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Accounting Identities and the Distribution of Ratios

Abstract

This study describes the influence of accounting identities on
the statistical distribution of financial ratios. It is supported by
evidence on cross-section distributions of raw numbers and ratios
extracted from accounting reports of UK industrial firms for the
period 1983-1987. First, this study recalls that where raw num-
bers are lognormally distributed, then ratios are expected to be
positively skewed. Accordingly, the fact requiring an explanation
is why some ratios are symmetrical or even negatively skewed, not
why the distribution of ratios is positively skewed. This study
then shows that apparently symmetrical ratios occur because ac-
counting identities act as external boundaries, constraining the
long tail of their otherwise skewed distribution to become much
smaller. Ratios that are symmetrical or negatively skewed simply
reflect the existence of these boundaries. They revert to pos-
itive skewness after being inverted, thus making it difficult to
accept the hypothesis that the skewness of ratios stems from non-
proportionality. Since bounded ratios may induce misleading re-
sults when used for calculating confidence intervals or P values,
a procedure is suggested to avoid constraints where necessary.

Key-Words: Financial Statement Analysis, Distribution of Ratios.



Accounting Identities and the Distribution of Ratios

Introduction

Accounting reports are an important source of information for man-
agers, investors and financial analysts. Ratios are the usual instruments
for extracting this information. However, statistical characteristics of
ratios pose particular difficulties when used because their distributions
vary widely: most ratios are positively skewed but some are symmet-
rical and others are negatively skewed. Despite the widespread use of
ratios in a multitude of contexts, available evidence probably conveys
the belief that the distribution of ratios is unpredictable. In fact, re-
searchers and practitioners alike still rely on ad-hoc transformations
and outlier deletion in order to adjust the distribution of ratios to ap-
proximate normality.

The purpose of this paper is to explain the existence of symmetrical
and negatively skewed ratios. Our findings offer guidelines for achieving
higher precision when using ratios in a statistical context. The paper is
supported by evidence on cross-section distributions of raw numbers and
ratios, using data extracted from accounting reports of UK industrial
firms. Table 1 shows the accounting identities and the abbreviations
used in this paper.

Table 1, page 17

The statistical distribution of ratios has been the object of consider-
able study. Horrigan (1965), in an early work on this subject, reported
positive skewness in some ratios and explained it as a result of effec-
tive lower limits of zero. O’Connor (1973) and Bird & McHugh (1977)
also found skewness in ratios. Deakin (1976) showed that, in most ra-
tios, positive skewness could not be ignored but also noticed that the
ratio TD/TA was near normality. Bougen & Drury (1980) reported
skewness, either negative or positive, and extreme outliers. Frecka &
Hopwood (1983) extended Deakin’s study and reported similar findings.
These authors proposed applying transformations and then trimming
or winsorising outliers as a means of reaching normality. Ezzamel, Mar-
Molinero & Beecher (1987) noticed positive skewness and outliers except
for ratios TD/TA and NW/TA and found improvements with square
root and logarithmic transformations. So (1987) also found positive

1



skewness except in ratios TD/TA, NW/TA and CA/TA, the latter
being negatively skewed. Watson (1990) and Karels & Prakash (1987)
studied the multivariate normality of ratios and the advantage of re-
moving multivariate outliers. They noticed that ratios TD/TA and
NW/TA were near normality. The same was observed by Ezzamel &
Mar-Molinero (1990) who suggested that the trimming of ‘obvious’ out-
liers should come first, instead of transforming and then trimming, as
proposed by Frecka & Hopwood.

McLeay (1986a; 1986b) questioned the use by some researchers of
such ad-hoc procedures as transformation and trimming of remaining
outliers as a means of achieving normality in ratios. He suggested that
the data should be left unadjusted and better-fitting models should be
used. Tippett (1990) and Rhys & Tippett (1993) developed stochas-
tic processes aimed at identifying the distributional characteristics of
ratios.

The paper is organized as follows. The following section lays down
the theoretical foundation upon which the paper is based. In sum-
mary, we postulate lognormality as the distribution to be found in raw
numbers and then we show how ratio components that are perfectly log-
normal can produce symmetrical ratios. The next two sections provide
the evidence to support the above hypothesis.

The Effect of External Constraints on Skewness

This section first recalls that where raw numbers are lognormally dis-
tributed, then the skewness of ratios, as well as the existence of outliers,
may be just a general property of multiplicative data. Indeed, the fact
requiring an explanation is why some ratios are symmetrical, not why
the distribution of ratios is skewed and has outliers. It is proposed
that symmetrical or negatively skewed ratios occur because accounting
identities act as external boundaries, constraining the long tail of their
distributions to become much smaller. Since bounded ratios may in-
duce misleading results when used for calculating confidence intervals
or P values, a procedure is offered at the end of this section to avoid
constraints.

Theoretical Foundation and Notation

Authors mentioning cross-section lognormality in raw numbers explain
it as the outcome of multiplicative processes such as the geometric brow-
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nian motion (Tippett, 1990). These processes are considered plausible
where raw numbers are accumulations, that is, where they are sums of
similar transactions with the same sign (McLeay, 1986a).

This study is based upon similar assumptions. However, there is a
difference in emphasis. While the authors mentioned above stress the
importance of generative mechanisms underlying every item, we focus
on the overall effect of size. Instead of assuming that only accumulations
such as Sales and Stocks are lognormal, we accept that Sales, Stocks
and other items are expected to be lognormal because the growth of
the firm as a whole is a stochastic accumulation. Since the effect of
size in raw numbers cannot be discarded on a-priori grounds, we are
inclined to see lognormality as the rule rather than as the exception.
The evidence presented later in this paper supports this view.

Where accounting numbers are lognormally distributed, then the
logarithm of an observation xj from financial report j is explained as
the expected value of the transformed variable, µ, plus a deviation or
residual, ej . An estimated µ is log x, the mean of log x. Ratios y/x can
be written as a difference of logarithms:

log yj−log xj = (µy−µx)+(ey−ex)j corresponding to
yj
xj

= R×fj

(1)
where R is an expected proportion and an estimated R is given by
exp(log y− log x), the median of the ratio. Therefore, fj is, for report j,
the percent deviation from the median of the ratio1. On a logarithmic
scale, this deviation is a difference, (ey − ex)j which we refer to in

this paper as ε
y/x
j . The distribution of the ratio y/x is the same as

the distribution of f = exp εy/x. Given that f is an exponentiation of
εy/x, then ratios are expected to be lognormal (Lev & Sunder, 1979;
McLeay, 1986a).

The peculiar characteristics of lognormal variables and the conse-
quences ensuing from their use must be borne in mind in any context
involving the statistical manipulation of ratios. Lognormality cannot
be treated as a simple distortion of normality, lognormal variables stem
from multiplicative processes while Normal variables are created by ad-
ditive processes. Of particular interest is the fact that lognormal distri-
butions are very skewed, exhibiting long tails towards positive values.
For coefficients of variation2 beyond 0.25, most of the observations con-
centrate in a small region with only a few extreme values spreading out
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over a wide range. It is easy to interpret these extreme values as outliers
(Snedecor & Cochran, 1965, p. 281; McLeay, 1986b, p. 209; Ezzamel &
Mar-Molinero, 1990, p. 13). In fact, outliers often mentioned in relation
to ratios are probably just a consequence of multiplicative skewness.

The Distribution of Bounded Ratios

If components of ratios are lognormal, then ratios should be positively
skewed. Although most ratios exhibit positive skewness, several authors
also mention ratios which are symmetrical or even negatively skewed.
As mentioned above, TD/TA and NW/TA have been reported as be-
ing Normal and CA/TA has been found to be negatively skewed. How
is this possible? The reason seems to be straightforward. Accounting
identities make it impossible for some ratios to take on all the val-
ues a skewed distribution allows. This constraint is clearly observable
when plotting, on a logarithmic scale, the two components of a ratio
against each other. Figure 1 compares a constrained ratio with an un-
constrained one. The figure shows, on the left, the effect of a boundary
imposed by Total Assets on the spread of Net Worth (where the ob-
served values are scattered below the 45o bisecting line) and, on the
right, an unconstrained relationship.

Figure 1, page 18

There is a constraint if, due to an accounting identity or other ex-
ternal cause, the ratio relationship yj/xj = R × fj is bounded by one
of the following inequalities:

for any j, xj > yj or yj > xj

The inequality on the left can be found in ratios in which the numerator
is bounded by the denominator such as Current Assets to Total Assets.
The inequality on the right arises in ratios in which the denominator is
bounded by the numerator (it is possible to create the latter by taking
the inverse or reciprocal of the former).

Figure 2, page 19

Figure 2 illustrates the two types of constraint. Where the con-
straint is xj > yj , ratios cannot be larger than 1. The effect of this
constraint on the distribution of ratios is that it inhibits the spread

4



of its otherwise positively skewed distribution. Instead of the large,
lognormal-like tail to the right, such ratios exhibit a smaller one. Where
the constraint is yj > xj , ratio values cannot be lower than 1. The large,
lognormal-like tail is unaffected, but the left hand tail is truncated, thus
increasing even more the positive skewness of the ratio. In both cases,
the bisecting line x = y (or log x = log y) acts as a boundary. Ac-
cordingly, positive skewness would emerge after inverting one of the
apparently Normal ratios.

It should be possible to broadly predict the decrease in skewness
introduced by a given boundary. Where the constraint is xj > yj , then

log y − log x < 0 and ε
y/x
j < −(log y − log x) for any j. That is, large

positive deviations from the expected value are not allowed. Where the

constraint is yj > xj , then log y − log x > 0 and ε
y/x
j > −(log y − log x)

for any j. That is, large negative deviations from the expected value
are not allowed. Since, in both cases, a constraint prevents εy/x from
being larger than log y − log x, then the nearer log x is to log y, the
stronger the constraint. Thus the difference log y − log x can be used
to estimate the extent to which constraints affect the symmetry of the
distribution of εy/x. Taking the spread of εy/x into account we obtain
the normalized difference

ζ =
log y − log x√
VAR(εy/x)

. (2)

In standard deviation units, |ζ| is the distance separating the constrain-
ing boundary from the expected value of the log-ratio. For |ζ| > 2, the
constraint is small (less than 2.5% of firms are expected to have their
ratios constrained). Thus the lognormal tail or skewness is almost un-
affected. For 2 > |ζ| > 1, the constraint becomes significant, causing
symmetrical or even negatively skewed ratios, as more than 16% of firms
are expected to have their ratios constrained.

Besides accounting identities, there are other external factors which
may affect the distribution of ratios. However, instead of defining
boundaries which are impossible to cross, they bring about a decrease
in the density of observations. For example, as firms are likely to avoid
negative Working Capital, the inequality CA > CL will influence the
density of the distribution of the Current ratio.
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Avoiding Constraints

Where the numerator of a ratio is bounded by the denominator, then a
simple transformation can take into account the underlying inequality,
yielding a new, unbounded ratio. In fact, for any proportion written as
xi∑
xi

it is possible to calculate the corresponding ‘odds ratio’, defined

as xi

(
∑

xi)−xi
. For example, the odds ratio corresponding to FA/TA is

the ratio FA/CA as CA = TA − FA. The information contained in
both ratios is the same. The difference between odds-like ratios and the
corresponding proportion-like ones is just functional. It is therefore pos-
sible to avoid ratios affected by constraints by using the corresponding
odds ratios instead.

Evidence on Lognormality of Raw Numbers

This section presents an exploratory data analysis supporting the hy-
pothesis upon which the paper is based, providing extensive evidence
on the lognormality of raw numbers. Lognormality in items such as
Sales, Earnings and Total Assets has received a great deal of attention
in texts on the theory of the growth of firms3. Since those texts were
not oriented towards the analysis of financial statements, they omitted
items which are frequently employed as components of ratios, thus fail-
ing to supply the kind of evidence required for building the statistical
basis of ratio analysis.

McLeay (1986a), in one of the few studies contemplating distri-
butions of items as opposed to ratios, argues that items such as Sales,
Stocks, Creditors or Current Assets are expected to exhibit cross-section
lognormality. Our empirical work confirms this and suggests that the
phenomenon of lognormality is much more widespread. Many other
positive-valued items have cross-section distributions that are lognor-
mal. Furthermore, where items can take on positive and negative values,
then lognormality can be observed in the subset of positive values and
also in the absolute values of the negative subset. Size-related non-
financial variables such as the number of employees are also lognormal.
Our empirical work has also uncovered cases of three-parametric log-
normality. This finding may be important for elucidating the origins of
non-proportionality in the relationship between the numerator and the
denominator of a financial ratio.
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Methodology and Data Set

In this study, the lognormality of items was tested by applying two- or
three-parametric logarithmic transformations where appropriate. While
the Normal distribution is completely specified by the mean and stan-
dard deviation, the lognormal distribution may require one extra pa-
rameter in order to account for overall displacement of the distribution.
Where a displacement of item x (say x − δ), and not x itself, is Nor-
mal after a logarithmic transformation, the distribution of x is known
as Three-Parametric Lognormal. The range of x is thus δ < x < ∞.
The usual, Two-Parametric, lognormal distribution is a special case for
which δ = 0. Since δ is a lower bound for x, it is known as the thresh-
old of the distribution (Aitchison & Brown, 1957). The normality of
the transformed observations was assessed using an improved version of
the Shapiro-Wilk test (Royston, 1982)4. This test can cope with large
or small sample sizes and is recommended as a superior omnibus test.
Notice that the subtraction of δ from x is not similar to the practice
of adding a constant value to observations for avoiding negative values
(Ezzamel & Mar-Molinero, 1990) as the subtraction of δ never changes
the sign of observations.

The data set used in this study was taken from the Micro-EXSTAT
database for five consecutive years (1983-1987). Following Sudarsanam
& Taffler (1985), we extracted 14 industries to be used as intra-industry
samples (table 2) and we also pooled all the extracted firms into a
single cross-industry sample. Only UK firms were selected. Both intra-
industry and cross-industry groups were examined. The number of
firms per industry ranges from a minimum of 13 (Leather, 1983) to a
maximum of 145 (Electronics, 1986). The number of firms in the cross-
industry samples ranges over the years from 550 to 702. Where a sample
contained sufficient negative values, two separate tests of lognormality
were performed by taking the subset of positive values and then the
absolute values of the negative subset. This is because cross-sections of
positive and negative values should be analysed separately as they may
be seen as different populations (Lev & Sunder, 1979).

Table 2 also shows the accounting variables tested. These are fre-
quently employed as components of ratios. A further variable included
in the analysis is the number of employees (N) which allows the compar-
ison with a non-accounting variable exhibiting similar statistical char-
acteristics.
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Intra-Industry Results

In the examination of individual industries, 1,260 tests were carried out,
corresponding to 18 different items for each of the 14 selected industries,
during a period of 5 years. Lognormality could not be rejected in most
of these samples, as follows:

� two-parametric lognormality could not be rejected in 1104 tests
(87.6%);

� three-parametric lognormality could not be rejected in 136 tests
(10.8%);

� the hypothesis of lognormality was rejected in 20 tests (1.6%).

Table 2, page 20

Table 2 shows these results in more detail. It displays the number of
years in which two-parametric lognormality was rejected for each indus-
try and item. Numbers with asterisks indicate rejection of lognormality.
Numbers without asterisks indicate acceptance of three-parametric log-
normality. For instance, 2+1* in column ‘CL’ and row ‘Electronics’
indicate that Current Liabilities in the Electronics industry was three-
parametric lognormal in two years of the period 1983-1987 and was not
lognormal in one of the remaining years.

The results summarized in table 2 suggest that the industrial group-
ing mostly determines whether samples are expected to be two- or three-
parametric lognormal. Industries are more important than items in ex-
plaining significant thresholds: 21% of the examined industries account
for 65% of cases of three-parametric lognormality. This table also shows
that the rejection of two-parametric lognormality is sporadic: only in
one sample, Wages in the Electronics industry, do rejections persist
during five years.

The 20 tests rejecting lognormality (table 2) were closely observed.
Extreme outliers, clearly erratic, were found in 7 of them. The other
13 cases belong to the Food Manufacturing and Electronics industries,
exhibiting well detached clusters of firms.

Only two industries (Electronics and Food Manufacturing) con-
tained enough negative values to allow the testing of the absolute val-
ues of the negative subset. In contrast with the positive values, two-
parametric lognormality was prevalent.
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Cross-Industry Results

The results of testing the pooled samples for lognormality are also dis-
played in table 2 (below). Lognormality was not rejected for any item
in any year. Eleven items were found to be two-parametric lognormal
during the whole period 1983-1987. The remaining 7 items were either
two- or three-parametric depending on the year. Similar results were
obtained for the absolute values of the negative subset: EBIT and FL
were, in one or two years, three-parametric.

An additional finding that is worth reporting, and that applies to
the industry samples as well as the pooled cross-industry samples, con-
cerns the positive kurtosis observed in all cases after transformation.
The skewness and kurtosis of the raw data were extreme, as expected.
After a logarithmic transformation, the skewness vanished but all of the
samples continued to exhibit traces of leptokurtosis.

Testing Other Transformations

This study also tested the possibility of obtaining normality when using
transformations other than the logarithmic. The logarithmic transfor-
mation can be viewed as a way of removing positive skewness. It makes
sense to ask whether the achieved reduction in skewness is appropriate.
If less reduction is required, a square root or another root should be
used instead. If more reduction is required, the Pareto distribution or
another of its class should be used.

First, a scale of roots progressively approaching the effect of a loga-
rithmic transformation was tested. We observed that there is progress
towards normality for roots of increasing exponent and that symmetry
is maximal when using logarithms. It may be noted that Ezzamel &
Mar-Molinero (1990) reported an unpredictable distribution of ratios
after applying similar transformations, which contrasts with the regu-
larity observed in the underlying accounting variables.

Figure 3, page 21

The Pareto transformation, a more powerful transformation than
the logarithmic in neutralizing positive skewness, was also tested. Pareto
distributions occur if the relationship between observations and their
rank in the sample is logarithmic. Where values are ranked from large
to small, then log-values and log-ranks should be linearly related for the
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Pareto to hold5. However, a clear downward concavity of the distribu-
tion was observed in all tests. In general, firms occupying the middle
of the rank were found to be about twice as large as that predicted by
the Pareto distribution. Figure 3 shows an example of the relationship
between logarithms of Creditors and logarithms of their rank. Observa-
tions follow much more closely the lognormal deviate (the dashed line)
than a Pareto straight line. Ijiri & Simon (1977) reported the same
concavity for US data.

Comparing Bounded and Unbounded Ratios

This section compares bounded and unbounded ratios, stressing their
different characteristics. Two sets of ratios are identified. In the first
set, the denominator is a boundary to the numerator. The skewness
of these ratios is smaller than expected in multiplicative data, suggest-
ing that symmetrical or negatively skewed ratios reflect the existence
of boundaries. Moreover, bounded ratios become skewed after being
inverted, thus making it difficult to accept the hypothesis that the
skewness of ratios stems from non-proportionality. In the second set
of ratios, the denominator is not likely to bound the numerator. In this
set, the estimates of skewness are in agreement with values expected
for multiplicative data, showing that its origin is lognormal.

Besides classifying ratios as bounded or unbounded, the criterion
adopted for selecting ratios was twofold: ratios in both sets should
share as many items as possible and they should resemble those already
tested by other authors. Five years (1983-1987) were examined. Only
positive values were included since, as mentioned above, cross-sections
of positive and negative values may be seen as different populations.

Bounded Ratios Are Near Symmetry

Positive skewness should decrease in proportion to the strength of con-
straints affecting ratios. The nearer the numerator of these ratios is to
the denominator, the farther should their distributions be from posi-
tive skewness. In order to test this hypothesis, 14 ratios were selected
in which the numerator is bounded by the denominator. For each of
them, |ζ| in formula (2) was calculated.

Table 3, page 22
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Table 3 displays the selected ratios, their skewness and the value
of |ζ|. The values observed for skewness agree with those reported by
other authors. As shown above, normalized distances below 2 denote
significant constraints. Ratios CA/TA and QA/CA should be the most
affected, as their |ζ| is small. In fact, these ratios exhibit negative skew-
ness. Probably, this is because they are so strongly constrained that
their distributions become skewed in the negative direction. Lognormal
distributions are two-tailed. If the large right hand tail almost vanishes,
the small left hand tail introduces negative skewness.

The values of |ζ| suggest that ratios like NW/TA or I/CA should
be significantly affected, though less than those mentioned above. In
fact, these ratios are almost symmetrical. This is probably because the
large right hand tail of their distributions is shortened to an extent
where it is in balance with the left hand tail. Next, FA/TA or I/TA
are affected to a smaller degree. Their skewness is positive but less
than expected in multiplicative data. Finally, given |ζ|, the constraint
should be very small in ratios like C/TA or DEBT/TA and almost
non-existent for EBIT/S. In fact, this reasoning is supported by the
data as these ratios are very skewed.

Table 4, page 23

Unbounded Ratios Are Broadly Lognormal

The 15 ratios for which there is no obvious constraint, are listed in
table 4, with their reciprocal. Three facts emerge. First, these ratios
are not far from lognormality. This can be ascertained by observing
the strict relationship between their skewness and kurtosis, which is a
typical feature of multiplicative data (Aitchison & Brown, 1957, pp. 8-
9).

Figure 4, page 24

Figure 4 is a graphical representation of table 4. It displays the
regular curve that is formed by unconstrained ratios when skewness is
plotted against kurtosis. Each ratio is represented by a plus sign. This
regularity is close to the relationship expected in lognormal variables,
as indicated by the dashed line6. Ratios exhibiting larger skewness and
kurtosis display a small, systematic drift from the theoretical curve.
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Second, the inference that profitability ratios such as EBIT/TA
or EBIT/NW are multiplicative would appear to contradict the find-
ings of some other authors. The literature on the distribution of ra-
tios seems to implicitly consider profits as additive, albeit non-normal
(McLeay, 1986a; 1986b; Tippett, 1990; amongst others). Probably this
is because, when studying profitability ratios, negative values are in-
cluded in samples. However, according to our assumptions, where raw
numbers take on positive and negative values across firms, then the dis-
tribution of negative values should be a negative mirror-image of the
lognormal distribution. In that case, the overall distribution of items
such as Earnings or Working Capital would be a juxtaposition of two
lognormals. Ratios formed with these combined distributions might be
markedly two-tailed. Long-tailed distributions such as Student’s t or
Cauchy (McLeay, 1986b) could fit them closely.

A third fact about unbounded ratios is that none of them is ex-
actly lognormal, despite the strict lognormality of raw numbers. Lev &
Sunder (1979, p. 204) and McLeay (1986a), when noticing that ratios
of lognormal variables should also be lognormal, were referring to the
theoretical case. Ratios are near lognormality but their logarithms are
leptokurtic. Log-leptokurtosis is also observed in intra-industry ratios
and in ratios formed with non-accounting items such as the number of
employees. The presence of leptokurtosis in log-ratios explains why, for
some ratios, no transformation seems to suceed in approximating nor-
mality (Beaver, 1966; Ezzamel et al., 1987; Ezzamel & Mar-Molinero,
1990).

Skewed Ratios and Non-Proportionality

The main reason for using ratios is to remove the influence of firm
size from accounting variables. In the course of their critiques of the
practice of ratio analysis, Lev & Sunder (1979) and Whittington (1980)
argued that size is only properly removed where the numerator and the
denominator of the ratio are proportional. Accordingly, these authors
advocated a regression rather than a ratio approach to remove the effect
of size. Barnes (1982), added that non-proportionality probably also
explained why the distribution of ratios is skewed. These views were
shared by Lee (1985), Ezzamel et al. (1987), So (1987) and others. A
continuing stream of research on the validity of ratios routinely implies
that non-proportionality may have a role in explaining distributions of
ratios.
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However, since ratios are multiplicative and skewness is an expected
quality of multiplicative data, then non-proportionality is not required
for explaining skewness in ratios. In fact, if skewness were caused by
non-proportionality, then ratios which are symmetrical should also be
proportional. They should obviously remain proportional and symmet-
rical when inverted. The constraining mechanism predicts the contrary:
reciprocals of symmetrical ratios should be very skewed.

Table 5 compares the skewness of CA/TA, NW/TA and FA/TA7

with the skewness of their reciprocals. It can be seen that the reciprocals
are distinctly multiplicative while the original ratios are not far from
normality.

Table 5, page 25

Concluding Comments

This paper raises two important issues. First, the widespread lognor-
mality of raw accounting numbers suggests that the mechanism gov-
erning their cross-section distribution is general rather than particular
to this or that item. In order to explain lognormality in accounting
numbers, it might be sufficient to consider the growth of the firm as
multiplicative with accounting variables reflecting, on average, a given
proportion of firm size. Second, functional relationships between two
lognormal variables may describe an expected proportionality of ran-
dom effects, of which strict proportionality is just the simplest formu-
lation. Therefore, besides ratios, other functional forms exist, capable
of modelling the statistical characteristics of accounting numbers while
removing the effect of size. For example, three-parametric lognormal-
ity suggests an obvious extension of ratios probably able to comprise
non-proportionality.

It may be concluded that this paper removes one major difficulty
in understanding the statistical distribution of ratios: the existence of
symmetry and negative skewness is explained as the effect of external
boundaries such as accounting identities. The widespread lognormality
of raw accounting numbers provides a privileged viewpoint from which
ratios can be studied. First, it shows that ratios are expected to be
multiplicative. Thus deviations from positive skewness, not deviations
from symmetry, should be the main object of interest. Second, it unveils
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interesting features of ratios such as log-leptokurtosis. The findings of
this study show that, after all, there is something regular and easy to
understand in ratios.

Notes

1. Lev & Sunder (1979, p. 191) also mention multiplicative residuals.

2. The coefficient of variation is the standard deviation expressed as a
fraction of the expected value. It is preferable to the standard deviation
or the variance for quantifying the spread of lognormal data, because
the latter are not constant.

3. See Ijiri & Simon (1977), for example.

4. For each test, δ was estimated by applying a modified version of the
procedure suggested by Royston (1982, p. 123). The Shapiro-Wilk test
produces a statistic, W , ranging from zero to one. Values of W ap-
proaching 1 mean increasing normality. Royston uses trial and error
to find out which δ maximizes W . Using simulation, we noticed that
the threshold should be estimated as the smallest δ able to attain a
non-significant W , not as the δ yielding the largest W .

5. Where x is Pareto-distributed, then log x = logM − β × log r. r is the
rank of x. The largest x is assigned the rank 1. M and β are parameters
of the distribution.

6. The SPSS-X utility used in this study computes skewness and kurtosis
in a way that is different from the conventional definition. For details,
see SPSS Inc., (1983). SPSSx Statistical Algorithms, Chicago, Il.

7. The distribution of FA/TA is the mirror-image of CA/TA. This is
because the two ratios add to 1. The same can be observed in the pair
I/CA and QA/CA.
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TA Total Assets NW Net Worth
FA Fixed Assets DEBT Long Term Debt
D Debtors C Creditors
CA Current Assets CL Current Liabilities
I Inventory TC Total Capital Employed
WC Working Capital TD Total Debt
EX Operating Expenses less Wages S Sales
EBIT Earnings Before Interest and Tax W Wages
OPP Operating Profit QA Quick Assets
FL Gross Funds From Operations N Number of Employees

Table 1: List of abbreviations used in this study.
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Figure 1: Two scatterplots comparing constrained (left) with uncon-
strained (right) bivariate distributions of raw numbers. Each dot is one
firm. The axes use logarithmic scaling. The constraining frontier is the
bisecting line log x = log y.
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Figure 2: The two kinds of constraints affecting bivariate distributions
of raw numbers. The axes use logarithmic scaling.
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Table 2: Number of years in which tests led to the rejection of two-
parametric lognormality by industry and by item.
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Figure 3: Relationship between log-rank (X-axis) and log-value (Y-
axis). The dashed line is the lognormal deviate. Each point represents
the Creditors item reported by a firm in the Building Materials industry,
1987.
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Ratio 1983 1984 1985 1986 1987
skew zeta skew zeta skew zeta skew zeta skew zeta

CA/TA -0.41 1.29 -0.43 1.05 -0.35 1.58 -0.50 1.34 -0.59 1.14
CL/TA 0.64 2.2 0.59 1.84 0.62 2.21 0.56 2.24 0.59 2.26
C/CL -0.09 1.54 -0.15 2.02 -0.21 1.56 -0.27 1.63 -0.27 1.72
C/TA 1.25 2.88 1.23 2.61 1.36 2.94 1.19 2.87 1.14 2.96
DEBT/TA 1.87 2.37 1.92 2.29 2.1 2.36 1.77 2.17 2.06 2.21
FA/TA 0.41 1.69 0.43 1.96 0.35 1.76 0.5 1.76 0.59 1.81
I/CA 0.26 1.53 0.1 1.74 0.22 1.57 0.43 1.44 0.29 1.33
I/TA 0.57 2.08 0.47 1.9 0.87 2.16 0.91 2.04 0.81 1.89
NW/TA -0.15 1.61 0.01 1.85 0.01 1.73 -0.01 1.8 -0.06 1.82
QA/CA -0.26 1.34 -0.1 1.17 -0.21 1.81 -0.43 1.4 -0.29 1.3
QA/TA 0.5 2.07 0.58 1.92 0.51 2.41 0.39 2.17 0.45 2.26
TD/TA 0.35 2.31 0.17 2.19 0.22 2.23 0.19 2.17 0.18 2.21
EBIT/S 2.03 3.06 1.63 3.16 2.06 3.12 1.82 3.18 1.48 3.25
W/S 0.42 2.14 0.42 2.01 0.41 2.08 0.39 2.13 0.37 2.13

Table 3: |ζ| (zeta) and skewness for 14 ratios likely to suffer constraints.
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Ratio 1983 1984 1985 1986 1987
skew kurt skew kurt skew kurt skew kurt skew kurt

D/C 5.7 44.5 5.6 48.3 14.0 255 15.0 261 4.8 35.5
C/D 18.7 381 20.5 461 22.5 535 14.3 249 12.4 198
CA/CL 2.0 5.8 4.2 29.2 5.0 38.4 11.6 205 4.8 43.6
CL/CA 19.6 415 4.2 34.5 3.0 22.9 9.2 135 21.6 506
C/I 9.9 139 9.8 132 24.2 592 15.8 268 21.3 491
I/C 6.5 71.5 3.3 18.0 8.9 119 9.2 119 7.9 91.3
S/TA 7.0 72.3 13.6 238 13.3 241 6.3 51.7 8.5 95.3
TA/S 8.8 111 19.5 436 7.6 89.0 15.9 336 3.4 22.3
S/FA 9.8 105 21.4 486 10.4 115 9.2 96.1 9.6 103
FA/S 2.3 9.4 15.9 317 8.9 125 5.1 50.8 5.9 60.9
S/NW 16.4 310 13.2 188 23.0 549 16.1 324 16.5 207
NW/S 1.6 5.2 4.4 38.6 2.5 17.6 12.0 223 4.7 39.8
S/I 11.7 168 12.0 189 17.0 306 23.5 571 21.3 481
I/S 8.9 132 17.1 358 17.9 388 9.8 179 1.4 4.5
EBIT/TA 2.0 8.3 2.4 11.2 1.4 3.6 1.9 7.3 1.2 2.6
TA/EBIT 16.6 291 12.2 172 11.1 173 7.5 76.0 18.3 374
EBIT/NW 19.9 425 17.5 317 16.6 322 8.4 110 16.4 330
NW/EBIT 15.7 256 17.6 369 12.7 227 7.0 71.9 23.4 567
EBIT/FA 9.4 117 11.2 170 10.4 155 9.0 107 8.5 98.8
FA/EBIT 12.1 154 9.8 126 11.6 156 7.7 83.8 16.8 321
D/I 10.4 127 16.6 329 21.6 578 24.4 618 19.9 423
I/D 10.7 128 11.8 166 16.0 298 10.0 127 7.5 74.6
W/I 15.8 268 9.3 116 7.9 79.0 13.6 204 14.4 219
I/W 8.6 89.7 4.6 28.1 4.5 31.2 3.1 12.7 3.3 14.0
W/TA 1.3 4.9 1.5 5.8 1.4 4.3 1.8 7.2 1.5 6.4
TA/W 9.5 107 11.5 153 5.7 50.6 4.2 27.0 3.7 19.7
DEBT/NW 14.5 228 10.9 140 8.6 90.7 7.5 78.0 5.4 37.4
NW/DEBT 13.3 200 17.6 333 12.0 185 11.0 146 16.1 296

Table 4: Skewness and kurtosis of 15 unconstrained ratios (positive
observations only). All industries together.
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Figure 4: The functional relationship between skewness and kurtosis in
unconstrained ratios. The dashed line is the theoretical relationship.
Each ratio is represented by a plus sign.
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Ratio Not inverted Inverted
1983 1984 1985 1986 1987 1983 1984 1985 1986 1987

CA/TA -0.41 -0.43 -0.35 -0.50 -0.59 18.7 5.04 6.29 20.7 17.9
NW/TA -0.15 0.01 0.01 -0.01 -0.06 17.7 15.4 22.3 12.9 12.4
FA/TA 0.41 0.43 0.35 0.50 0.59 11.2 21.9 23.8 12.7 11.2

Table 5: Skewness of three constrained ratios and their reciprocal.
All industries.
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