As mentioned above, XPlan also checks at each planning step whether the
selected pairs of services to be composed are data type compatible to ensure the
executability of the generated plan. For this purpose, it utilizes respective infor-
mation it got from the service matchmaker (OWLS-MXP) about the available
services prior to the planning process. For more details on OWLS-XPlan in gen-
eral, and XPlan in particular, together with examples of service translation from
OWL-S to PDDXML we refer the reader to [10, 14].

11.4.4 Dynamic Composition

For OWLS-XPlan 2.0, which has been eventually used in CASCOM, we modified
the original XPlan module of OWLS-XPlan to allow for event driven heuristic re-

258 Chapter 11. Service Composition

- <and=
— =pred name="identity">
- <pﬂ|'ﬂlTl>
http:/jwww.owl-ontologies.com/Ontology 1183981526 owl#Individual_1
</param>
— <param>
http:fwww.owl-ontologies.comfOntology 1183981526 owl#Individual_1
</param>
</pred=>
—<and=
— <pred name="http:/jwww.owl-ontologies.com/Ontologyl183981526.owl#Class_3">
— <param>
http:ffwww.owl-ontologies.com/Ontology 1183981526 owl#Individual_1
</param>
<fpred:=>
</and>
=fand=>
— <pred name="agentHaskKnowledgeAbout"=>
— <param>
httpifwww.owl-ontologies.comfOntology 1183981526 .owl#Individual_1
</param>
</pred=
- <and=
=<andf=
— <= pred name="http:/jwww.dfki.de/~blankenbfowls 2pddxmlfmanual-example/manual-example.owl#objectProperty_1"=
— <param>
https/fwww.owl-ontologies.comfOntology 1183981526 .owl#Individual_1
</param>
- <pﬂ|'ﬂlTl>
http:/jwww.owl-ontologies.com/Ontology 1183981526 owl#Individual_2
</param>
</pred=>
=/and>
<fand=

Figure 11.9: OWL initial state ontology

planning of composite services during the actual planning process. The modified
planner XPlan 2.0 does perform, in essence, highly frequent event driven off-line
re-planning under closed world asumption with heuristic computation of best re-
entry points for re-planning at the end of each planning step if the currently
produced plan, or plan fragment is affected by the observed change.

External changes of the world state concern converted OWL ontologies, indi-
viduals and the set of available services during the internal planning process each
of which potentially affecting the respective operators, actions, predicates, facts
and objects in the PDDXML problem and domain descriptions as well as already
generated partial plans. For event monitoring, we equipped XPlan 2.0 with an
event listener for distinguished classes of events.

In particular, in each plan step ¢, before applying selected helpful action A
to the state .S;, however, XPlan 2.0 listens for events of state changes. If no events
are in its event queue, it applies A to S; and proceeds with plan step i+1. The
plan fragment from initial state Sy to S; is correct and, due to the selection of
helpful actions in the minimal relaxed plan, approximatively optimal.

XPlan 2.0 triggers re-planning in the following cases of observed events of
world state changes: (1) An operator (service) instantiation (action) becomes avail-

11.5. Service Composition With MetaComp 259

{1} Plug-in ,,black-box* match of composed service P with request 5, 5(_-,
YIn{P) 3An(Sz). In(P) z; In{S;), KB, =Pre(P} (Pre(S;) = Pre(P)) In= P =0ut
YOut(P) 30ut({S;).0ut(P) =, Out(S;), KB, - Eff(S;) (Eff(P} — Eff(S;) S S,

(2) Structured IOPE chaining of services 5, =SWS5 within P b . Ffe

Out(5;,) =; In(5;} and KB; = Pre(5;}, with KB; = KB, ;:Eff(5,,)

(3) Interleaved checking of plan executability at WSDL grounding level of services

i <, relative query containment

Figure 11.10: Structured functional service composition

able. This is the case if (a) a new operator has been introduced, or (b) the world
state (set of facts) changed such that an operator whose instantiation was im-
possible before can be instantiated now, or (¢) new predicates which are part of
the preconditions or effects of an operator are introduced, making it possible to
instantiate this operator; (2) An operator (service) of the plan is not possible any-
more, if any of the opposites of cases 1.a — 1.c holds; (3) The goal state changed
due to a change of the original planning request.

Each of these cases is handled separately as described in subsequent sections.
If facts or objects change, the planner searches for the first operator which pre-
condition is satisfied by the new fact, and starts re-planning from there, while the
helpful actions get instantiated with the new fact(s). The case in which a predicate
p changes can be reduced (a) to the latter case of changed facts, if new facts are
added; (b) to the case of change of operator o (action A), if preconditions or effects
of o include p; or (c) to the case of fact changes, if the deletion of p implies the
deletion of all instances of p. It is assumed that the planning state consistency is
checked by means of an appropriate module as intergal part of both XPlan and
XPlan 2.0.

Both versions of OWLS-XPlan have been implemented in Java and are avail-
able at the semantic Web community portal semwebcentral.org.

11.5 Service Composition With MetaComp

MetaComp is one of the service composition agents developed in the CASCOM
project. Although MetaComp has been designed and implemented following ba-
sically the same approach as the OWLS-XPlan module described in the previous
section, we emphasize two main differences.

First, MetaComp service discovery approach is different from that used in
the filtering component of OWLS-XPlan. Second, MetaComp uses the SAPA plan-
ner [8] instead of the XPlan planner. Whereas the filtering process of OWLS-XPlan
is applied to the services returned by the service discovery agent (SDA), the service

260 Chapter 11. Service Composition

discovery strategy designed for MetaComp asks the SDA for a reduced number of
services so that fewer service descriptions have to be conveyed between the two
agents.

Besides, MetaComp service discovery strategy is simpler than the one used in
the filtering component of OWLS-XPlan. It is based on service categories (which
have to be provided by the agent client), on service inputs, outputs, precondi-
tions and effects, and it uses context information. Although simpler, we feel this
strategy might yield reasonable results. However, for the purpose of the CASCOM
selected problems, any of the planners (SAPA or XPlan), means either MetaComp
or OWLS-XPlan would have been a good choice. The remaining of this section
provides some details regarding MetaComp development and results.

11.5.1 Architecture

MetaComp receives service composition requests from its clients. Service compo-
sition requests include a partial OWL-S description specifying the service to be
composed, that is, the initial state and the composition goal. The service speci-
fication (initial state and composition goal) and the descriptions of the services
available to be integrated in the final compound service are sent to the planning
algorithm for it to generate the compound service.

However, since both the desired service specification and the descriptions
of the available services are represented in OWL-S whereas the used planning
algorithm accepts only PDDL, these OWL-S descriptions, as in OWLS-XPlan, are
first translated to PDDL. The planning algorithm output is merely the sequence
of the elemental services that actually make up the compound service. This has
to be reconverted to OWL-S so that it can be sent to the agent’s client.

This conversion involves two steps. First, it is necessary to generate the com-
pound service (global) inputs, outputs, preconditions and effects from the (local)
inputs, outputs, preconditions and effects of the elemental services that make up
the compound service. Second, the sequence of elemental services comprising the
compound service and its global inputs, outputs, preconditions and effects (gen-
erated in the first step) are converted to OWL-S. Figure 11.11 shows MetaComp
component based architecture and the interactions between its components.

The agentified service composition module MetaComp consists of the follow-
ing five key components:

1. the MetaComp agent interaction component AIC;
2. the converter OWLS2PDDL as described in previous section;

the planning component SAPA;

- w

the IOPE generation component;

5. the OWL-S description generation component.

11.5. Service Composition With MetaComp 261

Service Composition Agent

Client
responae Interaction Companent

Agent
00L-5
reque st B
Is OWL-5 Description 6a
. 1 4 Generation m
m Component
Goal
+ hctions oWL-5 5b
— 6 I0PE
EServ. f 7 h
i | Inputs, Outputs,
________ /—\ Planning Preconditions and
Component Effects generation
Component
OwWL-5 to PDOL
3c Conversion
Component
EDDL
EDDL UL
m EquEE‘:
Is = Initial State
Serw. = Services to he used in composition Service Discovery

= Service Searching Methods OWL-& Agent

response

Figure 11.11: MetaComp Architecture

The AIC of the MetaComp agent was developed as an extension of the
JADE platform. Its main purpose is to provide an interaction framework to FIPA-
compliant agents. It uses the FIPA-Request interaction protocol [6] when inter-
acting with its clients and when interacting with the service discovery agent SDA
requesting the services to be used during composition. AIC is responsible for receiv-
ing/sending messages and parsing them into a suitable format for the interaction
with other components and with agents.

The purpose of the OWL-S to PDDL conversion component, the OWLS2PDDL
converter taken from OWLS-XPlan, is to generate the PDDL descriptions from the
received initial state description, composition goal specification, and the OWL-S
descriptions of the services available for composition. For more information about
the OWLS2PDDL converter we refer to Section 11.4.2.

The planning component SAPA [8] of MetaComp is responsible for generating
a sequence of component services (i.e., actions) that satisfies the client request
(i.e., planning goal) from the specified initial state. MetaComp uses SAPA, a
domain-independent heuristic forward planner that can handle durative actions,
metric resource constraints, and deadline goals. SAPA is designed to be capable
of handling the multi-objective nature of metric temporal planning.

Though SAPA accepts PDDL level three (version 2.1) descriptions, following
a CASCOM project decision, we have used only SAPA PDDL level one capabilities.
The processing in SAPA, since it receives the two PDDL sections until it produces
the plan, is made up of three steps:

262 Chapter 11. Service Composition

1. reading and parsing the PDDL descriptions, which in case they are grammat-
ically correct, should be transformed into a data structure to be processed
by SAPA;

2. instantiation of the parameters of the available actions with object instances
represented in the planning problem;

3. searching for a planning solution.

In the instantiation step, all static conditions presented in the initial state are
evaluated. Static conditions are those whose truth value do not change as a result
of some service execution. If a certain static condition is true in the initial state, it
continues to be true in all subsequent states that result of service execution. Since
their truth value never changes, once SAPA checks that they are true in the initial
state, static conditions are removed from the PPDL description. This increases
the planner performance.

The IOPE generation component receives the generated action sequence and
the (local) parameters, preconditions and effects of each of the actions of the new
composite service and generates the (global) inputs, outputs, preconditions and
effects of the compound service.

The purpose of the OWL-S description generation Component is to generate
the OWL-S description of the generated compound service from the sequence
of component services generated by the planning component (SAPA) and the
service inputs, outputs, preconditions and effects produced by the Inputs, Outputs,
Preconditions and Effects generation Component.

11.5.2 Service Selection Methods

The service composition process requires a set of existing services that may be
chained to form the compound service. The first step of service composition is to
request the descriptions of those services to the service discovery agent. If this is
not a carefully crafted process, it may result either in a huge, computationally
intractable collection of services, most of which may turn out to be useless for the
composition problem at hand, or in a small set of services which may be insufficient
to create the desired compound service.

In this respect, we assume context information of great importance since it
allows reducing the set of services requested to the service discovery agent (SDA)
to only those matching the current context. This will improve efficiency in two
ways. First, the SDA will only return fewer but relevant services. Second, service
composition with fewer services is more efficient. Besides efficiency, context compli-
ant services will hopefully be more adequate to the current state of affairs. Service
availability and cost, and user profile are the context information considered in
the service selection process.

Two service selection methods have been designed: a service category based
method, where services are selected according to their category; and a method in

11.5. Service Composition With MetaComp 263

which services are selected if at least one of their inputs, outputs, preconditions or
effects matches the composition problem. However, currently, none of the designed
methods has been integrated in the implemented MetaComp; this is future work.

Search Based on Service Categories

The method is focused on the service categories specified in the service composition
request. In this approach, service categories are organized in a hierarchic taxonomy.
After receiving the composition request, the service composition agent MetaComp
asks the SDA for all available services that match the specified categories and the
current context information (service availability and cost, and user profile).

The returned services (after transformation to PDDL) are used by the plan-
ning component SAPA to create the new compound service. In case the service
composition is successful, the new compound service is sent to the client agent.
If the services of the specified categories are not enough to perform the compo-
sition, the solution is to look for services of the category immediately above the
specified category, in the given hierarchy. This process will repeat itself until the
composition is successful, the maximum composition time specified by the client
is reached, or no more upper levels can be found in the categories hierarchy.

Search Based on Problem Characteristics

In this method, the service composition agent MetaComp asks the SDA for all
available services that match the context information and have at least one input
or one precondition, one output, or one effect of the desired service. MetaComp
uses the returned services in order to try to create the desired compound service.
If the composition is successful, the compound service is sent to the client agent.
If the service composition fails, MetaComp will ask the SDA for more services.
This time, MetaComp will ask for all available services that match the context
information and at least one precondition, input, output or effect that matches
with the previously provided services.

MetaComp uses the newly received services plus the previously received ones
and starts a new composition. The process continues until a compound service is
created, the maximum composition time specified by the user is reached, or the
maximum number of considered services, as specified by the client, is reached.

11.5.3 Implementation

MetaComp (with the exception of the service selection methods) was implemented
in the Java programming language. Several Java based tools were used in its devel-
opment: JADE (Java Agent DEvelopment Framework) [3], SAX (Simple API for
XML) [4], ALL (Abstract Logic Language) [1], OWLS2PDDL (cf. Section 11.4.2)
and OWL-S API [16].

264 References

JADE was used as the agent platform and for the development of Meta-
Comp interaction component. SAX was used for reading PDDXML preconditions
and effects. ALL provides support for the internal representation of PDDXML
preconditions and effects. The OWLS2PDDL of OWLS-XPlan was used for the
conversion of OWL-S service descriptions, and OWL descriptions of the initial
state of the world and goal, to PDDL. The OWL-S API was used for writing the
OWL-S descriptions of the compound services generated by MetaComp agent.

11.6 Summary

In this chapter, we presented that the CASCOM composition planner agent SCPA,
a detailed description of the prefiltering module, and both the OWLS-XPlan and
MetaComp planning modules of the SCPA. For static SWS composition planning,
the SCPA can use MetaComp while OWLS-Xplan2 allows for advanced dynamic
service composition (cf. Chapter 4). In any case, the search space can be tuned by
prefiltering of relevant services according to the non-functional role-based match-
maker described in the previous chapter. The SCPA has been fully implemented in
Java and successfully demonstrated in the CASCOM e-health application scenario.

References

[1] Adetti: Abstract Logic Language; ALL Specification. Available online at
http://clts.we-b-mind.org/files/all.doc. 2002.

[2] The AIPS-98 Planning Competition Committee: PDDL the planning do-
main definition language. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, October 1998. Available at:
ftp://ftp.cs.yale.edu/pub/mcdermott /software/pddl.tar.gz.

[3] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa: JADE - A White Pa-
per. EXP Magazine, In search of innovation, 3(3). 2003. Available on-line at
http://exp.telecomitalialab.com

[4] D. Brownell: SAX2. O’Reilly; ISBN: 0596002378. 2002.

[5] J. Clark (Ed.): Relax NG Compact Syntax, November 2001.
http://relaxng.org/compact-20021121.html.

[6] FIPA Commitee Members: Foundation for Intelligent Physical
Agents: Interaction Protocol Specifications. 2002. Available on-line at
http://www.fipa.org/repository/ips.php3

[7] B.C. Gazen and C.A. Knoblock: Combining the expressivity of ucpop with the
efficiency of graphplan. Proceedings of the 4th European Conference ECP on
Planning, London, UK, Springer-Verlag, 1997.

References 265

[8] M. B. Do and S. Kambhampati: Sapa: A Scalable Multi-objective Heuristic
Metric Temporal Planner. Journal of AT Research, 20:155-194, 2003.

[9] J. Hoffmann and B. Nebel: The FF Planning System: Fast Plan Generation
Through Heuristic Search. Journal of Artificial Intelligence Research (JAIR),
(14):253302, 2001.

[10] M. Klusch, A. Gerber and M. Schmidt: Semantic Web Service Composition
Planning with OWLS-XPlan. Proceedings of the AAAI Fall Symposium on
Semantic Web and Agents, Arlington VA, USA, AAAI Press, 2005.

[11] M. Klusch and K-U. Renner: Fast Dynamic Re-Planning of Composite OWL-
S Services. Proceedings of 2nd TEEE Intl Workshop on Service Composition
(SerComp), IEEE CS Press, Hongkong, China, 2006.

[12] V. Lifschitz: On the semantics of STRIPS. MP. Georgeff, Amy L. Lansky
(eds): Proceedings of the Intl Workshop on Reasoning about Actions and Plans,
Timberline, Oregon, Morgan Kaufmann, 1986

[13] E.P. Pednault: ADL: Exploring the middle ground between STRIPS and the
situation calculus. Proceedings of the Conference on Knowledge Representation
and Reasoning KRR, San Francisco, CA, USA, Morgan Kaufmann, 1998.

[14] K-U. Renner, B. Blankenburg, P. Kapahnke and M. Klusch: OWLS-XPlan
2.0 - Dynamic Composition Planning of OWL-S Services (Reference Manual).
SCALLOPS Project Report, 2007. Available at www.dfki.de/ klusch/owlsx-
plan2.pdf

[15] E. Sirin, B. Parsia, D. Wu, J. Hendler and D. Nau: HTN planning for Web
Service composition using SHOP2. Journal of Web Semantics, 1(4), 2004.

[16] E. Sirin and B. Parsia: The OWL-S Java API. Proceedings of the Third
International Semantic Web Conference. 2004.

266 References

