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1 Introduction

Enterprises are being impacted by the vast amount of data to be processed by
services of Cloud Computing (CC) in the big-data era (Ritter et al., 2017), having
to meet new requirements from the end-users, such as fast-response and low latency
time (Fernández-Cerero et al., 2018). The increasing number of heterogeneous
devices connected to the Internet of Things (IoT) produce a large volume of
information, providing knowledge and create more business opportunities for
enterprises. To cope with the big data, enterprise need to integrate the IoT with
CC to create more value from the data generated and develop smart applications
for the users (Aazam et al., 2016).

Enterprise Application Integration (EAI) is the field of study that provides
methodologies, techniques, and tools for the design and implementation of inte-
gration processes (Frantz et al., 2016; Ritter et al., 2019). Integration platforms
are tools that allow software engineers to design, implement, run, and monitor
integration processes. The conceptual model of an integration process is a workflow
composed of segments of atomic tasks connected by communication channels
that desynchronise one task from another (Kanagaraj and Swamynathan, 2016).
Data, wrapped in messages, are received from applications, processed by tasks in
the workflows, and delivered to destination applications. Currently, several open-
source integration platforms support integration patterns documented by Hohpe
and Woolf (2004) and follow the Pipes-and-Filters architectural style (Alexander
et al., 1977). Pipes depict message channels, and filters represent atomic tasks that
implement a particular integration pattern to process messages. The component
of an integration platform responssible for the execution of tasks is the runtime
system, which manages jobs (composed of number of tasks) and distributes
computational resources between them (Frantz et al., 2016), moreover, it performs
scheduling of tasks, which is its primary function (Guo et al., 2015; Hilman et al.,
2018). The pay-as-you-go charging model of Cloud Computing motivates a task
scheduling concerned with the minimisation of costs (Freire et al., 2019b) and
with the handling of large volumes of data from IoT (Shoukry et al., 2019), in the
situation of currently emergent market demands for quality of software, flexibility
and response times (Fan et al., 2018).

In the runtime system, threads represent the computational resources used to
execute the tasks of an integration process. There are two main execution models
for runtime systems found in the literature: process-based and task-based (Blythe
et al., 2005; Boehm et al., 2011; Frantz et al., 2012; Alkhanak et al., 2016). In the
former model, a thread is assigned to an instance of the integration process, so
that the thread is used to execute every task that composes the workflow over an
inbound message to make this message flow throughout the process. After every
task in the workflow has been executed, the thread is released. In the latter model,
a thread is assigned to an instance of a task, so that this thread is used to execute
the task over the inbound message that reaches the task. When the task finishes,
an outbound message is written to the channel that connects the current task to
the next task in the workflow and the thread is released. The execution of the
message in the next task now depends on a new assignment of an available thread
to this task. In this article, we address the task-based execution model, where
a degradation of performance was detected in scenarios of high input rates of
messages, caused by the accumulation of requests of execution of the initial tasks
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in detriment of the others, due to the heuristic used in task scheduling, which is
the First-in-First-Out (FIFO) (Frantz et al., 2012).

The choice of the heuristic to task scheduling in scenarios of high input rates
of messages must increase the performance of the execution of integration pro-
cesses by runtime systems. The heuristic must guarantee an appropriate response
time to the message processing and proper harnessing computational resources.
However, it is possible that a heuristic is optimal for an integration process
and user-parameters, but is unappropriated for other integration processes and
user-parameters. Usually, the most straightforward heuristics, such as FIFO, are
adopted to achieve consistent results for all the scenarios, including both high
and low input rates of messages. However, the performance may vary significantly
depending on many factors because a single heuristic is rarely optimal for all cases,
including di↵erent input rates of messages, workloads, type of message tra�c, so
on (Qureshi et al., 2011). Simulation-approach allows the evaluation of traditional
and novel heuristics and measurement of their impact on the performance of the
execution of integration processes. So, it is required to develop a simulation tool
able to reproduce the implementation of integration processes subject to high input
rates of messages. In our literature review, we found simulators for heuristics in
the research field of Cloud Computing and Grid Systems, but in the EAI research
field we found a single article that tests the FIFO heuristic (Haugg et al., 2019).

In this article, we propose the Integration Process Simulator (IPS), which al-
lows the evaluation of various heuristics for task scheduling of integration processes
carried out by runtime systems. We implemented the traditional FIFO heuristic
and two new heuristics, Multi-queue Round Robin (MqRR) and Queue Priority
(qPrior). Such proposals aim at fair allocation of threads to tasks of integration
processes in scenarios of high volumes of data. However, the architecture of the
IPS can incorporate other heuristic-algorithms. It is possible to simulate several
scenarios varying messages input rates, the total workload of messages, the initial
workload of messages, simulation time, and integration processes. Additionally,
several performance metrics are provided by IPS, such as throughput, number of
processed messages, and the number of remained messages. As a proof-of-concept
for our simulator, we simulated the heuristic in the execution of three integration
processes. The results of the simulation were statistically validated with ANOVA
and Scott & Knoot tests. Thus, our simulator allows to analyze the adequacy of
the runtime systems of integration platforms to tackle high workloads present in
modern EAIs.

The rest of this article is organised as follows: Section 2 discusses the related
work regarding simulators for heuristics of task scheduling; Section 3 describes
characteristics of the scheduling in integration processes; Section 4 formulates
the problem of task scheduling of integration processes; Section 5 presents the
algorithms of our simulator; Section 6 presents a proof-of-concept to validate our
simulator of heuristics; and, Section 7 presents our conclusions and future work.

2 Related Work

In this section, we discuss new tools for simulation of heuristics to task
scheduling. Most of the articles that propose heuristics to task scheduling develop
their algorithms in a programming language, without concerns on promoting



4 Daniela L. Freire et al.

benchmarking standardized methods, frameworks and tools, see for instance, Riaz
et al. (2018), Zhang et al. (2018a), and Gupta et al. (2019). Despite the lack of
standardisation in the tools, we found some simulation tools, mainly regarding the
task scheduling for Cloud Computing. Table 1 lists the tools found in related works
and indicates the research field tackled by each tool. In the following paragraph,
we detail these proposal.

GridSim is proposed by Buyya and Murshed (2002). It is a simulator build
on top of SimJava library (Howell and McNab, 1998). It allows the modelling
and simulation of heterogeneous Grid resources, users and application models, in
the research field of Grid Systems. The simulator evaluates popular scheduling
algorithms and new proposals. Some of the performance metrics provided are
average budget spent by each user for processing jobs, average time at which
the user experiment is terminated with varying number of users competing for
resources, and number of jobs processed for each user when a varying number of
users are competing for resources.

CloudSim, proposed by Calheiros et al. (2011), is based on SimJava (Howell
and McNab, 1998) and GridSim (Buyya and Murshed, 2002) and focuses operation
environment features to Infrastructure as a Service (IaaS), in Cloud Computing.
It allows several virtual machines allocation and migration policies. This simulator
allows the simulation of scheduling policies, such as space-shared and time-shared.
Some of the performance metrics used are makespan, which is computed as the
fastest completion time, and cost.

WorkflowSim, proposed by Kanagaraj and Swamynathan (2016), is a simulator
built on top of CloudSim (Calheiros et al., 2011) that o↵ers support for workflow
scheduling and execution, in Cloud Computing research field. This simulator allows
the comparison of new heuristics with the popular scheduling algorithms, such
as Critical Path Algorithm, First Come First Serve, MaxMin, and MinMin. The
performance metric provided is makespan.

TrueTime, proposed by Cervin and Årzén (2018), is a Matlab/Simulink-based
simulation tool that has been developed at Lund University since 1999 (Eker and
Cervin, 1999). It provides models of multi-tasking real-time kernels and networks
used in simulation models for Networked Embedded Control Systems. TrueTime
gathers metrics such as input-output latency and deadline overruns.

SCORE, proposed by Fernández-Cerero et al. (2018) is based on the Google
Omega lightweight simulator (Schwarzkopf et al., 2013). It tests energy-e�ciency,
security, and scheduling strategies in Cloud Computing environments. This simu-
lator evaluates heuristics, such as Random, Spread tasks to the maximum, Greedy
minimising energy, Greedy minimising makespan, Spread tasks to the minimum,
Spread tasks to the minimum with randomness. SCORE stores the performance
metrics, such as the time a job waits in the queue until its first task is scheduled,
time a job remains in the queue until it is scheduled, and percentage of scheduler
utilisation on average.

Sphere, proposed by Fernández-Cerero et al. (2019), is based on SCORE (Cervin
and Årzén, 2018) and follows the design and simplifications developed for the
Google Omega simulator (Schwarzkopf et al., 2013). Sphere enables the simulation
of large-scale Edge Computing scenarios by focusing resource-managing, schedul-
ing and energy-e�ciency policies. Some of the performance metrics provided are:
makespan, time jobs wait for their first task to be scheduled, and time jobs wait
for all their tasks to be scheduled.
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GAME-SCORE, proposed by Fernández-Cerero et al. (2019) is the extension
of SCORE (Cervin and Årzén, 2018) and follows the design pattern: a hybrid
approach between discrete-event and multi-agent simulation. Its main aim is the
simulation of energy-e�cient IaaS on Cloud Computing. Some of the performance
metrics provided are: makespan, time jobs wait for their first task to be scheduled,
and time jobs remain in the system while all their tasks are scheduled.

Table 1 Related works summary.

Ref. Name Research field
Buyya and Murshed (2002) GridSim Grid Systems
Calheiros et al. (2011) CloudSim Cloud Computing
Kanagaraj and Swamynathan (2016) WorkflowSim Cloud Computing
Cervin and Årzén (2018) TrueTime Embedded Control Systems
Fernández-Cerero et al. (2018) SCORE Cloud Computing
Fernández-Cerero et al. (2019) Sphere Edge Computing
Fernández-Cerero et al. (2019) GAME-SCORE Cloud Computing
[ Our Proposal ] IPS Enterprise Application Integration

3 Background

In this section, we present an integration process that use the integration
patterns documented by Hohpe and Woolf (2004) and the architectural style Pipes-
and-Filters (Alexander et al., 1977). We define the elements of the task scheduling
and describe the task-based model, approached in this article.

An integration process is a computational program that connects applications,
synchronising the exchange of data and functionalities amongst them. An example
of an integration process, proposed by Hohpe (2005), is the «Processing Order»,
depicted in Figure 1. The «Processing Order» integration process connects five
applications: «Ordering System», «Widget Inventory», «Gadget Inventory», «In-
valid Items Log», and «Inventory System». «Ordering System» represents a source
application that delivers the data of the new orders to the integration process.
Each order is wrapped inside a «message» that contains data of order. A message
with a new order is split into individual messages, each of which must contain
only one item. Messages are routed to «Widget Inventory» or «Gadget Inventory»
depending on their contents. Messages with items that do not belong to any of these
inventories are routed to «Invalid Items Log». The «Inventory System» application
represents a final data sink that responds regarding the availability of items. The
processing of one order corresponds to one «job» instance. Generally, there are
many jobs been processed at a particular point in time, so there are many job
instances.

In the workflow of an integration process, a «path» is the set of uncoupled
tasks connected by communication channels whereby an inbound message flows
through, from source applications up to sink applications. An integration process
is a «workflow» composed of several segments of tasks arranged sequentially, in
parallel, or both. Parallel segments are parts of path which can be executed in
parallel. The inbound message processing corresponds to the execution of all
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Fig. 1 Processing Order conceptual model.

tasks of the path through which the message flows from source application to
the destination application.

A task implements an integration pattern, and every pattern represents an
atomic and specific operation on message processing, such as transforming, fil-
tering, splitting, joining, or routing. Depending on the integration pattern that
a task implements, it can have one or more inputs and one or more outputs.
There is an order of dependence for the tasks that determines their order of
execution. So, a message can only be processed by a task after every predecessor
tasks have processed this message. An outbound message of a task is written to
the communication channel that connects this task with the next successor task
in the path.

Runtime systems supply services to applications implemented on top of them (Ap-
pel, 1990). The «scheduler» is the key element that manages and orchestrates
the activities of the elements of a runtime system, allowing the accomplishment
of an inbound message processing. The computational resources responsible for
the execution of the tasks are managed by the scheduler. In runtime systems of
integration platforms, these resources are «threads» and, usually they are grouped
in «thread pools» to avoid the creation of consecutive threads and allow quickly
handle requests of tasks (Jeon and Jung, 2018). A thread is the smallest unit of
a computational program that can be managed by the runtime system and is an
abstraction of a piece of a physical and independent processing unit, or a central
processing unit (CPU) core.

The execution model of runtime systems establishes how they must execute
tasks and allocate threads during the processing of messages in an integration
process (Freire et al., 2019a). In this article, we approach the task-based model, as
it allows treating task instances, that is, tasks assigned to execution by a thread.
In this model, a task is considered ready to be executed when there are messages
in all communication channels that are inputs to that task. The request of the
execution of a ready task is annotated in a waiting queue. Ready tasks wait in
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the queue until there is an available thread to execute them. An available thread
selects a task of the queue, following an execution policy, e.g. FIFO.

The scheduler creates, manages, and releases threads and can configure the
pool by determining parameters, such as initial threads number, the maximum
number of threads, and the maximum lifetime of an idle thread. The scheduler
assigns threads to execute instances of tasks, and after an instance of the task is
executed, the thread is released back to the pool. The processing of a message
in the successor task now depends on a new assignment of an available thread
from the pool to this task. A message is processed under the order of dependence
of the tasks in the path. Tasks in sequential segments are executed sequentially,
whereas tasks in parallel segments can be executed in parallel because there is no
dependency between them.

4 Problem Formulation

In this section, we represent the task scheduling problem of the «Processing Or-
der» integration process by means of a Directed Acyclic Graph (DAG), and so we
formulate the mathematical model of the problem. A DAG can represent the task
scheduling model and the constraints of the execution of the tasks. An integration
process is described as a workflow W composed of k tasks, being an extension of
the DAGs with weighted vertices (Ei, Ti), where Ti =

�
ti,1, ti,2, · · · , ti,k

 
is the set

of vertices and E is the set of edges. Every vertex in the graph represents a task of
the process, and each edge represents a communication channel between tasks, as
well as indicates precedence constraints between tasks. Every edge has a weight,
which represents the waiting time of the task in the queue (Saifullah et al., 2013).
The «Processing Order» integration process is represented by a DAG in Figure 2.

Fig. 2 Processing Order represented in a DAG task model.

There are 17 nodes, which represent the 16 tasks: tstart, t1end, t2end, t1, t2, t3,
t4, t5, t6, t7, t8, t9, t10, t11, t12, tx1 , tx2 , where tstart is a starting dummy node,
and t1end and t2end are ending nodes. The nodes tx1 , tx2 represent tasks that send
and receive information to/from applications. There are 19 edges, which represent
the 19 communication channels.

There is one input task represented by tstart, which has no predecessor task,
and two output tasks represented by t1end and t2end, which have no successor
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task. The nodes tx1 and tx2 represent the tasks that exchange messages with
applications during runtime. The intermediary tasks are represented by ti, where
i ranges from 1 to 12. In the integration logic of this conceptual model, an order
contains several items. An order is split into unitary items, which can belong
exclusively to one of the inventories, «Widget Inventory» or «Gadget Inventory»,
or to none. The path for a unitary item that belongs to «Widget Inventory» is the
task segment that equals to s1 = {tstart, t1, t2, t3, t4, tx1, t5, t6, t7, t8, t1end}; for a
unitary item that belongs to «Gadget Inventory» is the task segment that equals
to s2 = tstart, t1, t2, t9, t10, tx2, t11, t12, t7, t8, t1end ; and for a unitary item that
does not belong to any inventory is the task segment that equals to s3 = {tstart,
t1, t2, t2end}. Examples of tasks that can be executed in parallel in «Processing
Order» integration process are [t3, t9] , [t4, t10] , [tx1, tx2] , [t5, t11], [t6, t12]. Table 2
shows the paths and classification of segments of «Processing Order» integration
process.

Table 2 Processing Order path characterisation.

ID Path
Segment

Sequential Parallel

s1

tstart, t1, t2 t3, t4, tx1, t5

t6, t7, t8, t1end

s2

tstart, t1, t2 t9, t10, tx2, t11

t12, t7, t8, t1end

s3

tstart, t1, t2end

Makespan is a well-known by the integration community metric of performance
and it is defined as the total execution time of the integration process for a given
message (Canon and Jeannot, 2007; Chirkin et al., 2017). It corresponds to the
total execution time of all the tasks of the path through which the message must
flow for its complete processing. It includes all the times involved, such as the total
CPU time, the waiting time of the tasks in a queue, and the waiting time of the
task in request and response operations with external applications. We also assume
that the range of the execution time of a task tk is defined as [tetkini

, tetkfin
]. In

this article, we compute the total execution time of an integration process by the
elapse of time between the start time of the first message entered the workflow
STm1 and the end time of the last message leaving the workflow ETmnp.

Throughput is a performance measurement based on the amount of work a
system can perform in a given time in a particular environment. The throughput
of a computer system is a function of the environment and workload characteristics.
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Improvements resulting from system changes can be evaluated by throughput
measurements (Wood and Forman, 1971; Thakur and Kumar., 2018). In case
of execution of integration processes, throughput corresponds to the number of
messages processed per time unit and it is calculated as the division of the total
number of processed messages np by the total execution time TET , cf. Equation 1.

Throughput =
np

ETmnp � STm1

(1)

5 Proposal

In this section, we describe the Integration Process Simulator, a simulator of
heuristics for task scheduling for integration processes. Our simulator implements
the following heuristics: First-In-First-Out (FIFO), Multi-queue Round Robin
(MqRR), and Query-Priority (qPrior). FIFO is a simple heuristic and is adopted in
most integration platforms (Freire et al., 2019b), where messages are processed in
the same order they enter tenhe workflow. Round Robin (RR) heuristic is popularly
known by its simplicity and considered an e�cient and e↵ective scheduling tech-
nique in computing (Zhang et al., 2018b), where messages are processed according
to circular order. Here, we propose two novel heuristics: MqRR and qPrior, both
based on RR. These heuristics seek to increase the performance of the execution
of the integration processes in overload situation, facing the dynamic environment
of the task scheduling of applications integration. An overload situation happens
when the number of messages accumulated into communication channels is higher
than the number of messages processed in a given time interval.

In scheduling by FIFO heuristic, there is a single task queue that maintains the
instances of all the tasks. Tasks are maintained in a queue in descendant order of
arrival time. In the head of the queue there is the task that has the longest arrival
time, and in the tail of the queue there is the task that arrived most recently.
Available threads recurrently poll the queue for task and, if there are pending
tasks, the threads execute them in head-to-tail order.

In scheduling with MqRR heuristic, there are multiple task queues, and each
queue maintains the instances of a task. Thus, the number of queues equals the
number of tasks of the integration process. However, tasks belonging to parallel
segments can be maintained in the same queue to execute them in parallel. Tasks
are maintained in queues in decreasing order of arrival time, and available threads
recurrently poll the queue for task and execute the existing tasks in order from
head to tail. Threads recurrently poll the task queues in a circular order, executing
a predefined number of tasks of every queue, each time.

With qPrior heuristic, also there are multiple task queues, but in this case,
threads recurrently poll the queues following order of priority. A task that has
more predecessor tasks has more priority in its execution.

5.1 Algorithms

Figure 6 in Appendices A.2 presents the flowchart of our simulator. Start
is responsible for receiving the simulation parameters and calling the heuristics
to use in the simulation. Integration Process Profile contains the integration
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process information used as parameters in the other algorithms. FIFO provides
task scheduling using the First-In-First-Out heuristic. MqRR uses Multi-Queue
Round Robin heuristic. qPrior uses Queue Priority heuristic. Allocate Thread
is responsible for managing and allocating the threads that execute the tasks of
integration processes. Next Task is responsible for sending the tasks to the next
task queue. Operation simulates the task execution. Queue Add adds tasks in a
queue. Queue Add Input adds tasks in the first queue, simulating the arrival of
messages in the integration process. The pseudo-codes of these algorithms are
presented and detailed as follow.

5.1.1 Start

Start coordinates the simulation of integration processes, cf. Activity 1. It
receives the number of simulations, the maximum duration of the simulation, max-
imum number of messages, initial number of inbound messages, the heuristic, and
the number of tasks performed at a time (we called this number of preemption),
in case of MqRR and qPrior heuristics. The last input parameter is the number of
tasks that must be executed every time the threads check a queue. Start returns
the throughput, the number of processed messages, and the number of remaining
messages. Firstly, Start creates a vector for the starting time of messages, a vector
for the final time of messages and the creation of task queues. If the heuristic is
FIFO, it creates a single queue, whereas if the heuristic is RR, it creates a queue
for every task of the integration process. First, it adds the first tasks in the queues,
and then, it calls the algorithm that corresponds to the chosen heuristic. Finally,
it calculates the throughput and records the metrics in a text file.

5.1.2 Integration Process Profile

Integration Process Profile is responsible for the profiles of the integration
processes, cf. Activity 2. It receives the vector of identification of tasks, the vector of
parallel tasks, the vector of the execution time of the tasks, the vector of operation
of the tasks, the vector of the next tasks, and the vector of last tasks. It calculates
the number of tasks of the integration process by measuring the length of the
vector of identification of tasks.

5.1.3 First-In-First-Out

This algorithm carries out the task scheduling by the FIFO heuristic, cf.
Algorithm 3. It receives the task queue, the maximum duration of the simulation,
and the starting time of the first task in the queue. The algorithm starts by
initialising the auxiliary variable: totsize that corresponds to queue total size.
After, it recursively calls Allocate Thread activity to allocate threads to perform
tasks until the simulation time expires or up to the moment there is no task in the
queue.

5.1.4 Multi-Queue Round Robin

This algorithm carries out the task scheduling by the MqRR heuristic, cf.
Algorithm 4. It receives the task queues, the maximum duration of the simulation,
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Activity 1 Start
Input: Number of simulations: numsimulation

Input: Maximum duration of the simulation: maxduration

Input: Number of inbound messages: messinbound

Input: Heuristic: policy
Input: Number of tasks performed at a time: preempttask

Output: Throughput : throughput
Output: Number of processed messages: messproc

Output: Number of remained messages: messrem

1: starttime[] . Creates a starting time vector
2: endtime[] . Creates an end time vector
3: while count  numsimulation do . Execution of the simulations
4: if policy = FIFO then
5: queues[0] . Creates a single queue
6: else
7: for [i] = 1 to numtasks do
8: queues[i] . Creates a queue to each task
9: end for
10: end if
11: for [i] = 1 to messinbound do . Creates first tasks in queues
12: starttime[i] current.T ime . Adds starting times of the messages
13: if policy = FIFO then
14: queues[0] add(1)
15: else
16: queues[1] add(1)
17: end if
18: end for
19: switch policy do
20: case FIFO

21: simulationF ile SimulationFIFO.txt

22: Fifo() . Executes FIFO heuristic

23: case MqRR

24: simulationF ile SimulationMqRR.txt

25: MqRR( )) . Executes MqRR heuristic

26: case qPrior

27: simulationF ile SimulationqPrior.txt

28: qPrior( )) . Executes qPrior heuristic

29: count count+ 1
30: end while
31: messproc endtime.size();
32: if messproc > 0 then
33: totmakespan (endtime[messproc]� starttime[1]) . Calculates total total

execution time
34: throughput (messproc/(endtime[messproc]� starttime[1]))
35: end if
36: Record Archive(simulationF ile) . Records metrics in a text file

Activity 2 Integration Process Profile
Input: Vector of identification of tasks : IdTask[ ]
Input: Vector of parallel tasks : ParallelTask[ ]
Input: Vector of the execution time of the tasks : T imeExec[ ]
Input: Vector of operation of the tasks: OperTask[ ]
Input: Vector of the next tasks : NextTask[ ]
Input: Vector of last tasks: LastTask[ ]

1: NumTasks IdTask.length
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Algorithm 3 First-In-First-Out
Input: Task queue: queues[0]
Input: Maximum duration of the simulation: maxduration

Input: Starting time of the simulation: start

1: totsize queues[0].size . Initialises the queue size
2: while totsize > 0 and duration < maxduration) do . Executes the tasks in the queue
3: if queues[i] 6= ; then
4: Allocate Thread(queues[0], totsize) . Allocates threads to tasks in the queue
5: end if
6: duration current.Time �start . Updates the duration of the simulation
7: totsize queues[0].size . Updates the task queue total size
8: end while

and the starting time of the first task in the queue, the total number of tasks,
and the number of tasks performed at a time. This last input parameter is used
to indicate the number of tasks that the threads must execute every time a queue
is checked. The algorithm starts by initialising two auxiliary variables: totsize and
preempt. The former corresponds to queue total size and the latter to the number
of tasks performed at a time (preemption). The algorithm checks the queues from
the the queue of the first task until the queue of the last task, and it continues
to check them in a circular order. When the queue size is smaller than preempt,
the algorithm executes all tasks that are in the queue; otherwise, only the number
of task equals preempt will be executed. The algorithm calls Allocate Thread
activity to allocate threads to execute tasks, while there are tasks in the queue
and the simulation duration is lower than the input parameter that stipulates
maximum duration.

5.1.5 Queue Priority

This algorithm carries out the task scheduling by the qPrior heuristic, cf.
Algorithm 5. It receives the task queues, the maximum duration of the simulation,
and the starting time of input of the first task in the queue, the total number of
tasks, and the number of tasks performed at a time. This last input parameter
is used to indicate the number of tasks that the threads must execute every time
a queue is checked. The algorithm starts by initialising two auxiliary variables:
totsize and preempt. The former corresponds to queue total size and the latter the
latter to the number of tasks performed at a time (preemption). The algorithm
checks the queues from the highest priority task queue until the lowest priority
task queue. When the queue size is smaller than preempt, the algorithm executes
all tasks that are in the queue; otherwise, only the number of task equals preempt
will be executed. The algorithm calls Allocate Thread activity to allocate threads
to execute tasks, while there are tasks in the queue and the simulation duration is
lower than the input parameter that stipulates maximum duration.

5.1.6 Allocate thread

Allocate Thread manages and allocates threads to the execution of tasks of
a queue, cf. Activity6. It receives a task queue, the maximum duration of the
simulation, the maximum number of messages, the number of tasks performed at a
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Algorithm 4 Multi-Queue Round Robin
Input: Task queues: queues[ ]
Input: Maximum duration of the simulation: maxduration

Input: Starting time of the simulation: start
Input: Total number of tasks: numtasks

Input: Number of tasks performed at a time: preempttask

1: totsize 1 . Initialises the total queue sizes
2: preeemp preempttask . Initialises the variable preempt

3: while totsize > 0 and duration < maxduration) do . Execution of tasks in the queue
4: for [i] = 1 to numtasks do
5: if queues[i] 6= ; then

. Checks whether there is preemption and compares with queue size
6: if (preempt = 0) or (queues[i].size < preempt) then
7: preempt queues[i].size
8: else
9: preempt preempttask

10: end if
11: Allocate Thread(queues[i], preempt) . Allocates threads to tasks in the queue
12: end if
13: end for
14: totsize 0
15: for [i] = 1 to numtasks do . Updates the task queues total size
16: totsize totsize+ queues[i].size
17: end for
18: duration current.Time �start . Updates the duration of the simulation
19: end while

Algorithm 5 Queue Priority
Input: Task queues: queues[ ]
Input: Maximum duration of the simulation: maxduration

Input: Starting time of the simulation: start
Input: Total number of tasks: numtasks

Input: Number of tasks performed at a time: preempttask

1: totsize 1 . Initialises the total queue sizes
2: preeemp preempttask . Initialises the variable preempt

3: qprior  numtasks . Initialises the variable qprior

4: while totsize > 0 and duration < maxduration) do . Execution tasks in the queue
5: for [i] = numtasks to 1 step�1 do

. Selects queue of higher priority
6: if queues[i] 6= ; then
7: qprior  i

8: i 1
9: end if
10: end for
11: if (preempt = 0) or (queues[qprior].size < preempt) then
12: preempt queues[qprior].size
13: else
14: preempt preempttask

15: end if
16: Allocate Thread(queues[qprior], preempt) . Allocates threads to tasks in the queue
17: end while
18: totsize 0
19: for [i] = 1 to numtasks do . Updates the task queues total size
20: totsize totsize+ queues[i].size
21: end for
22: duration current.Time �start . Updates the duration of the simulation
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time, and a vector containing the ending tasks. It starts by initialising the auxiliary
variable preempt, and then it begins with the creation of a thread pool, which must
be elastic, which allow variable size, and take advantage of the multicore CPU.
Allocate Thread selects tasks in the queue, from head to tail, until it achieves the
number of tasks equals to size of the preemption variable (preempt). If the queue
size is smaller than the number of tasks, the algorithm assigns the queue size to
size of the preemption variable. It submits the task to the thread pool and calls
Operation activity, responsible for task operation. After the execution, Allocate
Thread removes the task from the current queue. Then, it checks if the task belongs
to the vector containing the ending tasks. If the task is not an end task and the
heuristic used has multiple task queue, Allocate thread activity calls Next queue
activity that is responsible by storing the task in the next queue, according to the
logic of the integration process. Finally, it destroys the thread pool.

Activity 6 Allocate Thread
Input: Task queue: queues[i]
Input: Maximum duration of the simulation: maxduration

Input: Maximum number of messages: maxmessages

Input: Number of tasks performed at a time: preempt

Input: Vector of last tasks: LastTask[ ]

1: preeemp preempttask . Initialises the variable preempt

2: Creates elastic thread pool
3: for [j] = 1 to preempt do
4: if duration < maxduration) then
5: task  queues.head . Selects the task from the head of the queue
6: if task 6= null then
7: Submits Operation(task) to a thread pool . Executes task

8: for [j] = 0 to LastTask[ ].length do
9: if task 6= LastTask[j] then lasttask = 1
10: end if
11: end for
12: if lasttask = 0 then
13: Next queue(task) . Stores task in next queue
14: else
15: endtime[] current.T ime

16: end if
17: Removes task of the queue[i] . Removes task of the queue
18: Shutdown thread pool
19: end if . Compares queue size with the preemption
20: if queue[i].size < preempt then
21: preempt queue[i].size
22: else
23: preempt preempttask

24: end if
25: else
26: i preempt+ 1
27: end if
28: duration current.T ime� start

29: if maxmessages>starttime.size() then
30: Queue Input Add() . Adds messages in first queue every 100 tasks executed
31: else
32: duration maxduration

33: end if
34: end for
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5.1.7 Next queue

Next Task is responsible for sending the task to its next queue, in case of
heuristics that use multiple queue, cf. Activity 7. It receives a task, a vector
containing the next task queues, and a vector containing the logic operations of the
tasks. It starts by initialising the auxiliary variable operleng that corresponds to
the length of the vector containing the logic operations of the tasks. Length of this
vector equals to zero means that the task is sequential and must be sent to only
one queue. Otherwise, the task must be sent to one or more queues, depending
on logic operation. The logic operations of task can be AND, OR*, and OR. If the
operation equals AND, the task must be sent to all the next queues. If the operation
equals OR*, the task must be sent to only one next queue. The operation OR acts as
both AND and OR*, i.e., the task can be sent to one or more queues. Next Task sends
the task to the queues according to the vector of the next tasks, which contains
the information regarding next task of integration process.

Activity 7 Next queue
Input: Task : task
Input: Vector of next tasks : NextTask[ ]
Input: Vector of operation tasks: OperTask[ ]

1: operleng  OperTask[task].length . Initialises the auxiliary variable with vector size
2: switch operleng do
3: case 0 . Sequential task
4: nexttask  NextTask[task][1]
5: Queue Add(nexttask) . Adds the task in its next queue

6: case 1 or 2 . Fork task
7: if operleng = 2 then
8: operrad = random OperTask[task][ ] . Randomly selects one of the operations
9: else
10: operrad = OperTask[task] . Selects the task operation
11: end if
12: if operrad = or then . Can choose one of the next task
13: nexttask = randomNextTask[task][1] . Randomly selects one of the next task
14: Queue Add(nexttask) . Adds the task in its next queue
15: else
16: if operrad = and then . Send to all are next tasks
17: for [i] = 1 to NextTask[task].length do
18: nexttask = NextTask[task][i]
19: Queue Add(nexttask) . Adds the task in next queue
20: end for
21: end if
22: end if

5.1.8 Operation

Operation simulates the processing of messages by a task, cf. Activity 8. It
receives a task and the vector of tasks execution time. It randomly selects an
execution time contained in this vector and waits during this time. The operation
of processing message can be to split, translate, filter, aggregate, route, so on.
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Activity 8 Operation
Input: Task : task
Input: Vector of execution time tasks : T imeExec[ ]

1: time random T imeExec[task][ ] . Randomly selects one of the execution time to the
task

2: Waits time . Simulates the execution of the task

5.1.9 Queue Add

Queue Add is responsible for adding a task in a queue, cf. Activity 9. It receives
a task and the vector of parallel tasks. The latter input indicates when a task can
be executed in parallel with another task. Queue Add checks the heuristic, and if
the heuristic is FIFO, it adds the task in the FIFO queue, otherwise, it checks the
vector of parallel tasks. If there is a parallel task to the task, it adds the task in
the queue of parallel task, otherwise, it adds the task in its queue.

Activity 9 Queue Add
Input: Task : task
Input: Vector of parallel tasks : ParallelTask[ ]

1: if policy = FIFO then
2: queues[0] add(task) . Adds tasks in FIFO queue
3: else . Checks if the tasks are parallel
4: if ParallelTask[task] 6= 0 then
5: parallel = ParallelTask[task]
6: queues[parallel] add(task) . Adds tasks in the queue of the parallel task
7: else
8: queues[task] add(task) . Adds tasks in the respective queue
9: end if
10: end if

5.1.10 Queue Input Add

Queue Input Add is responsible for adding first tasks in the queue, cf. Activ-
ity 10. It receives the number of input tasks, then, it checks the heuristic, and if
the heuristic is FIFO, it adds the tasks in the FIFO queue. Otherwise, it adds the
task in the queue of the first task.

6 Validation

In this section, we use the IPS simulator to compare the performance of the
heuristics FIFO, MqRR, and qPrior in the execution of integration processes
under high workloads (above 1,000,000 messages). We used performance metrics
such as throughput, the number of processed messages and number of remained
messages. The integration processes used in the simulations are Processing Order
(IP1), Huelva’s County Council (IP2), and Real Estate (IP3). Their profiles are
described in Appendices A.1. The Processing Order problem is a classic example
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Activity 10 Queue Input Add
Input: Number of input tasks : numinputtask

1: for [i] = 1 to numinputtask do . Creates first tasks in the queue
2: starttime[] current.T ime

3: if policy = FIFO then
4: queues[0] add(1)
5: else
6: queues[1] add(1)
7: end if
8: end for

of an integration process, introduced by Hohpe (2005), which conceptual model
is depicted in Figure 1. The Huelva’s County Council problem is a real-world
integration process (Frantz et al., 2016) that consists of the automatisation of
the user registration into a central repository (Huelva, Spain). The Real State
problem is a real-world integration process (Freire et al., 2019a) that consists of
the automatisation of the real state tax management system in the city of Ijúı,
(Brazil).

Our simulation is classified as termination simulation because the output
is a function of the initial conditions, in which we followed a protocol based
on Jedlitschka and Pfahl (2005), Wohlin et al. (2012), and Basili et al. (2007),
with procedures for controlled experiments in the field of software engineering.
The literature suggests that statistical analysis must be done of the data from
simulations regarding performance (Georges et al., 2007), because this type of
simulation deals with non-determinism in computational systems (Frantz et al.,
2011). We used the ANOVA test to verify the influence of random factors, called
errors, in the measurements of the dependent variables. The comparison of averages
by the Scott & Knott test groups the averages of the dependent variables to check
if there is a statistical di↵erence between the results of the heuristics. The source
code and data sets used in the simulations is publicly available for download 1.

6.1 Research Question and Hypothesis

This experiment aims to answer the following research question:

RQ: Is it possible to extract performance metrics by IPS that allow the evaluation
of heuristics of task scheduling in the execution of an integration process under
high workloads?

Our hypothesis to this research question is that:

H: It is possible to simulate heuristics of task scheduling of an integration process
with IPS simulator and to find throughput, number of processed messages,
and performance metrics in the execution of an integration process under high
workloads.

1
https://github.com/gca-research-group/Simulation-qPrior



18 Daniela L. Freire et al.

6.2 Variables

The independent variables are:

Heuristic. The heuristic used to task scheduling. The values tested for this
variable were FIFO, MqRR, and qPrior.

Integration process. The conceptual model of the integration process. The
value tested for this variable were IP1, IP2, and IP3.

Duration. The time interval that the algorithm keeps performing. The value
tested for this variable was 60 seconds.

Total workload. The total number of inbound messages. The value tested for
this variable was 2,000,000 messages.

Initial workload. The initial number of inbound messages. The value tested for
this variable was 1,000 messages.

Rate of inbound messages. The number of inbound messages added periodically
to the integration process. The value tested for this variable was 1,000 messages.

The dependent variables are:

Throughput. This variable corresponds to the average of processed messages by
millisecond, cf. Equation 1.

Processed messages. This variable corresponds to the number of inbound mes-
sages that were entirely processed by the integration process.

Remained messages. This variable corresponds to the number of inbound mes-
sages that were not processed by the integration process.

6.3 Environment and Supporting Tools

The simulations were carried out on a machine equipped with 16 processors
Intel Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, and operating system
Windows Server 2016 Datacenter 64-bits. The programming language Java, version
8.0 update 152, was used to implement and execute the IPS simulator. The
Genes (Cruz, 2006) software, version 2015.5.0, was used to process the descriptive
statistic, ANOVA test, and Scott & Knoot test were used for the performance
metrics in this study.

6.4 Execution and Data Collection

The experiment was conducted using the IPS simulator, which simulates the
execution of the IP1, IP2, IP3 integration processes. Table 3 describes the main
di↵erences between the integration processes tested.

The simulation starts with a workload of 1,000 inbound messages and receives
1,000 inbound messages every 100 executions of tasks. The execution time of
each task varies within an interval, in seconds, according to the profile of the
integration process. For MqRR and qPrior heuristics, the preemption variable was
set to 100 tasks. We configured the simulation time to 60 seconds, after this time,
the simulation is stopped. Then, the simulator collects the dependent variables
and stores them in a text file. Afterwards, we handled and analysed the data, and
then applied the statistical tests.
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Table 3 Integration process characterisation.

ID DAG
Nodes Starting Ending
number nodes nodes

IP1 17 1 2

IP2 19 2 2

IP3
17 3 2

The literature suggests that 20-30 executions are su�cient to obtain a popu-
lation average (Sargent, 2013). In our experiment, each heuristic was simulated
25 times for each integration process, resulting in the225 di↵erent scenarios,
summarised in Table 4.

Table 4 Scenarios of the simulations.

Heuristics FIFO, MqRR, qPrior 3
Integration Process IP1, IP2, IP3 1
Duration 60 seconds 1
Total workload 2,000,000 1
Initial workload 1000 1
Rate of inbound messages 1000 1
Repetitions 25
Scenarios 3 x 3 x 1 x 1 x 1 x 1 x 25 225

6.5 Results

The average values of dependent variables obtained in the 25 independent
runs of the simulation for every type of heuristic are shown in scatter charts, cf.
Figures: 3, 4, and 5. In these charts, the x-axis represents the heuristics and the



20 Daniela L. Freire et al.

y-axis represents the average number of throughput, average number of processed
messages, and average number of remained messages, respectively.

In the simulation of IP1, the throughput achieved (in messages per mil-
liseconds) was 8.44 mess/ms with FIFO; 9,455.17 mess/ms with MqRR; and
28,076.67 mess/ms with qPrior. The average number of processed messages was
equal to 502.40 messages with FIFO; 22,607 messages with MqRR; and 199,800
messages with qPrior. Lastly, the average number of remained messages was equal
to 1,999,498 messages with FIFO; 1,977,393 messages with MqRR; and 1,800,200
messages with qPrior. So, qPrior was most e�cient and FIFO was least e�cient.

In the simulation of IP2, the throughput achieved (in messages per mil-
liseconds) was 64.26 mess/ms with FIFO; 10,250.02 mess/ms with MqRR; and
27,001.52 mess/ms with qPrior. The average number of processed messages was
equal to 3,821.52 messages with FIFO; 25,515 messages with MqRR; and 199,800
messages with qPrior. Lastly, the average number of remained messages was equal
to 1,996,178 messages with FIFO; 1,974,485 messages with MqRR; and 1,800,200
messages with qPrior. So, qPrior was most e�cient and FIFO was least e�cient.

In the simulation of IP3, the throughput achieved (in messages per mil-
liseconds) was 8.49 mess/ms with FIFO; 9,381.09 mess/ms with MqRR; and
27,001.52 mess/ms with qPrior. The average number of processed messages was
equal to 506.28 messages with FIFO; 22,607 messages with MqRR; and 199,800
messages with qPrior. Lastly, the average number of remained messages was equal
to 1,999,494 messages with FIFO; 1,977,393 messages with MqRR; and 1,800,200
messages with qPrior. So, qPrior was most e�cient and FIFO was least e�cient.

Table 5 shows the analysis of variance for IP1, an average square of the
throughput, an average square was 509,9275,548 for the heuristics and 1,704,696 for
error. The overall average was equal to 12,513.42, and the coe�cient of variation
was 10.43 %. In the analysis of variance of the number of processed messages,
an average square was 298,355,654,464 for the heuristics and 3,415 for error. The
overall average was equal to 1,925,696.70, and the coe�cient of variation was
3.03 %. Lastly, in the analysis of variance of the number of remained messages,
an average square was 298,355,654,464 for the heuristics and 3,415 for error. The
overall average was equal to 74,303.29, and the coe�cient of variation was 0.07 %.
So, there was a relation between the treatments (heuristics) and the result of an
experiment (performance).

Table 6 shows the analysis of variance for IP2, an average square of the
throughput, an average square was 4,638,534,208 for the heuristics and 2,231,170.0
for error. The overall average was equal to 12,451, and the coe�cient of variation
was 11.99 %. In the analysis of variance of the number of processed messages,
an average square was 288,556,580,878 for the heuristics and 182,858 for error.
The overall average was equal to 1,923,621.32, and the coe�cient of variation was
2.22 %. Lastly, in the analysis of variance of the number of remained messages, an
average square was 288,556,580,878 for the heuristics and 182,858 for error. The
overall average was equal to 76,378.68, and the coe�cient of variation was 0.55 %.
So, there was a relation between the treatments and the result of an experiment.

Table 7 shows the analysis of variance for IP3, an average square of the
throughput, an average square was 4,695,619,987 for the heuristics and 3,282,183
for error. The overall average was equal to 12,130.36, and the coe�cient of variation
was 14.93 %. In the analysis of variance of the number of processed messages, an
average square was 298,348,495,903 for the heuristics and 2,398 for error. The



Integration Process Simulator 21

IP1 IP2 IP3
Fifo 8.44 64.26 8.49
RR 9455.17 10250.02 9381.09
qPrior 28076.67 27038.91 27001.52

0

7500

15000

22500

30000

Fig. 3 Average throughput

IP1 IP2 IP3
Fifo 502.4 3821.52 506.28
RR 22607.48 25514.52 22607.48
qPrior 199800 199800 199800
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Fig. 4 Average number of processed messages

IP1 IP2 IP3
Fifo 1999497.6 1996178.48 1999493.72
RR 1977392.52 1974485.48 1977392.52
qPrior 1800200 1800200 1800200
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Fig. 5 Average number of remained messages

overall average was equal to 1,925,695.41, and the coe�cient of variation was
2.54 %. Lastly, in the analysis of variance of the number of remained messages,
an average square was 298,348,495,903 for the heuristics and 2,398 for error. The
overall average was equal to 74,304, and the coe�cient of variation was 6.59 %.
So, there was a relation between the treatments and the result of an experiment.

The results of the Scott & Knoot test are shown in Tables 8, 9, and 10, for
IP1, IP2, and IP3, respectively. The heuristics identified in the first column. For
each dependent variable, there is a column for the average and a column for the
group of Scott & Knott. There were three groups: «a», «b», and «c». The «a»
group refers to the heuristic with the highest average, the «b» group refers to the
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Table 5 ANOVA test for IP1.

Sources of Degree of Average square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 5099275548 † 298355654464 † 298355654464 †

Error 72 1704696 3415 3415
Total 74

Overall average 12513.42 1925696.70 74303.29
Coe�cient of variation (%) 10.43 3.03 0.07

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 6 ANOVA test for IP2.

Sources of Degree of Average square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 4638534208 † 288556580878 † 288556580878 †

Error 72 2231170 182858 182858
Total 74

Overall average 12451 1923621.32 76378.68
Coe�cient of variation (%) 11.99 2.22 0.55

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

Table 7 ANOVA test for IP3.

Sources of Degree of Average square
variation freedom Throughput Processed messages Remained messages

Heuristics 2 4695619987 † 298348495903 † 298348495903 †

Error 72 3282183 2398 2398
Total 74

Overall average 12130.36 1925695.41 74304
Coe�cient of variation (%) 14.93 2.54 6.59

† significant statistical by Fisher-Snedecor’s - Probability and error level of 5%.

heuristic with the second-highest average, and «c» refers to the heuristic with the
lowest average.

The results of the Scott & Knoot test for IP1, regarding throughput, show
that FIFO was in «c» group with the lowest average 8.44 mess/ms, MqRR in
«b» group with the average 9,455.17, and qPrior in «a» group with the highest
average 28,076,67 mess/ms; regarding the number of processed messages, FIFO
was in «c» group with the lowest average 502 messages, MqRR in «b» group with
the average 22,607 messages, and qPrior in «a» group with the highest average
199,800 messages; and regarding the number of remained messages, FIFO was in
«a» group with the highest average 1,999,498 messages, MqRR in «b» group with
the average 1,977,393, and qPrior in «c» group with the lowest average 1,800,200,
cf. Table 8. So, there was statistical di↵erence between the three treatments.

The results of the Scott & Knoot test for IP2, regarding throughput, show
that FIFO was in «c» group with the lowest average 64.26 mess/ms, MqRR in
«b» group with the average 10,250.02, and qPrior in «a» group with the highest
average 27,038.91 mess/ms; regarding the number of processed messages, FIFO was
in «c» group with the lowest average 3,821 messages, MqRR in «b» group with
the average 25,515 messages, and qPrior in «a» group with the highest average
199,800 messages; and regarding the number of remained messages, FIFO was in
«a» group with the highest average 1,996,178 messages, MqRR in «b» group with
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the average 1,974,485, and qPrior in «c» group with the lowest average 1,800,200,
cf. Table 9. So, there was statistical di↵erence between the three treatments.

The results of the Scott & Knoot test for IP3, regarding throughput, show
that FIFO was in «c» group with the lowest average 8.49 mess/ms, MqRR in
«b» group with the average 9,381.09, and qPrior in «a» group with the highest
average 27,001,52 mess/ms; regarding the number of processed messages, FIFO
was in «c» group with the lowest average 506 messages, MqRR in «b» group with
the average 22,607 messages, and qPrior in «a» group with the highest average
199,800 messages; and regarding the number of remained messages, FIFO was in
«a» group with the highest average 1,999,4948 messages, MqRR in «b» group with
the average 1,977,393, and qPrior in «c» group with the lowest average 1,800,200,
cf. Table 10. So, there was statistical di↵erence between the three treatments.

Table 8 Scott & Knott test for IP1.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 8.44 c 502 c 1999498 a
MqRR 9455.17 b 22607 b 1977393 b
qPrior 28076.67 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

Table 9 Scott & Knott test for IP2.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 64.26 c 3821 c 1996178 a
MqRR 10250.02 b 25515 b 1974485 b
qPrior 27038.91 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

Table 10 Scott & Knott test for IP3.

Heuristic
Throughput Processed messages Remained messages

Average Group Average Group Average Group
FIFO 8.49 c 506 c 1999494 a
MqRR 9381.09 b 22607 b 1977393 b
qPrior 27001.52 a 199800 a 1800200 c

Error level of 5% by the Scott & Knoot model.

6.6 Summary

In the simulation of IP1, the best average throughput was 28076.67 mess/ms
with qPrior. The worst-case scenario was the throughput of 8.44 mess/ms, using
FIFO. The qPrior heuristic was one that managed to process more messages,
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reaching the average of 199,800 messages and the number of remained messages
was 1,800,200 messages. The worst case of the processed messages happened using
FIFO, in which only 502.40 messages were processed and 1,999,498 messages
remained unprocessed.

In the simulation of execution of the IP2, the best average throughput was
27,038.91 mess/ms with qPrior. The worst-case scenario was the throughput of
64.26 mess/ms, using FIFO. The qPrior heuristic was one that managed to process
more messages, reaching the average of 199,800 messages and the number of
remained messages was g 1,800,200 messages. The worst case of the processed
messages happened using FIFO, where only 3,821.52 messages were processed and
1,996,178 messages remained unprocessed.

In the simulation of execution of the IP3, the best average throughput was
27,001.52 mess/ms with qPrior. The worst-case scenatio was the throughput
of 8.49 mess/ms, using FIFO. The qPrior heuristic was one that managed to
process more messages, reaching the average of 199,800 messages and the number
of remained messages was 1,800,200 messages. The worst case of the processed
messages happened using FIFO, in which only 506.28 messages were processed
and 1,999,494 messages remained unprocessed.

The heuristics MqRR and qPrior provide stability in the average number
of processed messages in three integration processes evaluated in this study.
This stability is indicative that these heuristics allow predictability of number of
processed messages, independently of the integration process. The heuristic qPrior
resulted in the best average throughput in all integration processes, and FIFO
resulted in the worst in all integration processes.

The use of di↵erent heuristics generates a significant di↵erence in the average
values of the throughput, number of processed messages, and number of remained
messages, cf. Table 5. Low coe�cients of variation indicate the adequacy and
reliability of the simulations. The results of the Scott & Knott averages comparison
test show that there were three di↵erent groups for throughput, number of
processed messages, and number of remained messages, cf. Table 8. The statistical
di↵erences between the three heuristics resulting from the simulations, provide
support to answer our research question:

– RQ: Is it possible to extract performance metrics by IPS that allow the
evaluation of heuristics of task scheduling in the execution of an integration
process under high workloads?

By the experiment, we confirm our hypothesis for the research question:

– H: It is possible to simulate heuristics of task scheduling of an integration
process with IPS simulator and to find throughput, number of processed
messages, and performance metrics in the execution of an integration process
under high workloads.

6.7 Threats to Validity

Threats to validity are present in any empirical research (Cruzes and ben
Othman, 2017), in addition to that, there are some of them, specific to optimisation
studies (Wohlin et al., 2012). Next, we evaluated the factors that could influence
the results of the experiments and suggest how to mitigate them.



Integration Process Simulator 25

6.7.1 Constructor Validity

Constructor validity discusses whether the planning and execution of the study
are adequate and able to answer the research question. We planned the experi-
ment according to procedures from empirical software engineering (Jedlitschka
and Pfahl, 2005; Basili et al., 2007; Wohlin et al., 2012). Firstly, we defined
our research question, formulated our hypothesis, and defined the independent
and dependent variables. After, we provided information about the execution
environment, supporting tools, execution algorithms and data collection. Then,
we performed our simulation in seventy-five di↵erent scenarios and used statistical
techniques to evaluate the results.

6.7.2 Conclusion Validity

As reported by Wohlin et al. (2012), conclusion validity “is concerned with
issues that a↵ect the ability to draw the correct conclusion about relations between
the treatment and the outcome of an experiment”. We used statistical techniques
to assure that the actual outcome observed in our experiment is related to the
used heuristics and that there was a significant di↵erence amongst them.

6.7.3 Internal Validity

Internal validity aims to ensure that the treatment leading to the outcome,
mitigating e↵ects of other uncertain or not measured factors (Feldt and Maga-
zinius, 2010). In our case, the treatments are the heuristics. All our experiments
were performed in the same machine, on security mode, with minimal features
and disconnected from the Internet, in order to minimise their influence on
the execution time of the algorithms. We implemented our algorithms in Java
and run a few executions before starting the experiments, to let the virtual
machine to stabilise and eventually perform code optimisation (Pinto et al., 2014).
Additionally, we accurately inspected the procedures and used statistical tests to
validate the used performance metrics. .

6.7.4 External Validity

External validity focuses on the generalisation of the results outside the scope of
our study (Feldt and Magazinius, 2010). This study is generalised for integration
platforms that adopt the integration patterns by Hohpe and Woolf (2004), the
style Pipes-and-Filters, and task-based model. We reported this study following a
pratical guideline (Wohlin et al., 2012), so that exact repetition is possible. The
experiment is valid to test other parameters, such as integration processes, message
arrival rate, and simulation duration. As future work, we intend to experiment with
other integration processes in order to further evaluate the generalisation of the
results.

7 Conclusion

Many business possibilities exist for enterprises in the big-data era, but to deal
with a large volume of data, and extracting exact information on the business is
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still a challenge (Shoukry et al., 2019). Enterprise Application Integration (EAI)
is a field of study that faces the complex task of integrating these data, providing
new methodologies, techniques, and tools for the design and implementation of
integration processes (Frantz et al., 2016; Ritter et al., 2019).

In this article, we proposed a tool for simulation of task scheduling algorithms,
the Integration Process Simulator (IPS). Using IPS we evaluated three heuristics:
First-In-Fist-Out (FIFO), Multi-queue Round Robin (MqRR), and Queue Priority
(qPrior), but other scheduling algorithms might easily be implemented in IPS.
Performance metrics, such as throughput, number of processed messages, and
number of remained messages can be obtained from IPS. It also allows to configure
the time of simulation, initial workload of messages, total workload of messages,
rate of inbound messages, and the integration process. We tested the simulator
with three benchmark integration processes. The results of the simulations showed
that qPrior was the best heuristic, providing the highest throughput in high
workloads, on the other hand, FIFO was the worst heuristic, providing the lowest
throughput. The statistical analysis confirmed the above and showed that there is
a significant di↵erence in performance metrics when task scheduling is performed
with FIFO, MqRR, and qPrior. In the future, we intend to include more metrics
and more heuristics into the simulator, and to extend the simulations, testing other
integration processes and comparing other workload parameters. Regarding the
research questions of the experiment: our simulator is able to evaluate heuristics
used to task scheduling of integration processes. For the three integration processes
tested, the qPrior heuristic was the one that processed more messages per time
unit.
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Cervin A, Årzén KE (2018) Truetime: Simulation tool for performance analysis of
real-time embedded systems. In: Model-Based Design for Embedded Systems,
CRC Press, pp 169–200

Chirkin AM, Belloum ASZ, Kovalchuk SV, Makkes MX, Melnik MA, Visheratin
AA, Nasonov DA (2017) Execution time estimation for workflow scheduling.
Future Generation Computer Systems 75:376–387

Cruz CD (2006) Programa Genes: estat́ıstica experimental e matrizes. Editora
Universidade Federal de Viçosa
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Appendices
A Profiles of the integration processes

A.1 Profiles of integration processes

A.1.1 Processing Order (IP1)

– Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17};

– Identification of the next task of each task of the integration process:
VetorNextTask = {{2}, {3}, {4,12,17}, {5,7}, {6}, {7}, {8}, {9}, {10}, {11},
{}, {13,15}, {14}, {15}, {16}, {9}, {}};

– Identification of the execution time range of task of each task of the integration
process:
VetorTimeExec = {{1,2}, {2,3}, {2,3}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {3,4},
{1,2}, {1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}};
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– Identification of the logic operation type of task of each task of the integration
process:
VetorOper= {{}, {}, {or}, {and}, {}, {}, {}, {}, {}, {}, {}, {and}, {}, {}, {},
{}, {}};

– Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,0,0,0,0,0,0,0,0,0,0,4,5,6,7,8,4};

– Identification of the last tasks of the integration process:
LastTask = {11,17}.

A.1.2 Huelva’s County Council (IP2)

– Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17,18,19};

– Identification of the next task of each task of the integration process:
VetorNextTask = {{3}, {3}, {4}, {5,7}, {6}, {7}, {8}, {9}, {10,18}, {11},
{12,14}, {13}, {14}, {15}, {16}, {17}, {}, {19}, {}};

– Identification of the execution time range of task of each task of the integration
process:
VetorTimeExec = {{1,2}, {1,2}, {3,4}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {2,3},
{1,2}, {2,3}, {1,2}, {1,2}, {3,4}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};

– Identification of the logic operation type of task of each task of the integration
process:
VetorOper= {{}, {}, {}, {and}, {}, {}, {}, {}, {or}, {}, {and}, {}, {}, {}, {},
{}, {}, {}, {}};

– Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,1,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,16,17};

– Identification of the last tasks of the integration process:
LastTask = {17,19}.

A.1.3 Real Estate (IP3)

– Identification of the integration process tasks:
VectorIdTask = {1,2,3,4,5,6,4,8,9,10,11,12,13,14,15,16,17};

– Identification of the next task of each task of the integration process:
VetorNextTask = {{5}, {5}, {4}, {5}, {6}, {7,8}, {8}, {9}, {10,11}, {11}, {12},
{13,16}, {14}, {15}, {}, {17}, {}};

– Identification of the execution time range of task of each task of the integration
process:
VetorTimeExec = {{1,2}, {1,2}, {1,2}, {1,2}, {3,4}, {2,3}, {1,2}, {3,4}, {2,3},
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{1,2}, {3,4}, {2,3}, {1,2}, {1,2}, {1,2}, {1,2}, {1,2}};

– Identification of the logic operation type of task of each task of the integration
process:
VetorOper= {{}, {}, {}, {}, {}, {and}, {}, {}, {and}, {}, {}, {or}, {}, {}, {},
{}, {}};

– Identification of the parallel tasks of the integration process:
VetorParallelTask = {0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,13,14};

– Identification of the last tasks of the integration process:
LastTask = {15,17}.
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A.2 Flowchart of the simulator

Integra on Process Pro le

Fig. 6 Flowchart of the IPS.


