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ABSTRACT Light Field (LF) imaging, since it conveys both spatial and angular scene information, can
facilitate computer vision tasks such as depth/disparity estimation. Although disparity maps can be estimated
for all LF views, most existing methods merely estimate depth/disparity for the central view and do not
adequately deal with other LF views. However, having depth/disparity maps for all LF views can be useful
for enhancing immersive multimedia applications, such as 3D reconstruction and LF editing. To overcome
this limitation, in this paper, an efficient and occlusion-aware disparity propagation method is proposed. The
proposed method generates disparity maps for all LF views given a single disparity map for one reference
view (e.g., the central view). The disparity map for the reference view is propagated first into the four corner
views to ensure angular consistency. Afterwards, an off-the-shelf existing disparity estimation model is used
to fill any remaining holes in the corner views. Finally, disparity maps for the remaining views are recursively
generated through a fast propagation step, which is followed by a final refinement step to regularize the
generated disparity maps. The proposed method not only generates disparity maps for all LF views but also
handles occlusions and ensures angular consistency. Experimental results on synthetic and real LF datasets
with different disparity ranges, using several accuracy and angular consistency metrics, show outperforming
or competitive results compared to the benchmark methods with a significant complexity reduction.

INDEX TERMS Light field disparity estimation, angular consistency, fast disparity propagation, deep
learning.

I. INTRODUCTION
Light Field (LF) imaging has attracted increasing attention
from researchers due to its ability to capture not only
light intensity but also ray directions [1], [2], [3]. 4D
LFs can be represented as an array of views (a.k.a. sub-
aperture images) I (x, y, u, v), where (x, y) are the spatial
coordinates and (u, v) are the angular coordinates of each
view. By fixing one angular and one spatial coordinate,
an Epipolar Plane Image (EPI) (i.e., the unique 2D spatio-
angular LF slice typically containing a regular structure with
several oriented lines [1], [4]) can be obtained, as illustrated
in Fig. 1. By exploiting the rich information captured by
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FIGURE 1. Example of LF representations. a) 4D LF represented as an
array of views; b) Horizontal and vertical EPIs.

LFs and the possible LF representations, new capabilities
are enabled, such as post-capture refocusing and depth
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estimation. Additionally, disparity maps can be estimated
from LFs to represent the displacement of corresponding
pixels in several LF views, which is inversely proportional
to the depth [4]. As humans, depth/disparity information
estimated by our brains is exploited to efficiently process
the surrounding world. Similarly, machines can benefit from
depth/disparity information to enhance the processing of
captured images. Therefore, many interesting applications
for 2D content rely heavily on the use of depth maps (e.g.,
obtained from sensors) as an additional feature, besides
the visual appearance, to apply efficient processing and
editing.

In the case of 4D LF applications, besides achieving accu-
rate editing, ensuring angular consistency is also essential.
This is especially important when navigating between LF
views using virtual reality headsets or LF displays. Therefore,
generating angularly consistent disparity maps for all LF
views has become a task of growing interest to guide several
computer vision applications, such as LF segmentation, view
synthesis, 3D scene reconstruction, and augmented/mixed
reality [3], [5], [6], [7].

Several LF disparity estimation methods have already been
proposed in the literature, e.g., [8], [9], [10], [11], [12], [13],
[14], [15], [16], and [17], as briefly reviewed in Section II.
Most existing LF disparity estimation methods estimate
disparity maps only for the central view. However, having
disparity maps for all LF views can be useful for enhancing
several applications, such as 3D reconstruction and LF
editing. The few methods that consider estimating disparity
for all LF views, e.g., [10], [16], and [17], either are not
adequately considering consistency across LF views, are
computationally complex, or are only suitable for densely
sampled LFs.

In this context, the main contribution of this paper is
an efficient disparity propagation method that generates
angularly consistent disparity maps for all LF views, which
works for both densely and sparsely sampled LFs. The
proposed method exploits the correlations across LF views
and propagates a given disparity map from only one reference
view into all LF views in an occlusion-aware manner, while
also ensuring angular consistency. The proposed propagation
method starts by propagating the reference view disparity
map into the corner views and assigning disparity values to
all their pixels. Afterwards, disparity values are recursively
propagated to the remaining LF views with the guidance
of the reference and corner views in both horizontal and
vertical angular directions. Finally, a last refinement step
is included to smooth the disparity maps. Experiments
using different accuracy, consistency and complexity metrics
show outperforming or competitive results when compared
to the existing methods, while reducing the computational
complexity.

The remainder of this paper is organized as follows.
Section II briefly reviews the related work on 4D LF disparity
estimation, Section III describes the proposed method in
detail and Section IV evaluates its performance through a

series of experimental results. Finally, Section V concludes
the paper with some final remarks and directions for future
work.

II. RELATED WORK
In recent decades, several 4D LF disparity estimation
methods have been proposed. Existing methods can be
classified as either classical or deep learning-based 4D
LF methods depending on the used disparity estimation
approach:

A. CLASSICAL 4D LF DISPARITY ESTIMATION METHODS
Classical 4D LF disparity estimation methods exploit differ-
ent LF representations and analyze the geometry to estimate
disparity information using manually designed features. This
type ofmethods can be further classified into three categories,
according to the used LF representation:

• EPI-based methods: the methods in this category rely
heavily on the EPI regular structure. In the EPI space, a
3D point is represented by a line whose slope is inversely
proportional to its disparity value [1], [4]. Wanner and
Goldluecke [8] analyzed EPIs using structure tensors
to locally estimate disparity values. Zhang et al. [9]
proposed a spinning parallelogram operator for depth
estimation on EPI space. Khan et al. [10] proposed
a disparity estimation method to compute disparity
maps for all LF views by detecting EPI edges and
diffusing them spatially within the central view and
then propagating the central view into all LF views.
EPI-based methods typically achieve high estimation
accuracy, but only for densely sampled LFs.

• Sub-aperture image-based methods: the methods in
this category rely on matching corresponding pixels
between LF views, i.e., stereo matching, using a robust
patch-based block-matching approach. A cost volume
is usually constructed to measure the similarity and
angular consistency between LF views. Jeon et al. [11]
proposed a disparity estimation method by applying
the phase shift theorem. Huang et al. [12] proposed
an empirical Bayesian framework for computing LF
disparity for both dense and sparse LFs. While match-
ing corresponding pixels to estimate disparity maps
is widely used, in dense LFs with a quite narrow
baseline, sub-aperture image matching can lead to
poor accuracy and occlusions can cause impossible
correspondences [2].

• Focal stack-based methods: the methods in this
category produce a focal stack from LFs and rely on
defocus cues to estimate the disparity. They assume
that in-focus points are projected at the same spatial
location in the different views [13], [14], [15]. Lee
and Park [15] proposed a unified model for depth
estimation by combining focus, defocus and matching
corresponding pixels. The methods that rely on LF focal
stack are robust to occlusions and noise. However, they
may suffer from ambiguities due to the used patch and
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aperture sizes, making the approach not as accurate as
most methods in the previous categories.

B. DEEP LEARNING-BASED 4D LF DISPARITY ESTIMATION
METHODS
Deep learning-based 4D LF disparity estimation methods
have been recently proposed to improve the performance
of existing classical methods while greatly reducing the
disparity estimation time. These methods rely on deep
learning techniques and most of them are supervised by
ground truth disparity maps to estimate disparity information.
Heber and Pock [18] proposed the first convolutional neural
network model to learn an end-to-end mapping between a 4D
LF and its corresponding depths. Afterwards, Heber et al.
proposed a U-Net architecture with 3D convolutions to
estimate LF disparity maps for the central EPIs [19]. The
EPI-based fully-convolutional neural Network (EPINet) and
Multi-scale Aggregated Network (MANet) proposed in [20]
and [21] significantly improved the disparity estimation
accuracy for the central view and heavily rely on the EPI
structure in densely sampled LFs. Shi et al. [16] overcame
this limitation by proposing a framework that can be used
for both dense and sparse LFs. While this method can
estimate a disparity map for any LF angular location, angular
consistency across views is not ensured. Jiang et al. [17]
proposed a disparity estimation method starting from the
four corner views. After that, the disparity is propagated into
all other LF views and a 3D reconstruction method is used
to fill the holes (i.e., remaining regions after propagation
without disparity values). Although it can estimate disparity
maps for both dense and sparse LFs, relying on the initial
estimation of corner views can significantly affect the
disparity estimation performance for wide baseline LFs.
Wang et al. [22] proposed a generic mechanism for LF
processing including disparity estimation using domain-
specific convolutions. Recently, Chao et al. [23] proposed
a disparity estimation method called SubFocal that learns
the disparity distribution of dense LFs and estimates a
smooth disparity map for the central view by using cost
volumes at the sub-pixel level. Supervised deep learning-
based methods achieve state-of-the-art results. However,
they require a large number of training LFs with ground
truth disparity maps, which are challenging to obtain in the
real world. Moreover, training deep learning models using
only synthetic LF datasets may not adequately handle the
domain shift between the real world and synthetic datasets.
Therefore, several unsupervised methods are proposed to
handle this challenge, although the performance is slightly
reduced [24].

III. PROPOSED DISPARITY PROPAGATION METHOD
The proposed method comprises three main steps as illus-
trated in Fig. 2. To start, two inputs are required, namely
a 4D LF and an estimated disparity map of one reference
view with respect to its adjacent right view (estimated by
any available method). In this paper, the central view is

selected as a reference view since it is equidistant from
all corner views. Hence, represents a good compromise in
terms of the remaining holes after propagating its disparity
map into all corner views. Therefore, from hereinafter in
this paper, the central view will be considered the reference
view. Notice, however, that the proposed method can use
any disparity estimation method and any angular location
for the reference view, though the results may be affected
accordingly, as explained in Section IV.

To apply the propagation into all LF views, in the first
step, the input reference view disparity map is propagated
into the four corner views in an occlusion-aware manner.
The remaining holes in the corner views after propagation
are filled by estimating their disparity values. Any disparity
estimation method that can estimate disparity for any angular
location for dense and sparse LFs can be used to fill
the holes. In the second step, the disparity maps for the
remaining LF views (i.e., all LF views except the reference
and corner views) are generated via a recursive propaga-
tion in both horizontal and vertical directions separately.
Afterwards, disparity maps from both horizontal and vertical
propagation are fused for each view using their arithmetic
mean.

In the last step, the disparity values of any remaining
holes are computed, and a final edge-preserving refinement
is applied to further regularize the output. The following sub-
sections describe these steps in more detail.

A. DISPARITY PROPAGATION FOR CORNER VIEWS
To ensure angular consistency across LF views, the reference
view disparity map, d ref , is initially propagated into the four
corner views (since they typically include most of the scene
information) – in this paper, the central view located in the
angular location (uc, vc), is used as reference view; thus
ref=(uc, vc). The propagation is achieved by assigning the
same disparity value of each pixel in d ref to the corresponding
pixel in each corner view, which are computed using d ref

itself, as shown in (1):{
x(u,v) = xref + d ref→(u,v)

hor ,

y(u,v) = yref + d ref→(u,v)
ver ,

(1)

where xref , yref are the spatial coordinates from which the
propagation is applied; x(u,v), y(u,v) are the corresponding
spatial coordinates of xref , yref in view (u, v); d ref→(u,v)

hor ,
d ref→(u,v)
ver are the horizontal and vertical disparity values
located in the spatial position

(
xref , yref

)
from the reference

view to view (u, v). To ensure integer positioning, rounding
is applied to the projected coordinates. Assuming a regular
arrangement of cameras with a parallel optical axis and
uniform camera baseline and focal length, as assumed
in [25], and [26], the horizontal and vertical disparities
from the reference view into any other LF view (u, v) is
computed using (2). Equations (1) and (2) hold under the
above assumption. Otherwise, camera parameters must be
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FIGURE 2. Illustration of the proposed disparity propagation method: a) Disparity propagation for corner views; b) Recursive disparity propagation for
all remaining LF views to ensure angular consistency; c) Disparity map refinement for all LF views.

considered. {
d ref→(u,v)
hor = d ref × (u− uc),
d ref→(u,v)
ver = d ref × (v− vc) .

(2)

To detect occlusions, a binary occlusion mask is initialized
for each LF view for all pixels, where each pixel is initially
labeled as occluded. After estimating the disparity map of
the reference view and propagating it into other LF views, all
spatial locations that have disparity values are labeled as non-
occluded and the remaining ones keep the initial occluded
label.

To ensure occlusion-aware propagation, the input 4D
LF and corresponding texture variation maps are used.
Therefore, the input 4D LF is converted to the CIELAB color
space. Then, a per-pixel texture variation map is generated
from the L channel by computing the local standard deviation
of a (3 × 3) neighborhood for all the pixels in each view.
The texture variation maps are used to guide the propagation
when different objects share either the same color or the same
disparity values. Disparity propagation is applied only if the
color and texture difference, D, between pixels in ref view
and corresponding pixels in another view, as in (3), is less
than or equal to a pre-defined threshold, τ , (i.e., D ≤ τ ).
In this paper, τ is set to 0.01 after extensive experiments to
allow for a reasonable difference due to rounding and lighting
differences in each view.

D =

√(
li − lj

)2
+

(
ai − aj

)2
+

(
bi − bj

)2
+

(
ti − tj

)2
, (3)

where l, a, b are normalized color channel values (using
min-max normalization [27]) in CIELAB color space; i, j
represent the original pixel in ref view and corresponding
pixels in (u, v) view, respectively; and t is the normalized
texture value (using min-max normalization) for each pixel.
The above thresholding operation is beneficial in preventing
inaccurate projections into other views if the reference
disparity maps have inaccurate values. Different values of τ

are tested to study their effect in Section IV.
During propagation, the occlusion mask is checked for

each spatial location, and when it has already a non-occluded

FIGURE 3. Example of occlusion masks after projecting the disparity map
of the central view into other LF views: a) The central view and its
disparity map; b) Binary occlusion masks of the four corner views after
propagating the central disparity map into each one. White pixels indicate
pixels without disparity values, i.e., occluded/invisible pixels (relatively to
the central view).

label (i.e., another candidate has been propagated into the
same location due to rounding, or inaccurate estimation), the
maximum disparity value between the previous and current
candidates is kept only if D≤τ , otherwise the disparity
value will not be changed. The rationale for keeping the
maximum disparity value comes from the observation that
foreground objects, which are typically not occluded, have
larger disparity values.

The remaining holes in the corner views (white regions
in Fig. 3b), i.e., regions without disparity values, need to be
filled next. Instead of applying a blind filling/inpainting to
those holes, the actual disparity values are truly estimated
from the input 4D LF. Therefore, any existing disparity
estimation method that can compute disparity maps for any
angular location, and not only for the central view, for both
dense and sparse LFs, can be used to fill the remaining holes.
Different disparity estimationmethods are used and evaluated
in Section IV to study their effect on the estimated disparity
maps. After assigning disparity values for all pixels in corner
views, the corner views are used to guide the propagation for
the remaining LF views, as explained in the next step.
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FIGURE 4. Disparity map estimation via propagation: a) Middle views
between any two corner views (blue squares); b) Border and central
crosshair views (yellow and green squares) using a recursive propagation;
c) Internal views, such as purple shaded squares, have two different
propagations from horizontal and vertical directions independently, then
both computed disparity maps are fused to create one disparity map for
each internal view.

B. RECURSIVE DISPARITY PROPAGATION FOR
REMAINING LF VIEWS
In this step, disparity maps of all other LF views are obtained
in three stages as presented in Fig. 4.

First, a disparity map is assigned to each middle view
located halfway between any two corner views (blue squares
in Fig. 4a). To achieve that, the reference view and the nearest
two corner views are propagated into each middle view as
shown in Fig. 4a (considering occlusions as in the previous
step). Those three propagated disparity maps are then fused
by considering their arithmetic mean.

Second, a disparity map is assigned to each remaining
border and crosshair view, i.e., views in the central horizontal
and vertical angular coordinates (yellow and green squares in
Fig. 4b). To achieve that, a recursive propagation from two
reference views located in the same horizontal or vertical
angular dimension into the middle view located halfway
between them is applied, as shown in Fig. 4b, until no more
middle views without disparity values remain. At this point,
the LF is divided into four quadrants and no disparity maps
are still assigned for the internal views of each quadrant.

Third, a disparity map is assigned to the internal views
in each quadrant by applying a recursive horizontal and
vertical propagation independently, as shown in Fig. 4c (the
same way as it has been done in the second stage for
each row or column of internal views). Both disparity maps
generated from horizontal and vertical recursive propagation

TABLE 1. Test datasets used in the experiments.

are then fused for each internal LF view by considering their
arithmetic mean.

C. 4D LF DISPARITY MAPS REFINEMENT
In this step, all LF views already have a disparity map.
However, remaining hole locations, caused by occluded
regions that do not exist in either the reference view or the
corner views, or just caused by rounding the coordinates
to integer indexing, need to be filled. Therefore, the four
nearest left, right, top and bottom spatial neighbors that have
disparity values for each pixel are considered in each view.
The disparity value corresponding to the minimum difference
Dk < τ, k = 1, . . . , 4 as in (3), is assigned as the disparity
value of that location. If more than one neighbor has an
equal D value, the minimum disparity value is considered.
The reason for considering the minimum disparity is that
the remaining holes, typically belonging to occluded regions,
cannot be seen in the reference or corner views, are deeper
than frontal objects (i.e., occluding objects), and hence have
lower disparity values. After filling the remaining isolated
pixels and holes, a simple and fast 2D edge-preserving
median filtering using a (5 × 5) kernel size is applied
spatially for all LF views to refine the estimated disparity
maps.

IV. RESULTS AND EVALUATION
In this section, the proposed method is compared to several
benchmark methods, namely: i) Shi et al. method [16], which
is applied for each LF view independently since it only
estimates one disparity map for any angular location; ii)
Jiang et al. method [17]; and iii) Khan et al. method [10].
Both [10] and [17] create disparity maps for all LF views.

Moreover, several LF datasets with different disparity
ranges are used (see Table 1). Notice that HCI and HCI∗
datasets are both synthetic dense LF datasets, however,
they are different in the disparity ranges and in the spatial
resolution. The entire (9 × 9) views for all datasets are
considered. Only synthetic LFs with Ground Truth (GT)
disparities for all LFs are used for the quantitative evaluation.
The EPFL and Stanford LF datasets do not have GT disparity
maps and, hence, the quantitative evaluation is not applied to
them.

To quantitatively evaluate the proposed method, three
different metrics are used, namely: i) Mean Square Error
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FIGURE 5. A visual example of the refinement step using edge-preserving
filtering. a) GT disparity of view (3, 6); b) GT disparity enlargement; c)
Proposed without refinement; d) Proposed with final refinement.

(MSE) [28]; ii) Percentage of Bad Pixels (BP) (i.e., the
percentage of pixels with a disparity error above a certain
threshold; the typically used Bad Pixels error thresholds of
0.01, 0.03 and 0.07 are used) [28]; and iii) View Consistency
Error (i.e., where disparity maps of all LF views are projected
into each angular location; then the variance of all projected
disparity maps is computed for each angular location (81
values) as defined, formulated and implemented in [10]).

As explained in Section III, in the proposed method. a ref-
erence view disparity map is required as input. Additionally,
the holes in corner views after propagating the reference view
disparities need to be filled by estimating their disparities.
Therefore, any existing method that can estimate disparity
maps for any angular location in dense and sparse LFs can
be used (more accurate is favored). In this paper, to achieve
both accuracy and angular consistency for the generated
disparity maps, Chao et al. SubFocal method [23] is adopted
to estimate the input disparity map. The reason for choosing
the SubFocal method is that it ranks first place, as reported
by the authors, among other 99 submitted methods on the
HCI 4D LF benchmark [28] considering different metrics.
However, the SubFocal method can estimate a disparity map
only for the central view and has been trained for dense LFs
with a disparity range of [−4, 4]. Therefore, the remaining
holes after propagation to the corner views are filled by using
the pre-trained model of Shi et al. [16] that fine-tuned the
optical flow estimation network (a.k.a. FlowNet 2.0) [32] for
LF disparity estimation in any angular location. Moreover,
to consider sparse LFs, the model in [23] is retrained in
our experiments by using LFs with a wider disparity range
(i.e., [−20, 20]). To retrain the SubFocal method for sparse
LFs, the Inria synthetic sparse LF dataset in Table 1 was
used for training (the same number of LFs was used for
training, i.e., 16 LFs, as in [23]). The hyperparameters were
kept the same as in [23], except for the disparity sampling
step size which was set to 2.5 instead of 0.5 to reduce the
cost volume complexity. In this paper, the retrained model
is tested for sparse LFs using Lion, and Electro devices test
LFs. In the experiments, different methods are also used to
study the effect of the selected disparity estimation method
on the proposed propagation method (including the use of the
method [16] for both the reference and corner views).

Notice that some results are not available (indicated
n/a in Fig. 7, Fig. 8 and Fig. 10) since the EPI-based
method in [10] does not support LFs with large disparity
ranges. Additionally, the SubFocal method [23] is used to

FIGURE 6. Average CPU time in seconds per view.

estimate the input reference view disparity map for most
datasets. However, disparity maps of the HCI dataset [31] are
estimated using the Shi et al. method [16] since the SubFocal
method [23] generates inaccurate disparity estimations for
this dataset due to the different resolutions and the domain
shift of training and testing, as reported by the authors and
shown later in Fig. 9.
The proposed method is implemented using MATLAB

and all results ran on a desktop computer with a 64-bit
Ubuntu operating system, AMD® Epyc 7282 16-core CPU,
NVIDIA GeForce RTX 3090 and 256 GB RAM.

A. QUANTITATIVE AND QUALITATIVE RESULTS
In this section, the proposed method results are presented
and compared to the benchmark methods using several
datasets with various disparity ranges. Notice that only the
datasets that have ground truth disparity maps are used in
the quantitative results namely, HCI [31], HCI∗ [28] and
Inria [16] LF datasets.

Initially, the effect of the parameter τ is studied by
using different values and finding the evaluation metrics
accordingly. Therefore, 4 different experiments are con-
ducted where different values of τ are used, i.e., 0.001, 0.01,
0.1 and ∞, where ∞ refers to the case where the visual
consistency is discarded during the propagation. As can be
seen from Table 2 using different τ values can slightly
affect the accuracy and the CPU time. As illustrated in
Section III, the occlusion-aware propagation step considers
the disparity values of foreground and background regions.
However, to avoid wrong projection for objects that have
similar disparity values but are different in color, the τ

value is set to 0.01. This value prevents inaccurate projection
from occurring due to discrete sampling, rounding errors
or inaccurate estimated values. The chosen value allows for
reasonable visual differentiation across LF views, accounting
for varying lighting conditions. Simultaneously, it strikes
a reasonable balance between accuracy, efficiency, and
prevention of inaccurate projections.
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FIGURE 7. Summary statistics of view consistency error across all LF views for each test LF.

TABLE 2. Average quantitative results using the proposed method with
different τ values on various LF datasets for all LF views.

To study the impact of the final refinement step, Table 3
shows the performance of the proposed method with and
without applying the edge-preserving filter to refine the
generated disparity maps in the refinement step (i.e., step
C in Section III). As presented in Table 3, the results are
slightly improved when a simple median filter is applied to all
LF views to regularize the estimated disparity maps in most
datasets. The used filter is simple, fast, preserves scene edges
and can reduce inaccurate disparity propagations, especially
for a few pixels with wrong disparity values surrounded by
pixels with accurate ones (see Fig. 5).

TABLE 3. Average quantitative results on various LF datasets using
different 4D LF disparity estimation methods for all LF views.

Moreover, the proposed method is evaluated and compared
to the benchmark methods using various datasets, as pre-
sented in Table 3, Table 5, Fig. 6, Fig. 7 and Fig. 8.

To compare the computational complexity between the
various methods, all methods were run using the CPU, and
CPU times are reported in Fig. 6. The reported time for
the proposed method includes the disparity estimation time
for the reference view and for occlusions in corner views
and all the steps in Section III. The CPU time spent by all
the benchmark methods for all LF views is then divided
by the number of views to obtain an average CPU time per
view. The breakdown of the average CPU time for each step is
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FIGURE 8. Visual comparison using the proposed disparity propagation method and the benchmark methods for dense and sparse LFs. The central
view and central horizontal and vertical EPIs are shown for all LFs. Not available (n/a) results for the Khan et al. method since it does not support
very sparse LFs.
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FIGURE 9. Examples to show the effect of the selected central view
disparity estimation method on the proposed disparity propagation
method. First row, using the Shi et al. method [16]; Second row, using
Chao et al. SubFocal method [23].

TABLE 4. Breakdown of the average CPU time for the proposed method
(in seconds).

reported in Table 4. As in Table 3 and Fig. 6, the results of the
proposedmethod generate competitive accuracy results while
reducing the complexity when compared to the benchmark
methods, especially for challenging sparse LFs.

Besides the improvements of the proposedmethod in terms
of accuracy metrics in some datasets, a significant reduction
in time is shown in Fig. 6 when compared to Shi et al. [16]
and Jiang et al. [17]. Compared to Khan et al. [10], the CPU
time results are still competitive. However, when the
Khan et al. method is used for the reference and corner
views, the proposedmethod requires less CPU time than [10],
as shown later in this section. This reduction in time is
achieved by exploiting the correlation between LF views and
applying angularly consistent propagation. The CPU time
for the proposed method depends on the used methods to
estimate the reference view disparity map and the occluded
regions as described below in this section.

Regarding the angular consistency of obtained disparity
maps, Fig. 7 shows the angular consistency using boxplots
where the central mark indicates the median and the bottom
and top edges of the box indicate the 25th and 75th
percentiles, respectively. Notice that, in this experiment, two
different disparity estimation methods are used during the
propagation steps in the proposed method (e.g., the SubFocal

FIGURE 10. Summary statistics of view consistency error across all LF
views for each test LF. In this figure, the results of the proposed method
are compared using the benchmark method to estimate the disparity map
for the reference view and occluded regions in the corner view namely,
using Shi et al. method (Proposed-a); using Jiang et al. method
(Proposed-b); using Khan et al. method (Proposed-c); and using the
ground truth disparity (Proposed-d). The proposed disparity propagation
method leads to better view consistency compared to the original
benchmark methods.

method [23] is used for the reference view and the pre-
trained model of Shi et al. [16] is used for occlusions in the
corner views). Despite that, the proposedmethod outperforms
Shi et al. [16] by ensuring angular consistency during the
propagation as can be noticed in Fig. 7. Additionally, the
proposedmethod outperforms Jiang et al. method [17] in 6 LF
scenes, while their method outperforms the proposed method
in the remaining 2 LFs (i.e., Table, and Lion). Khan et al.
method [10] outperforms the proposed method for dense LFs
and ensures angular consistency across views. However, the
method in [10] does not adequately support large occlusions

VOLUME 11, 2023 63471



M. Hamad et al.: Efficient Propagation Method for Angularly Consistent 4D Light Field Disparity Maps

TABLE 5. Average quantitative results on various LF datasets using different 4D LF disparity estimation methods for all LF views. The propagation results
are tested using different disparity estimation methods for the reference view and hole filling in the coroner views, including the ground truth disparity.
The best results among the proposed method results using different estimation techniques are highlighted in bold.

across LF views, which is typical for sparse LFs. While the
view consistency of disparity maps is essential, accuracy is
also important. As can be seen from Fig. 7 and Fig. 8, for the
Lion LF, for instance, achieving the best performance in terms
of view consistency does not necessarily lead to better visual
accuracy and in terms of other metrics. Besides the visual
results shown in Fig. 8, readers are encouraged to see also
the dynamic results in our GitHub repository.1

To study the effect of the selected disparity estimation
method on the proposed propagation method, different
disparity estimation methods are used for estimating the
reference view and filling the occlusions in the corner
views. To achieve that, the benchmark methods [10], [16],
[17] and the ground truth disparity are compared to the
proposed method results generated by using each benchmark
method for estimating the reference view and filling the holes
in the corner views. After that, the proposed propagation
method is applied to compute disparity maps for all
LF views.

As can be seen in Table 5, by only using one reference
disparity map and by exploiting the correlations across LF
views, the proposed propagation method outperforms the
original benchmark methods in most test LFs and can gen-
erate competitive results in others. Moreover, the proposed
propagation method ensures better view consistency than the
original benchmark methods in most LFs as presented in
Fig. 10. Notice that, for some LFs, using the ground truth
disparity in the proposed method has lower performance,
in terms of the view consistency metric, compared to the
estimated ones, as shown in Fig. 10. The reason for this is
that the ground truth disparity is more distinct and sharper
around objects boundaries when compared to the smooth
estimated ones. Hence, it generates larger and sharper holes

1Dynamic results for all LF views can be found at:
https://github.com/MaryamHamad/LFDisparityPropagation

FIGURE 11. Average CPU time in seconds per view. In this figure, the
results of the proposed method are generated by using the benchmark
method to estimate the disparity map for the reference view and
occluded regions in the corner views namely, using Shi et al.
(Proposed-a); using Jiang et al. (Proposed-b); and using Khan et al.
(Proposed-c). The proposed disparity propagation method significantly
reduces the required time compared to the original benchmark methods.

in occluded regions that need to be filled after propagation.
Small differences in filling those regions across LF views
can heavily affect the consistency metric results. Finally, the
proposed method can drastically reduce the average CPU
time per view when compared to the benchmark methods,
as shown in Fig. 11.

To sum up, the proposed disparity propagation method
enables computing an accurate disparity map for each LF
view only from one reference view disparity map and hole
filling in the corner views. The proposed method leads to
improved accuracy and view consistency for most of the LF
datasets and reduces the computational complexity compared
to the benchmark methods. Some limitations remain such as
if the input reference view has inaccurate estimation, there is
no correction step to check if the values are accurate or not,
and the inaccurate values will be propagated into all other LF
views as shown in Fig. 9. This limitation can be avoided by
using an accurate disparity estimation method to estimate the
disparity map for the reference view.
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V. FINAL REMARKS
In this paper, an efficient disparity propagation method is
proposed to generate angularly consistent disparity maps for
all LF views. Given only one estimated disparity map of a
reference view, the proposed method exploits the correlation
across LF views and propagates the reference disparity
map to the corner views at first. The remaining holes in
the corner views are not interpolated but truly estimated
by adopting an off-the-shelf disparity estimation method.
Afterwards, disparity maps of the reference and corner views
are propagated recursively in horizontal and vertical angular
directions in an occlusion-aware manner into all remaining
LF views. Finally, a refinement step is included to regularize
the final disparity maps and fill any remaining holes. Since
most of the existing methods estimate disparity information
for the central view only, the proposed method can be used as
plug and play with them to enable the generation of angularly
consistent disparity maps for all LF views. Experimental
results for several LF datasets with different disparity ranges
show competitive results in terms of angular consistency and
estimation accuracy compared to the existing methods with a
significant complexity reduction.

For future work, the question of how to adaptively
select the location of the reference view and the possibility
of adding more reference views will be investigated to
effectively consider occlusions based on the LF disparity
range. Moreover, the current implementation is not optimized
yet and the computational complexity of the proposed
disparity propagation method can be further reduced.
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