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Abstract

Ratios are the prime tool of financial analysis. In predictive mod-
elling tasks, however, the use of ratios raises difficulties, the most ob-
vious being that, in a multivariate setting, there is no guarantee that
the collection of ratios eventually selected as predictors will be opti-
mal in any sense. Using, as starting-point, a formal characterization
of cross-sectional accounting numbers, the paper shows how the Multi-
layer Perceptron can be trained to create internal representations which
are an optimal set of ratios for a given modelling task. Experiments
suggest that, when such ratios are utilised as predictors in well-known
modelling tasks, performance improves on that reported by the extant
literature.
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1 Introduction

At their inception, Neural Networks were supposed to be capable of high-
lighting features that might be implicit in data. The Multilayer Perceptron
(MLP), for instance, was expected to form meaningful “internal represen-
tations” in its hidden nodes, so that features of a given relationship would
become visible (Rumelhart et al., 1986). Further, it was hoped that such fea-
tures, once brought to light, would shed light on the type of mechanisms at
work in the relationship. In short, Neural Networks were viewed, not just as
versatile and powerful modelling machines, but also as potential knowledge-
extraction tools. With the passing of the years, such hopes proved to be
somehow elusive, as instances of knowledge-extraction via MLP’s were not
many. Plausibly, knowledge-extraction seems to be feasible in cases where
knowledge is well-defined, but less so where knowledge is not clearly circum-
scribed.

The paper describes an instance of circumscribed knowledge where the
promise of knowledge-extraction via MLP’s internal representations is ful-
filled. When a cross-section of accounting numbers is set to predict an
attribute such as imminent bankruptcy, a specifically trained MLP is able
to find sets of ratios with optimal predictive power. Such set can then be
used to model the relationship. In this way, the assistance of a financial
analyst, which would otherwise be required to select predictors, can be dis-
pensed with. Indeed, financial analysts may benefit from knowing the set
of ratios which is, in a multivariate context, suitable for a given predictive
task.

Findings reported in the paper are timely as financial institutions, regu-
lators and individual investors, increasingly rely on accounting-based models
to assess credit risk, to estimate the likelihood of default, to forecast Earn-
ings’ changes or the growth of dividends, to detect financial misstatement
and to carry out other predictive tasks (Amani and Fadlalla, 2017).

The use of ratios as predictors in multivariate models seems to be an
extrapolation of their early use in financial analysis. Since long ago, ratios
are a major tool in the analysis of financial statements where they high-
light financial features such as profitability and liquidity, while allowing the
comparison of varied-size companies. But the fact that ratios are suited to
financial analytic tasks does not grant that they may be equally suited in
predictive modelling tasks. The need to select an appropriate set of ratios
and the varied distributions of ratios are just the most glaring difficulties
facing those who want to build accounting-based predictive models using
ratios.
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The methodology presented in the paper is meant to overcome such
difficulties. First, a formal basis for ratio usage is applied to the modelling
of relationships involving accounting data. Guidelines ensuing from such
basis are then adopted in the selection and transformation of MLP inputs as
well as in MLP training, so that a set of ratios possessing optimal predicting
power is formed in MLP hidden nodes. Finally, application examples are
presented, showing that the methodology is feasible.

The remaining of this introduction briefly reviews the relevant literature;
then, financial analytic requirements are compared to multivariate modelling
requirements with emphasis on the mentioned difficulties.

1.1 Literature review

Neural networks have been extensively applied to accounting and finance
research and practice (Trippi and Turban, 1992). Major application areas
are the analysis of the financial condition of companies (Landajo et al.,
2007), the detection of financial statement fraud (Ngai et al., 2011), the
prediction of bankruptcy (Peat and Jones, 2012), the assessment of credit
risk and credit rating (Hong and Shin, 2007), the assessment of consumer
creditworthiness (Sustersic et al., 2009), the forecasting of earnings (Cao
and Parry, 2009), and the forecasting of market trends and risk (McNelis,
2004). An increasing demand for “Fin-Tech” applications may have fostered
the development of undisclosed algorithms where Neural Networks may play
a role.

Most of the mentioned applications use neural networks simply as pre-
dicting machines, with little regard for their knowledge-extraction capa-
bilities. Exceptions (Cinca, 1998) do not abound, at least in this specific
application area. The present paper fulfils a promising intuition put forward
by previous research (Berry and Trigueiros, 1993) where it was suggested
that, given the approximately Lognormal distributions of line items taken
from cross-sections of sets of accounts, nodes in the hidden layer of an MLP
would form internal representations which would be, in logarithmic space,
quotients of several such items; and it was hoped that such quotients would
convey financial-analytic meaning.

1.2 Ratios as financial-analytic tools

Business companies, namely those listed in stock markets, are required to
regularly give a detailed record of their financial position and output: rev-
enues and expenses incurred in during the period, the value of assets and
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liabilities at the end of the period, owners’ position, cash-flows and others.
Such reports are obtained via a bookkeeping process involving recognition,
adjustments and aggregation into specific “line items”, of all meaningful
transactions of the period. The ensuing “set of accounts” is made available
to the public together with notes and auxiliary information, being known as
the “financial statement” of the company for that period.

Once published, financial statements are scrutinised by investors, banks
and other entities, with the object of supporting decisions concerning com-
panies or industrial sectors. Such scrutiny, and the corresponding diagnostic,
is known as “financial analysis”. The analysis of a company’s report is based
on comparisons with industry norms or with other companies’ reports, and
with the same company’s report in previous periods. The major tool used
by analysts to perform such comparisons is the “ratio”, a quotient of ap-
propriately chosen line items, typically taken from the same set of accounts.
Conveniently chosen ratios are able to assess financial features which are
implicit in reported numbers: liquidity, solvency, profitability and other fea-
tures. For instance, when a company’s income at the end of a given period
is compared with the assets required to generate such income, an important
feature, profitability, emerges. Since the effect of company size is similar in
line items taken from the same company and period, size cancels out when a
ratio is formed. Thus, by using ratios, analysts are able to compare features
of companies of different sizes. In turn, financial features may convey a clear
picture of a company’s future economic prospects.

1.3 The selection of ratios to use in multivariate models

The future state of vital attributes such as Earnings’ changes (upwards or
downwards), solvency (solvent or bankrupt), trustworthiness (fair or mis-
stated set of accounts), can also be predicted, with varying success, from fi-
nancial statements of companies; and, as mentioned, multivariate modelling
algorithms have been extensively employed (Amani and Fadlalla, 2017) to
improve on the accuracy with which such states are predicted via financial
analysis.

Models where accounting information is required invariably use financial
ratios as predictors. This seems to be a natural extension of the essential
use of ratios in financial analysis. Such extension is uncontentious–it was
neither disputed nor validated–but it may entail difficulties. To begin with,
it is somehow contradictory to employ, as multivariate modelling predictors,
the type of ratio commonly used by analysts. Modelling algorithms are syn-
thesisers. They build multivariate distributions (moments and covariance
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matrices) and then they extract from such distributions, not from any spe-
cific predictor, whatever variability is optimal in modelling a relationship.
Analysts, by contrast, often rely on narrowly-defined ratios: they assess one
piece of information at a time, separating knowledge in order to rearrange
it in an insightful way. The consequence of transposing to the synthetic
domain an essentially analytical routine is that algorithms where ratios are
used as predictors may become limited in their choices, unable to use all
information potentially available in the corresponding sets of accounts.

It is desirable that multivariate predictors convey general, not overly
circumscribed variability. The methodology proposed in the paper employs
line items, not predefined ratios, as the starting-point of accounting-based
predictive tasks. Then, at a second stage, an MLP finds, based on previously
selected items, the set of ratios capable of conveying such variability.

The alternative to the proposed methodology would be to use trial and
error to find the optimal set of ratios. But since most ratios are built from
50 line items (1225 different ratios) or more, trial and error is not workable.
Undoubtedly, the intervention of an analyst would reduce the number of
ratios to be tested; but then, as mentioned, analytic knowledge would not
be appropriate here. Indeed, even when performing the most straightfor-
ward predictive tasks, authors avoid analytically-wise ratios (Dechow et
al., 2011), favouring the use of input-selection algorithms to choose ratios
with explanatory power from a large, but far from comprehensive set of
ratios.

1.4 The peculiar cross-section distribution of accounting num-
bers

Distributions of financial statement numbers, as well as their ratios, tend to
obey a multiplicative law of probabilities, not an additive law (McLeay and
Trigueiros, 2002). It is since long established that distributions of income,
wealth, firm size and other economic accruals, obey multiplicative random
processes such as the Pareto or the Gibrat laws, not additive processes such
as the Central Limit theorem (Ijiri and Simon, 1964). Disagreement ex-
ists on the exact shape of such distributions (Ijiri and Simon, 1974), which
approximate the Gibrat law for lower- and middle-sized numbers (Cabral
and Mata, 2003) and the Pareto law for higher sizes (Angelini and Gen-
erale, 2008) but it is widely accepted that economic accruals stem from the
accumulation of random amounts, not from expected random effects.

The difference between additive and multiplicative distributions is huge.
In additive data it is rare to observe cases which are more than three stan-
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dard deviations above or below the mean. The height of human adults, for
instance, is limited: humans are neither taller than mountains nor smaller
than mice. Yet, for multiplicative data, such disproportions are, not just
possible but likely: within the same cross-sectional sample, one firm may be
500 times bigger than another.

Difficulties posed by the multiplicative character of ratios have prompted
authors to propose ad-hoc remedies, namely the pruning of outliers, ra-
tio transformation, or both (Nikkinen and Sahlström, 2004). But where
the multiplicative character of financial statement data is ignored, any sub-
sequent effort to model such data is fruitless due to the distorting effect
of heteroscedasticity and influential cases. Pruning, for instance, is suit-
able for additive distributions with outliers but is inadequate in the case of
multiplicative distributions where extreme observations are not necessarily
aberrant (McLeay and Trigueiros, 2002).

The variety of distributions found in ratios must be faced rather than
ignored. Recent improved results (Altman and Sabato, 2007) stem from
the implicit assumption that ratios are multiplicative. The methodology
proposed in the paper suitably addresses the multiplicative character of
accounting numbers.

2 Formal basis for ratio usage in predictive mod-
elling

The formal basis of the proposed methodology is now described. The premise
is that, safeguarding well-known cases, ratios can be used validly in financial
analysis. More than one hundred years of applied use testify in favour of
such premise.

Valid use of financial ratios rests on the assumption that ratios are capa-
ble of removing the effect of size, thus making financial features comparable
across firms of different sizes. In turn, the removal of size requires that ratio
components be proportional. From this, two consequences follow. First, a
common statistical effect, capable of being removed when a ratio is formed,
must be present in components of ratios. Without such common effect, com-
ponents would be independent and proportionality would not be possible.
In addition, such common effect should be capable of explaining differences
in size observed among sets of accounts. Second, numbers reported in sets
of accounts should have multiplicative rather than additive distributions.
Indeed, ratios fail to remove the effect of size unless such effect is multi-
plicative. There is an intrinsic agreement between ratios and multiplicative
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distributions: divisions remove common multiplicative effects in the same
way subtractions remove common additive effects. Further elaboration on
the above reasoning and a review of the literature on the validity of ratios
is available (McLeay and Trigueiros, 2002).

The most common instance of multiplicative behaviour is the Lognormal
distribution. When lognormality is hypothesised, proportionality requires
that the cross-sectional variability of xij , the ith line item from the jth set
of accounts, be described as

log xij = µi + sj + εij (1)

where the logarithm of xij is explained as an expectation µi containing the
overall mean and the deviation from the mean specific to item i, plus sj , the
size effect, specific to set of accounts j, plus size-unrelated residual variability
εij .

Formulation (1) is not meant to minutely describe the cross-sectional
behaviour of line items, but to adequately and plausibly account for the
common effect of size. The εij are hypothesised to be Normal and size-
unrelated but not necessarily independent: after the common effect sj is
accounted for, there may remain positive or negative correlations between
any two line items.

2.1 Financial Analysis

Trivially, (1) underlies and endorses the use of ratios. Given two items
i = 1 and i = 2 (Revenue and Expenses for instance) and the corresponding
reported amounts x1 and x2 from the same set, the logarithm of the ratio
of x2 to x1 is

log
x2
x1

= (µ2 − µ1) + (ε2 − ε1) (2)

where the effect of size is no longer present. The median ratio exp(µ2−µ1) is
a suitable norm against which comparisons may be made. exp(ε2−ε1) is the
deviation from such norm observed in j. For example, exp(εExpenses − εSales)
shows whether the Operating Ratio is above or below an industry norm.
Thus ε2 − ε1 is, in logarithms, the information conveyed by a ratio about a
financial feature.

To the extent that ratios are suitable as analytical tools, premises lead-
ing to (1) should be approximately verified. If this were not so, then ratios
from large firms would behave differently from ratios from small firms. Prof-
itability, for instance, would not be of any use in cross-section analysis.
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Formulation (1) cannot be utilised to explain negative values, such as
those found in Net Income. Line items where negative values occur are
subtractions of two positive-only items. Net Income, for instance, is the
subtraction of Total Costs from Total Revenue. Consider x = xA − xB
where A and B are positive-valued items. For any sign of x, an algebraic
manipulation, intended to compute the logarithm of a subtraction when the
logarithms of numbers being subtracted are known, leads to

log |xA − xB| = log xA + log |1− xB
xA

| (3)

Since xA is positive-valued, (1) applies to log xA. And since, as shown in
(2), xB/xA is size-independent, sj is not present in log |1 − xB/xA|. Using
the notation adopted in (1), the expected value of log |xA − xB| is written
as µ′, being the result of adding µA to the expected value of log |1−xB/xA|.
Residuals are similarly written as ε′. From (3),

log |x| = µ′ + sj + ε′ (4)

for positive- and negative-valued x. Although µ′ and ε′ in (4) no longer have
the meaning of µ and ε in (1), notably sj in (4) is exactly the same as in
(1). This is the reason why ratios succeed in removing the effect of size,
even where one of the components is negative. Now, if ratios can remove
size from negative values, it should be possible to use any type of item, not
just positive-valued items, in tasks requiring the removal of size. Such goal
is accomplished inter alia by transforming x into

sign of x log |x| (5)

where the variability of log x is separately explained as

log x = µ+ sj + ε for x > 1 and
− log |x| = −|µ+ sj + ε| for x < −1.

Size, sj , is the same as in (1). Transformation (5) can be intuitively repre-
sented as

x →
{

log x for x > 1
− log |x| for x < −1,

being known as the Logmodulus (John and Draper, 1980). Within the
range −1 < x < 1, numbers transformed according to (5) are equivocal, but
monotonic alternatives exist.1 For positive-only items, (5) is the logarith-
mic transformation. Zero-valued cases should not be transformed. Indeed,
zero-valued numbers are not multiplicative because, in order to be formed,
multiplicative numbers require an accumulation.

1sign of x log(|x|+ 1) and asinh (x/2)/ log(n) for base n logarithms.
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2.2 Multivariate modelling

Consider the formulation

y = a+ b1 log x1 + b2 log x2 + · · · (6)

where x1, x2 · · · are line items taken from the same set of accounts, b1, b2 · · ·
are model coefficients, and y is the attribute to be predicted. Henceforward,
j is assumed. In the case of a binary classifier, y is supposed to be explained
by a linear score as, indeed, it is the case in most classifiers. Where items
obey (1), then (6) can be written as

y = A+ b1ε1 + b2ε2 + · · ·+ (b1 + b2 + · · ·)s (7)

whereA = a+b1µ1+b2µ2+· · · is a constant. In (7), variability made available
to model y contains two terms: a size-independent term b1ε1 + b2ε2 + · · ·,
and a size-related term (b1 + b2 + · · ·)s.

Consider the case where y is size-independent. Coefficients b1, b2 · · ·must
add to zero in this case, so as to bar size from entering the relationship.
And when such size-independent y is predicted by a linear combination a+
b1 log x1+b2 log x2 of just two logarithmic-transformed items, then b1+b2 = 0
or b2 = −b1 = b and (7) becomes

y = a+ b[(µ2 − µ1) + (ε2 − ε1)] or, from (2),

y = a+ b log
x2
x1

(8)

Ratio x2/x1 is formed in response to y’s size-independence. Suppose, for
instance, that ratio x2/x1 predicts bankruptcy accurately. When the log-
arithms of its two components are shown to a modelling algorithm, the
linear combination a + b1 log x1 + b2 log x2 will be the best at explaining
bankruptcy when b2 = −b1 because, at that point, the ratio is formed, its
predicting power is released, size is removed. Contingent on the role x1 and
x2 may play as “numerator” or “denominator” of the ratio in (8), positive
or negative b may arise.

Similarly, where size-independent y is predicted by three logarithmic-
transformed items, then b3 = −b1 − b2 and the equivalent to (8) now is

y = a+ b1 log
x1
x3

+ b2 log
x2
x3

.

Again, in response to size-independence, two ratios are formed. Alternative
combinations are possible, signs of coefficients changing accordingly.
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In the general case, size-independent relationships might indeed induce
N − 1 ratios from N line items; but there is no reason why the algorithm,
unless required to do so, should pair items two-by-two. Instead, size-re-
lated variability will be allotted to a number of items in order to offset
size-related variability in other items. The algorithm will assign the role
of “ratio denominator” to some predictors (negative-signed b coefficients)
and that of “ratio numerator” to others (positive-signed b coefficients) so
that b1 + b2 + · · · = 0, the overall effect being the removal of size. Items
where negative numbers occur will equally form linear combinations capable
of removing size as shown in (4). Models ensuing from such general case
are capable of portraying financial features required by the relationship at
hand. But it is doubtful whether analysts would be able to interpret and
use such models.

The conclusion to be drawn at this stage is that the task of selecting ra-
tios capable of portraying financial features is not a modelling pre-requisite.
In response to size-independence, the algorithm may form high-dimensional
ratios from N logarithmic-transformed items. Only in the presence of ex-
actly N = 2 predictors, say, items m and n, will the algorithm form the
usual type of ratio, capable of being interpreted and used by analysts. But,
as shown further down in the paper, the algorithm can be compelled into
forming N − 1 pairs (differences log xm − log xn), which are logarithmic ra-
tios. Pairing will not bring any new variability into the model, thus no
improvement in performance should be expected just by subtracting two
logarithmic-transformed line items and then using such subtractions as pre-
dictors. The inverse, however, is quite possible: model performance may be
hampered when pairing leads to curtailed explanatory variability.

2.3 Size-related prediction

Until this point it was presupposed that y is size-independent. Where y is si-
ze-related, models might simply use, as in (6), logarithmic-transformed line
items as predictors. The term (b1+b2+· · ·)s in (7) apportions the required si-
ze-related variability. In this way, the problem of having to select predictors
from an excessive number of candidates also ceases to exist as, instead of
having some 1,200 ratios to choose from, predictors would be selected from
among the comprehensive set of usable line items, some 50 predictors. But
such models’ coefficients and their signs would be, in analysts’ eyes, utterly
non-intuitive. In addition, changes in any magnitude-dependent effect such
as an altered currency, would require the building of a new model.

A difficulty of a different kind, also associated with (6), is dependence
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among the b1, b2, · · · created by the common effect s. Size-independent mod-
els, where the constraining mechanism at work is b1 + b2 + · · · = 0, may
account for such mechanism by using N − 1, not N coefficients, as illus-
trated above for N = 2 and N = 3. But size-related models will have their
coefficients distorted by (b1+ b2+ · · ·)s ̸= 0. Size, which is present in all line
items, will not be wholly offset, thus creating dependencies and exposing
algorithms to multicollinearity.

Fortunately, in consideration to analysts’ interpretability demands and
for model portability reasons, ratios are the sole predictors used in most
application tasks, size being thus prevented from entering the model. In the
present formulation, the same is accomplished by using differences log xm −
log xn. Given the diversity of firms’ sizes typical of most cross-sections, the
predictive role of size is, in general, small, especially in classification tasks.
Little is missed, therefore, by preventing size from entering models.

Still, there are a few application tasks where the effect of size cannot be
omitted without significantly affecting model performance, model meaning
or both. In such cases, instead of using (6), size can be separated from
size-independent effects, as in research-oriented formulations, thus allowing
interpretability of coefficients. This is accomplished by using a size proxy
together with ratios (pairs log xm − log xn in the present formulation).

To sum up, given a subset of N line items x1, x2, · · · possessing predictive
power over an attribute y, the formal basis just developed suggests the use
of modelling formulations

y = a+
N−1∑
k=1

bk(log xm − log xn)k (9)

for size-independent y and

y = a+
N−1∑
k=1

bk(log xm − log xn)k + S (10)

for size-related y. Pair k is formed from line items m and n. Appropriate
N − 1 pairs should be formed from all the N line items. S is a size proxy,
a is the constant term, and log may refer to (5) in the case of positive-
and negative-signed x. Notwithstanding the fact that the bk in (10) refer to
size-independent variables, some degree of dependence among coefficients is
unavoidable.
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2.4 Other modelling requirements

It may be necessary, prior to logarithmic transformation, to scale numbers
back into original values, as most databases of financial statements scale
numbers to millions, which may make them fall within the range−1 < x < 1.
Scaling may also be necessary when applying logarithmic transformations to
Dividends-per-Share and other pre-existing ratios where individual compo-
nents are unknown. Scale must be taken into account when applying models
but performance and significance statistics will not change with scale.

Besides ratios, relative changes of line items in relation to the previous
period are also employed in the analysis of financial statements and as pre-
dictors in models. Relative changes should be transformed into subtractions
of logarithms,

δ log x = log xt − log xt−1 (11)

where t and t − 1 express subsequent time periods and the operator log
may refer to (5) in the case of positive- and negative-signed x. Contrary
to relative changes, subtractions (11) will not generate missing values when
previous year’s value is zero.

3 The proposed methodology

By using N − 1 pairs log xm − log xn as an alternative to ratios xm/xn,
performance will not be endangered by influential cases or by heteroscedas-
ticity, models will be interpretable, and size will not enter the relationship
except when explicitly accounted for. But the selection of such pairs raises
the same difficulties as the selection of ratios. The proposed methodology
addresses such dilemma by performing the modelling process in two stages.
At the first stage, the variability required by the modelling of y is identified
while still in the form of line items, not pairs. Then, at a second stage, the
hidden nodes of an MLP will find adequate pairs from the (much smaller)
set of line items selected at the first stage.

3.1 First stage: selecting an optimal set of line items

Variability potentially suitable to model accounting-based relationships is
contained in the comprehensive set of line items. Such set may comprise
some 50 variables to choose from, being feasible to identify the N line items
with predictive power. This may be accomplished by using formulation (6),
together with some type of variable-selection capability to be found as part
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of most modelling algorithms; but dependence among coefficients in size-
related models suggests the use of algorithms which are robust regarding
correlation among input variables. Here, the algorithm employed is the
MLP with one hidden layer, to which input pruning (Cibas et al., 1994) is
applied.2

Conservatism in variable-selection is essential to the success of the pro-
posed methodology. Typically, least significant variables neither increase nor
decrease out-of-sample performance and should be discarded before proceed-
ing to the second stage.

Besides selecting N items from the comprehensive set, the predictive
performance level achieved by such N items is an upper-limit to the second
stage and should be made a note of.

3.2 Second stage: discovering ratios

It was shown in (8) that, when two logarithmic-transformed line items are
set to predict a size-independent relationship, the ensuing model coefficients
tend to be symmetrical (opposite signs and approximately similar absolute
values). Such two predictors are effectively forming a ratio in logarithmic
space. The finding of a set of financial ratios is accomplished by compelling
a conveniently-trained MLP to assume an architecture where every node in
the hidden layer has no more than two connections to inputs (logarithmic-
transformed line items).

First, the N optimal line items identified at the first stage are made
present to the MLP together with the corresponding instances of the at-
tribute to be predicted. The training begins with just one node in the
hidden layer and the least significant input connections are identified (Gar-
son, 1991), pruned, and the MLP is trained anew. This is repeated until
only two input connections remain in the node. It is observed that such
surviving connections have opposite signs and broadly similar magnitudes.

The hidden layer is then made to grow to a maximum of, typically, N−1
nodes. Every time a new node is included, the two most significant, opposite-
signed input connections are identified and the remaining connections are
pruned in the way just described.

Where, in a node just entered, the most significant input variable is a
pre-existing ratio (Earnings per share, Dividends per Share, the change in
relation to the previous period) or an industry dummy, the corresponding
connection is preserved and all the others are pruned. The maximum number

2Other methods are also available (Stahlberger and Riedmiller, 1996).
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of nodes is, in this case, increased by 1.
Where, at the end of the process, performance is markedly inferior to

first-stage performance, it is assumed that size cannot be omitted. In such
case, the process is repeated, the first node to enter being connected solely
to an appropriate size proxy and the maximum number of nodes now being
N , not N − 1.

When growth is completed, the less significant node (Mozer and Smolen-
sky, 1988), which is not necessarily the last node to enter, should be tested
for pruning, the ad hoc criterion being a non-significant reduction in classi-
fication accuracy.

It is easy to tell which ratios have been formed: the signs of connections
linking inputs to hidden nodes show which input is acting as the numera-
tor (positive sign) and denominator (negative sign) of the newly discovered
ratios. Connections linking hidden nodes to output nodes are interpreted
in the way conventional model coefficients are: their magnitudes broadly
suggest the relative importance of each node while their signs show in which
direction the newly discovered ratios influence output. When size is explic-
itly included in the relationship, the remaining variables perform size-inde-
pendent prediction. For the sake of conformity with analysts’ usage, in some
cases ratios must be inverted, their signs changing accordingly. Indeed, it
would be uncommon to present ratios where, for instance, Assets (total) or
Liabilities (total) are in the numerator of the ratio.

In what sense is the discovered set of ratios optimal? Since the first-stage
model performance is the upper limit on performance, the discovered set of
pairs will be optimal if it performs as well as the set of items it is drawn from.
It may be argued that the optimal set of pairs may require the use of items
which were not selected at the first stage. But, given that the subtraction of
two variables uncorrelated to a third variable is uncorrelated to such third
variable, it is impossible for two variables to have no predictive power over
a given attribute and yet their difference have (the reverse, though, is quite
possible).

Most of the available MLP algorithms can be utilised to implement the
procedure just described,3 simply by repeatedly training the MLP while im-
porting, exporting and pruning connections in the described way. Other
procedures also leading to good results (for instance, the introduction of
competition for survival among connections of an entering node) would re-
quire dedicated programming.

3For instance, the Stuttgart Neural Network Simulator (SNNS) and associated tools,
which can be accessed from within R and other languages.
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4 Three application examples

The proposed methodology is now set to predict the following attributes:

1. Bankruptcy, with two states: bankrupt (positive) and non-bankrupt
(solvent, negative) (Balcaen and Ooghe, 2006);

2. Financial misstatement, with two states: misstated (manipulated, fraud-
ulent, positive) vs fair (negative) (Ngai et al., 2011);

3. Earnings’ increase one year ahead, with two states: increase (positive)
vs non-increase (negative) (Bird et al., 2001).

Examples illustrate three levels of difficulty (low, medium and high), having
been researched, documented and replicated under varied conditions. Ex-
amples include balanced and unbalanced states, matched and unmatched
sampling, size-independent and size-related relationships, and both ex post
and ex ante out-of-sample performance assessment.

So far, bankruptcy is the only clearly predictable accounting-based at-
tribute, with reported 95% or higher classification accuracy.4 Misstatement
detection accuracy is at 75% for diversified samples. Besides being meagre,
such accuracy is unbalanced, Type I and Type II errors diverging widely
and unpredictably. Earnings prediction is an even more elusive task, with
barely 60% of correct classification and highly unbalanced accuracy.

Input and target attributes employed for learning and out-of-sample ac-
curacy assessment are taken from the following data-sources:

1. A list of U. S. bankruptcy filings,5 covering the period 1978-2008. Both
Chapter 7 and Chapter 116 bankruptcies are included. All bankrupt-
cies but the first in a company are excluded.

2. The list of accounting and auditing enforcement releases, resulting
from investigations made by the U. S. Securities and Exchange Com-
mission for alleged accounting misconduct, covering the period 1983-
2008.7

4Classification accuracy figures mentioned here presuppose that states in model-
building data are balanced. The use of ensemble modelling typically increases accuracy
by 3-5%.

5http://lopucki.law.ucla.edu/ (UCLA-LoPucki Bankruptcy Research Database) and
other sources

6Under Chapter 11 debts are restructured so that debt repayment is possible; under
Chapter 7 assets are liquidated to repay debts.

7http://groups.haas.berkeley.edu/accounting/faculty/aaerdataset/ (Centre for Finan-
cial Reporting and Management, Haas School of Business, University of California at
Berkeley)
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3. The “Compustat” repository of financial data by Standard & Poor’s,
from which all monetary amounts are drawn and Earnings’ changes
are estimated (Ou, 1990).

Such data-sources are easily available, the latter being routinely used by
analysts.

The comprehensive set from which, at the end of the first stage, a re-
duced subset is drawn, is the same for the three examples and consists of 69
variables:

� 29 logarithmic-transformed line items listed in Table 1. A sharp in-
crease in missing values advises against trying to reach a higher level
of item disaggregation (Chen et al., 2015);

� the corresponding 29 differences in relation to the previous period, as
in (11);

� one pre-existing ratio, Dividends per Share, also included in Table 1,
and the corresponding difference in relation to the previous period.

� 9 dummies, one for each of the Global Industry Classification Standard
(GICS) sectors.8 Typically, sector dummies end-up not being selected.

Besides listing variables hypothesised as comprising the comprehensive set,
Table 1 also lists the transformations applied to each of them and, for the
three examples, the variables selected at the first stage and the roles they
assume at the second stage.

The common characteristics of the MLP used at the first and second
stages for the three examples, are:

� hyperbolic tangents (threshold functions ranging from −1 to +1) are
used as transfer functions in all nodes.

� two output nodes; instances to be predicted are symmetrical, +1 de-
noting a positive state (bankruptcy, misstatement or Earnings’ in-
crease) and−1 denoting a negative state (non-bankruptcy, non-misstatement
or Earnings’ non-increase). Signs and magnitudes of connections to
output nodes refer to the corresponding states.

� connections are initially set to random values between −1 and +1.

8https://www.msci.com/gics
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Table 1: The 29 line items plus 1 pre-defined ratio from which MLP inputs
are selected for the prediction of bankruptcy (BK), misstatement detection
(MSA) or the forecast of Earnings’ changes (EAF). The transformation ap-
plied to each item (TRF) is either logarithmic (log) or logmodulus (lm).
Selected variables may be numerators (N) or denominators (D) of ratios, a
size proxy (S), changes in relation to previous year (C) or a predefined ratio
(R).
Variable TRF BK MSA EAF

Cash and Short Term Investments log N
Receivables (total) log N
Inventories (net) log
Current Assets (total) log

Property Plant and Equipment (net) log
Investment and Advancements log
Intangibles (total) log

Assets (total) log D D D, S
Account Payable (trade) log
Accrued Expenses log
Current Liabilities (total) log

Long-Term Debt log N
Liabilities (total) log D, D N, C D

Common Stock (equity) log D, D
Preferred Stock log
Retained Earnings lm N N, N, C
Shareholders’ Equity (total) lm

Revenue (total) log N, D
Cost of Goods Sold log
Gross Profit lm N, C

Operating Expense (total) log
Selling, General and Administrative Expenses log
Operating Income after Depreciation lm

Interest and Related Expense log
Income Tax (total) lm N, D, D
Net Income (loss) lm

Cash-Flow from Operating Activities (net) lm N, N N, D
Cash-Flow from Financing Activities (net) lm
Cash-Flow from Investing Activities (net) lm
Dividends per Share ex-date (fiscal) lm R, C
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All reported classification accuracy is out-of-sample, referring, not to MLP
performance, but to Logistic Regression performance where logarithmic-
transformed variables (first stage) or discovered pairs (second stage) are the
predictors. In fact, the aim here is not to report algorithmic performance but
performance of the newly-discovered ratios under fairly usual conditions. It
would be pointless to use MLP performance to illustrate the benefits of the
newly-discovered ratios because such performance depends heavily on ar-
chitecture, training algorithms and other factors; and also because reported
results must be comparable to previously published predictive modelling re-
sults where Logistic Regressions are routinely used. Accuracy figures refer
to formulation (6) for variable selection (first stage), and to (9) or (10) for
size-independent or size-related prediction respectively.

The remaining of the section details, for the three examples, relevant
literature and results, sampling details, ratios formed at the second stage
and the observed increase in classification accuracy. A ceteris-paribus in-
terpretation of connections linking hidden nodes to output nodes is also
offered.

4.1 Bankruptcy prediction

The first example, bankruptcy prediction, is inspired by an earlier, popular
attempt to model a financial attribute (Altman, 1968). An extensive review
of bankruptcy-predicting models is available (Balcaen and Ooghe, 2006).

After discarding filings for which financial statements are not available,
two random samples of nearly 900 filings each are drawn. All sizes (deciles
of the logarithm of Assets), years, and selected GICS sectors are represented
in such samples.

Each case in the two samples is matched with a non-bankrupt case.
Matching is based on the GICS sector, on size decile and on year. One
bankrupt case is randomly assigned to its peer and then the peer is made
unavailable for future matching. One of the two datasets thus obtained is
utilised to build (learn, train) models and the other to test model’s accuracy.
Due to missing data, the size of such datasets is less than 1,800:

Learning-set: non-bankrupt 786 (50%)
Learning-set: bankrupt 787 (50%)
Test-set: non-bankrupt (N) 796 (50%)
Test-set: bankrupt (P) 795 (50%)

Only 4 input variables are selected at the first stage (Table 1).
During the second stage, 3 ratios are formed in the MLP’s hidden layer:
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Figure 1: Bankruptcy-prediction second-stage MLP. RE: Retained Earn-
ings, LT: Liabilities (total), OCF: Cash-Flow from Operating Activities,
AT: Assets (total), log: logarithmic transformation, lm: logmodulus trans-
formation.
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Node 1 – Cash-Flow from Operating Activities (net) to Liabilities (total)
- negative output connection: other things being equal, the higher this
ratio is, the less likely bankruptcy is. Accuracy gain is 37.4%.

Node 2 – Retained Earnings to Liabilities (total) - negative output con-
nection: other thins being equal, the higher this ratio is, the less likely
bankruptcy is. The gain in accuracy brought about by this node is
5.8%.

Node 3 – Cash-Flow from Operating Activities (net) to Assets (total) -
positive output connection: other things being equal, the higher this
ratio is, the more likely bankruptcy is. The gain in accuracy brought
about by this node is 3.7%.

In each of the three hidden nodes, input connections are of crudely similar
magnitudes and opposite signs as predicted by theory. Figure 1 shows the
MLP architecture.

When the 4 selected variables (first stage) or the 3 newly found pairs
(second stage) are used as predictors in Logistic Regressions, classification
accuracy (Table 2) is similar to MLP accuracy. Performance is not inferior
to that reported in the literature for similar conditions, while the number of
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Table 2: Example 1: bankruptcy prediction. The table shows sample sizes
and out-of-sample accuracy. T : number of true (correctly classified) cases,
F : false (incorrectly classified), P : positives (bankrupt), N : negatives (non-
bankrupt).

first-stage second-stage
(4 var.) (3 var.)

Accuracy T/(T + F ) 1,547 (97.2%) 1,541 (96.9%)
No bankrupt correct TN 780 (98.0%) 778 (97.7%)
No bankrupt incorrect FP 16 (2.0%) 18 (2.3%)
Bankrupt correct TP 767 (96.5%) 763 (96.0%)
Bankrupt incorrect FN 28 (3.5%) 32 (4.0%)
Precision TP/(TP + FP ) 98.0% 97.7%
Sensitivity TP/(TP + FN) 96.5% 96.0%

predictors is smaller. The observed reduction in performance from the first
to the second stage is negligible, evidencing the non-significance of size.

4.2 Financial misstatement detection

The second example replicates misstatement-detection models. Research
published in Accounting and Finance journals (Dechow et al., 2011) and in
Artificial Intelligence journals (Huang et al., 2014) report accuracy ranging
from 65% to 75% for large, non-homogeneous samples whereas, for small,
same-industry samples, accuracy can be as high as 86% (Huang et al., 2014).
In all such cases Type I and Type II errors may differ by as much as 30%.

The dataset is divided in two sets, one containing misstatement releases
issued from years 1976 to 1999 and the second containing releases issued
from years 2000 to 2008. The 1976-1999 set is utilised for model building
and MLP learning; the 2000-2008 set is utilised to measure accuracy. The
two sets are matched with an equal number of firms which are neither the
object of releases throughout the period nor are bankrupt in the same year.
Matching is based on the GICS sector, on size decile and on year. Each
misstatement case is randomly assigned to its peer and then the peer is
made unavailable for future pairing. The resulting datasets have nearly 900
cases each but, due to the existence of missing values, the number of useful
cases is smaller:

Learning set: non-fraud cases 335 (45.7%)
Learning set: fraud cases 398 (54.2%)
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Test set: non-fraud cases (N) 353 (46.2%)
Test set: fraud cases (P) 411 (53.8%)

A total of 8 variables are selected at the first stage, of which 7 are trans-
formed line items and one is a difference in relation to the previous period
(Table 1). It is verified that the relationship is size-independent.

During the second stage, 6 hidden nodes are formed:

Node 1 – Receivables (total) to Common Stock (equity) - negative con-
nection to output node: other things being equal, the higher this ratio
is, the less likely misstatement is. Accuracy gain is 27.2%.

Node 2 – Liabilities (total) to Assets (total) - positive connection to out-
put node: other things being equal, the higher this ratio is, the more
likely misstatement is. Accuracy gain brought about by this node is
4.8%.

Node 3 – Cash and Short Term Investments to Revenue (total) - negative
connection to output node: other things being equal, the higher this
ratio is, the less likely misstatement is. Accuracy gain brought about
by this node is 3.4%.

Node 4 – Long Term Debt to Common Stock (equity) - negative connec-
tion to output node: other things being equal, the higher this ratio is,
the less likely misstatement is. Accuracy gain brought about by this
node is 1.2%.

Node 5 – Change in Liabilities (total) - positive connection to output
node: other things being equal, an increase in liabilities relative to
previous period demotes higher likelihood of misstatement. Accuracy
gain brought about by this node is 0.8%.

Node 6 – Revenue (total) to Common Stock (equity) - negative connec-
tion to output node: other things being equal, the higher this ratio is,
the less likely misstatement is. This node actually reduces accuracy
by 0.6%.

The fifth node added to the MLP has only one input connection. Other
nodes have two input connections with broadly similar magnitudes and op-
posite signs as predicted.

When the 8 selected variables (first stage) or the 6 newly found pairs
(second stage) are used as predictors in Logistic Regressions, classification
accuracy (Table 3) is similar to that of MLP accuracy. Notably, in this
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Table 3: Example 2: misstatement detection. The table shows sample sizes
and out-of-sample accuracy. T : number of true (correctly classified) cases,
F : false (incorrectly classified), P : positives (misstated), N : negatives (not
misstated).

first-stage second-stage
(8 var.) (6 var)

Accuracy T/(T + F ) 764 (88.2%) 668 (87.4%)
No fraud correct TN 303 (85.8%) 299 (84.7%)
No fraud incorrect FP 50 (14.2%) 54 (15.3%)
Fraud correct TP 371 (90.5%) 369 (90.0%)
Fraud incorrect FN 39 (9.5%)) 41 (10.0%)
Precision TP/(TP + FP ) 88.1% 87.2%
Sensitivity TP/(TP + FN) 90.3% 89.8%

case accuracy is around 10% higher than that reported in the literature for
similar conditions. Imbalance in the recognition of states is smaller while
Type II error (the most expensive in this case) is clearly subdued. Reduction
in performance from the first to the second stage is negligible, denoting size-
independence.

4.3 Earnings forecasting

The third example is about the forecasting of Earnings’ changes one year
ahead. Its distinctive marks are the use of unmatched, unbalanced datasets,
the large number of available cases (states can be computed from specific
line items), and a weak relationship, with a reported accuracy of barely 10%
above a prediction made at random.

After computing the two stages to be predicted (Ou, 1990), cases with
missing values are put aside. A total of nearly 140,000 cases remain, where
some 90,000 are Earnings’ non-increases and 50,000 are increases. From this
unbalanced set, two samples are drawn, one for learning and the other for
performance assessment:

Learning set: Earnings’ non-increases 41,851 (64.3%)
Learning set: Earnings’ increases 23,275 (35.7%)
Test set: Earnings’ non-increases (N) 41,750 (64.4%)
Test set: Earnings’ increases (P) 22,811 (35.6%)

Net Income (loss) is omitted from the comprehensive set in this case (Ou,
1990). A total of 10 variables are selected at the first stage, 3 of which
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are differences in relation to the previous period, 1 is a predefined ratio
(Dividends per Share), and the remaining 6 are logarithmic-transformed
line-items.

It is further verified that the relationship is significantly size-related.
Therefore, the first node to enter is connected solely to the logarithm of
Assets (total), a suitable size proxy which is selected at the first stage. The
number of hidden nodes is not N−1 = 9 but 10. Nodes enter in the following
order:

Node 1 – Assets (total) - negative connection to output node: other
things being equal, larger companies are less likely to report an in-
crease in Earnings. This node brings about an accuracy gain of 5.3%
above the class imbalance of 14.7%.

Node 2 – Dividends per Share - negative connection to output node:
other things being equal, the more dividends per share a company
pays, the less likely an Earnings’ increase is. This node brings about
an accuracy gain of 7.1%

Node 3 – Cash-Flow from Operating Activities (net) to Income Tax (to-
tal) - negative connection to output node: other things being equal,
the higher this ratio is, the less likely an Earnings’ increase is. This
node brings about an accuracy gain of 2.5%

Node 4 – Retained Earnings to Liabilities (total) - negative connection
to output node: other things being equal, the higher this ratio is, the
less likely an Earnings’ increase is. This node brings about an accuracy
gain of 0.8%

Node 5 – Change in Gross Profit - positive connection to output node:
other things being equal, an increase in Gross Profits relative to pre-
vious period denotes higher likelihood of an Earnings’ increase.

Node 6 – Retained Earnings to Income Tax (total) - positive connection
to output node: other things being equal, the higher this ratio is, the
more likely an Earnings’ increase is.

Node 7 – Gross Profit to Cash Flow from Operating Activities (net) -
negative connection to output node: other things being equal, the
higher this ratio is, the less likely an Earnings’ increase is.

Node 8 – Income Tax to Assets (total) - positive connection to output
node: other things being equal, the higher this ratio is, the more likely
an increase in Earnings is.
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Table 4: Example 3: Earnings increase forecasting. The table shows sample
sizes and out-of-sample accuracy. T : number of true (correctly classified)
cases, F : false (incorrectly classified), P : positives (Earnings’ increases) N :
negatives (Earnings’ non-increases).

first-stage second-stage
(10 var.) (10 var.)

Accuracy T/(T + F ) 51,936 (80.4%) 51,587 (79.9%)
No incr. correct TN 35,783 (85.7%) 35,592 (85.3%)
No incr. incorrect FP 5,967 (14.3%) 6,158 (27.0%)
Increase correct TP 16,153 (70.8%) 15,995 (70.1%)
Increase incorrect FN 6,658 (29.2%) 6,816 (16.3%)
Precision TP/(TP + FP ) 73.0% 72.2%
Sensitivity TP/(TP + FN) 70.1% 70.1%

Node 9 – Change in Retained Earnings - positive connection to output
node: other things being equal, an increase in Retained Earnings rel-
ative to previous period denotes a higher likelihood of an Earnings’
increase.

Node 10 – Change in Dividends per Share - positive connection to out-
put node: other things being equal, an increase in dividends per share
relative to previous period denotes higher likelihood of an Earnings’
increase.

Marginal classification accuracy ceases to be meaningful from node 5 on-
wards, overall accuracy neither increasing nor decreasing. Accuracy be-
comes unreliable as a guiding signal, except for the most significant pairs.
But when the 10 selected variables (first stage) or the 10 predictors (second
stage) are used in Logistic Regressions, all such variables are statistically
significant (P < 0.01). Overall classification accuracy (Table 4) is, in this
case too, broadly similar to MLP accuracy.

Classification results should be interpreted in the light of state imbal-
ances observed in the learning-set (Chawla, 2005). Performance increases
by some 6% in average relation to previously reported research. Importantly,
in the presented example state imbalance is similar to that in the dataset
employed to learn the relationship.
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4.4 Discussion

It would be difficult to contradict the assertion that, for fairly typical con-
ditions, the set of variables selected from the comprehensive set at the first
stage is an optimal predicting set. And, provided that due parsimony is ob-
served in such selection, pairs formed in the hidden node of the second-stage
MLP will indeed exhibit opposite signs and broadly similar magnitudes. As
a consequence, the set of ratios discovered at the second stage, exhibiting a
predicting power similar to that of the first stage, will indeed be an optimal
set as well.

The three examples just provided are linear relationships with non-
significant interactions between predictors. This is the usual scenario for
the type of applied models analysts use. The proposed methodology is not
meant to discover ratios under conditions or in application areas where finan-
cial analysis has little concern. Therefore, besides not covering higher-order
relationships, the proposed methodology is also not meant to discover ratios
for rare events modelling (King and Zeng, 2001) or other extreme tasks.
Namely, states to be predicted should be, to a reasonable extent, likely states
with easily available patterns allowing their recognition.

It may be argued that the matching of cases, as in examples 1 and 2,
or other undefined causes, may have led to a reduction in size-dependence
in the attribute to be predicted. In turn, such reduction would facilitate
the selection of variables at the first stage and the forming of pairs at the
second stage. It may also be speculated that a given set of predictors may
be optimal for a given state imbalance, say 80%-20%, and non-optimal for
another; or even that different state-imbalances may require different pre-
dictors. These are interesting questions for theory-driven research. When
the modelling algorithm is the Logistic Regression, it was demonstrated that
state-imbalance affects the model intercept only (Yu and Manski, 1989), and
an intercept correction is available (King and Zeng, 2001), making it possi-
ble to build a model using balanced states (for example, by matching) and
then correct the intercept to take real-world imbalance into account. More-
over, in example 3 appropriate variables were selected and pairs formed, in
spite of matching not being used. Given this, it seems as though the dis-
covery of sets of predictors and their optimality should be viewed as robust,
within a reasonable range, regarding differences in state imbalance.
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5 Conclusion

If ratios can be validly employed in financial analytic tasks, then the effect of
company size, which ratios remove, can also be removed by modelling algo-
rithms. While removing size, algorithms portray financial features required
by the relationship being modelled, as though ratios were there.

The paper suggested that predictors to be used in accounting-based mod-
els should be selected by the algorithm from among transformed line items,
not from ratios possessing suitable analytical qualities. Models should be
built in two stages, one to find the set of transformed items able to explain
the relationship optimally, and the other to form, from such set, appropriate
pairs of predictors. Such pairs are, in fact, ratios in logarithmic space. A pro-
cedure was suggested to automatically discover an optimal set of pairs. The
reported examples suggest that the proposed procedure is feasible, bearing
fruit when applied to modelling problems where the finding of appropriate
ratios is non-intuitive, as is the case of misstatement-detection or earnings’
changes forecasting.

The paper illustrates a case of close alignment between statistical ade-
quacy, users’ needs and algorithmic architecture. The choice of the knowledge-
extraction algorithm, the MLP, was dictated solely by its ability to form
internal representations. Neither performance nor the testing of novel capa-
bilities was the goal here.

Performance reported in the paper is high for two reasons. First, the
logarithmic transformation agrees with the multiplicative character of pre-
dictors; appropriately transformed variables, not the algorithm, led to the
discovery of logarithmic ratios and then to a parsimonious and balanced
prediction. Second, ratios are discovered by the optimisation algorithm. In
this way, unduly circumscribed ratios are avoided, meaningful as they may
seem to be.
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