
Available online at www.sciencedirect.com
ScienceDirect

Nuclear Physics B 993 (2023) 116255
www.elsevier.com/locate/nuclphysb

High Energy Physics – Theory

The isospectrality of asymptotic quasinormal modes of 

large Gauss-Bonnet d-dimensional black holes

Filipe Moura a,∗, João Rodrigues b

a Departamento de Matemática, Escola de Tecnologias e Arquitetura, ISCTE - Instituto Universitário de Lisboa and 
Instituto de Telecomunicações, Av. das Forças Armadas, 1649-026 Lisboa, Portugal

b Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior 
Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received 25 July 2022; received in revised form 10 May 2023; accepted 5 June 2023
Available online 8 June 2023

Editor: Stephan Stieberger

Abstract

We compute the quasinormal frequencies of d-dimensional large spherically symmetric black holes with 
Gauss-Bonnet corrections in the highly damped regime. We solve perturbatively the master differential 
equation and we compute the monodromies of the master perturbation variable (analytically continued to 
the complex plane) in different contours, in order to obtain the quasinormal mode spectra. We consider 
tensorial, vectorial and scalar gravitational perturbations, obtaining the same frequencies for the three cases 
like in Einstein gravity. We also separately perform the same calculation for test scalar fields.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
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1. Introduction

Gravitational wave detectors can directly measure quasinormal ringing frequencies, which 
carry unique information about parameters of the black hole in the ringdown phase resulting 
from a binary black hole coalescence [1]. Indeed, the spectrum of black hole quasinormal modes 
(QNMs) does not depend on what drives the perturbations: it is completely determined by in-
trinsic physical quantities of the black hole such as mass, charge or spin, and eventually (beyond 
Einstein gravity) some other parameters of the theory. This feature turns QNMs into preferential 
probes for testing theories of gravity beyond Einstein, since the ringing frequencies represent a 
universal part of the gravitational wave signals (for a recent review of this subject see [2]). With 
the advent of gravitational wave astronomy, therefore, interest in the study of black hole QNMs 
has raised, as their measurement can provide a test to modified gravity theories.

The calculation of the spectra of black hole quasinormal modes has therefore become a very 
active field of research; for some comprehensive reviews see [3,4]. Recent works computing 
QNMs of black holes in different modified gravity theories are [5–9]. Among the most com-
mon modifications of gravity are the introduction of extra dimensions and of higher derivative 
corrections. Both these modifications are required in string theories.

Black hole quasinormal modes are associated to perturbations that can be related either to 
the black hole metric (gravitational perturbations) or to external fields. They are solutions of a 
master differential equation (whose form in general depends on the action/black hole solution 
one is considering) with a potential (depending on the kind of perturbation/external field). Most 
of the times, QNMs have to be computed numerically. Nonetheless, different analytical methods 
have been developed in order to compute QNMs in some limiting cases, in four and higher 
dimensions. Two of such cases are the eikonal limit and the asymptotic (highly damped) limit.

Concretely, the master equation and the corresponding higher-derivative corrected poten-
tial have been obtained for tensorial perturbations of d-dimensional black holes with leading 
α′ corrections in string theory [10,11]. Using this result, we have computed the corresponding 
quasinormal modes (and also for test scalar fields) in the eikonal limit [12] and in the asymptotic 
highly damped limit [13].
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The higher-derivative corrected potential has also been obtained for tensorial, vectorial and 
scalar perturbations of d-dimensional black holes with Gauss-Bonnet corrections. The corre-
sponding quasinormal modes in the eikonal limit have been computed in [14]. In this article we 
compute these quasinormal modes in the asymptotic highly damped limit, like we did in [13]
in string theory. The calculation of these quasinormal modes in this regime has been addressed 
numerically in [15].

Quasinormal modes associated to different kinds of gravitational perturbations have different 
spectra in general, but they share the same spectrum in Einstein gravity in d dimensions in some 
limiting cases. One of such cases is the eikonal limit. Such isospectrality is observed in that limit 
for spherically symmetric d dimensional black holes in Einstein gravity, but not any longer in 
the presence of perturbative Gauss-Bonnet corrections. As shown in [14], the leading terms are 
equal, but the first order corrections to the real parts of quasinormal frequencies are distinct for 
the different kinds of gravitational perturbations; the imaginary parts of the same quasinormal 
frequencies are still equal to first order in the Gauss-Bonnet parameter, but in the same article 
they have been shown to be distinct to second order in such parameter.

Another limiting case in which there is an isospectrality of quasinormal modes for different 
kinds of perturbations in Einstein gravity in d dimensions is the asymptotic (highly damped) 
limit. This is the limit we will address in this work, for all different kinds of perturbations of 
spherically symmetric black holes, in the presence of perturbative Gauss-Bonnet corrections, 
hoping to clarify if the isospectrality of quasinormal modes is preserved or not with such correc-
tions. We will also consider quasinormal modes of massless scalar test field in the background of 
these black holes. This way, for tensorial perturbations and test scalar fields, we will be able to 
compare the results for the two theories: Einstein-Gauss-Bonnet theory (in which the only mod-
ification to d dimensional Einstein gravity is the introduction of higher derivative corrections) 
and string theory (in which other fields are necessarily present, namely the dilaton).

The article is organized as follows. In section 2 we review a d-dimensional spherically sym-
metric black hole solution in Einstein-Gauss-Bonnet gravity and its large black hole limit. In 
section 3 we review the gravitational perturbation theory of these black holes, writing down the 
master equation and the respective potentials corresponding to these perturbations and also to 
test scalar fields. Given this information, in section 4 we compute the quasinormal spectrum in 
the highly damped limit corresponding to these perturbations and fields using the monodromy 
method. We conclude by discussing our results.

2. Einstein-Gauss-Bonnet black holes

2.1. The Einstein-Gauss-Bonnet action

In d–dimensional Gauss-Bonnet gravity (d > 4) one considers the following action with 
higher derivative corrections:

1

16πGd

∫
M

√−g
(
R+ α(RmnpqRmnpq − 4RmnRmn +R2)

)
ddx, (2.1)

where M is our d-dimensional space time manifold, Gd is the generalized gravitational constant 
and α is a positive coupling constant.

In the context of superstring theories, this action (also always coupled to a dilaton φ and 
eventually to other string fields) represents an α′ correction to Einstein gravity. The whole set 
3
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of corrections is expressed in a perturbative expansion in the inverse string tension α′, of which 
the higher order Gauss-Bonnet term in (2.1) is the leading correction term. From this point of 
view, (2.1) (or its equivalent in string theory) is an effective action. The parameter α in (2.1) is 
to be identified (up to a numerical constant) with the inverse string tension α′. Besides α (or α′), 
in string theory there is also a dilaton term multiplying the Gauss-Bonnet correction, since eφ

represents the string coupling, φ being the dilaton field.
In Gauss-Bonnet gravity one takes a different point of view, considering (2.1) as a com-

plete (and not effective) action and computing exact solutions to its field equations (and not 
just solutions that are perturbative in α; in particular, not assuming that α is necessarily a small 
parameter). This is one of the two very important conceptual differences between Gauss-Bonnet 
gravity and superstring gravity, the other one being the presence/absence of the dilaton.

2.2. A spherically symmetric black hole solution

A general static spherically symmetric metric in d ≥ 4 dimensions can always be written 
depending only on a metric function f (r):

ds2 = −f (r) dt2 + f −1(r) dr2 + r2d�2
d−2. (2.2)

d �2
d−2 = ∑d−2

i=1
∏i−1

j=1 sin2 θjd θ2
i is the canonical metric tensor field of the unit (d-2)-sphere.

In references [16–19], black hole solutions of the field equations from (2.1) are found and 
discussed. We are interested in a spherically symmetric solution of the form (2.2), with

f (r) = 1 + r2

α(d − 3)(d − 4)
(1 − q(r)) , q(r) =

√
1 + 4α(d − 3)(d − 4)μ

(d − 2)rd−1 . (2.3)

The parameter μ is related to the black hole mass through

M = �d−2

8πGd

μ, �d−2 = 2π
d−1

2

�
(

d−1
2

) .

We introduce the parameter R0 which we define by

μ = (d − 2)

2
Rd−3

0 ⇔ R0 =
(

2μ

d − 2

) 1
d−3

. (2.4)

R0 would correspond to the horizon radius of the Tangherlini solution, in the absence of Gauss-
Bonnet corrections (i.e. setting α = 0). For the solution we are considering, this parameter has 
no physical meaning; we introduce it for convenience, and because it is simply related to μ. The 
true horizon radius RH of the black hole (2.3) is related to R0 through

Rd−3
0 = Rd−3

H

(
1 + α

(d − 3)(d − 4)

2R2
H

)
. (2.5)

2.3. The perturbative large black hole limit

In this article, we take the limit of a small coupling constant α. In this limit one is allowed to 
take a perturbative expansion in α. This procedure is similar to the one in string theory, where one 
also takes a perturbative expansion in α′. But the situation there is different, as in string theory 
4
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one must also consider other fields. Most of these fields can be set to 0, but not the dilaton, whose 
couplings imply that it is nonzero and dynamical. Because of that, even in the perturbative small 
α limit string theory is different from the Einstein-Gauss-Bonnet theory we are considering, 
where there isn’t any dilaton.

More concretely, concerning the black hole solution (2.3) in which we are interested, defining 
the dimensionless parameter

λ′ = α

R2
0

, (2.6)

this limit corresponds to the condition λ′ � 1 and, from (2.5), it is equivalent to have α � R2
H

i.e. the limit of large black holes. We take the perturbative expansion in f and consider only 
terms to first order in λ′ as

f (r) = 1 −
(

R0

r

)d−3

+ λ′ (d − 3)(d − 4)

2

(
R0

r

)2d−4

. (2.7)

In order to simplify the notation we define the functions

f0(r) = 1 −
(

R0

r

)d−3

, δf (r) = (d − 3)(d − 4)

2

(
R0

r

)2d−4 1

1 −
(

R0
r

)d−3 , (2.8)

and rewrite (2.7) as

f (r) = f0(r)(1 + λ′δf (r)). (2.9)

We can also consider a perturbative expansion in λ′ in obtaining the physical quantities related to 
the black hole (2.3) in the limit (2.9). The horizon radius RH can be obtained from taking such 
expansion in (2.5), with the result

RH = R0

(
1 − d − 4

2
λ′

)
. (2.10)

The temperature of a spherically symmetric black hole of the form (2.2), like (2.3), is given 
by TH = f ′(RH )

4π
. In the large black hole perturbative limit we are considering, to first order in λ′, 

this temperature reads

TH = d − 3

4πR0

(
1 − λ′ (d − 4)(d − 2)

2

)
. (2.11)

We see that, even in this perturbative limit, the black hole solution (2.3) is different and has 
distinct properties from the d-dimensional stringy solutions with quadratic curvature corrections 
obtained in [20,21].

3. Gravitational perturbations in the perturbative limit

General tensors of rank at least 2 on the (d − 2)-sphere Sd−2 can be uniquely decomposed in 
their tensorial, vectorial and scalar components. That is the case of general perturbations hμν =
δgμν of a d-dimensional spherically symmetric metric like (2.2). For such metric we have then 
scalar, vectorial and (for d > 4) tensorial gravitational perturbations.

Each type of perturbation is described in terms of master variables �a(r, t) (the subscript a
indicates the kind of perturbation). In Einstein gravity, each master variable obeys a second order 
differential equation (“master equation”):
5
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∂2�a

∂x2 − ∂2�a

∂t2 = Va [f (r)]�a. (3.1)

This “master equation” is given in terms of the tortoise coordinate x for the metric (2.2) defined 
by

dx = dr

f (r)
, (3.2)

and of a potential Va [f (r)] that depends on the kind of perturbation one considers [22]: 
VS, VV, VT. We assume the time dependence of the master variables to be of the form

�(x, t) = eiωtψ(x), (3.3)

such that ∂�
∂t

= iω� (for simplicity we drop the subscript a). In this way the master equation 
(3.1) may be written in Schrödinger form, for a generic potential V , as

d2ψ

d x2 + ω2ψ = V [f (r)]ψ. (3.4)

In the presence of higher derivative corrections in the lagrangian, one still has spherically 
symmetric black holes of the form (2.2) and the same type of gravitational perturbations. The 
master equation obeyed by each perturbation variable may change, though: generically, it may 
become a higher order differential equation. But for static black holes in d-dimensional Lovelock 
gravity of arbitrary order it has been shown [23,24] that, perturbing the field equations, one also 
obtains for each perturbation variable a second order master equation like (3.4).

Concretely, the master equation and the corresponding higher-derivative corrected potential 
have been obtained for tensorial perturbations of black holes with leading α′ corrections in string 
theory [10,11].

Gravitational perturbations for this black hole solution have been studied and the higher-
derivative corrected potential has also been obtained for tensorial [25], vectorial and scalar [26]
perturbations of d-dimensional black holes with Gauss-Bonnet corrections. The stability of this 
solution under such perturbations has also been studied in [27]. These are the cases we will ad-
dress in this work in order to compute the quasinormal modes. Therefore we will now review the 
master equations and potentials associated with each of these cases, corresponding to perturbing 
the solution (2.3) of the field equations from (2.1). But first we consider the simpler case of a 
massless scalar test field.

3.1. Massless scalar test field

The field equation of a minimally coupled massless scalar test field in the background of a 
spherically symmetric d-dimensional black hole is of the form of the Schrödinger like master 
equation (3.4), with the minimal effective potential given by

VM(r) = f (r)

(
�(� + d − 3)

r2 + (d − 2)(d − 4)f (r)

4r2 + (d − 2)f ′(r)
2r

)
. (3.5)

� ∈ N is the multipole number, and �(� + d − 3) are the eigenvalues of the laplacian on the 
(d − 2)-sphere Sd−2.

Since the test field is minimally coupled, VM(r) does not have explicit λ′ corrections. Once 
we replace f (r) by its λ′-dependent expression (2.7), we can expand this effective potential 
considering terms up to first order in λ′, with the result
6
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VM(r) = V 0
M(r) + λ′V 1

M(r), (3.6)

V 0
M(r) = VM [f0(r)] = f0(r)

(
(d − 4)(d − 2)f0(r)

4r2 + (d − 2)f ′
0(r)

2r
+ �(� + d − 3)

r2

)
,

(3.7)

V 1
M(r) = − (d − 4)(d − 3)

4

R2d−4
0

r3d−2

((
d2 − 2�2 + 6� − 2d(� + 1)

)
rd

− (2d − 3)(d − 2)Rd−3
0 r3

)
. (3.8)

3.2. Scalar type gravitational perturbations

Scalar type gravitational perturbations of (2.3) are governed by the master equation (3.4), with 
the effective potential taking the form [27]

VS(r) = f (r)U(r)

64r2(d − 3)2A(r)2q(r)8
(
4c q(r) + (d − 1)R(r)

(
q(r)2 − 1

))2 (3.9)

where q(r) was defined in (2.3) and

A(r) = 1

q(r)2

(
1

2
+ 1

d − 3

)
+

(
1

2
− 1

d − 3

)
, (3.10)

R(r) = r2

λ′R2
0(d − 3)(d − 4)

, (3.11)

c = �(� + d − 3)

d − 2
− 1. (3.12)

Finally, the function U takes a rather lengthy form (see appendix A).
Expanding the effective potential above to first order in λ′, we obtain the potential correspond-

ing to scalar perturbations of the solution (2.7) we are looking for as

VS(r) = V 0
S (r) + λ′V 1

S (r), (3.13)

where V 0
S is the uncorrected effective potential present in the master equation associated with 

scalar type gravitational perturbations of the d-dimensional Tangherlini black hole, taking the 
form [22] of the corresponding minimal effective potential given by (3.7):

V 0
S (r) = V 0

M(r). (3.14)

The expression for V 1
S is rather lengthy (see appendix A).

3.3. Vector type gravitational perturbations

Vector type gravitational perturbations of (2.3) are governed by the master equation (3.4), 
with the effective potential taking the form [26]

VV(r) = f (r)

[
(d − 2)c

r2 A(r) + K(r)

(
d2K

dr2 (r) + df

dr
(r)

dK

dr
(r)

)]
(3.15)

where
7
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K(r) = 1√
rd−2A(r)q(r)

, (3.16)

A(r) is given by (3.10) and q(r) was defined in (2.3). Since we are only considering terms up to 
first order in λ′, we expand the effective potential above as

VV(r) = V 0
V (r) + λ′V 1

V (r) (3.17)

where V 0
V is the uncorrected effective potential present in the master equation associated with 

vector type gravitational perturbations of the d-dimensional Tangherlini black hole, taking the 
form [22]

V 0
V (r) = f0(r)

4(� − 1)(d + � − 2) + (d − 2)

(
d − 3(d − 2)

(
R0
r

)d−3
)

4r2 (3.18)

and

V 1
V (r) = − Rd−1

0

r3d+1

(d − 4)

2

[
−Rd−3

0

(
(3d − 5)�2 + (d − 3)(3d − 5)�

+ 3

2
(d − 12)(d − 3)d − 36

)
rd+3

+ 2(d − 1) (d(� − 3) + �(� − 3) + 4) r2d

+ (d(d(4d − 39) + 91) − 62)
R2d−6

0

2
r6

]
.

(3.19)

3.4. Tensor type gravitational perturbations

Tensor type gravitational perturbations of (2.3) are governed by the master equation (3.4), 
with the effective potential taking the form [25]

VT(r) = f (r)

[
�(� + d − 3)

r2

(
3 − B(r)

A(r)

)
+ K(r)

(
d2K

dr2 (r) + df

dr
(r)

dK

dr
(r)

)]
(3.20)

where

B(r) = A(r)2
(

1 + 1

d − 4

)
+

(
1 − 1

d − 4

)
. (3.21)

Since we are only considering terms up to first order in λ′, we expand the effective potential 
above as

VT(r) = V 0
T (r) + λ′V 1

T (r). (3.22)

We obtain for V 0
T (r) the same λ′ = 0 potential as for minimally coupled test fields, given by 

(3.7), and for scalar perturbations, given by (3.14):

V 0
T (r) = V 0

S (r) = V 0
M(r). (3.23)

For V 1(r) we obtain
T

8
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V 1
T (r) = Rd−1

0

2r3d+1

(
Rd−3

0

(
((d − 11)d + 16)�2 + d(d − 7)2�

− d

2
((d − 7)(d − 6)d − 20) − 48� + 8

)
rd+3

+ 4(d − 1)(d(� − 1) + (� − 3)� + 4)r2d

+ (d − 4)((d − 5)d(2d − 7) − 22)
R2d−6

0

2
r6

)
.

(3.24)

4. Quasinormal modes, the asymptotic limit and the monodromy method

Quasinormal modes associated to gravitational perturbations of asymptotically flat spherically 
symmetric black holes are solutions to the corresponding master equation (3.4) subject to the 
boundary conditions

ψ ∝ e−iωx , x → +∞ (r → +∞) ; (4.1)

ψ ∝ eiωx , x → −∞ (r → RH ) . (4.2)

These boundary conditions state that waves can escape into infinity or inside the black hole. 
They reflect the fact that black holes are dissipative systems; hence, quasinormal frequencies are 
complex. The time dependence of the form (3.3) requires the imaginary part of the quasinormal 
frequencies to be positive - otherwise the perturbation would grow indefinitely with time, which 
would mean an instability of the black hole solution. Thus, imposing boundary conditions (4.1)
and (4.2) is equivalent to the existence of two terms of the form e±iωx . For x → +∞ one of such 
terms is exponentially growing, while the other is exponentially vanishing. The same is true for 
x → −∞, but with the two terms switching their behavior. This poses an operational problem in 
handling and distinguishing these two terms.

But one can allow r (and x) to take complex values and consequently assume an analytic 
continuation of functions of r to the complex plane. In this case, near the event horizon we 
can distinguish the two exponential terms by computing the respective monodromies around it: 
indeed, the boundary condition (4.2) can be set as a monodromy condition. Furthermore, one can 
take the contour of a Stokes line defined by Im (ωx) = 0 in the complex r plane. Through Stokes 
lines we have |e±iωx | = 1: the asymptotic behavior of e±iωx is always oscillatory and there will 
be no problems with exponentially growing versus exponentially vanishing terms. Thus if one 
considers the Stokes lines, imposing the boundary condition (4.1) in the complex r plane no 
longer poses a challenge to an approximate analytical method.

In order to compute analytical expressions for quasinormal frequencies, we resort to the 
monodromy method [29]. This method has been used for the calculation of highly damped 
quasinormal modes in four and higher dimensions in Einstein gravity [30,31]. Corrections to 
these results in terms of the inverse of the overtone number have been computed analytically, 
using the same method, in [32]. These studies have been extended to string-theoretical [13], loop 
quantum-corrected [33] and regular black holes [34].

In order to apply this method, as we mentioned, we need to consider the coordinate r as 
complex-valued, and the master equations (3.4) as differential equations defined on the complex 
plane. The general idea of the method is to pick two closed homotopic contours on the complex 
r-plane. Both these contours enclose only the physical horizon r = RH : none of them encloses 
the origin of the complex r-plane nor any other complex root of the metric function f (r) (“fic-
titious horizons”). One of these contours, the “big contour”, seeks to encode information of the 
9
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boundary condition (4.1) on the monodromy of ψ associated with a full loop around it. The other 
contour, the “small contour”, seeks to encode information of the boundary condition (4.2) on the 
monodromy of ψ associated with a full loop around it. Since both contours are homotopic, the 
monodromy theorem asserts that the respective monodromies must be the same. Thus, equating 
them yields an analytic solution to the values of the quasinormal frequencies ω.

We restrict our analysis in this article to the highly damped regime of quasinormal modes 
defined by the condition

Im (ω) � Re (ω) . (4.3)

This condition is equivalent to ω being approximately imaginary. The definition of a Stokes line 
comes thus as

Im (ωx) = 0 ⇒ Re (x) = 0. (4.4)

4.1. Choice of tortoise coordinate, Stokes lines and perturbation theory

The tortoise coordinate (3.2) for the full Gauss-Bonnet metric is hard to deal with, as it is 
impossible to express it explicitly because of the complicated form of the metric function (2.3). 
Since we are considering the limit in which λ′ is a perturbative parameter, we can take the metric 
function (2.7) we are working with. The corresponding tortoise coordinate x can be explicitly 
computed: it is given, to first order in λ′, in terms of the Gauss hypergeometric function 2F1, up 
to an integration constant, by

x = 2F1

(
1,− 1

d − 3
; d − 4

d − 3
;
(

R0

r

)d−3
)

r

− 2F1

(
2,

2d − 5

d − 3
;1 + 2d − 5

d − 3
;
(

R0

r

)d−3
)

(d − 3)(d − 4)

2(2d − 5)

(
R0

r

)2d−6

rλ′ + CX. (4.5)

Close to the origin of the complex plane, and with an adequate choice of the constant CX, this 
coordinate x can be approximated by

x ∼ − 1

d − 2

rd−2

Rd−3
0

+ (d − 3)(d − 4)

2
λ′ R2

0

r
. (4.6)

We see that, because of the λ′ correction, there is a singularity in the coordinate x at r = 0.
In order to apply the monodromy method, it is essential to know the topology of the Stokes 

lines, given by the condition Re(x) = 0. Indeed, the monodromy method is very sensitive to the 
structure of the tortoise at the origin (namely the topology of the Stokes lines), as well as to the 
location in the complex plane of the metric singularities (r = 0) and branch points of the tortoise 
coordinate (the real and fictitious horizons).

Because of the singularity of x in (4.6), close to the origin those lines Re(x) = 0 are very 
difficult to handle; one expects them in this region to look very different from the Stokes lines 
given by the condition Re(z) = 0, corresponding to the tortoise coordinate z of the Tangherlini 
solution. This coordinate is given by

dz = dr
(4.7)
f0(r)

10
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with f0(r) defined in (2.8). This definition of z corresponds to the λ′ = 0 limit of the perturbative 
expansion (2.9); after integration, the explicit result corresponds to the same limit in (4.5) and 
(4.6), without any singularity at r = 0.

The change in the topology of the Stokes lines of the tortoise coordinate induced by the 
continuous variation of a parameter is not a new phenomenon. For instance, as it is well known, 
both Schwarzschild–Tangherlini and extremal Reissner-Nordström black holes are two limits of 
nonextremal Reissner-Nordström black holes in d dimensions, corresponding to variations of 
the black hole charge Q respectively from 0 to the extremal charge-to-mass bound (Q = M in 
adequate units). In both these cases, the quasinormal frequencies cannot be obtained by taking 
the corresponding limits of the quasinormal frequencies for the non–extremal solution. In the 
first case, discussed in [28], since the metric function is distinct, the topology of the Stokes lines 
corresponding to Reissner-Nordström black holes is different from the one of Schwarzschild–
Tangherlini black holes (in this sense, the Schwarzschild limit is singular). For extremal and 
nonextremal Reissner-Nordström black holes in d dimensions the topology of the Stokes lines 
is the same, but the number of real and fictitious horizons is obviously different. As discussed 
in [31], in the nonextremal case the “big” monodromy contour passes between the two physical 
horizons. It turns out that one cannot take the extremal limit without crossing the inner horizon 
through the “big” monodromy contour, thus invalidating taking the limit of the monodromy.

In general, when taking limits of the parameters with the monodromy method, one must al-
ways check whether one is crossing singularities/branch points or changing the topology of the 
contour. In an affirmative case, the limit on the parameters will not be valid and one will have to 
address the calculation separately.

The case we are dealing with in this work has a different nature: it corresponds to introducing 
a new parameter λ′, turning it from 0 to nonzero. The number of horizons (physical and fictitious) 
remains unchanged after introducing such parameter. Differently than the electric charge in the 
Reissner-Nordström solution, this parameter λ′ is always infinitesimal (actually, perturbative). 
From (2.8) the corrections δf to the metric function of the Tangherlini solution proportional to 

this parameter vary as 
(

R0
r

)2d−4
, which means they decrease with r faster than the uncorrected 

metric function f0 itself. Far from the origin, the effects of λ′ are expected to become less signif-
icant: the tortoise coordinate x should be very well approximated by z, and the respective Stokes 
lines should be very similar.

Close to the origin, the effects of λ′ can be significant, as one can see for instance from the 
simple pole at r = 0 of (4.6). In a neighborhood of the origin (and since it is a singular point) the 
big contour actually goes around without crossing it, as depicted in Fig. 1. In such neighborhood 
we can deform the Stokes lines corresponding to x into the ones of z without crossing any (real 
or fictitious) horizon. For the same approximation of x by z to be valid, from (4.6) we must have 
(d−3)(d−4)

2 λ′ R2
0

r
� 1

d−2
rd−2

Rd−3
0

or, equivalently,

r � d−1

√
(d − 2)(d − 3)(d − 4)

2
λ′R0. (4.8)

This condition must be verified in order to use z as an approximation to x. It was obtained from 
(4.6), assuming r to be close to the origin. One may wonder if this assumption of smallness 
of r is consistent with the result (4.8). These two simultaneous assumptions are essential for 
the consistency of our approximation: namely both should be obeyed by the radius of the arc-
shaped portion of the big contour depicted in Fig. 1. Indeed, in order to compute the monodromy 
11
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Fig. 1. Schematic representation of the small arc-shaped portion of the big contour, in the surroundings of r = 0, as the 
blue dashed line. The Stokes lines corresponding to the coordinate z are represented by red curves. Naturally, not all 
Stokes lines are depicted.

associated to the big contour, we will need to solve the master equation near the origin, but that 
same arc-shaped portion should begin and end at Stokes lines, which should be similar to those 
of z.

The answer is positive: since λ′ is a perturbative infinitesimal parameter, r can verify the 
condition (4.8) and still be “small”. Therefore we do not need to worry about the Stokes lines 
corresponding to x and we can take as the big contour the same one taken in Einstein gravity. The 
λ′ terms will be treated as higher derivative corrections, according to our perturbative approach. 
A similar perturbative approach for the calculation of asymptotic quasinormal modes through 
the monodromy method has also been taken, in a different context (next to leading order terms 
in the mode number), in the work [35].

Taking the second order derivative in (3.4) with respect to z, we can rewrite the master equa-
tions in terms of this coordinate as(

dz

dx

)2
d2ψ

dz2 + d

dr

(
dz

dx

)
dr

dx

dψ

dz
+

(
ω2 − Va

)
ψ = 0, (4.9)

with a = S, V, T, M. Also from (2.9) and the definitions (3.2), (4.7) we can write, to first order in 
λ′, (

dz

dx

)2

= 1 + 2λ′δf (r) (4.10)

d

dr

(
dz

dx

)
dr

dx
= λ′ d(δf )

dr
(r). (4.11)

Expanding the solution of (4.9) as

ψ(r) = ψ0(r) + λ′ψ1(r), (4.12)

replacing the expansion above in (4.9) and solving the equation perturbatively in powers of λ′, we 
obtain two distinct linear ordinary differential equations. The first one, homogeneous, of zeroth 
order in λ′, is

d2ψ0
2 +

(
ω2 − V 0

a

)
ψ0 = 0. (4.13)
dz

12
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The second one, nonhomogeneous, of first order in λ′, is

d2ψ1

dz2 +
(
ω2 − V 0

a

)
ψ1 = ξa (4.14)

where

ξa = ξ1
d2ψ0

dz2 + ξ2
dψ0

dz
+ (ξa)3ψ0. (4.15)

In the expression above, we defined functions

ξ1(r) = −2δf (r) (4.16)

ξ2(r) = −d(δf )

dr
(r)f (r) (4.17)

(ξa)3(r) = V 1
a (r). (4.18)

The subscript a reflects the dependence of ξa on the kind of potential that one is considering 
(gravitational perturbation or scalar field), a dependence which is explicit through (ξa)3 but, 
from (4.13), also implicit in ψ0.

4.2. Behavior close to the origin

In the sequence, namely for the differential equations (4.13), (4.14) and the functions (ξa)3
in (4.18), we will need the asymptotic behavior near the origin of the complex r-plane of ξ1, ξ2
and each of the effective potentials. We will also need to rewrite all these asymptotic expansions 
with respect to the tortoise coordinate z of d-dimensional Tangherlini black hole defined in (4.7). 
This coordinate is given by the λ′ = 0 limit of (4.5), which can be rewritten in the form

z(r) = r + 1

2

d−4∑
n=0

1

kn

log

(
1 − r

Rn

)
(4.19)

where

kn = 1

2
f ′

0(Rn) ; Rn = R0e
2πi n

d−3 (4.20)

for 0 ≤ n ≤ d − 4. We see that z(r) is a multivalued function: from (4.7), each zero of f0(r) is a 
branch point. There are d − 3 zeros of f0(r), corresponding to the values of Rn. Of these, only 
the solution R0 = RH corresponds to a physical horizon; the other d −4 zeros are the “fictitious” 
horizons.

Near the origin of the complex r-plane we have the λ′ = 0 limit of (4.6):

z(r) ∼ − rd−2

(d − 2)Rd−3
0

. (4.21)

The asymptotic behaviors for the effective potentials can be obtained after some algebraic 
manipulations.

For the potentials (3.7) and (3.8) for minimally coupled scalar fields, we get

V 0
M(r) ∼ − (d − 2)2R2d−6

0

4r2d−4 , (4.22)

V 1
M(r) ∼ (d − 4)(d − 3)(2d − 3)(d − 2) R3d−7

0 . (4.23)

4 r3d−5

13
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For the potentials (3.14) and (A.3) for scalar perturbations,

V 0
S (r) ∼ − (d − 2)2R2d−6

0

4r2d−4 , (4.24)

V 1
S (r) ∼ (d − 4)((d − 5)d(2d − 7) − 22)

4

R3d−7
0

r3d−5
. (4.25)

For the potentials (3.18) and (3.19) for vectorial perturbations,

V 0
V (r) ∼ 3(d − 2)2R2d−6

0

4r2d−4 , (4.26)

V 1
V (r) ∼ − (d − 4)(d(d(4d − 39) + 91) − 62)

4

R3d−7
0

r3d−5
. (4.27)

For the potentials (3.23) and (3.24) for tensorial perturbations,

V 0
T (r) ∼ − (d − 2)2R2d−6

0

4r2d−4 , (4.28)

V 1
T (r) ∼ (d − 4)((d − 5)d(2d − 7) − 22)

4

R3d−7
0

r3d−5
. (4.29)

We knew that V 0
M = V 0

T = V 0
S ; it is not a surprise that their asymptotic behaviors are also the 

same. From (4.25) and (4.29) we immediately notice that asymptotically we also have V 1
T = V 1

S .
Finally, replacing (4.21) in the asymptotic expressions for the potentials above yields

V 0
M(z) = V 0

S (z) = V 0
T (z) ∼ − 1

4z2 . (4.30)

For minimally coupled fields we also have

V 1
M(z) ∼ (d − 4)(d − 3)(2d − 3)(d − 2)

4

R
d−1
d−2
0

(−(d − 2)z)
3d−5
d−2

, (4.31)

while, for scalar and tensorial perturbations,

V 1
S (z) ∼ V 1

T (z) ∼ (d − 4)((d − 5)d(2d − 7) − 22)

4

R
d−1
d−2
0

(−(d − 2)z)
3d−5
d−2

. (4.32)

For vectorial perturbations the corresponding results are

V 0
V (z) ∼ 3

4z2 , (4.33)

V 1
V (z) ∼ − (d − 4)(d(d(4d − 39) + 91) − 62)

4

R
d−1
d−2
0

(−(d − 2)z)
3d−5
d−2

. (4.34)

Near the origin of the complex r-plane, from (2.8), (4.16), (4.17) we can write the asymptotic 
expansions for ξ1, ξ2:

ξ1(r) ∼ (d − 4)(d − 3)
Rd−1

0

rd−1 , (4.35)

ξ2(r) ∼ (d − 4)(d − 3)(d − 1) R2d−4
0 . (4.36)
2 r2d−3

14
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Fig. 2. Schematic depiction of the big contour as the blue dashed line. Red curves are Stokes lines (not all Stokes lines 
are depicted). D and U are the regions where the boundary condition (4.1) may be imposed.

Rewriting these expressions with respect to the tortoise coordinate z, given by (4.21), yields

ξ1(z) ∼ (d − 4)(d − 3)
R

d−1
d−2
0

(−(d − 2)z)
d−1
d−2

(4.37)

and

ξ2(z) ∼ (d − 4)(d − 3)(d − 1)

2

R
d−1
d−2
0

(−(d − 2)z)
2d−3
d−2

. (4.38)

Finally, from (4.18), the asymptotic expansions for (ξa)3 for a = M, T, V, S can be obtained 
from the corresponding expansions of V 1

a given by (4.31), (4.32) and (4.34).

4.3. The monodromy of the big contour

Now we compute the monodromy of ψ associated with a full clockwise loop around the big 
contour, depicted in Fig. 2, starting and ending at D.

In order to attain reliable information on how ψ changes around the big contour, we resort to 
WKB theory. Near the origin of the complex r-plane, the WKB approximation fails as r = 0 is a 
singular point of V 0

a for every a = S, V, T, M. Thus, we need to analytically solve the differential 
equations (4.13) and (4.14) in this region.

From the asymptotic limits (4.30), (4.33), equation (4.13) can be written as

d2ψ0

dz2 +
(

ω2 − j2 − 1

4z2

)
ψ0 = 0, (4.39)

with j = 0 for the potentials in (4.30), and j = 2 for the potential in (4.33). Following the 
procedure of [29,31] we considered the general solution, for arbitrary j , of the above differential 
equation, and at the end taking the adequate limit j → 0 or j → 2. Such solution is given by

ψ0(z) = A+
√

2π
√

ωzJ j
2
(ωz) + A−

√
2π

√
ωzJ− j

2
(ωz), (4.40)

where J j (ωz) are Bessel functions of the first kind and A+, A− arbitrary constants.
± 2
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From here we can proceed in an identical fashion to the analogous computation performed in 
[13]. The final monodromies are given in terms of quantities that depend (in a complicated way) 
on the type of perturbation through the perturbation potentials Va and the value of j . We have

(Ma)1 =
(

A+e5iα+ + A−e5iα−

A+eiα+ + A−eiα−

)(
1 + λ′δ (Ma)1

)
e−iω�z (4.41)

with

�z = −2πiR0

d − 3
, (4.42)

α± = π

4
(1 ± j) , (4.43)

A±(j) = ∓ ie−iα∓

2
csc

(
jπ

2

)
. (4.44)

Taking both the limit j → 2 (for vectorial perturbations) and j → 0 (for the other cases), we get 
in both cases the same result for the uncorrected part of all monodromies [31]:

A+ei5α+ + A−ei5α−

A+eiα+ + A−eiα− = −3. (4.45)

The correction term to the monodromies in (4.41) is given by

δ (Ma)1 = �+
F ei5α+ + �−

F ei5α−

A+e5iα+ + A−e5iα− − �+
I eiα+ + �−

I eiα−

A+eiα+ + A−eiα− (4.46)

with

�±
I (d, j,ω,R0) = (R0ω)

d−1
d−2

3∑
k=1

�±
k (d, j,1,1), (4.47)

B±(d, j,ω,R0) = A±
(
�+

I e−iα+ + �−
I e−iα−

)
, (4.48)

�±
F (d, j,ω,R0) = (R0ω)

d−1
d−2

3∑
k=1

�±
k (d, j,1,1) + B±. (4.49)

Explicit expressions for the functions �±
k , �±

k , k = 1, 2, 3 can be found in [13].
The sums in k in the definitions of �±

I , �±
F have their origin in the analogous sum in the 

definition of ξa : each of the functions �±
k , �±

k , k = 1, 2, 3 in (4.47) and (4.49) corresponds to 
the term including ξk in (4.15), with ξk given in (4.16), (4.17), (4.18). Each of these functions 
�±

k , �±
k has a different form, because of the different coefficients multiplying each ξk in (4.15), 

but always involving sums of products/quotients of Gamma functions, which we designate by 
H(m, n, k), given by

H(m,n, k) := �
( 1

2 − k
2

)
�

(− k
2

)
�

(
k
2 + m

2 + n
2 + 1

2

)
2
√

π�
(− k

2 + m
2 − n

2 + 1
2

)
�

(− k
2 + n

2 − m
2 + 1

2

)
�

(− k
2 + m

2 + n
2 + 1

2

) .

(4.50)

The complete expression for δ (Ma)1 in (4.46) is a sum of 96 of these terms, all with different 
coefficients. Specifically there are terms depending on
16
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H
(

±j

2
,±j

2
,− 1

d − 2

)
,H

(
±j

2
,±j

2
,−d − 1

d − 2

)
,H

(
±j

2
,±j

2
,−2d − 3

d − 2

)
. (4.51)

We will not reproduce these terms here, since they can all be found in [13]. The calculation of all 
these expressions for a generic value of j is evidently a formidably complicated task.

For the case j = 0 (one of the two cases we will need), from (4.51) the functions H(m, n, k)

that arise are always of the form H (0,0, k). Using the known properties of the Gamma functions

�(x + 1) = x�(x), (4.52)

�(x)�(1 − x) = π

sin(πx)
, (4.53)

one can easily show that these functions are given by

H (0,0, k) =
√

π�
(− k

2

)
2�

( 1−k
2

)3
sin

( 1−k
2 π

) . (4.54)

One can then evaluate H (0,0, k) for the values of k referred in (4.51).
The dependence of the monodromy (Ma)1 on the type of perturbation is expressed in the 

value of j , as we mentioned (or equivalently on the potential V 0
a ), but also on (ξa)3 (or equiva-

lently on the potential V 1
a ). The result for δ (Ma)1 in (4.46) is always of the form

δ (Ma)1 =
(

R0ω

d − 2

) d−1
d−2

e− 2iπ
d−2 �a, (4.55)

with a factor �a depending on the type of perturbation.
For test scalar fields, with j = 0 and (ξM)3 given by (4.31), we obtained

�M = 8

3

π2

2
1

d−2

(d − 4)(d − 3)(d − 2)

d − 1

�
(

1
d−2

)
[
�

(
d−1
2d−4

)]4 sin

(
π

2(d − 2)

)
. (4.56)

For tensorial perturbations, we also take j = 0 but considering (ξT)3 given by (4.32). For 
scalar perturbations we should consider j = 0 and (ξS)3 but, as we know from (4.32), (ξS)3 =
(ξT)3. This way, the result for �S will be the same as the one for �T.

For vectorial perturbations we must take j = 2. From (4.51) this means the functions 
H(m, n, k) that arise in the calculation of (MV)1 are always of the form H (±1,±1, k). From 
the definition (4.50) and using (4.53), one can show that

H (1,1, k) = H (−1,−1, k) = −H (−1,1, k) = −H (1,−1, k) = 1 + k

1 − k
H (0,0, k) (4.57)

with H (0,0, k) given by (4.54). One can this way evaluate H (±1,±1, k) for the values of k
referred in (4.51). We can then proceed computing �V, taking j = 2 also in the adequate coef-
ficients and the value (4.34) for (ξV)3. Rather surprisingly, because of the changes motivated by 
taking j = 2 in (4.57) and in the adequate coefficients, �V turned out to be identical to �T and 
�S, despite (ξV)3 �= (ξT)3, (ξS)3:

�T = �V = �S = 2
√

π

3

(d(d − 5) + 2)(d − 4)

d − 1

�
(

1
2(d−2)

)
�

(
d−3

2(d−2)

)
�

(
d−1

2(d−2)

)2 sin

(
π

d − 2

)
.

(4.58)
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Fig. 3. Schematic depiction of the small and big contours as the orange and blue dashed lines respectively. The orange 
contour is to be interpreted as arbitrarily close to RH . The Stokes lines are depicted by red curves. Naturally, not all 
Stokes lines are depicted.

To summarize, the monodromy of ψ associated with a full clockwise loop around the big 
contour is given by

(Ma)1 = −3

(
1 + λ′

(
R0ω

d − 2

) d−1
d−2

e− 2iπ
d−2 �a

)
e−iω�z, (4.59)

with �z given by (4.42) and �a given by (4.56), for test scalar fields, and by (4.58), for all kinds 
of gravitational perturbations.

4.4. The monodromy of the small contour

Now we compute the monodromy of ψ , associated with a full clockwise loop around the 
small contour, depicted in Fig. 3.

From (2.10) we write, up to first order in λ′, the asymptotic expansion near the real horizon 
RH

1

f (r)
∼ 1

(d − 3)
(

1 − RH

r

) [
1 + λ′ (d − 4)(d − 1)

2

]
. (4.60)

From the definition (3.2), integrating the expression above yields the asymptotic expansion of 
the tortoise coordinate x near RH :

x(r) ∼ RH

d − 3
log (r − RH )

[
1 + λ′ (d − 4)(d − 1)

2

]
. (4.61)

The monodromy of x(r) in (4.61), associated with a full clockwise loop around the real horizon 
RH , is given by

�x = −2πiRH

d − 3

[
1 + λ′ (d − 4)(d − 1)

2

]
= −2πiR0

d − 3

[
1 + λ′ (d − 4)(d − 2)

2

]
. (4.62)

One easily checks that

lim
r→RH

Va(r) = 0 (4.63)

for all a = S, V, T, M. Thus, near the event horizon RH , we can write the master equations as
18



F. Moura and J. Rodrigues Nuclear Physics B 993 (2023) 116255
d2ψ

dx2 + ω2ψ = 0 (4.64)

whose solution, imposing the boundary condition (4.2) in the event horizon, is

ψ(x) = C+eiωx. (4.65)

for some C− ∈ C. Computing the monodromy of the expression above, associated with a full 
clockwise loop around the event horizon RH , yields

(Ma)2 = eiω�x . (4.66)

4.5. Equating monodromies: the final result

Now, we want to relate the monodromies (Ma)1 and (Ma)2.
We notice the big contour is homotopic to the small one. This is so, because one can continu-

ously deform the big contour into the small one. Thus, using the monodromy theorem, we know 
the monodromies of ψ , associated with the full clockwise loops around the big and the small 
contours, are equal. Hence, the equation

(Ma)1 = (Ma)2 (4.67)

must hold. Using equations (4.59) and (4.66), we can rewrite the equation above as

−3(1 + λ′δ(Ma)1)e
−iω(�x+�z) = 1. (4.68)

Taking the logarithm on both sides of the equation above yields

ln (3) + (2k + 1)πi − iω(�x + �z) + log(1 + λ′δ(Ma)1) = 0 (4.69)

for k ∈Z. Taylor expanding the last logarithm in the equation above, up to first order in λ′, yields

ln(3) + (2k + 1)πi − iω(�x + �z) + λ′δ(Ma)1 = 0. (4.70)

Considering the expressions for �z, �x (4.42) and (4.62), we can write

�x + �z = −4πiR0

d − 3

(
1 + λ′ (d − 4)(d − 2)

4

)
. (4.71)

The equation above and (4.55) allow us to rewrite (4.70) as

ln(3) + (2k + 1)πi = ω
4πR0

d − 3

(
1 + λ′ (d − 4)(d − 2)

4

)
− λ′

(
R0ω

d − 2

) d−1
d−2

e− 2iπ
d−2 �a.

(4.72)

The results should be written in terms of physical variables, instead of the parameter R0. It is 
customary to write the QNM frequencies with respect to the Hawking temperature TH of the 
black hole given by (2.11). We can solve (2.11) for R0 as a function of TH and replace it in 

(4.72) and in the definition (2.6) of λ′, obtaining λ′ = α
(

4π
d−3

)2
T 2

H . Solving for ω
TH

one gets

ω

TH

= [ln(3) + (2k + 1)πi]

[
1 + α

(
4π

d − 3

)2

T 2
H

(
(d − 4)(d − 2)

4

+
[

d − 3
] d−1

d−2
[

ω
] 1

d−2

e− 2iπ
d−2 �a

)]
.

(4.73)
4π(d − 2) TH
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This is a transcendental equation for ω
TH

. Recalling that we have been working in the highly 

damped limit (4.3), we can take ω
TH

∣∣∣
α=0

≈ (2k + 1)πi in the α correction in (4.73), obtaining 

this way the final expression for the α-corrected asymptotic quasinormal spectra:

ω

TH

= [ln(3) + (2k + 1)πi]

[
1 + α

(
4π

d − 3

)2

T 2
H

(
(d − 4)(d − 2)

4

+
[

d − 3

d − 2

] d−1
d−2

[
2k + 1

4

] 1
d−2 �a

4π
e− 3πi

2(d−2)

)]
,

(4.74)

with �a given by (4.56), for test scalar fields, and by (4.58), for all kinds of gravitational pertur-
bations. We also take k ∈N in order to have Im (ω) > 0 which, from our conventions in (3.3), is 
a necessary condition for the stability of the black hole.1

This expression has the same form as the ones previously derived in [13] for the black hole 
solution with higher derivatives from string theory obtained in [20], the only difference coming 
from the distinct values of the Hawking temperature, giving rise to a different value of the k-
independent correction term in (4.74). This term will be actually negligible in the large k limit, 
which is the asymptotic limit.

Because of the e− 3πi
2(d−2) term the α correction is complex, which means it will affect both the 

real and the imaginary parts of ω. The real part of the asymptotic limit of ω
TH

is then no longer 
equal to the universal value ln(3): because of the α-correction, it now also depends on the space-

time dimension d and on the mode number k. We have evaluated numerically 
[

d−3
d−2

] d−1
d−2 �a

4π
for 

the relevant values of d in the context of superstring theory. This factor grows monotonically 
with d , varying from approximately 0.19 (corresponding to d = 5) to approximately 13.5 (corre-
sponding to d = 10), for �T, �V, �S. The values of �M, on the same range, are slightly larger, 
varying from approximately 0.58 (corresponding to d = 5) to approximately 14.48. Just for com-
parison, (d−2)(d−4)

4 varies between 0.75 and 12 on the same range. In order to compare the orders 

of magnitude of the two correction terms in (4.74), one must also consider the factor 
[2k+1

4

] 1
d−2

multiplying the term with �a . For values of k that are large but not very large, the two correction 
terms in (4.74) are of comparable orders of magnitude and should be considered (specially for 
larger d , considering the 1

d−2 power of 2k +1). But in general, the larger the value of k, the more 
negligible the k-independent term becomes. For large k, one considers just the k-dependent term, 

which is multiplied by the phase e− 3πi
2(d−2) and by the α = 0 term (2k + 1)πi. There will be a cor-

rection term multiplied by cos 3π
2(d−2)

(always positive, affecting Im (ω)) and another correction 

term multiplied by sin 3π
2(d−2)

(also always positive, affecting Re (ω)). The relative magnitude of 
these two corrections depends of course on d through those trigonometric terms, but we may 
conclude that, for every value of d , the higher derivative corrections we considered increase the 
magnitudes of both Re (ω) and Im (ω).

In a perturbative expansion the correction terms should be relatively small. The perturbation 
parameter λ′ defined in (2.6) is supposed to be small in magnitude in our perturbative approach, 
but for the k-dependent correction term to be small (even if multiplied by λ′), k cannot be too 

1 Some authors use the opposite convention, i.e. Im (ω) < 0. This would be equivalent to taking the complex conjugate: 
in (3.3) and in the boundary conditions (4.1) and (4.2). In order to express our results in this convention, one should take 
the complex conjugate of every calculation, namely of the monodromies (Ma)1, (Ma)2 and of the final result (4.74).
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large. As we argued in [13], consistency with the condition (4.3) defining the highly damped limit 
used in our derivation requires k to be large enough such that the condition (2k + 1)π � ln(3) is 
valid, but k should not be arbitrarily large.

5. Conclusions

In this article, we have studied quasinormal modes of spherically symmetric d dimensional 
black holes in Gauss-Bonnet gravity, also considered perturbatively, equivalently to having large 
black holes, having taken the asymptotic limit and computed them analytically, using the mon-
odromy method. We concluded that the magnitudes of both Re (ω) and Im (ω) increase by con-
sidering the Gauss-Bonnet higher derivative corrections, when compared to the corresponding 
results in Einstein gravity. Furthermore we have obtained the same result for the three different 
kinds of perturbations (tensorial, vectorial and scalar), which means that the isospectrality of 
quasinormal modes for different kinds of perturbations in the asymptotic limit is preserved in the 
presence of perturbative Gauss-Bonnet corrections.

This isospectrality is a remarkable result, since as we have seen in section 4.3 the expression 
for the monodromy of the big contour depends explicitly on the potential corresponding to the 
perturbation being considered (more precisely, on its asymptotic expansion close to the origin). 
For vectorial perturbations, these asymptotic expansions are different than for the other kinds, 
both at α = 0 and to first order in α (the Gauss-Bonnet parameter in which we have made a per-
turbative expansion). This difference gives rise to different asymptotic master equations (which 
we also considered perturbatively in α) close to the origin. At order α = 0, the asymptotic mas-
ter equation close to the origin (4.39) is such that the corresponding value of j for vectorial 
perturbations is different than for the other kinds. This affects the coefficients of many terms in 
the monodromy, as we mentioned. To first order in α, the asymptotic potential corresponding 
to vectorial perturbations is different than for the other kinds, giving rise to different values of 
(ξa)3 in (4.18) that directly affect the monodromy. The net effect of the two changes (of j and 
(ξa)3) for vectorial perturbations is such that the total value of the monodromy does not change: 
it is the same for all kinds of gravitational perturbations, and so is the spectrum of asymptotic 
quasinormal modes with Gauss-Bonnet corrections, to first order in α.

We have also considered test scalar fields propagating in the same kind of black holes. These 
fields satisfy the same field equation, with the same potential (and logically the same spectrum of 
quasinormal modes), as tensorial gravitational perturbations in Einstein gravity. In the presence 
of higher derivative corrections the potentials become distinct and, as we have shown, so do 
the spectra of quasinormal modes (although the functional form of the corrected frequencies 
is analogous in both cases). The isospectrality of asymptotic quasinormal modes with Gauss-
Bonnet corrections we observed is, therefore, valid only for gravitational perturbations.

There is a potential conflict between the asymptotic limit of quasinormal modes and the per-
turbative limit of large black holes that we have taken. The imaginary parts of these frequencies 
grow with the mode number k to infinity. Although the growth of the correction terms is more 
moderate than the one of the uncorrected parts, they also grow arbitrarily with k. But the correc-
tions to the quasinormal mode frequencies, like any perturbative correction, are supposed to be 
small. This means that our result is valid for values of k which are large enough for the asymptotic 
condition to be verified, but not arbitrarily large. The maximum allowed value of k depends on 
the magnitudes of the Gauss-Bonnet constant (which is expected to be very small), but also of the 
dimensional-dependent factors of the corrections. We have evaluated numerically these factors, 
both for the gravitational perturbations and for the test scalar fields. We concluded that, although 
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growing with the spacetime dimension d , the magnitude of these factors is perfectly compatible 
with a perturbative expansion for the relevant values of d in the context of superstring theory.

Our results have the same form as the ones for the black hole solution with higher derivatives 
from string theory obtained in [13]. There is no difference between perturbative Gauss-Bonnet 
gravity and string theory concerning asymptotic quasinormal mode frequencies for spherically 
symmetric large black holes, at least for the cases whose results are known in string theory 
(tensorial perturbations and test fields). Since the only difference in these two theories, as we 
mentioned, is the presence (in string theory) of the (nonconstant) dilaton field, we conclude that 
this field does not affect the asymptotic quasinormal mode frequencies, at least for those two 
cases that were previously considered. In future works we plan to study the remaining cases in 
string theory.

The obtained results indicate a tendency of the highly damped quasinormal mode frequencies 
for large black holes in Gauss-Bonnet gravity. In this limit, one cannot distinguish the spectra of 
QNMs associated to different gravitational perturbations. It would be interesting to extend this 
study to black hole solutions with higher order corrections (namely α′3 corrections from string 
theory), in order to figure out if this isospectrality is preserved also by such corrections or if it is 
just a feature of Einstein and Gauss-Bonnet gravity.
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Appendix A. Effective potential functions

The function U(r), present in the effective potential VS(r) associated with scalar type gravi-
tational perturbations, reads

U(r) = 5(d − 1)6R(r)2(R(r) + 1) − 3(d − 1)5R(r)q(r)
(

24c(R(r) + 1) + (d − 1)R(r)2
)

+2(d − 1)4q(r)2
(

168c2(R(r) + 1) + 24c(d − 1)R(r)2
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−(d − 1)R(r)2(7d(R(r) + 1) + 5R(r) − 3)
)

+2(d − 1)4R(r)q(r)3
(
c(84d(R(r) + 1) + 44R(r) − 84) − 184c2

+(d − 1)(d + 13)R(r)2
)

+(d − 1)3
(

384c3 − 48c((3d − 5)d + 2)R(r)2

+192c2((d − 15)R(r)2 + d − 11
)

+(d − 1)R(r)2(d(7d(R(r) + 1) + 106R(r) + 26) − 3(55R(r) + 7))
)
q(r)4

+(d − 1)3R(r)
(
−64c2(d − 38) + (d − 1)((7d − 90)d + 71)R(r)2

+16c
(

13d2(R(r) + 1) − 2d(81R(r) + 73) + 255R(r) + 303
))

q(r)5

+4(d − 1)2
(

96c3(d − 7) − 8c(d − 1)
(

6d2 − 74d + 145
)

R(r)2

−8c2(d(11d(R(r) + 1) − 34R(r) − 58) − 175R(r) + 9)

+(d − 1)R(r)2(−5(23R(r) + 79)

+d(d(7d(R(r) + 1) − 89R(r) − 81) + 5(41R(r) + 57))))q(r)6

−4(d − 1)2R(r)
(

8c2(d(72 − 13d) + 43) + (d − 1)(d(d(5d − 49) + 99) − 63)

+R(r)2 + 4c(d(d(17d(R(r) + 1) − 107R(r) − 123) − 39R(r) + 121)

+465R(r) + 321)
)
q(r)7

+(d − 1)
(

128c3(d − 9)(d − 5) + 32c(d − 1)(d(d(8d − 55) + 9) + 246)R(r)2

+64c2(d − 5)
(
d2 + ((d − 4)d + 49)R(r) − 3

)
−(d − 1)R(r)2(d(d(d(45d(R(r) + 1) − 452R(r) − 548) + 6(217R(r) + 393))

−4(349R(r) + 997)) + 565R(r) + 1173)) q(r)8

+(d − 1)R(r)
(
−64c2(d − 5)(d(3d − 13) + 36)

+(d − 1)(d(3d(d(9d − 92) + 294) − 1204) + 635)R(r)2

−8c(d − 5)(d(d((d − 79)R(r) + d − 47) + 191R(r) + 127)

+31R(r) + 63)
)
q(r)9

+2d − 5
(

64c3(d − 5)(d − 3) + 8c(d − 1)(d((d − 43)d + 141) − 27)R(r)2

+8c2(d − 5)(d((d − 18)R(r) + d − 2) + 77R(r) − 3)

+(d − 1)2R(r)2(−33(R(r) − 7)

+d(d(9d(R(r) + 1) − 35R(r) − 59) + 43R(r) + 59)))q(r)10

−2d − 5R(r)
(

24c2(d − 11)(d − 5)(d − 3)

+(d − 1)2(d((7d − 39)d + 81) − 65)R(r)2

+12c(d − 7)(d − 5)(d − 3)(d − 1)(R(r) + 1)
)
q(r)11
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+(d − 5)2(d − 1)R(r)2q(r)12(16c((d − 9)d + 26)

+(d − 1)(d((d − 2)R(r) + d − 18) − 3R(r) + 77))

+(d − 5)2(d − 3)2(d − 1)2R(r)3q(r)13. (A.1)

R(r) is given by (3.11), c was defined in (3.12) and q(r) was defined in (2.3).
The expression for V 1

S , the first-order in λ′ correction to VS(r), is given by

V 1
S (r) = − d − 4

4(d − 2)2
(
(� − 1)(d + � − 2) + (d − 1)

(
d−2

2 Rd−3
0

)
r3−d

)3 Rd−1
0 r−6d−1

(
−8(d − 2)2(d − 1)(� − 1)3(d + � − 2)3

(
(d − 3)� + (d − 2)2 + �2

)
r5d

+ 2(d − 2)(� − 1)2(d + � − 2)2(
(d − 2)2(d(d(4d − 71) + 201) − 152)+

(d − 3)(d − 2)(d(19d − 103) + 106)� + (d(d(29d − 215) + 486) − 338)�2+
2(5d − 7)�4 + 4(d − 3)(5d − 7)�3

)
r4d+3

(
d − 2

2
Rd−3

0

)
−

2(d − 2)(� − 1)(d + � − 2)
(
−(d − 2)2(d(d(15d − 268) + 747) − 554)+

(d − 3)(d − 2)(d(d(15d − 242) + 801) − 694)�+
((d − 11)d + 22)(d(37d − 147) + 140)�2 + 4(d − 3)(d(11d − 75) + 94)�3+

(A.2)

2(d(11d − 75) + 94)�4
)

r3d+6
(

d − 2

2
Rd−3

0

)2

− 2(d − 1)
(
−(d − 2)3(d(d(7d − 60) − 113) + 370)+

(d − 3)(d − 2)2(d(7(d − 6)d − 255) + 698)�+
(d(d(d(−3(d − 48)d − 1661) + 7112) − 12992) + 8624)�2−
4(d − 3)2(d(5d − 62) + 108)�3 − 2(d − 3)(d(5d − 62) + 108)�4

)
(

d − 2

2
Rd−3

0

)3

r2d+9 − 2(d − 1)2
(
(d − 2)2(d(d(d + 8) − 131) + 134)−

2(d((69 − 7d)d − 172) + 116)�2 + 2(d − 3)(d(d(7d − 69) + 172) − 116)�
)

(
d − 2

2
Rd−3

0

)4

rd+12 + 4(d − 1)3((d − 5)d(2d − 7) − 22)

(
d − 2

2
Rd−3

0

)5

r15

)
. (A.3)
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